IE83865B1 - Iontophoretic delivery device - Google Patents

Iontophoretic delivery device

Info

Publication number
IE83865B1
IE83865B1 IE1991/1075A IE107591A IE83865B1 IE 83865 B1 IE83865 B1 IE 83865B1 IE 1991/1075 A IE1991/1075 A IE 1991/1075A IE 107591 A IE107591 A IE 107591A IE 83865 B1 IE83865 B1 IE 83865B1
Authority
IE
Ireland
Prior art keywords
circuit
current
transistor
agent
electrode assemblies
Prior art date
Application number
IE1991/1075A
Other versions
IE911075A1 (en
Inventor
A Mcnichols Larry
D Badzinski John
Original Assignee
Alza Corporation
Filing date
Publication of IE83865B1 publication Critical patent/IE83865B1/en
Application filed by Alza Corporation filed Critical Alza Corporation
Publication of IE911075A1 publication Critical patent/IE911075A1/en

Links

Description

PATENTS ACT, 1992 1075/91 IONTOPHORETIC DELIVERY DEVICE ALZA CORPORATION IONTOPHORETIC DELIVERY DEVICE TECHNICAL FIELD OF THE INVENTION The present invention pertains generally to a device for delivering an agent transdermally or transmucosally by iontophoresis. More particularly, the invention relates to an electrically powered iontophoretic delivery device having circuitry which prevents electrical current drain from the power source before actual use of the device.
BACKGROUND OF THE INVENTION Iontophoresis, according to Dorland's Illustrated Medical Dictionary, is defined to be "the introduction, by means of electric current, of ions of soluble salts into the tissues of the body for therapeutic purposes." Iontophoretic devices have been known since the early 1900's. British specification No. 410,009 (1934) describes an iontophoretic device which overcame one of the disadvantages of such early devices known to the art at that time, namely the requirement of a special low tension (low voltage) source of current which meant that the patient needed to be immobilized near such source. The device of that British specification was made by forming a galvanic cell from electrodes and the material containing the medicament or drug to be delivered transdermally. The galvanic cell produced the current necessary for iontophoretically delivering the medicament. This ambulatory device thus permitted iontophoretic drug delivery with substantially less interference with the patient's daily activities.
More recently, a number of United States patents have issued in the iontophoresis field, indicating a renewed interest in this mode of drug delivery. 3,991,755 issued to Vernon et al.; U.S. Patent No. 4,141,359 issued to Jacobsen et al.; U.S. Patent No. 4,398,545 issued to .. and U.S. 4,250,878 issued to Jacobsen For example, U.S. Patent No.
Wilson; Patent No. disclose examples of iontophoretic devices and some applications thereof. The iontophoretic process has been found to be useful in the transdermal administration of medicants or drugs including lidocaine hydrochloride, hydrocortisone, fluoride, penicillin, dexamethasone sodium phosphate, insulin and many other drugs. Perhaps the most common use of iontophoresis is in diagnosing cystic fibrosis by delivering pilocarpine salts iontophoretically. The pilocarpine stimulates sweat production; the sweat is collected and analyzed for its chloride content to detect the presence of the disease.
In presently known iontophoretic devices, at least two electrodes are used. Both of these electrodes are disposed so as to be in intimate electrical contact with some portion of the skin of the body. One electrode, called the active or donor electrode, is the electrode from which the ionic substance, medicament, drug precursor or drug is delivered into the body by iontophoresis. The other electrode, called the counter or return electrode, serves to close the electrical circuit through the body. In conjunction with the patient’s skin contacted by the electrodes, the circuit is completed by connection of the electrodes to a source of electrical energy, e.g., a battery. For example, if the ionic substance to be delivered into the body is positively charged (i.e., a cation), then the anode will be the active electrode and the cathode will serve to complete the circuit. If the ionic substance to be delivered is negatively charged (i.e., an anion), then the cathode will be the active electrode and the anode will be the counter electrode.
Alternatively, both the anode and cathode may be used to deliver drugs of opposite charge into the body. be active or donor electrodes.
In such a case, both electrodes are considered to For example, the anode can deliver a positively charged ionic substance into the body while the cathode can deliver a negatively charged ionic substance into the body.
It is also known that iontophoretic delivery devices can be used to deliver an uncharged drug or agent into the body. This is accomplished by a process called electroosmosis. Electroosmosis is transdermal flux of a liquid solvent (e.g., the liquid solvent containing the uncharged drug or agent) which is induced by the presence of an electric field imposed across the skin by the donor electrode. As used herein, the terms "iontophoresis" and "iontophoretic" apply equally to electrically powered devices which deliver charged/ionic agents by iontophoresis as well as to electrically powered devices which deliver uncharged/nonionic agents by electroosmosis.
Furthermore, existing iontophoresis devices generally require a reservoir or source of the beneficial agent (which is preferably an ionized or ionizable agent or a precursor of such agent) to be iontophoretically delivered into the body. Examples of such reservoirs or sources of ionized or ionizable agents include a pouch as described in the previously mentioned Jacobsen U.S.
Patent No. 4,250,878, or a pre-formed gel body as 4,382,529 and Ariura Such drug reservoirs described in Webster U.S. Patent No. et al. U.S. Patent No. 4,474,570. are electrically connected to the anode or the cathode of an iontophoresis device to provide a fixed or renewable source of one or more desired agents.
More recently, iontophoretic delivery devices have been developed which utilize complex electrical circuits in order to perform a number of functions.
These complex circuits include pulsing circuits for delivering a pulsed current, timing circuits for delivering drugs over predetermined timing and dosing regimens, feedback regulating circuits for delivering drugs in response to a sensed physical parameter, and polarity controlling circuits for periodically reversing the polarity of the electrodes. et al. U.S. Patent 4,340,047; Lattin U.S. Patent 4,456,012; Jacobsen U.S. Patent 4,141,359; and Lattin et al. U.S. Patent 4,406,658.
Very simple iontophoretic delivery circuits See for example, Tapper (e.g., a circuit consisting of only a DC power source electrically connected in series with the two electrodes) do not need a switch for disconnecting the power source from the circuit in order to prevent current drain from the power source. This is so because the electrodes, before placement on a body surface, form an open circuit and accordingly will not drain current from the DC power source (e.g., a battery) during storage.
