IN2009CN03522A - - Google Patents

Download PDF

Info

Publication number
IN2009CN03522A
IN2009CN03522A IN3522CHN2009A IN2009CN03522A IN 2009CN03522 A IN2009CN03522 A IN 2009CN03522A IN 3522CHN2009 A IN3522CHN2009 A IN 3522CHN2009A IN 2009CN03522 A IN2009CN03522 A IN 2009CN03522A
Authority
IN
India
Prior art keywords
negative sequence
sequence system
network
phase
system regulation
Prior art date
Application number
Inventor
Jens Fortmann
Heinz-Hermann Letas
Original Assignee
Repower Systems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39362977&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=IN2009CN03522(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Repower Systems Ag filed Critical Repower Systems Ag
Publication of IN2009CN03522A publication Critical patent/IN2009CN03522A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • F05B2270/404Type of control system active, predictive, or anticipative
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/50Control logic embodiment by
    • F05B2270/504Control logic embodiment by electronic means, e.g. electronic tubes, transistors or IC's within an electronic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Abstract WIND ENERGY INSTALLATION WITH NEGATIVE SEQUENCE SYSTEM REGULATION AND OPERATING METHOD The invention relates to a wind energy installation comprising a generator which is driven by a rotor and generates electrical power in a multiphase manner for feeding into a network, a converter which is connected to the generator and to the network, and a control system which interacts with the converter and comprises a negative sequence system regulation mechanism (74). The negative sequence system regulation mechanism (74) comprises a phase control module (75) embodied in such a way that an electrical variable of the negative sequence system is determined according to the phase. In this way, the available current can be provided according to the operating situation for active power or idle power in the negative sequence system mechanism. The negative sequence system regulation mechanism is therefore phase-specific such that it can contribute directly to a stabilisation of the network in the event of asymmetrical network conditions. The invention also relates to a correspondingly equipped wind park and an operating method.
IN3522CHN2009 2006-11-20 2007-11-20 IN2009CN03522A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006054870A DE102006054870A1 (en) 2006-11-20 2006-11-20 Wind turbine with negative sequence control and operating procedure
PCT/EP2007/010026 WO2008061698A2 (en) 2006-11-20 2007-11-20 Wind energy installation with negative sequence system regulation and operating method

Publications (1)

Publication Number Publication Date
IN2009CN03522A true IN2009CN03522A (en) 2015-08-07

Family

ID=39362977

Family Applications (1)

Application Number Title Priority Date Filing Date
IN3522CHN2009 IN2009CN03522A (en) 2006-11-20 2007-11-20

Country Status (9)

