HUE034655T2 - Berendezés és eljárás vezérlõcsatorna monitorozásra egy új vivõ típusú (NCT) vezeték nélküli hálózatban - Google Patents

Berendezés és eljárás vezérlõcsatorna monitorozásra egy új vivõ típusú (NCT) vezeték nélküli hálózatban Download PDF

Info

Publication number
HUE034655T2
HUE034655T2 HUE13870241A HUE13870241A HUE034655T2 HU E034655 T2 HUE034655 T2 HU E034655T2 HU E13870241 A HUE13870241 A HU E13870241A HU E13870241 A HUE13870241 A HU E13870241A HU E034655 T2 HUE034655 T2 HU E034655T2
Authority
HU
Hungary
Prior art keywords
mch
signal
mbsfn
epdcch
pdcch
Prior art date
Application number
HUE13870241A
Other languages
English (en)
Inventor
Seunghee Han
Jong Kae Fwu
Hong He
Yuan Zhu
Alexei Davydov
Shafi Bashar
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of HUE034655T2 publication Critical patent/HUE034655T2/hu

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/30Network architectures or network communication protocols for network security for supporting lawful interception, monitoring or retaining of communications or communication related information
    • H04L63/304Network architectures or network communication protocols for network security for supporting lawful interception, monitoring or retaining of communications or communication related information intercepting circuit switched data communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/30Network architectures or network communication protocols for network security for supporting lawful interception, monitoring or retaining of communications or communication related information
    • H04L63/306Network architectures or network communication protocols for network security for supporting lawful interception, monitoring or retaining of communications or communication related information intercepting packet switched data communications, e.g. Web, Internet or IMS communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0222Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave in packet switched networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0095Synchronisation arrangements determining timing error of reception due to propagation delay estimated based on signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/082Mobility data transfer for traffic bypassing of mobility servers, e.g. location registers, home PLMNs or home agents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Technology Law (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: H04L 5100 <2006 01> H04W 24100 <200901> 23.08.2017 Bulletin 2017/34 H04B 1Ι02(200β01> H04B 1IO6<200601> (21) Application number: 13870241.0 (86) International application number: PCT/US2013/077649 (22) Date of filing: 24.12.2013 (87) International publication number: WO 2014/107383 (10.07.2014 Gazette 2014/28)
(54) APPARATUS AND METHOD FOR CONTROL CHANNEL MONITORING IN A NEW CARRIER TYPE (NCT) WIRELESS NETWORK
VORRICHTUNG UND VERFAHREN ZUR STEUERUNG DER KANALIJBERWACHUNG IN EINEM DRAHTLOSEN NETZWERK MIT EINEM NEUEN TRAGER APPAREIL ET PROCEDE PERMETTANT UNE SURVEILLANCE DU CANAL DE SIGNALISATION DANS UN RESEAU SANS FIL A NOUVEAU TYPE DE PORTEUSE (NCT)
(84) Designated Contracting States: (74) Representative: 2SPL Patentanwalte PartG mbB AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Postfach 15 17 23 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 80050 Miinchen (DE)
PL PT RO RS SE SI SK SM TR (56) References cited: (30) Priority: 03.01.2013 US 201361748706 P WO-A1-2010/121194 WO-A1-2011/020027 WO-A1-2011/085189 WO-A1 -2011/085195 (43) Date of publication of application: US-A1-2011 103 288 US-A1-2012 201 188 11.11.2015 Bulletin 2015/46 • ZTE: "Discussion on ePDCCH restriction (73) Proprietor: Intel Corporation subframe clusters", 3GPP DRAFT; R1-123376
Santa Clara, CA 95054 (US) DISCUSSION ON EPDCCH RESTRICTION
SUBFRAME CLUSTERS, 3RD GENERATION (72) Inventors: PARTNERSHIP PROJECT (3GPP), vol. RAN • HAN, Seunghee WG1, no. Qingdao, China; 20120813-20120817 5
Anyangshi August 2012 (2012-08-05), XP050661264,
Kyoungkido 431-764 (KR) Retrieved from the Internet:
• FWU, Jong-Kae URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL
Sunnyvale, California 94087 (US) 1/TSGR1_70/Docs/ [retrieved on 2012-08-05]
• HE, Hong · CATT: "E-PDCCH resource indication", 3GPP
Beijing 100190 (CN) DRAFT; R1-123223, 3RD GENERATION
• ZHU, Yuan PARTNERSHIP PROJECT (3GPP), MOBILE
Beijing 100012 (CN) COMPETENCE CENTRE , vol. RAN WG1, no. • DAVYDOV, Alexei Qingdao, China; 20120813 - 20120817 5 August
Nizhny Novgorod 603132 (RU) 2012 (2012-08-05), XP050661115, Retrieved from • BASHAR, Shafi the Internet:
Santa Clara, California 95054 (US) URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL 1/TSGR1_70/Docs/ [retrieved on 2012-08-05]
Description
FIELD
[0001] The present disclosure relates to wireless networks, and more particularly, to apparatus and methods for control channel monitoring in a New Carrier Type (NCT) wireless network.
BACKGROUND
[0002] Wireless networks, for example Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, may be heterogeneous networks that include "macro cells," providing higher power/wider area coverage, and "small cells," providing lower power/reduced area coverage. Small cells may include "femto cells," suitable for home or office coverage and "pico cells," for larger indoor environments such as shopping centers. A base station, for example an evolved Node B (eNB) transceiver, may be associated with each cell to provide network access to wireless mobile devices, for example User Equipment (UEs), passing through that cell coverage area.
[0003] As network traffic increases, new system enhancements are being implemented to improve bandwidth utilization and efficiency including the introduction of new carrier types (NCTs) with modified frame structures and synchronization methods. A heterogeneous network may include a mixture of eNBs, some operating with an NCT and others operating with a legacy carrier type. Some efforts to increase downlink (DL) throughput may include the reduction or removal of legacy physical downlink control channels (PDCCH) or cell specific reference signals (CRS). Further, the demodulation may rely on a demodulation reference signal (DMRS) instead of the CRS. For example the density of the CRS may be reduced in the frequency domain, the time domain or both. This may adversely affect legacy control channels that rely on CRS for demodulation, such as the physical broadcast channel (PBCFI), physical hybrid-ARQ indicator channel (PH ICH), physical control format indicator channel (PCFICH), and physical downlink control channel (PDCCH). This, in turn, may adversely impact backward compatibility to legacy UEs operating in an NCT environment, particularly when the NCT is configured as a standalone-carrier that is relied upon to transmit the physical signals that support initial access of the UE to the network (e.g., synchronization and PBCH, etc.).
[0004] Document WO 2011/085195 A1 discloses a method for control channel interference management and extended PDCCH.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Features and advantages of embodiments of the claimed subject matter will become apparent as the following Detailed Description proceeds, and upon reference to the Drawings, wherein like numerals depict like parts, and in which:
Figure 1 illustrates a top level system diagram of one example embodiment consistent with the present disclosure; Figure 2 illustrates a block diagram of one example embodiment consistent with the present disclosure;
Figure 3 illustrates a block diagram of another example embodiment consistent with the present disclosure;
Figure 4 illustrates an example of PDCCH and Physical Downlink Shared Channel (PDSCH) signals multiplexed in the time domain;
Figure 5 illustrates an example of enhanced-PDCCH (EPDCCH) and PDSCH signals multiplexed in the frequency domain;
Figure 6 illustrates a frequency/time mapping of an EPDCCH consistent with one example embodiment of the present disclosure;
Figure 7 illustrates a data structure associated with one example embodiment consistent with the present disclosure; Figure 8 illustrates a frequency/time mapping of a PDCCH consistent with one example embodiment of the present disclosure;
Figure 9 illustrates a framing structure consistent with one example embodiment of the present disclosure;
Figure 10 illustrates a flowchart of operations of an example embodiment consistent with the present disclosure; and Figure 11 illustrates a platform of one example embodiment consistent with the present disclosure.
[0006] Although the following Detailed Description will proceed with reference being made to illustrative embodiments, many alternatives, modifications, and variations thereof will be apparent to those skilled in the art. The invention is defined and limited only by the scope of the appended claims 1-14.