On the other hand, the complex circuits utilized in more recent iontophoretic delivery devices require internal switches in order to disconnect the power source from the circuitry in order to prevent current drain during storage life.
Sibalis U.S. Patent 4,808,152 (switch 80 in Figure 2).
Unfortunately, these devices need to be switched on at See, for example, the time they are placed on the body in order to begin operating. This represents a potential opportunity for error in drug delivery because the physician, nurse and/or the patient may not remember to turn on the switch. In addition, in the case of a defective switch or a switch having poor electrical Contact there may be uncertainty concerning whether or not the device is actually delivering the beneficial agent.
Accordingly, it is an object of the present invention to provide an electrical circuit which does not drain current from the power source until the device is placed in operation on the body.
It is a further object to provide such a circuit which does not require the use of manually operated switches which must be correctly engaged by either the patient, the physician and/or other medical technician.
SUMMARY OF THE INVENTION The present invention provides an electrically powered iontophoretic delivery device for delivering a beneficial agent by iontophoresis according to claim 1. The device includes an electical power source adapted to be electrically connected to a pair of electrode assemblies through a circuit means. The circuit means comprises an activation circuit and current generating circuit. The activation circuit is electrically connected to the power source and is responsive to the completion of a circuit between the electrode assemblies.
Upon closing the circuit between the electrode assemblies (e.g., upon application of the electrode assemblies to the body), the activation circuit automatically activates the current generating circuit.
The activation circuit draws substantially no current from the power source when the circuit between the electrode assemblies is open. The current generating circuit generates an electric current suitable for delivering the beneficial agent. The current generating circuit is selectively activatable by the activation circuit and also draws substantially no current from the power source before activation. The device can be programmed to operate for a predetermined interval of time, or until the battery is depleted, during which time the generating current delivers the agent into the body.
Preferably, the activation circuit includes a transistor. Most preferably, the activation circuit comprises two parallel current pathways, the first parallel pathway running from the power source through the transistor to the electrodes. The second parallel pathway runs from the current source through at least one resistor to the electrode assemblies.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a longitudinal cross—sectional view, taken along the line 1-1 of Figure 3, of an iontophoretic drug delivery device according to the present invention; Figure 2 is a bottom plan view of the iontophoretic delivery device shown in Figure 1; Figure 3 is a top plan view of the iontophoretic delivery device shown in Figures 1 and 2 with portions removed; and Figure 4 is a schematic of an electronic circuit for an iontophoretic delivery device according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION Referring now to Figures 1, 2 and 3, there is shown the iontophoretic delivery device according to the present invention. The device includes a housing 10, generally constructed of a flexible, nonconductive foam material. Mounted within housing 10 is a flexible printed circuit board 20 and one or more batteries 30.
For example, battery 30 can be a flat, lithium 6-volt battery having a capacity of about 60 to 120 milliamp hours. Alternatively, battery 30 may comprise one or more "button" cells of the type used to power electric watches. Circuit board 20 carries the electronic circuits of the invention to be described with reference to Figure 4. Battery 30 includes a pair of terminals 31 and 32, which are formed as tabs at the edge of the battery. Corresponding pads 21 and 22 are provided on the surface of printed circuit board 20, and terminals 31 and 32 are electrically connected to terminals 21 and 22 to provide power to the circuit board. Circuit board 20 further incudes pads 24 and 26, which are connected to leads from electrodes 40 and 42. The device uses two electrode assemblies 41 and 43. Donor electrode assembly is the electrode assembly from which the beneficial agent (e.g., a drug) is delivered into the body.
Indifferent or counter electrode assembly 43 serves to close the electrical circuit through the body. Electrode assemblies 41 and 43 are mounted in recessed cavities within housing 10.
The donor electrode assembly 41 includes an electrode 40 and a reservoir 44. The reservoir 44 contains the beneficial agent to be iontophoretically delivered by the device. A rate controlling membrane (not shown) may optionally be positioned between the reservoir 44 and the body surface for controlling the rate at which the agent is passively (i.e., not electrically assisted) delivered to the body surface.
Counter electrode assembly 43 contacts the body surface at a location spaced apart from electrode assembly 41.
Counter electrode assembly 43 includes an electrode 42 and a reservoir 46. The device can be adhered to the body surface by means of ion-conducting adhesive layers (not shown) applied to the skin facing side of reservoirs 44 and 46. and 46 may be sufficiently tacky to adhere the device to the skin. adhered to the body surface using an adhesive overlay.
Alternatively the matrices of reservoirs 44 As a further alternative, the device may be Any of the conventional adhesive overlays used to secure passive transdermal delivery devices to the skin may be used.
The iontophoretic delivery device of the present invention is preferably flexible enough to conform to contours of the body. While not limited to any particular size or shape, the device illustrated in Figures 1 to 3 typically is about two or three inches long, about one and one—half inches wide, and has a The combined skin—contacting areas of electrode assemblies 41 thickness of approximately one-quarter of an inch. and 43 can vary from less than 1 cm2 to greater than 2 cm2. The average device however, will have electrode assemblies with a combined skin-contacting area within the range of about 5 to 50 cm2. As constructed, electrode assemblies 41 and 43 are electrically isolated from each other until such time as when the device is applied to the human body, whereupon a circuit through the human tissue is completed between the electrode assemblies.
Referring now to Figure 4, there is shown one example of an electrical circuit which may be used in the iontophoretic delivery device of the present invention.