Country Link
US (1) US8390138B2 (en)
EP (1) EP2102495B1 (en)
CN (1) CN101600880B (en)
CA (1) CA2670490C (en)
DE (1) DE102006054870A1 (en)
DK (1) DK2102495T3 (en)
ES (1) ES2622135T3 (en)
IN (1) IN2009CN03522A (en)
WO (1) WO2008061698A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008361620A1 (en) * 2008-09-11 2010-03-18 Woodward Kempen Gmbh Direct power control with component separation
CN102318157B (en) * 2008-12-12 2014-07-23 维斯塔斯风力***集团公司 Control method and apparatus
DE102008062356B4 (en) * 2008-12-18 2016-12-08 Senvion Gmbh Method and power generation plant for stabilizing a power distribution network after the clarification of a network fault
US20120044727A1 (en) * 2009-01-20 2012-02-23 Powerwind Gmbh Method and circuit arrangement for supplying a multiphase electrical network
DE102009040745A1 (en) * 2009-09-08 2011-03-17 Siemens Aktiengesellschaft Method for controlling power converters and arrangement for carrying out the method
US9478987B2 (en) * 2009-11-10 2016-10-25 Siemens Aktiengesellschaft Power oscillation damping employing a full or partial conversion wind turbine
EP2549101A4 (en) * 2010-03-16 2014-08-06 Mitsubishi Heavy Ind Ltd Wind power generator
DE102010029951A1 (en) * 2010-06-10 2011-12-15 Aloys Wobben Method for feeding electrical energy into a three-phase alternating voltage network
CN103181052B (en) 2010-09-06 2016-01-13 Sma太阳能技术股份公司 For the method for stable power-supplying net
DK2594004T3 (en) * 2010-09-28 2015-03-30 Siemens Ag The damping of the power oscillation by means of an inverter-based power generation device
WO2012062323A2 (en) 2010-11-10 2012-05-18 Vestas Wind Systems A/S Method and system for operating a wind turbine
US20130057236A1 (en) * 2011-09-06 2013-03-07 Che-Wei Hsu Low voltage ride-through control method for grid-connected converter of distributed energy resources
WO2013004252A2 (en) 2011-09-30 2013-01-10 Vestas Wind Systems A/S Control device for damping grid oscillations
DE102011084910A1 (en) * 2011-10-20 2013-04-25 Wobben Properties Gmbh Method and device for feeding electrical current into an electrical network
PL2597746T3 (en) * 2011-11-23 2021-10-18 Siemens Energy Global GmbH & Co. KG Method of controlling the power input to a HVDC transmission link
DE102012004225A1 (en) * 2012-03-06 2013-09-12 Rwe Innogy Gmbh Wind energy system
CN103457493B (en) * 2012-05-31 2016-08-03 台达电子工业股份有限公司 Control device during a kind of power unit by-pass and control method
DE102012220582A1 (en) 2012-11-12 2014-07-03 Wobben Properties Gmbh Wind energy plant and method for feeding electrical energy
EP2768104A1 (en) * 2013-02-15 2014-08-20 Alstom Technology Ltd Control of a three-phase voltage converter in unbalanced mode
JP6022711B2 (en) * 2013-04-05 2016-11-09 株式会社日立製作所 Gas turbine power generation system
JP5796620B2 (en) * 2013-06-19 2015-10-21 ダイキン工業株式会社 Container refrigeration equipment
DE102013114729B4 (en) * 2013-12-20 2021-09-30 Sma Solar Technology Ag Inverter and method for detecting a phase failure in an energy supply network
DK2955808T3 (en) 2014-06-13 2018-12-03 Nordex Energy Gmbh Method for regulating a wind power plant during an asymmetric grid failure
US10256759B2 (en) * 2014-09-02 2019-04-09 Vestas Wind Systems A/S Reactive power control system for a wind turbine generator
KR101686296B1 (en) * 2014-09-04 2016-12-28 한국전력공사 Apparatus and method for managing voltage stability of electric power system
ES2900760T3 (en) 2015-12-17 2022-03-18 Vestas Wind Sys As Wind power plant output modulation using different frequency modulation components to damp grid oscillations
EP3236553A1 (en) * 2016-04-20 2017-10-25 Siemens Aktiengesellschaft Method and device for detecting phase failures, in particular grid defects, in a converter
US10063174B2 (en) * 2016-08-08 2018-08-28 General Electric Company System and method for controlling a negative sequence current in a wind turbine generator
DE102017113006A1 (en) * 2017-06-13 2018-12-13 Wobben Properties Gmbh Method for feeding electrical power into an electrical supply network by means of a converter-fed feed device
EP3813218A1 (en) * 2019-10-25 2021-04-28 Wobben Properties GmbH Arrangement for feeding electric power into an electricity supply network
EP3840160A1 (en) * 2019-12-16 2021-06-23 Wobben Properties GmbH Method for controlling a wind energy system
EP4002678B1 (en) 2020-11-16 2024-01-03 Nordex Energy SE & Co. KG Method for operating a wind turbine and a wind turbine
US11626736B2 (en) * 2020-12-07 2023-04-11 General Electric Company Method for controlling negative-sequence current for grid-forming controls of inverter-based resources
CA3231100A1 (en) * 2021-09-08 2023-03-16 Ali Azizi System and method for determining active and reactive currents during asymmetrical low-voltage ride through (lvrt) conditions