DETAILED DESCRIPTION
[0007] Generally, this disclosure provides apparatus and methods for improved control channel monitoring in a New
Carrier Type (NCT) wireless network. An eNB, operating in an NCT environment, may reduce or omit the transmission of CRS and PDCCH signals in a downlink subframe in order to increase bandwidth available for downlink throughput. As an alternative, therefore, in some embodiments, the eNB may be configured to provide, and the UE configured to monitor, the PDCCH, or the EPDCCH, in a Multicast/Broadcast over Single Frequency Network (MBSFN) subframe configured for Physical Multicast Channel (P-MCH) transmission. The PDCCH may be time division multiplexed (TDM) with the P-MCH and the EPDDCH may be frequency division multiplexed (FDM) with the P-MCH. A Radio Resource Control (RRC) message extension may be employed to indicate the use of this mode of operation.
[0008] In some embodiments, the eNB may be configured to provide, and the UE configured to monitor, the PDCCH, or the EPDCCH, at another subframe, or on another carrier, that is configured to transmit a PDCCH or an EPDCCH signal. The identity of that other subframe or carrier may be indicated by the MBSFN subframe for P-MCH. In some embodiments, the PDCCH or EPDCCH may be multiplexed with the P-MCH by superposition of the signals, as will be explained in greater detail below. Alternatively, in some embodiments, the UE may be configured to forgo the opportunity to monitor the PDCCH or EPDCCH in the MBSFN subframe for P-MCH transmission in an NCT wireless network.
[0009] Figure 1 illustrates a top level system diagram 100 of one example embodiment consistent with the present disclosure. An eNB transceiver 102 configured to operate in an NCT mode is shown to be in communication with a UE 108 in a wireless network. The eNB 102 may include a PDCCH/ EPDCCH signal generation module 104 configured to generate either or both types of signals. The eNB may further include an MBSFN for P-MCH encoding module 106 configured to include or encode the PDCCH or EPDCCH signals in an associated MBSFN subframe for P-MCH transmission (or an alternate subframe or alternate carrier), as will be explained in greater detail below. A transmitter circuit (not shown) may also be provided to transmit the MBSFN subframe for P-MCH transmission to the UE 108 through antenna 114.
[0010] The UE 108, may include an MBSFN for P-MCH detection module 110 configured to detect and extract the PDCCH or EPDCCH signal from the received MBSFN for P-MCH subframe, as will be explained in greater detail below, which is received through antenna 116 and a receiver circuit (not shown). The UE 108 may further include a PDCCH/EP-DCCH monitor module 112 configured to decode and monitor the extracted PDCCH/EPDCCH signal.
[0011] While this is a simplified example, for illustration purposes, it will be appreciated that in practice any configuration of eNBs and UEs of various types may be deployed. The wireless network may be a heterogeneous network including NCT and non-NCT eNBs which may further be classified as standalone or non-standalone configurations. The wireless network may comply with, or otherwise be compatible with, the Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A) based wireless network standard, including current, previous and future versions of that standard.
[0012] Figure 2 illustrates a block diagram 200 of one example embodiment consistent with the present disclosure. MBSFN for P-MCH encoding module 106 (of eNB 102) is shown to further include a TDM module 202, an FDM module 204 and a signal superposition module 206. These modules will be referred to and described in greater detail below in connection with subsequent figures. As a preliminary overview, however, the TDM module 202 may be configured to perform time domain multiplexing of the PDCCH signal, provided by PDCCH generation module 104a, onto an MBSFN P-MCH subframe 208, 210 or 212. In some embodiments, the FDM module 204 may be configured to perform frequency domain multiplexing of the EPDCCH signal, provided by EPDCCH generation module 104b, onto an MBSFN P-MCH subframe 208, 210 or 212. In some embodiments, the signal superposition module 206 may be provided as an optional alternative that is configured to superimpose either the PDCCH or EPDCCH signals onto an MBSFN P-MCH subframe 208, 210 or 212 in a manner that facilitates subsequent extraction by the UE 108 after transmission from the eNB 102 to the UE 108.
[0013] Figure 3 illustrates a block diagram 300 of another example embodiment consistent with the present disclosure. MBSFN for P-MCH detection module 110 of UE 108) is shown to further include a TDM de-multiplexer module 302, an FDM de-multiplexer module 304 and a signal superposition recovery module 306. These modules will be referred to and described in greater detail below in connection with subsequent figures. As a preliminary overview, however, the TDM demux module 302 may be configured to perform time domain de-multiplexing of the PDCCH signal, received from an MBSFN P-MCH subframe 208,210 or 212, and provide it to the PDCCH monitor module 112a. In some embodiments, the FDM demux module 304 may be configured to perform frequency domain de-multiplexing of the EPDCCH signal, received from an MBSFN P-MCH subframe 208, 210 or 212, and provide it to the EPDCCH monitor module 112b. In some embodiments, the signal superposition recovery module 306 may be provided as an optional alternative that is configured to recover or extract either the PDCCH or EPDCCH signals that have been superimposed onto a received MBSFN P-MCH subframe 208, 210 or 212 and provide the extracted signal to the appropriate monitor module 112a or 112b.
[0014] Figure 4 illustrates an example 400 of PDCCH and associated PDSCH signals multiplexed in the time domain. In a legacy (e.g., non-NCT) system, the PDCCH maybe included in the control channel region 402 of a downlink subframe 404, which occupies the first few (e.g., 1-4) symbols 406 of the subframe. The control channels are time multiplexed, as shown, with the data (on the PDSCH) occupying Physical Resource Blocks (PRBs) 412, 414, 416. Different PDCCH symbols may be provided for different data PRBs. For example, PDCCH-i 408 is associated with PRB for user (i) 414 and PDCCH-j 410 is associated with PRBs for user (j) 412, 416.
[0015] Figure 5 illustrates an example 500 of EPDCCH and associated PDSCH signals multiplexed in the frequency domain. In a legacy (e.g., non-NCT) system, the EPDCCH 504 may be included in a PRB pair 508, occupying a block of frequency, as specified by a downlink control information (DCI) resource allocation (RA). The EPDCCH 504 is frequency domain multiplexed with PDSCH data 506 occupying other PRB pairs 510, 512. Up to two EPDCCH sets may be configured to a given UE. If the UE is configured for EPDCCH monitoring, the UE may attempt to decode a control channel in both UE-Specific Search Space (USS) of the EPDCHH and in Common Search Space (CSS) of the PDCCH.
[0016] Figure 6 illustrates a frequency/time mapping 600 of an EPDCCH consistent with one example embodiment of the present disclosure, as may be performed, for example, by modules 204 and 304 of the eNB and UE respectively. In this embodiment, the EPDCCH 606 may be included in an MBSFN subframe configured for P-MCH transmission 602 using FDM multiplexing. The location of the EPDDCH 606 within the subframe 602, shared with the P-MCH signal 604, may be predetermined or may be configured by a RRC message. The RRC message may specify, for example through an extension of the RRC message format, the PRB pairs for the EPDCCH. Alternatively, in some embodiments, for exam pie where the Common Search Space (CSS) is defined for EPDCCH transmission in NCT (located at fixed positions within the downlink control region), the UE can monitor the EPDCCH on CSS in the MBSFN subframe 602.
[0017] Since a P-MCH may be transmitted to multiple UEs, the region to be utilized for the EPDCCH 606 within the subframe 602 may be cell-specific, virtual cell-specific or UE group-specific. If signaling overhead is not a consideration, however, the EPDCCH region 606 may be configured in a UE-specific manner. Although, in practice, the usage may typically be cell-specific, the signaling is UE-specific (i.e., provided for each UE). This is similar, for example, to the manner in which CSI-RS configuration is provided by UE specific RRC signaling rather than cell specific signaling even though that operation is cell-specific.