Generally, circuit 60 includes an activation circuit 62 and a current generating circuit 70. Activation circuit 62 detects the closing of the circuit between the electrode assemblies 41 and 43 (i.e., the circuit between the electrode assemblies is closed by placing electrode assemblies 41 and 43 on human body tissue 50). During activation of the device, the circuit between electrode assemblies 41 and 43 are applied to the body tissue 50, a circuit path from the battery 30, through resistors R1 and R2, diode D1, electrode assembly 41, body tissue 50 and electrode assembly 43 is closed. Current flowing in this circuit automatically activates transistor Q1, which in turn activates transistor Q2.
The activation of transistor Q2 causes current to flow from battery 30 through current generating circuit 70 whereby the beneficial agent or drug is Those skilled in the art will appreciate that activation circuit 62 may delivered from reservoir 44 into the body. be used to activate any number of differently configured current generating circuits 70. Of course, activation circuit 62 has greatest utility when current generating circuit 70 has one or more internally closed circuits (as shown by the connections to ground). For purposes of illustration, one specific current generation circuit 70 has been chosen for illustration in the drawings. In the illustrated example, circuit 70 includes an oscillator which produces a pulsed wave form, for example in the 1 to 10 kilohertz range. Circuit 70 has a constant current circuit comprised of transistors Q3 and Q4 and resistor R5 and R6, and an oscillator circuit comprised of Schmitt trigger NAND gate U1, resistor R4 and capacitor C2.
Alternatively, circuit 70 may be configured to deliver a constant (i.e., non-pulsed) DC iontophoretic current if desired.
As configured, circuit 60 has substantially no current drain on battery 30 before electrode assemblies 41 and 43 are placed in electrical contact with body 50.
Once electrode assemblies 41 and 43 are placed in electrical Contact with body 50, current begins to flow from battery 30, then in parallel through resistor R1 and transistor Q1, through resistor R2 and diode D1 and finally through electrode assembly 41, body 50 and electrode assembly 43 to complete the circuit back to battery 30. base of transistor Q1 causes transistor Q1 to be The flow of current from the emitter to the activated and thereafter current can flow between the emitter and the collector of transistor Q1. This in turn causes current to flow to transistor Q2 causing transistor Q2 to be activated. When transistor Q2 is activated, the current can pass directly from battery 30 through the collector and emitter of Q2 directly into current generation circuit 70. At this point, the current generation circuit 70 is in operation and begins to generate current in order to deliver the beneficial agent or drug by iontophoresis.
Those skilled in the art will appreciate that at least a portion of the current from battery 30 will continue to flow through resistors R1 and R2 and diode D1 to the patient. This alternative current path represents the baseline level of current when the pulsing produced by circuit 70 is in the off mode. While the baseline current passing through resistors R1 and R2 and diode D1 _10_ can be set to any appropriate level, it is generally preferred that the baseline current level be as close to zero as possible. For example, when using a battery 30 having a voltage of 6 volts, resistors R1 and R2 can be chosen to have a series resistance of approximately 560 kilohms, such that only about eleven microamps of DC current flows through the resistors and the human body tissue 50 while the active iontophoretic device is attached to the body. Generally, the resistance of tissue 50 is approximately 5 to 10 kilohms, after the device has been placed on the body for several minutes.
In operation, the iontophoretic drive current has a peak value in the range of about 20 microamps to 2 milliamps, and preferably about 100 microamps.
Circuit 70 also has substantially no current draw on battery 30 when the iontophoretic delivery device is in storage. Accordingly, the device may be stored for considerable periods of time, depending primarily on the storage life of battery 30.
When used in connection with the reservoir 44 or the donor electrode assembly 41, the term "agent" refers to beneficial agents, such as drugs, within the class which can be delivered through body surfaces. The expression "drug" is intended to have a broad interpretation as any therapeutically active substance which is delivered to a living organism to produce a desired, usually beneficial, effect. In general, this includes therapeutic agents in all of the major therapeutic areas including, but not limited to, anti- infectives such as antibiotics and antiviral agents, analgesics and analgesic combinations, anesthetics, anorexics, antiarthritics, antiasthmatic agents, anticonvulsants, antidepressants, antidiabetic agents, antidiarrheals, antihistamines, anti—inflammatory agents, antimigraine preparations, antimotion sickness antinauseants, preparations, antineoplastics, _11_ antiparkinsonism drugs, antipruritics, antipsychotics, antipyretics, antispasmodics, including gastrointestinal and urinary, anticholinergics, sympathomimetrics, xanthine derivatives, cardiovascular preparations including calcium channel blockers, beta—blockers, antiarrythmics, antihypertensives, diuretics, vasodilators, including general, coronary, peripheral and cerebral, central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones, hypnotics, immunosuppressives, muscle relaxants, parasympatholytics, parasympathomimetrics, proteins, peptides, psychostimulants, sedatives and tranquilizers.
The invention is particularly useful in the controlled delivery of peptides, polypeptides, proteins, and other macromolecules. These macromolecular substances typically have a molecular weight of at least about 300 daltons, and more typically a molecular weight in the range of about 300 to 40,000 daltons. examples of peptides and proteins in this size range Specific include, without limitation, LHRH, LHRH analogs such as buserelin, gonadorelin, naphrelin and leuprolide, GHRH, insulin, heparin, calcitonin, endorphin, TRH, NT-36 (chemical name: N=[[(s)oxo-2—azetidinyl]carbonyl]-L- histidyl-L-prolinamide), liprecin, pituitary hormones (e.g., HGH, HMG, HCG, desmopressin acetate, etc.), follicle luteoids, aANF, (GFRF), BMSH, platelet—derived growth factor, asparaginase, bleomycin growth factor releasing factor somatostatin, bradykinin, somatotropin, sulfate, chymopapain, cholecystokinin, chorionic gonadotropin, corticotropin (ACTH), erythropoietin, epoprostenol (platelet aggregation inhibitor), glucagon, hyaluronidase, interferon, interleukin-2, menotropins (urofollitropin (FSH) and LH), oxytocin, streptokinase, tissue plasminogen activator, urokinase, vasopressin, ACTH analogs, ANP, ANP clearance inhibitors, angiotensin II antagonists, antidiuretic hormone agonists, antidiuretic hormone antagonists, CD4, ceredase, CSF’s, enkephalins, FAB fragments, IgE peptide suppressors, IGF- 1, neurotrophic factors, parathyroid hormone and agonists, parathyroid hormone antagonists, prostaglandin antagonists, pentigetide, protein C, protein S, renin inhibitors, thymosin alpha—l, thrombolytics, TNF, vaccines, vasopressin antagonists, analogs, VIP, alpha—l anti-trypsin (recombinant).