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206598A1 (en) * 1982-02-19 1983-09-01 Siemens AG, 1000 Berlin und 8000 München Arrangement for measuring and monitoring asymmetries in rotating electrical induction machines
SE452822B (en) 1984-02-07 1987-12-14 Asea Ab PROCEDURE FOR DETERMINING ATMINSTONE ONE OF THE PLUS FOLLOWING FLOWERS AND / OR ONE OF THE MINUS FOLLOWING FLOWERS AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
JPH04281399A (en) 1991-03-05 1992-10-06 Toshiba Corp Generator reverse-phase current suppressing device
JPH04308426A (en) 1991-04-05 1992-10-30 Toshiba Corp Generator protective device
US5270640A (en) 1992-04-23 1993-12-14 The Penn State Research Foundation Method for incipient failure detection in electric machines
US5786708A (en) * 1996-04-01 1998-07-28 General Electric Company Self-tuning and compensating turn fault detector
US6128583A (en) 1996-05-20 2000-10-03 Crane Nuclear, Inc. Motor stator condition analyzer
DE19620906C2 (en) 1996-05-24 2000-02-10 Siemens Ag Wind farm
JPH1042588A (en) 1996-07-22 1998-02-13 Hitachi Ltd Controller for motor and variable-speed generator
US6201715B1 (en) 2000-03-28 2001-03-13 Honeywell International Inc. Synchronous frame regulation to extract a positive sequence component of a line voltage
WO2002062000A2 (en) 2001-02-01 2002-08-08 Northeastern University Adaptive controller for d-statcom in the stationary reference frame to compensate for reactive and harmonic distortion under unbalanced conditions
DE10136974A1 (en) 2001-04-24 2002-11-21 Aloys Wobben Method for operating a wind turbine
US6583996B2 (en) 2001-11-14 2003-06-24 Ballard Power Systems Corporation Method and system for detecting a negative sequence for three phase grid-connected inverter systems
US6919650B2 (en) 2002-05-31 2005-07-19 Ballard Power Systems Corporation Hybrid synchronization phase angle generation method
US7071579B2 (en) 2002-06-07 2006-07-04 Global Energyconcepts,Llc Wind farm electrical system
DE10228062A1 (en) * 2002-06-17 2004-01-08 Universität Ulm Detecting counter voltage or current in polyphase current system involves multiplying voltage or current of first frequency with polyphase modulation signal of second frequency, deriving correction
US7233129B2 (en) 2003-05-07 2007-06-19 Clipper Windpower Technology, Inc. Generator with utility fault ride-through capability
CN1312819C (en) * 2004-03-11 2007-04-25 裴迪生 Phase-sequence adaptive symmetrical components reactive power compensation device
US6977827B2 (en) 2004-03-22 2005-12-20 American Superconductor Corporation Power system having a phase locked loop with a notch filter
JP2006025549A (en) 2004-07-08 2006-01-26 Tokyo Electric Power Co Inc:The Power supply device and power system equipped with the same
GB2420456A (en) 2004-11-23 2006-05-24 Areva T & D Uk Ltd Generator control having grid imbalance detector
ES2296483B1 (en) 2005-11-21 2009-03-01 Ingeteam Technology, S.A. A CONTROL AND PROTECTION SYSTEM BEFORE SYMBOLIC AND ASYMETRIC FAULTS, FOR ASYNCHRONOUS GENERATORS.
US7456695B2 (en) 2006-01-10 2008-11-25 General Electric Company Apparatus, method and computer program product for tracking information in an electric grid
US7423412B2 (en) 2006-01-31 2008-09-09 General Electric Company Method, apparatus and computer program product for injecting current
CA2664924C (en) 2006-10-02 2016-07-05 Vestas Wind Systems A/S Method for operating a wind turbine connected to a utility grid during a utility grid disturbance, wind turbine and wind park

Also Published As

Publication number Publication date
EP2102495B1 (en) 2017-01-11
ES2622135T3 (en) 2017-07-05
CN101600880B (en) 2014-06-25
WO2008061698A2 (en) 2008-05-29
CA2670490C (en) 2012-08-28
US8390138B2 (en) 2013-03-05
WO2008061698A3 (en) 2008-11-06
CN101600880A (en) 2009-12-09
DE102006054870A1 (en) 2008-06-12
CA2670490A1 (en) 2008-05-29
US20100052322A1 (en) 2010-03-04
DK2102495T3 (en) 2017-04-24
EP2102495A2 (en) 2009-09-23

Similar Documents

Publication Publication Date Title
IN2009CN03522A (en)
EP2060786A3 (en) Controlling the temperature of a wind turbine electric generator by varying the electrical power factor
AU2012350817B2 (en) Method for operating a wind turbine or a wind farm
JP4369450B2 (en) Power supply system
DE502004011883D1 (en) R NETWORK SUPPORT AND METHOD THEREFOR
DE602007009966D1 (en) Wind power system and operating method therefor
CA2598069A1 (en) Power generating system
DK1907697T3 (en) Power control in a wind farm
MX2009007076A (en) A low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid.
WO2008004126A3 (en) High voltage direct current link transmission system for variable speed wind turbine
WO2009103505A3 (en) Wind energy plant having converter control
GB0702253D0 (en) Method of and apparatus for controlling excitation
US20100283242A1 (en) High Voltage Start of an Engine from a Low Voltage Battery
WO2009049603A3 (en) Control system for solar installations
NZ610076A (en) Adjustment device for adjusting an angle of incidence of a rotor blade of a wind power plant
US8853875B2 (en) Wind power generation system and method for controlling excitation synchronous generator thereof
US9634596B2 (en) Hybrid power generation with variable voltage flux
WO2008128680A3 (en) Wind energy plant with reactive power condition
US20160006254A1 (en) Serial Hybrid Microgrid with PPSA-mediated interface to Genset and to Non-Dispatchable Power
Kumar et al. Grid interfaced solar PV based water pumping using brushless DC motor drive
EP2056445A3 (en) Electric motor control with buck boost convertor
WO2010069456A3 (en) Stationary energy generation plant having a control device and method for controlling the same
WO2008027378A3 (en) Power system rating converter
Kumar et al. Grid interfaced solar PV powered brushless DC motor driven water pumping system
WO2012025348A3 (en) Pitch system for a wind power plant