[0018] The P-MCH signal, which generally occupies the entire system bandwidth, may be modified to accommodate the EPDCCH. The P-MCH may be mapped to constituent Resource Elements (REs) through "puncturing" of the EPDCCH region or "rate-matching" around the EPDCCH region.
[0019] The term puncturing, as used herein, may be described as follows. If "signal B punctures signal A," then the REs of signal A that overlap with the REs of signal B are not mapped or transmitted, but the mapping index is still counted.
For example, if the mapping elements of signal A are symbols a(0).....a(99) and those of signal B are b(10).....b(19), then symbols a(10) through a(19) are not mapped or transmitted. Rather, the transmitted signal isa(0).....a(9), b(10)..... b(19)..... a(20).....a(99) over a mapping index range of 0 to 99. Therefore, in the case of EPDCCH puncturing, the EPDCCH region of the subframe is defined and then the P-MCH mapping is performed such that P-MCH symbols are not mapped to REs that overlap with the EPDCCH region, but are mapped to REs that do not overlap with the EPDCCH region.
[0020] The term rate-matching, as used herein, may be described as follows. If "signal A rate-matches signal B," then the REs of signal A that overlap with the REs of signal B are not mapped or transmitted at their mapping index, but the mapping index is not counted across the associated REs. For example, if the mapping elements of signal A are symbols a(0).....a(89) and those of signal B are b(10).....b(19), then symbols a(0) through a(9) are mapped to index range 0 to 9, symbols b(10) through b(19) are mapped to index range 10 to 19 and symbols a(20) through a(89) are mapped to index range 20 to 99. In other words, the transmitted signal is a(0).....a(9), b(10).....b(19).....a(10).....a(89) over a mapping index range of 0 to 99. Therefore, in the cased of EPDCCH rate-matching, the EPDCCH region of the subframe is defined and then the P-MCH symbols are mapped in sequence to the REs that are not in the EPDCCH region.
[0021] Figure 7 illustrates a data structure 700 associated with one example embodiment consistent with the present disclosure. An RRC signal that includes the information element (IE) MBSFN-SubframeConfig 710 may be configured to provide the EPDCCH resource information 720. The resource information 720 may include the number of PRB pairs for the EPDCCH set as well information related to their indices. The resource information 720 may further include information identifying the subframes configured for monitoring EPDCCH if only a subset of the subframes is configured for EPDCCH. The RRC signal may be employed by the UE to assist with extract/decoding of the EPDCCH from the MBSFN subframe for P-MCH transmission.
[0022] Figure 8 illustrates a frequency/time mapping 800 of a PDCCH consistent with one example embodiment of the present disclosure, as may be performed, for example, by modules 202 and 302 of the eNB and UE respectively. In this embodiment, the PDCCH 804 may be included in an MBSFN subframe configured for P-MCH transmission 802. The PDCCH 804 and the P-MCH 806 may be time division multiplexed as shown. In some embodiments, the cell specific reference signal (CRS) may also be transmitted in the PDCCH region 804 and used to assist with demodulation of the PDCCH. This may enable a UE, configured to use EPDCCH for UE-Specific Search Space (USS), to monitor USS using PDCCH in an MBSFN subframe configured for P-MCH. Alternatively, in some embodiments, the PDCCH may be decoded in a non-coherent manner without the use of a reference signal.
[0023] The time multiplexed location of the PDCCH within the MBSFN subframe may be determined from an information element within a system information block (SIB) of an RRC signal that provides the length of the non-MBSFN region.
The PDCCH is transmitted within the non-MBSFN region of the MBSFN subframe while the P-MCH is transmitted within the MBSFN region of that subframe. The RRC signal may be employed by the UE to assist with extract/decoding of the PDCCH from the MBSFN subframe for P-MCH transmission.
[0024] For other types of subframes, for example non MBSFN subframes or MBSFN subframes not configured for P-MCH, the EPDCCH may still be transmitted and employed as described previously.
[0025] Figure 9 illustrates a framing structure 900 consistent with one example embodiment of the present disclosure. In some embodiments, the Downlink Control Information (DCI) for the MBSFN subframe configured for P-MCH may be transmitted on the PDCCH or EPDCCH located at another subframe or on another carrier which can transmit a PDCCH or EPDCCH signal.
[0026] For example, if subframe n 904 is the MBSFN subframe for P-MCH, the eNB may transmit (and the UE may monitor) subframe n+a where a is an integer value (e.g. a= -1 or a=+1). Given that the PDCCH or EPDCCH decoding latency is less than or equal to 4 subframes, the value of a can be negative which may provide sufficient decoding latency margin for more than 4 subframes. The DCI content may further include a data field that represents the scheduled DL subframe intended for a UE. For example, the data field may be set to a bit Ό’ in the detected DCI of subframe n-1 902 to indicate that the intended subframe is the same subframe as the detected subframe n-1, and the UE should monitor 908 for EPDCCH at the same subframe n-1. Alternatively, the data field may be set to a bit T in the detected DCI of subframe n-1 902 to indicate that the intended subframe is for the next subframe (i.e. subframe n 904) relative to the detected subframe n-1 902, and the UE should monitor 910 for EPDCCH at the next subframe n.
[0027] Although there is no inherent limitation in these embodiments as to the application of the DCI, for example as a downlink (DL) assignment or an uplink (UL) grant, given that the MBSFN subframe configured for P-MCH is not generally expected to transmit a PDSCH, the DCI may be particularly useful for UL grant and/or PDCCH for Semi-Persistent Scheduling (SPS) release. In the case of SPS-release, the timing for activation/release may be associated with the timing of the MBSFN subframe.
[0028] In some embodiments, the PDCCH or EPDCCH may be multiplexed (e.g., transmitted simultaneously) with the P-MCH though superposition of the signals, as may be performed, for example, by modules 206 and 306 of the eNB and UE respectively. A signal transmission from an eNB at cell A, at a resource index k, may be expressed in the frequency domain by equation (1): SA{k) = MA{k)+EA{k) (1) where SA(k) represents the transmitted signal, MA(k) represents the P-MCH and EA(k) represents the EPDCCH (or PDCCH).
[0029] The received signal at a UE, from cells 0 to B-1 may be expressed as equation (2): R{k) = YjMm{k)· Hm(k)+ Hm{k)+ N{k) (2) m=0 m=0 where R(k), Hm(k), and N(k) represent the received signal, channel transfer function, and additive white Gaussian noise (AWGN) respectively. By employing suitable power control on the P-MCH and EPDCCH, Mm(k) can be expressed as
Mm(k)= Pm(k)· MpMCH , where MpMCH is the P-MCH signal and Pm(k) is the transmitted power. Since the P- MCH signal is the same for all cells within an MBSFN area, the condition of Mm(k)=M(k) can hold for all m (i.e. MBSFN transmissions). Therefore, equation (2) may be re-written as equation (3): R(k) = B M{k)-YiHm{k)+YjEm{k)· Hm{k)+ N(k) (3) m=0 m=0 [0030] When a sufficient power is allocated for P-MCH transmission, a UE may first decode M(k) (i.e., P-MCH) successfully under conditions of high signal to interference plus noise ratio (SINR). The UE may then subtract (or cancel out) the decoded P-MCH from the received signal resulting in equation (4): R{k) = YjEm{k)-Hm{k)+N{k) (4) m=0 thus allowing for the EPDCCH (or PDCCH) to also be successfully decoded with high SINR. In some embodiments, a cyclic redundancy check (CRC) bit or bits maybe included in the P-MCH transport block to increase the reliability of the cancellation of the P-MCH from the received signal.
[0031] Alternatively, in some embodiments, the UE may be configured to forgo the opportunity to monitor the PDCCH or EPDCCH in the MBSFN subframe for P-MCH transmission in an NCT wireless network. This may provide an implementation of reduced complexity in exchange for the potential loss of an opportunity to receive a UL grant and SPS release.
[0032] Figure 10 illustrates a flowchart of operations 1000 of an example embodiment consistent with the present disclosure. At operation 1010, an MBSFN subframe for P-MCH transmission is received from an eNB. At operation 1020, a PDCCH signal is detected in the received MBSFN subframe for P-MCH transmission is detected. In some embodiments, the PDCCH signal may be an EPDCCH signal. At operation 1030, the PDCCH signal is extracted from the MBSFN subframe for P-MCH transmission. At operation 1040, the PDCCH signal is monitored for an uplink grant or an SPS release.