When used in connection with the reservoir 46 and/or the counter electrode assembly 43, the term "agent" refers to any suitable pharmacologically acceptable electrolyte salt. Suitable electrolyte salts include water soluble and biocompatible salts such as sodium chloride, alkali metal salts, alkaline earth metal salts such as chlorides, sulfates, nitrates, carbonates, phosphates, and organic salts such as ascorbates, citrates, acetates and mixtures thereof.
Electrodes 40 and 42 are electrically conductive and may be formed of a metal, or other electrically conductive material. For example, electrodes 40 and 42 may be formed of a metal foil or metal deposited or painted on a suitable backing.
Examples of suitable metals include silver, zinc, silver/silver chloride, aluminum, platinum, stainless steel, gold and titanium. Alternatively, the electrodes 11 and 12 may be formed of a polymer matrix containing a conductive filler such as a metal powder, powdered graphite, carbon fibers or other known electrically conductive filler material.
Electrodes 40 and 42 are electrically connected to battery 30 using well known means, e.g., printed flexible circuits, metal foils, wires or by direct contact.
The matrix of reservoirs 44 and 45 can be any material adapted to absorb and hold a sufficient quantity of liquid therein in order to permit transport of agent -13.. therethrough by iontophoresis. For example, gauzes made of cotton or other absorbent fabrics as well as pads and sponges, both natural and synthetic, may be used. Most preferably, the matrix of reservoirs 44 and 46 is composed, at least in part, of a hydrophilic polymer material. Both natural and synthetic hydrophilic polymers may be used. Suitable hydrophilic polymers include polyvinylpyrrolidones, polyvinyl alcohol, polyethylene oxides such as Polyox® manufactured by Union Carbide Corp.; Carbopol® manufactured by BF Goodrich of Akron, OH; blends of polyoxyethylene or polyethylene glycols with polyacrylic acid such as Polyox® blended with Carbopol®, polyacrylamide, K1ucel®, cross—linked dextran such as Sephadex (Pharmacia Fine Chemicals, AB, Uppsala, Sweden), Water Lock® (Grain Processing Corp., Muscatine, Iowa) which is a starch-graft—poly(sodium acrylate—co—acrylamide) polymer, cellulose derivatives such as hydroxyethyl cellulose, hydroxypropylmethylcellulose, low-substituted hydroxypropylcellulose, and cross-linked Na- carboxymethylcellulose such as Ac-Di-Sol (FMC Corp., Philadelphia, Pa.) hydrogels such as polyhydroxyethyl methacrylate (National Patent Development Corp.), natural gums, chitosan, pectin, starch, guar gum, locust bean gum, and the like, along with blends thereof. Of these, polyvinylpyrrolidones are preferred.
In order to conduct electrical current, reservoirs 44 and 46 must be sufficiently hydrated to allow ions to flow therethrough. In most cases the liquid used to hydrate the matrices of reservoirs 44 and 46 will be water, but other liquids including non-aqueous liquids, can also be used to "hydrate" (i.e., activate) the matrices of reservoirs 44 and 46. In the typical case where the hydrating liquid is water, the matrices of reservoirs 44 and 46 will be at least partly composed of a hydrophilic material such as a hydrophilic polymer, a cellulose sponge or pad or other water retaining material. Most preferably, the matrices of reservoirs 44 and 46 will be at least partly composed of a hydrophilic polymer of the type described hereinbefore.
The beneficial agent or drug, in the case of the donor electrode reservoir 44, and the electrolyte salt in the case of the counter electrode reservoir 46 may be added to the reservoir matrix either at the time of manufacture or in the form of solutions at the time of use of the device. For example, when the drug or electrolyte is added to the reservoir matrix at the time of manufacture of the device, blending of the drug or electrolyte with the reservoir matrix components can be accomplished mechanically either by milling, extrusion, or hot-melt mixing. The resulting dry state reservoirs may then be prepared by solvent casting, extrusion or by melt—processing, for example. In addition to the drug and electrolyte, the reservoirs 44 and 46 may also contain other conventional materials such as dyes, pigments, inert fillers, and other excipients.
On the other hand, the reservoirs 44 and 46 may be manufactured with no drug or electrolyte. In such a case, the drug and electrolyte can be added to the reservoirs 44 and 46, respectively, by adding a solution of the drug and electrolyte to the appropriate reservoir matrix at the time of use.
The iontophoretic delivery device of the present invention is particularly useful as an alternative to subcutaneous and intravenous injection of drugs. In addition, the device of the present invention permits a viable alternative to oral administration.
Many drugs, such as proteins, polypeptides and narcotics, cannot be efficiently administered orally due to first- pass deactivation by the liver. More specifically, orally administered drugs enter the bloodstream via the portal blood circulation system, which feeds into the liver. As a result, a substantial amount of the drug is removed from the bloodstream by the liver before it reaches the desired situs in the body. Intravenous and iontophoretic introduction, on the other hand, permit a much greater percentage of the administered drug to reach the desired situs directly before the drug is filtered Smaller doses can the side- relatively from the bloodstream by the liver. thus be used, saving expense and avoiding effects associated with administering the large dosages needed to provide effective relief via oral administration. The iontophoretic device of the present invention thus provides a viable alternative to the injections for such drugs, as they can be driven into the body with the iontophoretic current at a controlled rate of administration similar to that obtained using intravenous, drip—methods. Moreover, the device of the present invention is superior to intravenous drip- methods, as the patient need not be incapacitated by being tethered to an I—V device.
Although the invention has been described with specific reference to iontophoretic?drug delivery, it is generally applicable to any "electrotransport" system for transdermal delivery of therapeutic agents, whether charged or uncharged, whether delivered by iontophoresis, electroosmosis (also referred to as electrohydrokinesis, electro—convention or electrically-induced osmosis) or both.
Although the invention has been described herein in its preferred form, those with skill in the art will recognize that various modifications can be made thereto without departing from the scope of the invention as defined in the claims appended hereto.