[0033] Figure 11 illustrates a platform 1100 of one example embodiment consistent with the present disclosure. The platform 1100 may be a mobile communication device, such as, for example, a UE device (smartphone), a tablet, a laptop computing device or any other device configured to transmit or receive wireless signals over a wireless network. The wireless network may comply with, or otherwise be compatible with, the Third Generation Partnership Project(3GPP) Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A) based wireless network standard, including current, previous and future versions of that standard. In some embodiments, platform 1100 may include a processor 1110, memory 1120, an input/output (I/O) system 1130, a display/keyboard or other type of user interface (Ul) 1140 such as, for example, a touchscreen. Platform 1100 may further include an RF processing module 1150 as well as one or more antennas 1160 which may form part of a Multiple Input Multiple Output (ΜΙΜΟ) antenna system. Platform 1100 may further include the MBSFN for P-MCH detection module 110 configured to detect the PDCCH or EPDCCH in the received signal provided by the RF module 1150. Platform 1100 may further include the PDCCH/EPDCCH monitor module 112 configured to extract and decode the PDCCH/EPDCCH signal from the MBSFN for P-MCH subframe. Any number of platforms 1100 may transmit or receive signals through RF module 1150 and antennas 1160 over the wireless network.
[0034] Embodiments of the methods described herein may be implemented in a system that includes one or more storage mediums having stored thereon, individually or in combination, instructions that when executed by one or more processors perform the methods. Here, the processor may include, for example, a system CPU (e.g., core processor) and/or programmable circuitry. Thus, it is intended that operations according to the methods described herein may be distributed across a plurality of physical devices, such as processing structures at several different physical locations. Also, it is intended that the method operations may be performed individually or in a subcombination, as would be understood by one skilled in the art. Thus, not all of the operations of each of the flow charts need to be performed, and the present disclosure expressly intends that all subcombinations of such operations are enabled as would be understood by one of ordinary skill in the art.
[0035] The storage medium may include any type of tangible medium, for example, any type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritables (CD-RWs), digital versatile disks (DVDs) and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic and static RAMs, erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), flash memories, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
[0036] "Circuitry", as used in any embodiment herein, may comprise, for example, singly or in any combination, hardwired circuitry, programmable circuitry, state machine circuitry, and/or firmware that stores instructions executed by programmable circuitry. An app may be embodied as code or instructions which may be executed on programmable circuitry such as a host processor or other programmable circuitry. A module, as used in any embodiment herein, may be embodied as circuitry. The circuitry may be embodied as an integrated circuit, such as an integrated circuit chip.
[0037] Thus, the present disclosure provides an apparatus, methods, systems and computer-readable storage medium for improved control channel monitoring in a New Carrier Type (NCT) wireless network. The following examples pertain to further embodiments.
[0038] According to one aspect there is provided an evolved Node B (eNB) transceiver. The eNB may include a physical downlink control channel (PDCCH) generation module to generate a PDCCH signal. The eNB of this example may also include a Multicast/Broadcast over Single Frequency Network (MBSFN) for Physical Multicast Channel (P-MCH) encoding module to encode the PDCCH signal in an MBSFN subframe for P-MCH transmission. The eNB of this example may further include a transmitter circuit to transmit the MBSFN subframe for P-MCH transmission to a User Equipment (UE).
[0039] Another example eNB includes the forgoing components and the MBSFN for P-MCH encoding module further includes a time domain multiplexing (TDM) module to time multiplex the PDCCH signal with a P-MCH signal in the MBSFN subframe for P-MCH.
[0040] Another example eNB includes the forgoing components and the PDCCH generation module is further to generate an enhanced PDCCH (EPDCCH) signal.
[0041] Another example eNB includes the forgoing components and the MBSFN for P-MCH encoding module further includes a frequency domain multiplexing (FDM) module to frequency multiplex the EPDCCH signal with a P-MCH signal in the MBSFN subframe for P-MCH.
[0042] Another example eNB includes the forgoing components and the MBSFN for P-MCH encoding module further includes a superposition module to superimpose the PDCCH signal onto a P-MCH signal in the MBSFN subframe for P-MCH.
[0043] Another example eNB includes the forgoing components and the frequency domain multiplexing further includes mapping the P-MCH signal to resource elements by puncturing regions of the EPDCCH signal in the MBSFN subframe for P-MCH.
[0044] Another example eNB includes the forgoing components and the frequency domain multiplexing further includes mapping the P-MCH signal to resource elements by rate matching regions of the EPDCCH signal in the MBSFN subframe for P-MCH.
[0045] Another example eNB includes the forgoing components and downlink control information (DCI)forthe MBSFN subframe for P-MCH is transmitted at an alternate subframe and/or transmitted on a different carrier.
[0046] Another example eNB includes the forgoing components and the transmitter circuit is further to transmit a radio resource control (RRC) message providing information to the UE to enable decoding by the UE of the PDCCH or EPDCCH signal in the MBSFN subframe for P-MCH transmission.
[0047] According to another aspect there is provided a UE. The UE may include a receiver circuit to receive an MBSFN subframe for P-MCH transmission from an eNB. The UE of this example may also include an MBSFN for P-MCH detection module to detect and extract an EPDCCH signal from the MBSFN subframe for P-MCH transmission. The UE of this example may further include an EPDCCH monitor module to decode and monitor the extracted EPDCCH signal.
[0048] Another example UE includes the forgoing components and the MBSFN for P-MCH detection module further includes a frequency domain de-multiplexing module to frequency de-multiplex the EPDCCH signal from a P-MCH signal in the MBSFN subframe for P-MCH.
[0049] Another example UE includes the forgoing components and the MBSFN for P-MCH detection module further includes a superposition recovery module to recover the EPDCCH signal from a superposition of the EPDCCH signal onto a P-MCH signal in the MBSFN subframe for P-MCH.
[0050] Another example UE includes the forgoing components and the EPDCCH monitor module is further to monitor the EPDCCH signal for an uplink grantor a Semi-Persistent Scheduling (SPS) release.
[0051] Another example UE includes the forgoing components and downlink control information (DCI) for the MBSFN subframe for P-MCH is received at an alternate subframe and/or transmitted on a different carrier.
[0052] Another example UE includes the forgoing components and the receiver circuit is further to receive a radio resource control (RRC) message providing information from the eNB to enable decoding of the EPDCCH signal in the MBSFN subframe for P-MCH transmission.
[0053] According to another aspect there is provided a UE. The UE may include a receiver circuit to receive an MBSFN subframe for P-MCH transmission from an eNB. The UE of this example may also include an MBSFN for P-MCH detection module to detect and extract a PDCCH signal from the MBSFN subframe for P-MCH transmission. The UE of this example may further include a PDCCH monitor module to decode and monitor the extracted PDCCH signal.
[0054] Another example UE includes the forgoing components and the MBSFN for P-MCH detection module further includes a time domain de-multiplexing module to time de-multiplex the PDCCH signal from a P-MCH signal in the MBSFN subframe for P-MCH.
[0055] Another example UE includes the forgoing components and the MBSFN for P-MCH detection module further includes a superposition recovery module to recover the PDCCH signal from a superposition of the PDCCH signal onto a P-MCH signal in the MBSFN subframe for P-MCH.
[0056] Another example UE includes the forgoing components and the PDCCH monitor module is further to monitor the PDCCH signal for an uplink grant or a Semi-Persistent Scheduling (SPS) release.
[0057] Another example UE includes the forgoing components and downlink control information (DCI) for the MBSFN subframe for P-MCH is received at an alternate subframe and/or transmitted on a different carrier.
[0058] Another example UE includes the forgoing components and the receiver circuit is further to receive a radio resource control (RRC) message providing information from the eNB to enable decoding of the PDCCH signal in the MBSFN subframe for P-MCH transmission.
[0059] According to another aspect there is provided a method. The method may include receiving an MBSFN subframe for P-MCH transmission from an eNB. The method of this example may also include detecting a PDCCH signal from the received MBSFN subframe for P-MCH transmission. The method of this example may further include extracting the PDCCH signal from the MBSFN subframe for P-MCH transmission. The method of this example may further include monitoring the PDCCH signal for an uplink grant or an SPS release.
[0060] Another example method includes the forgoing operations and further includes detecting an EPDCCH signal from the received MBSFN subframe for P-MCH transmission and extracting the EPDCCH signal from the MBSFN subframe for P-MCFI transmission.
[0061] Another example method includes the forgoing operations and further includes time de-multiplexing the PDCCH signal from a P-MCFI signal in the MBSFN subframe for P-MCFI.
[0062] Another example method includes the forgoing operations and further includes frequency de-multiplexing the EPDCCFI signal from a P-MCFI signal in the MBSFN subframe for P-MCFI.
[0063] Another example method includes the forgoing operations and further includes recovering the PDCCFI or EPDCCFI signal from a superposition of the PDCCFI or EPDCCFI signal onto a P-MCFI signal in the MBSFN subframe for P-MCH.
[0064] Another example method includes the forgoing operations and further includes receiving an RRC message providing information from the eNB to enable decoding of the PDCCH or EPDCCH signal in the MBSFN subframe for P-MCH transmission.
[0065] According to another aspect there is provided a system. The system may include a means for receiving an MBSFN subframe for P-MCH transmission from an eNB. The system of this example may also include a means for detecting a PDCCH signal from the received MBSFN subframe for P-MCH transmission. The system of this example may further include a means for extracting the PDCCH signal from the MBSFN subframe for P-MCH transmission. The system of this example may further include a meansfor monitoring the PDCCH signal for an uplink grant or an SPS release.
[0066] Another example system includes the forgoing components and further includes a means for detecting an EPDCCH signal from the received MBSFN subframe for P-MCH transmission and means for extracting the EPDCCH signal from the MBSFN subframe for P-MCH transmission.
[0067] Another example system includes the forgoing components and further includes a means for time de-multi-plexing the PDCCH signal from a P-MCH signal in the MBSFN subframe for P-MCH.
[0068] Another example system includes the forgoing components and further includes a means for frequency demultiplexing the EPDCCH signal from a P-MCH signal in the MBSFN subframe for P-MCH.
[0069] Another example system includes the forgoing components and further includes a means for recovering the PDCCH or EPDCCH signal from a superposition of the PDCCH or EPDCCH signal onto a P-MCH signal in the MBSFN subframe for P-MCH.
[0070] Another example system includes the forgoing components and further includes a means for receiving an RRC message providing information from the eNB to enable decoding of the PDCCH or EPDCCH signal in the MBSFN subframe for P-MCH transmission.
[0071] According to another aspect there is provided at least one computer-readable storage medium having instructions stored thereon which when executed by a processor, cause the processor to perform the operations of the method as described in any of the examples above.
[0072] According to another aspect there is provided an apparatus including means to perform a method as described in any of the examples above.
[0073] The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described (or portions thereof), and it is recognized that various modifications are possible within the scope of the claims. Accordingly, the claims are intended to coverall such equivalents. Various features, aspects, and embodiments have been described herein. The features, aspects, and embodiments are susceptible to combination with one another as well as to variation and modification, as will be understood by those having skill in the art. The present disclosure should, therefore, be considered to encompass such combinations, variations, and modifications.
Claims 1. An evolved Node B, eNB, transceiver (102) comprising: a physical downlink control channel, PDCCH, generation module (104) to generate a PDCCH signal; a Multicast/Broadcast over Single Frequency Network, MBSFN, for Physical Multicast Channel, P-MCH, encoding module (106) to encode said PDCCH signal in an MBSFN sub frame for P-MCH transmission; and a transmitter circuit to transmit said MBSFN sub frame for P-MCH transmission to a User Equipment, UE, said eNB characterised in that said MBSFN for P-MCH encoding module (106) further comprises a superposition module (206) to superimpose said PDCCH signal onto a P-MCH signal in said MBSFN subframe for P-MCH. 2. The eNB of claim 1, wherein said MBSFN for P-MCH encoding module (106) further comprises a time domain multiplexing, TDM, module (202) to time multiplex said PDCCH signal with a P-MCH signal in said MBSFN subframe for P-MCH. 3. The eNB of claim 1, wherein said PDCCH generation module (104) is further to generate an enhanced PDCCH, EPDCCH, signal, and wherein said MBSFN for P-MCH encoding module (106) further comprises a frequency domain multiplexing, FDM, module (204) to frequency multiplex said EPDCCH signal with a P-MCH signal in said MBSFN subframe for P-MCH. 4. The eNB of claim 3, wherein said frequency domain multiplexing further comprises mapping said P-MCH signal to resource elements by puncturing regions of said EPDCCH signal in said MBSFN subframe for P-MCH. 5. The eNB of claim 3, wherein said frequency domain multiplexing further comprises mapping said P-MCH signal to resource elements by rate matching regions of said EPDCCH signal in said MBSFN subframe for P-MCH. 6. The eNB of any of the preceding claims, wherein downlink control information, DCI, for said MBSFN subframe for P-MCH is transmitted at an alternate subframe and/or transmitted on a different carrier. 7. The eNB of any of the preceding claims, wherein said transmitter circuit is further to transmit a radio resource control, RRC, message providing information to said UE to enable decoding by said UE of said PDCCH or EPDCCH signal in said MBSFN subframe for P-MCH transmission. 8. A method (1000) comprising: receiving (1010) an Multicast/Broadcast over Single Frequency Network, MBSFN, subframe for Physical Multicast Channel, P-MCH, transmission from an evolved Node B, eNB; detecting (1020) a physical downlink control channel, PDCCH, signal from said received MBSFN subframe for P-MCH transmission; extracting (1030) said PDCCH signal from said MBSFN subframe for P-MCH transmission; monitoring (1040) said PDCCH signal for an uplink grant or an SPS release; and characterised by recovering said PDCCH signal from a superposition of said PDCCH signal onto a P-MCH signal in said MBSFN subframe for P-MCH. 9. The method of claim 8, further comprising detecting an EPDCCH signal from said received MBSFN subframe for P-MCH transmission and extracting said EPDCCH signal from said MBSFN subframe for P-MCH transmission. 10. The method of claim 8, further comprising time de-multiplexing said PDCCH signal from a P-MCH signal in said MBSFN subframe for P-MCH. 11. The method of claim 9, further comprising frequency de-multiplexing said EPDCCH signal from a P-MCH signal in said MBSFN subframe for P-MCH. 12. The method of claim 9, further comprising recovering said EPDCCH signal from a superposition of said EPDCCH signal onto a P-MCH signal in said MBSFN subframe for P-MCH. 13. The method of claim 9, further comprising receiving an RRC message providing information from said eNB to enable decoding of said PDCCH or EPDCCH signal in said MBSFN subframe for P-MCH transmission. 14. An apparatus (1100) comprising means to perform a method according to any of claims 8 to 13.