Claims (17)

1. An electrically powered iontophoretic delivery device for delivering an agent by iontophoresis including a source of electrical power (30) adapted to be electrically connected through a circuit means (60) to a pair of electrode assemblies (41. 43) for the iontophoretic delivery of said agent to a patient, said circuit means comprising a current generating circuit (70) connected to said electrode assemblies and capable of providing an electric current suitable for the iontophoretic delivery of said agent to said patient, characterized in that said circuit means (60) also comprise an activation circuit (62) electrically connected to said source of electrical power (30) and also electrically connected to one of said electrode assemblies (41, 43). the other one of said electrode assemblies being connected to said source of electrical power (30). said activation circuit (62) being such as to be activated when electrically closed by placing the electrodes on the patient‘s skin, said currentggeneratirrg circuit (70) being itself connected to said activation circuit such as to be electrically connected to the power source (30) when said activation circuit is activated. to thereby automatically induce the production of said electric current suitable for said iontophoretic delivery by said current generating circuit, and to automatically interrupt said iontophoretic delivery when said activation circuit is no longer activated. said activation circuit drawing substantially no current from said power source, when in the inactivated state.
2. The device of claim 1, wherein a baseline current circuit is formed between said activation circuit (62) and said electrode assemblies when said activation circuit is in the on mode.
3. The device of claim 1, wherein the power source comprise a battery (30).
4. The device of claim 3, wherein the pair of electrode assemblies (41, 43) includes a donor electrode assembly (41) and a counter electrode assembly (43).
5. The device of claim 4, wherein the donor electrode assembly (41) include an electrode (40) and a reservoir (44) containing the agent to be delivered.
6. The device of claim 4, wherein the counter electrode assembly (43) comprises an electrode (42) and an electrolyte reservoir (46).
7. The device of claim 2, wherein the activation circuit includes a transistor (Q1).
8. The device of claim 7, wherein the activation circuit comprises two parallel current pathways, the first parallel pathway running from the power source through the transistor to the electrode assemblies, the second parallel pathway running from the power source through at least one resistor to the electrode assemblies. wherein a baseline level of current is delivered through the second parallel pathway after the activation circuit has been activated, and the..baseline level of current delivers agent to a patient.
9. The device of claim 7, (wherein current flowing through the transistor causes the current generating circuit to be activated.
10. The device of claim 4, wherein the current generating circuit produces a pulsed current.
11. The device of claim 1, wherein the agent comprises an ionizable dnig.
12. The device of claim 1. wherein the agent is selected from the group consisting of polypeptides, proteins and other macromolecules.
13. The device of claim 1, wherein the current generating circuit produces a non-pulsed current.
14. The device of claim 1, wherein the activation circuit (62) includes: 20 - a circuit path (30, 41, 43) including the source of electrical power and the electrode assemblies. wherein the circuit path is closed if the electrode assemblies are placed on the patients skin and opened if at least one electrode assembly is removed from the patient's skin; - a transistor (Q1) electrically connected to thecircuit path, the transistor (01) being activated when the electrodes are placed on the patient's skin; and - a second transistor (Q2) electrically connected to the first transistor (Q1) which activates the current generating circuit (70) by causing current flow to the current generating circuit when the first transistor (Q1) is activated.
15. The electrically powered iontophoretic delivery device for delivering an agent by iontophoresis according to claim 14 wherein the current generating circuit comprises: — an oscillator (U1, R4. 02) which produces a pulsed wave form; and - a constant current circuit (03. 04, R3, R4) electrically connected to the oscillator.
16. The electrically powered iontophoretic delivery device for delivering an agent by iontophoresis according to claim 15 wherein the constant current circuit includes at least one transistor (Q3).
17. The electrically powered iontophoretic delivery device for delivering an agentqby iontophoresis according to claim 14 wherein the current generatind circuit delivers a constant DC iontophoretic current. F. R. KELLY & CO., AGENTS FOR THE APPLICANTS
IE107591A 1990-03-30 1991-03-28 Iontophoretic delivery device IE911075A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
USUNITEDSTATESOFAMERICA30/03/19905
US50229890A 1990-03-30 1990-03-30
US67130591A 1991-03-21 1991-03-21

Publications (2)

Publication Number Publication Date
IE83865B1 true IE83865B1 (en)
IE911075A1 IE911075A1 (en) 1991-10-09

Family

ID=27054102

Family Applications (1)

Application Number Title Priority Date Filing Date
IE107591A IE911075A1 (en) 1990-03-30 1991-03-28 Iontophoretic delivery device

Country Status (16)

Country Link
US (1) US5314502A (en)
EP (1) EP0522043B1 (en)
JP (1) JPH05506165A (en)
KR (1) KR100203225B1 (en)
AT (1) ATE251929T1 (en)
AU (1) AU647103B2 (en)
CA (1) CA2079462C (en)
DE (1) DE69133328T2 (en)
DK (1) DK0522043T3 (en)
ES (1) ES2208633T3 (en)
FI (1) FI115609B (en)
IE (1) IE911075A1 (en)
NO (1) NO923792L (en)
NZ (1) NZ237636A (en)
PT (1) PT97198B (en)
WO (1) WO1991015257A1 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956032B1 (en) * 1986-04-18 2005-10-18 Carnegie Mellon University Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods
US5310403A (en) * 1992-05-18 1994-05-10 Becton, Dickinson And Company Iontophoretic drug delivery device and circuit therefor
WO1994000048A1 (en) * 1992-06-30 1994-01-06 Hermann Marsoner Device with sensors to detect a value depending on the chloride and/or sodium concentration, and measuring and control device therefor
US5476485A (en) * 1993-09-21 1995-12-19 Pacesetter, Inc. Automatic implantable pulse generator
IE960312A1 (en) * 1995-06-02 1996-12-11 Alza Corp An electrotransport delivery device with voltage boosting¹circuit
CN1147329C (en) * 1995-06-05 2004-04-28 阿尔萨公司 Device for trandermal electrotransport delivery of fentanyl and sufentanil
WO1997014473A1 (en) * 1995-10-18 1997-04-24 Novartis Ag Thermopile powered transdermal drug delivery device
US5676648A (en) 1996-05-08 1997-10-14 The Aps Organization, Llp Iontophoretic drug delivery apparatus and method for use
US6385487B1 (en) 1996-05-08 2002-05-07 Biophoretic Therapeutic Systems, Llc Methods for electrokinetic delivery of medicaments
EP0920345A4 (en) * 1996-06-19 2006-05-10 Vyteris Inc Iontophoretic delivery of cell adhesion inhibitors
US5857994A (en) 1996-10-01 1999-01-12 Becton, Dickinson And Company Awakenable iontophoretic/delivery device for reducing electrical sensation upon application thereof
US6246904B1 (en) * 1996-12-17 2001-06-12 Alza Corporation Electrotransport drug delivery reservoirs containing inert fillers
US5991655A (en) * 1997-03-03 1999-11-23 Drug Delivery Systems, Inc. Iontophoretic drug delivery device and method of manufacturing the same
US6009344A (en) * 1997-07-25 1999-12-28 Becton, Dickinson And Company Iontophoretic drug delivery system
DE69838485T2 (en) 1997-10-09 2008-06-26 Emory University METHOD AND DEVICE FOR THE TRANSDERMAL ADMINISTRATION OF LITHIUM
CN1278737A (en) * 1997-11-12 2001-01-03 阿尔萨公司 Method for decreasing self-association of polypeptides
US6295469B1 (en) 1997-11-14 2001-09-25 Alza Corporation Formulation for electrically assisted delivery of lidocaine and epinephrine
USRE37796E1 (en) 1997-12-16 2002-07-23 Biophoretic Therapeutic Systems, Llc Methods for iontophoretic delivery of antiviral agents
DE69837163T2 (en) 1997-12-17 2007-11-22 Alza Corp., Mountain View IONTOPHORETIC DEVICE WITH PROGRAMMABLE ELECTRIC POWER ADJUSTMENT
US6148231A (en) * 1998-09-15 2000-11-14 Biophoretic Therapeutic Systems, Llc Iontophoretic drug delivery electrodes and method
US7127285B2 (en) * 1999-03-12 2006-10-24 Transport Pharmaceuticals Inc. Systems and methods for electrokinetic delivery of a substance
US6553253B1 (en) 1999-03-12 2003-04-22 Biophoretic Therapeutic Systems, Llc Method and system for electrokinetic delivery of a substance
US6792306B2 (en) * 2000-03-10 2004-09-14 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
US6477410B1 (en) * 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6385488B1 (en) 1999-05-20 2002-05-07 Vyteris, Inc. Circuits for increasing the reliability of an iontophoretic system
US6377848B1 (en) 1999-08-25 2002-04-23 Vyteris, Inc. Devices activating an iontophoretic delivery device
WO2001060449A1 (en) 2000-02-18 2001-08-23 University Of Utah Research Foundation Methods for delivering agents using alternating current
AU2001241483A1 (en) 2000-02-18 2001-08-27 University Of Utah Research Foundation Methods for extracting substances using alternating current
US7137975B2 (en) 2001-02-13 2006-11-21 Aciont, Inc. Method for increasing the battery life of an alternating current iontophoresis device using a barrier-modifying agent
US20060009730A2 (en) * 2002-07-29 2006-01-12 Eemso, Inc. Iontophoretic Transdermal Delivery of One or More Therapeutic Agents
US7479133B2 (en) * 2003-06-30 2009-01-20 Johnson & Johnson Consumer Companies, Inc. Methods of treating acne and rosacea with galvanic generated electricity
US20040265395A1 (en) * 2003-06-30 2004-12-30 Ying Sun Device for delivery of reducing agents to barrier membranes
US7486989B2 (en) * 2003-06-30 2009-02-03 Johnson & Johnson Consumer Companies, Inc. Device for delivery of oxidizing agents to barrier membranes
US7507228B2 (en) * 2003-06-30 2009-03-24 Johnson & Johnson Consumer Companies, Inc. Device containing a light emitting diode for treatment of barrier membranes
US8734421B2 (en) * 2003-06-30 2014-05-27 Johnson & Johnson Consumer Companies, Inc. Methods of treating pores on the skin with electricity
US7477938B2 (en) * 2003-06-30 2009-01-13 Johnson & Johnson Cosumer Companies, Inc. Device for delivery of active agents to barrier membranes