Patentansprüche 1. Evolved-NodeB-Sende-Empfänger, eNB-Sende-Empfänger, (102), umfassend: ein Erzeugungsmodul (104) für einen physischen Abwärtsstrecken-Steuerkanal, PDCCH, um ein PDCCH-Signal zu erzeugen; ein Codiermodul (106) zur physischen Multicastkanalcodierung, P-MCH-Codierung, für ein Multicast-/Broad-cast-über-Gleichwellennetz, MBSFN, um das PDCCH-Signal in einem MBSFN-Subrahmen für eine P-MCH-Übertragung zu codieren; und einen Übertragungsschaltkreis, um den MBSFN-Subrahmen für die P-MCH-Übertragung an ein Endgerät, UE, zu übertragen, wobei der eNB dadurch gekennzeichnet ist, dass das MBSFN-für-P-MCH-Codiermodul (106) ferner ein Überlagerungsmodul (206) umfasst, um das PDCCH-Signal auf einem P-MCH-Signal im MBSFN-Subrahmen für den P-MCH zu überlagern. 2. eNB nach Anspruch 1, wobei das MBSFN-für-P-MCH-Codiermodul (106) ferner ein Zeitmultiplexmodul, TDM-Modul, (202) umfasst, um das PDCCH-Signal mit einem P-MCH-Signal im MBSFN-Subrahmen für den P-MCH zeitlich zu multiplexen. 3. eNB nach Anspruch 1, wobei das PDCCH-Erzeugungsmodul (104) ferner ein erweitertes PDCCH-Signal, EPDCCH-Signal, zu erzeugen hat, und wobei das MBSFN-für-P-MCH-Codiermodul (106) ferner ein Frequenzmultiplexmodul, FDM-Modul, (204) umfasst, um das EPDCCH-Signal mit einem P-MCH-Signal im MBSFN-Subrahmen für den P-MCH im Frequenzraum zu multiplexen. 4. eNB nach Anspruch 3, wobei das Frequenzmultiplexen ferner ein Abbilden des P-MCH-Signals auf Ressourcenelemente durch eine Punkturierung von Bereichen des EPDCCH-Signals im MBSFN-Subrahmen für den P-MCH umfasst. 5. eNB nach Anspruch 3, wobei das Frequenzmultiplexen ferner ein Abbilden des P-MCH-Signals auf Ressourcenelemente durch eine Ratenanpassung von Bereichen des EPDCCH-Signals im MBSFN-Subrahmen für den P-MCH umfasst. 6. eNB nach einem dervorangehenden Ansprüche, wobei Abwärtsstreckensteuerinformationen, DCI, fürden MBSFN-Subrahmen für den P-MCH in einem anderen Subrahmen übertragen werden und/oder auf einem anderen Träger übertragen werden. 7. eNB nach einem der vorangehenden Ansprüche, wobei der Übertragungsschaltkreis ferner eine Funkressourcensteuerungsnachricht, RRC-Nachricht, zu übertragen hat, diedem UE Informationen bereitstellt, um eine Decodierung des PDCCH- oder EPDCCH-Signals in der MBSFN-Subrahmen-für-P-MCH-Übertragung durch das UE zu ermöglichen. 8. Verfahren (1000), umfassend:
Empfangen (1010) eines Multicast-/Broadcast-über-Gleichwellennetz-Subrahmens, MBSFN-Subrahmens, für eine physische Multicastkanal-Übertragung, P-MCH-Übertragung, von einem Evolved NodeB, eNB;
Erkennen (1020) eines physischen Abwärtsstrecken-Steuerkanalsignals, PDCCH-Signals, aus dem empfangenen MBSFN-Subrahmen für die P-MCH-Übertragung;
Extrahieren (1030) des PDCCH-Signals aus dem MBSFN-Subrahmen für die P-MCH-Übertragung; Überprüfen (1040) des PDCCH-Signals auf eine Aufwärtsstreckenbewilligung oder eine SPS-Freigabe; und gekennzeichnet durch Wiederherstellen des PDCCH-Signals aus einer Überlagerung des PDCCH-Signals auf einem P-MCH-Signal im MBSFN-Subrahmen für den P-MCH. 9. Verfahren nach Anspruch 8, das ferner ein Erkennen eines EPDCCH-Signals aus der empfangenen MBSFN-Sub-rahmen-für-P-MCH-Übertragung und ein Extrahieren des EPDCCH-Signals aus der empfangenen MBSFN-Sub-rahmen-für-P-MCH-Übertragung umfasst. 10. Verfahren nach Anspruch 8, das ferner ein Zeitdemultiplexen des PDCCH-Signals von einem P-MCH-Signal im MBSFN-Subrahmen für den P-MCH umfasst. 11. Verfahren nach Anspruch 9, das ferner ein Frequenzdemultiplexen des EPDCCH-Signals von einem P-MCH-Signal im MBSFN-Subrahmen fürden P-MCH umfasst. 12. Verfahren nach Anspruch 9, das ferner ein Wiederherstellen des EPDCCH-Signals aus einer Überlagerung des EPDCCH-Signals auf einem P-MCH-Signal im MBSFN-Subrahmen fürden P-MCH umfasst. 13. Verfahren nach Anspruch 9, das ferner ein Empfangen einer RRC-Nachricht umfasst, die Informationen vom eNB bereitstellt, um ein Decodieren des PDCCH- oder EPDCCH-Signals in der MBSFN-Subrahmen-für-P-MCH-Über-tragung zu ermöglichen. 14. Vorrichtung (1100), die Mittel zum Durchführen eines Verfahrens nach einem der Ansprüche 8 bis 13 umfasst.
Revendications 1. Émetteur-récepteur (102) de noeud B évolué, eNB, comportant : un module (104) de génération de canal physique de commande de liaison descendante, PDCCH, servant à générer un signal de PDCCH ; un module (106) de codage de multidiffusion/diffusion générale sur réseau à fréquence unique, MBSFN, pour canal physique de multidiffusion, P-MCH, servant à coder ledit signal de PDCCH dans une sous-trame de MBSFN pour émission de P-MCH ; et un circuit émetteur servant à envoyer ladite sous-trame de MBSFN pour émission de P-MCH à un équipement d’utilisateur, UE, ledit eNB étant caractérisé en ce que ledit module (106) de codage de MBSFN pour P-MCH comporte en outre un module (206) de superposition servant à superposer ledit signal de PDCCH par-dessus un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 2. eNB selon la revendication 1, ledit module (106) de codage de MBSFN pour P-MCH comportant en outre un module (202) de multiplexage en domaine temporel, TDM, servant à multiplexer en temps ledit signal de PDCCH avec un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 3. eNB selon la revendication 1, ledit module (104) de génération de PDCCH servant en outre à générer un signal de PDCCH amélioré, EPDCCH, et ledit module (106) de codage de MBSFN pour P-MCH comportant en outre un module (204) de multiplexage en domaine fréquentiel, FDM, servant à multiplexer en fréquence ledit signal d’EPDCCH avec un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 4. eNB selon la revendication 3, ledit multiplexage en domaine fréquentiel comportant en outre l’association dudit signal de P-MCH à des éléments de ressources par ponctionnement de régions dudit signal d’EPDCCH dans ladite sous-trame de MBSFN pour P-MCH. 5. eNB selon la revendication 3, ledit multiplexage en domaine fréquentiel comportant en outre l’association dudit signal de P-MCH à des éléments de ressources par adaptation de débit de régions dudit signal d’EPDCCH dans ladite sous-trame de MBSFN pour P-MCH. 6. eNB selon l’une quelconque des revendications précédentes, des informations de commande de liaison descendante, DCI, relatives à ladite sous-trame de MBSFN pour P-MCH étant émises au niveau d’une sous-trame de substitution et/ou émises sur une porteuse différente. 7. eNB selon l’une quelconque des revendications précédentes, ledit circuit émetteur servant en outre à émettre un message de gestion des ressources radioélectriques, RRC, fournissant des informations audit UE pour permettre le décodage par ledit UE dudit signal de PDCCH ou d’EPDCCH dans ladite sous-trame de MBSFN pour émission de P-MCH. 8. Procédé (1000) comportant les étapes consistant à : recevoir (1010) une sous-trame de multidiffusion/diffusion générale sur réseau à fréquence unique, MBSFN, pour émission de canal physique de multidiffusion, P-MCH, en provenance d’un noeud B évolué, eNB ; détecter (1020) un signal de canal physique de commande de liaison descendante, PDCCH, à partir de ladite sous-trame reçue de MBSFN pour émission de P-MCH ; extraire (1030) ledit signal de PDCCH de ladite sous-trame de MBSFN pour émission de P-MCH ; surveiller (1040) ledit signal de PDCCH pour déceler une attribution en liaison montante ou une libération de SPS ; et caractérisé par la récupération dudit signal de PDCCH à partir d’une superposition dudit signal de PDCCH par-dessus un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 9. Procédé selon la revendication 8, comportant en outre les étapes consistant à détecter un signal d’EPDCCH à partir de ladite sous-trame reçue de MBSFN pour émission de P-MCH et à extraire ledit signal d’EPDCCH de ladite sous-trame de MBSFN pour émission de P-MCH. 10. Procédé selon la revendication 8, comportant en outre l’étape consistant à démultiplexer en temps ledit signal de PDCCH d’un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 11. Procédé selon la revendication 9, comportant en outre l’étape consistant à démultiplexer en fréquence ledit signal d’EPDCCH d’un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 12. Procédé selon la revendication 9, comportant en outre l’étape consistant à récupérer ledit signal d’EPDCCH à partir d’une superposition dudit signal d’EPDCCH par-dessus un signal de P-MCH dans ladite sous-trame de MBSFN pour P-MCH. 13. Procédé selon la revendication 9, comportant en outre l’étape consistant à recevoir un message de RRC fournissant des informations provenant dudit eNB pour permettre le décodage dudit signal de PDCCH ou d’EPDCCH dans ladite sous-trame de MBSFN pour émission de P-MCH. 14. Appareil (1100) comportant des moyens servant à réaliser un procédé selon l’une quelconque des revendications 8 à 13.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2011085195 A1 [0004]

Claims (6)

  1. Berendezés és eljárás vezérlőcsatorna monitorozásra egy új vivő típusú jNOj vezeték nélküli hálózatban Szabadalmi igénypontok
    1. Evoived Node δ, eNB, adó-vevő {102}, ameiy tartalmaz: egy fizikai letöltés irányé kapcsolati vezérlőcsatorna, PDCCM, előállító modult {104} egy PDCCH je! előállítására; egy Physicai Multicast Channel, P-MCH, Multlcasí/Broadcast over Singie Frequency Network, M8SPN, kódoló modult {206} az említett PDCCH jef M85FN slkeretté kódolására P-MCH átvitelhez; és egy adó áramkört az említett MBSFN alkecetegy felhasználói készülékhez, UE, történő küldésére P-MCH átvitel céljára, ahol az említett eNB-t az jellemzi, hogy az említett P-MCH MBSFN kódoló modul {106} tartalmaz továbbá egy szuperpozíciös modult {206) az említett PDCCH jel egy P-MCH jelre történő szuperponáiására az említett;: MBSFN alkeretben a P-MCH számára.
  2. 2. Az 1. igénypont szerinti eNByahol az említett P-MCH MBSFN kódoló modul {106} tartalmaz továbbá egy idő domain muitipiexeiés, TÖM, modult {202} az említett PDCCH jelnek egy P-MC jellel történő idő multiplexelésére az említett MBSFN alkeretben a P-MCH számára,
  3. 3. Az l, igénypont szerinti eNB, ahol az említett PDCCH előállító modul (104; ügy van továbbá kialakítva, hogy előállítson egy megnövelt PDCCH, EPDCCH, jelet, és ahol az említett P-MCH MBSFN kódoló modul tartalmaz továbbá egy frekvencia domain muitipiexeiés, F0M, modult {204} az említett EPDCCH jelnek egy P-MCH jellel történő frekvencia multipíexeíésére az említett MBSFN alkeretben a P-MCH számára, 4» A 3, igénypont szerinti eNB, ahol az említett frekvencia domain muitipiexeiés tartalmazza továbbá az említett P-MCH jel leképezését erőforrás elemekre az említett EPDCCH jel egyes régióinak punkturálása útján az említett M8SFN alkeretben a P- MCH számára, 5. A 3. igénypont szerinti eNB, ahoi az említett frekvencia domain muitipiexeiés tartalmazza továbbá az emii-tett P-MCH je! leképezését erőforrás elemekre az említett EPDCCH jé! régióinak sebesség illesztése révén az említett MBSFN alkeretben a P-MCH számára, 61 Az előző igénypontok bármelyike szerinti eNB, ahol az említett MBSFN alkeret száméra a P-MCH számára szolgáló letöltés irányú kapcsolati vezérlő információ, DCI, egy alternatív alkeretben kerül átvitelre és/vagy egy eítérö/különbözó hordozón kerül átvitelre,
  4. 7. Az előző igénypontok bármelyike szerinti eNB, ahol az említett adó áramkör úgy van továbbá kiképezve, hogy egy rádió erőforrás vezérlő, RftC, üzenetet adjon, ameiy Információt szolgáltat az említett UE-nek, hogy engedélyezze az említett UE útján az említett PDCCH vagy EPDCCH jel dekódolását az említett MBSFN alkeretben a P-MCH átvitel számára. S. Eljárás {1000}, amely tartalmazza: egy Physicai Multíeast Channel, P-MCH Muiticast/Sroadcast övét :Sjn|Íé:,:Frequén:ey: Network, MBSFN alkarét adás vételét (10.10) egy evolved NodeB-tői, eNB; egy fizikai íetőités irányú kapcsolati vezérlőcsatorna, PDCCH, jel detektálását (1020) az említett vett MBSFN aíkeretbőí P -MCH átvitelhez.; az említett POCCH jel kivonását (1030) az említett MBSfN sikereiből a P-MCH átvitelhez; az említett PDCCH jel monitorozását 110405 egy feitöités irányú kapcsolati engedélyért vagy egy SP$ feiszabadí-tásért; ás azzal jellemezve, hogy a P-MCH-h02 az említett PDCCH jelet visszaállítjuk az említett POCCH jel P-MCH jelre szuperponálásábóí az említett MBSFN a ikeréiben, 9, A 8. igénypont szerinti eljárás, amely tartalmazza egy EPDCCH jel detektálását az említett vett MBSFN sikereiből a P-MCH számára, és az említett EPDCCH ieí kivonását az említett MBSFN sikereiből P-MCH átvitelhez,
  5. 10, A S> igénypont szerinti eljárás, amely tartalmazza továbbá az említett PDCCJ jel idő demultiplexeiését egy P-MCH jelből az említett MBSFN sikereiben a P-MCH számára. ti, A $. igénypont szerinti eljárás, amely tartalmazza továbbá az említett EPDCCH jel frekvencia demultiplexeiését egy P-MCH jelből az említett MBSFN aikeretben a P-MCH számára. 12. Λ 9. Igénypont szerinti eljárás, amely.-tartalmazza továbbá az említett EPDCCH je! visszaállítását az említett EPDCCH jel P-MCH jelre szuperponálásából az említett MBSFN aikeretben a P-MCH számára. 13. A 9. Igénypont szerinti eljárás, amely tartalmazza továbbá egy RRC üzenet vételét, amely információt szolgáltat az említett eNB-től, hogy lehetővé tegye az említett PDCCH vagy EPDCCH jel dekódolásét az említett MBSFN aikeretben a P-MCH átvitelhez,
  6. 14. Berendezés (1100), amely eszközt tartalmaz a 8-13, igénypontok bármelyike szerinti eljárás végféhajtásáta.
HUE13870241A 2013-01-03 2013-12-24 Berendezés és eljárás vezérlõcsatorna monitorozásra egy új vivõ típusú (NCT) vezeték nélküli hálózatban HUE034655T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361748706P 2013-01-03 2013-01-03