US7477940B2 (en) * 2003-06-30 2009-01-13 J&J Consumer Companies, Inc. Methods of administering an active agent to a human barrier membrane with galvanic generated electricity
US7476222B2 (en) * 2003-06-30 2009-01-13 Johnson & Johnson Consumer Companies, Inc. Methods of reducing the appearance of pigmentation with galvanic generated electricity
US7480530B2 (en) * 2003-06-30 2009-01-20 Johnson & Johnson Consumer Companies, Inc. Device for treatment of barrier membranes
US7477941B2 (en) * 2003-06-30 2009-01-13 Johnson & Johnson Consumer Companies, Inc. Methods of exfoliating the skin with electricity
US8361026B2 (en) 2005-02-01 2013-01-29 Intelliject, Inc. Apparatus and methods for self-administration of vaccines and other medicaments
CA2762072C (en) 2005-02-01 2017-08-29 Intelliject, Inc. Devices, systems, and methods for medicament delivery
US8206360B2 (en) 2005-02-01 2012-06-26 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8231573B2 (en) 2005-02-01 2012-07-31 Intelliject, Inc. Medicament delivery device having an electronic circuit system
US7731686B2 (en) * 2005-02-01 2010-06-08 Intelliject, Inc. Devices, systems and methods for medicament delivery
US9022980B2 (en) 2005-02-01 2015-05-05 Kaleo, Inc. Medical injector simulation device
JP2007000342A (en) * 2005-06-23 2007-01-11 Transcutaneous Technologies Inc Iontophoresis device for controlling quantity and time of dosing a plurality of medicaments
JPWO2007032446A1 (en) * 2005-09-15 2009-03-19 Tti・エルビュー株式会社 Rod iontophoresis device
US20070196456A1 (en) * 2005-09-15 2007-08-23 Visible Assets, Inc. Smart patch
US20070074590A1 (en) * 2005-09-30 2007-04-05 Transcutaneous Technologies Inc. Method and system to detect malfunctions in an iontophoresis device that delivers active agents to biological interfaces
US20070078376A1 (en) * 2005-09-30 2007-04-05 Smith Gregory A Functionalized microneedles transdermal drug delivery systems, devices, and methods
EP1965858A2 (en) * 2005-12-30 2008-09-10 Tti Ellebeau, Inc. System and method for remote based control of an iontophoresis device
US20080077076A1 (en) * 2006-08-29 2008-03-27 Transcutaneous Technologies Inc. Iontophoresis device and method for operation with a usb (universal serial bus) power source
US8062783B2 (en) * 2006-12-01 2011-11-22 Tti Ellebeau, Inc. Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
CA2724949A1 (en) 2007-06-27 2008-12-31 The General Hospital Corporation Method and apparatus for optical inhibition of photodynamic therapy
CN104473966A (en) * 2007-09-28 2015-04-01 强生消费者公司 Electricity-generating particulates and the use thereof
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
USD994111S1 (en) 2008-05-12 2023-08-01 Kaleo, Inc. Medicament delivery device cover
US8150525B2 (en) * 2008-08-27 2012-04-03 Johnson & Johnson Consumer Companies, Inc. Treatment of hyperhydrosis
US20110160641A1 (en) * 2008-08-29 2011-06-30 Tomohiro Ueda Battery pack and electronic device assembly including battery pack
US20120089232A1 (en) 2009-03-27 2012-04-12 Jennifer Hagyoung Kang Choi Medical devices with galvanic particulates
US8744567B2 (en) * 2009-11-13 2014-06-03 Johnson & Johnson Consumer Companies, Inc. Galvanic skin treatment device
US20110236491A1 (en) * 2010-03-25 2011-09-29 Jeannette Chantalat Topical anti-inflammatory composition
US8939943B2 (en) 2011-01-26 2015-01-27 Kaleo, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US8627816B2 (en) 2011-02-28 2014-01-14 Intelliject, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US8428708B1 (en) 2012-05-21 2013-04-23 Incline Therapeutics, Inc. Self-test for analgesic product
US8428709B1 (en) * 2012-06-11 2013-04-23 Incline Therapeutics, Inc. Current control for electrotransport drug delivery
SG11201404603SA (en) * 2012-02-10 2014-10-30 Japanic Corp Cosmetic product or skin regeneration promoter comprising nonhuman stem cell culture supernatant as starting material, and method for ion introduction for protein
US9402999B2 (en) * 2012-05-04 2016-08-02 Ethicon Endo-Surgery, Inc. Transdermal medical patch
GB2523512A (en) 2012-12-27 2015-08-26 Kaleo Inc Devices, systems and methods for locating and interacting with medicament delivery systems
US9517307B2 (en) 2014-07-18 2016-12-13 Kaleo, Inc. Devices and methods for delivering opioid antagonists including formulations for naloxone
GB2548148B (en) * 2016-03-10 2019-01-02 Ford Global Tech Llc A transcranial neurostimulation system for a vehicle
WO2018136413A2 (en) 2017-01-17 2018-07-26 Kaleo, Inc. Medicament delivery devices with wireless connectivity and event detection
US11929160B2 (en) 2018-07-16 2024-03-12 Kaleo, Inc. Medicament delivery devices with wireless connectivity and compliance detection
CN110911655B (en) * 2018-09-18 2021-04-13 天津荣盛盟固利新能源科技有限公司 Self-assembled super-fast-charging positive electrode material and lithium ion battery thereof
BR102020023091A2 (en) * 2020-11-12 2022-05-24 Marcelo Martins Grasti Iontophoresis device with mechanical vibration and wireless communication