Publications (1)

Publication Number Publication Date
HUE034655T2 true HUE034655T2 (hu) 2018-02-28

Family

ID=51062406

Family Applications (2)

Application Number Title Priority Date Filing Date
HUE13870265A HUE044140T2 (hu) 2013-01-03 2013-10-10 Vezeték nélküli lokális hálózat (WLAN) tehermentesítési teljesítményének monitorozása vezeték nélküli celluláris hálózatban
HUE13870241A HUE034655T2 (hu) 2013-01-03 2013-12-24 Berendezés és eljárás vezérlõcsatorna monitorozásra egy új vivõ típusú (NCT) vezeték nélküli hálózatban

Family Applications Before (1)

Application Number Title Priority Date Filing Date
HUE13870265A HUE044140T2 (hu) 2013-01-03 2013-10-10 Vezeték nélküli lokális hálózat (WLAN) tehermentesítési teljesítményének monitorozása vezeték nélküli celluláris hálózatban

Country Status (3)

Country Link
JP (2) JP6479716B2 (hu)
HU (2) HUE044140T2 (hu)
WO (1) WO2014107416A1 (hu)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140135B2 (ja) 2017-10-17 2022-09-21 ソニーグループ株式会社 可変焦点距離レンズ系および撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734404B2 (ja) * 2008-12-24 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び通信制御方法
US8755807B2 (en) * 2009-01-12 2014-06-17 Qualcomm Incorporated Semi-static resource allocation to support coordinated multipoint (CoMP) transmission in a wireless communication network
WO2010122749A1 (ja) * 2009-04-24 2010-10-28 シャープ株式会社 通信システム、通信装置および通信方法
JP5420767B2 (ja) * 2009-08-14 2014-02-19 ノキア シーメンス ネットワークス オサケユキチュア 多地点協調送信のための改善
JP5189111B2 (ja) * 2010-01-07 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、無線通信システム及び無線通信方法
CN105763299B (zh) * 2010-01-18 2019-11-15 Lg电子株式会社 用于在无线通信***中提供信道质量信息的方法和设备
CN105813108B (zh) * 2010-03-29 2019-11-01 Lg电子株式会社 用于对无线电通信***中的小区间干扰协调的测量的方法和装置
CN114944892A (zh) * 2013-01-03 2022-08-26 苹果公司 用户设备和基站

Also Published As

Publication number Publication date
JP2016187222A (ja) 2016-10-27
JP2017055449A (ja) 2017-03-16
WO2014107416A1 (en) 2014-07-10
HUE044140T2 (hu) 2019-09-30
JP6479716B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
CN103812602B (zh) 盲检公共搜索空间和ue特定搜索空间的方法及设备
EP2820871B1 (en) Systems and methods for ue-specific search space and epdcch scrambling
JP6292530B2 (ja) 通信装置、通信方法及び集積回路
KR101555112B1 (ko) 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
JP6091542B2 (ja) プリコードされた物理ダウンリンク制御チャネルの参照信号およびブラインド復号のための方法および装置
CN110583056A (zh) 无线电***的同步信号传输和接收
US10178679B2 (en) Signaling designs for network assisted interference cancellation and suppression
CN104509190B (zh) 终端装置、基站装置以及通信方法
WO2013066020A1 (ko) 다중 노드 시스템에서 제어 채널 검색 방법 및 장치
US9344231B2 (en) Method of user equipment searching for control information in multi-node system and apparatus using the same
EP2843986A1 (en) Method and device for e-pdcch transmission and blind detection
EP2797371A1 (en) Method, system and apparatus for information transmission
CN106233773A (zh) 基站装置及其传输方法
CN102395206A (zh) 下行控制信息的传输方法和设备
HUE034892T2 (hu) Letöltés irányú kapcsolat vezérlõ információ olcsó készülékekhez
JP2013528004A (ja) ワイヤレス通信ネットワークにおける制御情報の信頼できる伝送のための方法および装置
CN102256358A (zh) 一种数据传输和接收方法、装置及***
US20160095095A1 (en) Method and system for assisting user devices in performing interference cancellation in ofdma wireless communication networks
JP2017535188A5 (hu)
EP2941913B1 (en) Apparatus and method for control channel monitoring in a new carrier type (nct) wireless network
KR101955659B1 (ko) 가상 셀 id의 시그널링
TW201233089A (en) Transmitter, receiver, transmission method, and reception method
WO2013139211A1 (zh) ePDCCH资源确定方法及装置
HUE035205T2 (hu) Letöltés irányú kapcsolati erõforrás ütemezés
CN106664686B (zh) 一种数据传输方法、设备及***