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163166A (en) * 1961-04-28 1964-12-29 Colgate Palmolive Co Iontophoresis apparatus
US3241557A (en) * 1962-05-02 1966-03-22 Sutetaro Yamashiki Low frequency therapeutic equipment
US3618601A (en) * 1969-10-16 1971-11-09 Thatcher W Richardson Iontophoresis unit
US3677268A (en) * 1969-11-28 1972-07-18 Sherwood Medical Ind Inc Iontophoresis electrode
GB1321863A (en) * 1970-02-27 1973-07-04 Int Computers Ltd Touch-operated switching devices
US3794910A (en) * 1971-07-26 1974-02-26 Sherwood Medical Ind Inc Iontophoresis and conductivity analysis circuit
DE2339648C3 (en) * 1973-08-04 1979-09-13 Trebbin, Peter, 8833 Eichstaett Anesthesia machine for treating teeth
US4099074A (en) * 1975-03-06 1978-07-04 Sharp Kabushiki Kaisha Touch sensitive electronic switching circuitry for electronic wristwatches
US4141359A (en) * 1976-08-16 1979-02-27 University Of Utah Epidermal iontophoresis device
US4211222A (en) * 1976-08-25 1980-07-08 Robert Tapper Iontophoretic burn-protection method
JPS5347192A (en) * 1976-10-13 1978-04-27 Matsushita Electric Ind Co Ltd Device for introducing fluorine ion to tooth
US4325367A (en) * 1977-06-13 1982-04-20 Robert Tapper Iontophoretic treatment apparatus
US4177817A (en) * 1978-02-01 1979-12-11 C. R. Bard, Inc. Dual terminal transcutaneous electrode
US4215696A (en) * 1978-03-20 1980-08-05 Graphic Controls Corporation Biomedical electrode with pressurized skin contact
US4209020A (en) * 1978-09-19 1980-06-24 Nielsen R Frederick Electrode assembly
US4340047A (en) * 1978-10-18 1982-07-20 Robert Tapper Iontophoretic treatment apparatus
US4301794A (en) * 1978-10-18 1981-11-24 Robert Tapper Method for iontophoretic treatment
US4250878A (en) * 1978-11-22 1981-02-17 Motion Control, Inc. Non-invasive chemical species delivery apparatus and method
JPS5810109B2 (en) * 1979-06-15 1983-02-24 松下電工株式会社 low frequency treatment device
US4292968A (en) * 1979-11-26 1981-10-06 Sybron Corporation Electric supply for ion therapy
JPS5810066A (en) * 1981-07-10 1983-01-20 株式会社アドバンス Plaster structure for ion tofuorese
US4450844A (en) * 1981-11-23 1984-05-29 Hill Top Research, Inc. Patch system for use on the skin
WO1984004045A1 (en) * 1983-04-15 1984-10-25 Jack Kenneth Ibbott Therapeutic method and appliance employing flat battery
US4557723A (en) * 1983-08-18 1985-12-10 Drug Delivery Systems Inc. Applicator for the non-invasive transcutaneous delivery of medicament
US4731926A (en) * 1985-02-19 1988-03-22 Drug Delivery Systems Inc. Method of manufacturing disposable and/or replenishable transdermal drug applicators
US4622031A (en) * 1983-08-18 1986-11-11 Drug Delivery Systems Inc. Indicator for electrophoretic transcutaneous drug delivery device
US4515168A (en) * 1983-07-22 1985-05-07 Chester Martin H Clamp-on nerve stimulator and locator
US4883457A (en) * 1983-08-18 1989-11-28 Drug Delivery Systems Inc. Disposable and/or replenishable transdermal drug applicators and methods of manufacturing same
US4708716A (en) * 1983-08-18 1987-11-24 Drug Delivery Systems Inc. Transdermal drug applicator
US4640689A (en) * 1983-08-18 1987-02-03 Drug Delivery Systems Inc. Transdermal drug applicator and electrodes therefor
US4808152A (en) * 1983-08-18 1989-02-28 Drug Delivery Systems Inc. System and method for controlling rate of electrokinetic delivery of a drug
EP0308572B1 (en) * 1983-09-01 1995-11-08 Hisamitsu Pharmaceutical Co., Inc. An iontophoresis device
CA1262564A (en) * 1983-09-01 1989-10-31 Minoru Sasaki Iontophoresis device
US4851229A (en) * 1983-12-01 1989-07-25 Alza Corporation Composition comprising a therapeutic agent and a modulating agent
US4698062A (en) * 1985-10-30 1987-10-06 Alza Corporation Medical device for pulsatile transdermal delivery of biologically active agents
US4822334A (en) * 1986-12-04 1989-04-18 Robert Tapper Electrical dosimetry control system
US4731049A (en) * 1987-01-30 1988-03-15 Ionics, Incorporated Cell for electrically controlled transdermal drug delivery
AU609769B2 (en) * 1987-02-10 1991-05-09 Drug Delivery Systems Inc. Electrolytic transdermal delivery of proteins
WO1988008729A1 (en) * 1987-05-15 1988-11-17 Newman Martin H Iontophoresis drug delivery system
US4865582A (en) * 1987-06-05 1989-09-12 Drug Delivery Systems Inc. Disposable transdermal drug applicators

Similar Documents

Publication Publication Date Title
CA2079462C (en) Iontophoretic delivery device
IE83865B1 (en) Iontophoretic delivery device
US6090095A (en) Electrotransport delivery device
US5464387A (en) Transdermal delivery device
EP0596036B1 (en) Transdermal delivery device
US5084006A (en) Iontopheretic delivery device
US5162043A (en) Iontophoretic delivery device
AU644446B2 (en) Iontophoretic delivery device
US5405317A (en) Iontophoretic delivery device
CA2042994C (en) Iontophoretic delivery device