HUE030978T2 - Fire protection mortar - Google Patents

Fire protection mortar Download PDF

Info

Publication number
HUE030978T2
HUE030978T2 HUE14703051A HUE14703051A HUE030978T2 HU E030978 T2 HUE030978 T2 HU E030978T2 HU E14703051 A HUE14703051 A HU E14703051A HU E14703051 A HUE14703051 A HU E14703051A HU E030978 T2 HUE030978 T2 HU E030978T2
Authority
HU
Hungary
Prior art keywords
cement
ahol ahol
hető
weight
test
Prior art date
Application number
HUE14703051A
Other languages
Hungarian (hu)
Inventor
Xiao Wu
Ann Opsommer
Original Assignee
Promat Res And Tech Centre N V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promat Res And Tech Centre N V filed Critical Promat Res And Tech Centre N V
Publication of HUE030978T2 publication Critical patent/HUE030978T2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/006Aspects relating to the mixing step of the mortar preparation involving the elimination of excess water from the mixture
    • C04B40/0064Processes of the Magnini or Hatscheck type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4596Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with fibrous materials or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Civil Engineering (AREA)
  • Ceramic Products (AREA)
  • Building Environments (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)

Description

Description
Technical field [0001] The present invention relates to fire protection mortar and its use for fire protection.
Technical background of the invention [0002] The Rf RWS fire curve is used in Netherlands for tunnel fire protection. It is based on the realistic tunnel fire caused by a tank truck in a tunnel which may lead to severe concrete spalling and consequently damage tunnel stability. The tunnel concrete lining therefore must be protected to ensure public mobility and safety. During the Rf RWS test, the fire curve reaches ca 1200°C already in ca 5 min, then progressively increase to 1350°C in 60 min, afterwards it slowly decreases to 1200°C at 120 min. For immersed tunnels, the test criteria allow the maximum temperature (Tmax) at 380°C on concrete surface, and only 250°C at 25 mm inside the concrete surface. For drilled tunnels, the Tmax should not exceed 200-250°C (cf. Both et al., TNO Centre for Fire Research, and Tan et al., Ministry of Public Works, The Netherlands). Today, this norm is also increasingly used in other countries as criteria for tunnel fire protections, such as, Belgium, Scandinavia countries, South Korea, and recently the USA. The Rf FICM condition is similar to the Rf RWS curve, applicable in France (Figure 1).
[0003] Accordingly, the material used for tunnel fire protection must withstand the thermal shock, be resistant to abrasion necessary for tunnel cleaning, and insensitive to freeze/thaw attack. Preferably, it should be free of quartz and with low energy consumption for reasons of environmental protection and green footprint.
[0004] Only a few commercial sprays are available on the market capable of withstanding such Rf RWS condition. They are the CAFCO FENDOLITE Mil of Promat, FireBarrier 135 of Thermal Ceramics and Meyco Fireshield 1350 of BASF.
[0005] EP 0 986 525 of MBT Flolding discloses a spray composition comprising mainly a cementitious binder, a thermally treated shell sand and additives necessary for spray operation. The mortar is commercially available under the trade designation Meyco Fireshield 1350, with a cured density at ca 1500 kg/m3. The material can pass the Rf RWS test but at a thickness of 40 to 50 mm. The combination of high density and large thickness makes the spray operation difficult, especially when the spray has to cover complex profiles, such as steel frameworks.
[0006] EP 1 001 000 of Thermal Ceramics describes a spray which is claimed suitable for tunnels and it contains saw dust that releases smoke at high temperatures. This material has been on the market under the designation FireBarrier 135. It employs aluminate cement and kaolin, with a cured density of ca 1100 kg/m3, which is not only expensive, but also shrinks upon strong heating to such a degree that the product becomes cracked, a thick 38.5 mm has to be sprayed to survive the Rf RWS test, when tested by the TNO fire laboratory of Nederland.
[0007] Promat fire protection materials for tunnel fire protection are known on the market. EP 1 326 811 of Promat teaches a fire protection board in composition of aluminate cement, xonotlite, functional fillers and additives. It has excellent performance in Rf RWS condition, however it uses high aluminate cement as binder, the cost and energy consumption of raw materials are high. On the other hand, the CAFCO FENDOLITE® Mil is a Promat spray fulfilling the Rf RWS condition. It comprises mainly of OPC and exfoliated Vermiculite. This fire protection spray has been established worldwide, but supply of good Vermiculite becomes increasingly difficult. Only a few vermiculite mines are known as asbestos free, their deposits are declining as result of industrial exploration, market prices are soaring.
[0008] CN 101863640 A provides an environment-friendly colored fire-proof coating for tunnels, comprising the following components in parts by mass: 10-50 parts of cement, 40-90 parts of expanded perlite, expanded vermiculite and precipitated calcium carbonate, 1-10 parts of inorganic mineral fibers, 5-30 parts of flame retardant systems, 0.1-5.0 parts of rubber powder, 0.5-3.0 parts of water reducing agents, air entraining agents and expanding agents and 0.5-2.0 parts of inorganic pigments.
[0009] The table below discloses the range described in the document. Taking the average of these ranges, the total amount is 123.5 parts which has been normalized to weight % in the last row of the table.
(continued)
Average composition of CN101863640 (A) [0010] It follows that the amount of cement after normalization to 100 weight-% is in the range of 8 to 40 weight %. This material is intended to be stable up to 1100°C.
Disclosure of the invention [0011] It is an object of the present invention to provide with a fire protection mortar which overcomes at least some of the drawbacks of prior art.
[0012] It is a further object of the present invention to provide with a spray comprising hydraulic setting calcium silicate cement, preferably free of vermiculite, with good freeze thaw resistance and a cured density below 1200 kg/m3, preferably between 500-1000 kg/m3, as fire protection for constructions and steel structures.
[0013] The object is solved by a composition for the preparation of a fire protection mortar comprising 45 to 70% by weight of cement binder, 8 to 20% by weight calcite, 8 to 20% by weight mica, 0 to 5% by weight of xonotlite, 0.1 to 20% by weight of expanded perlite, 0.1 to 10% by weight of fibers, 0.01 to 2% by weight of air entraîner and foaming agent, 0.01 to 4% by weight of processing aids.
Description of the drawings [0014]
Figure 1 shows the test conditions of various fire tests.
Figure 2 shows the interface temperature of materials according to the invention and comparative materials.
Figure 3 shows a photo of samples before and after shrinkage test at 1250°C for three hours. The rows are MIX-1, MIX-2 and Test-3 from Example 3. The leftside samples are before the shrinkage test, right ones are after the test.
Detailed description of the invention [0015] The product, after preparing a mortar and sprayed or casted and cured will have satisfactory mechanical properties and good freeze/thaw resistance in fully exposed condition according to EN12467. Once fired at above 1250°C, the cement, mica, and calcite react together to form refractory crystalline phases containing mainly Alite (C3S), Belite (C2S) and Gehlenite (C2AS) that are stable in the range of 1250-1400°C and capable to provide with passive fire protection in Rf RWS condition. It demonstrates that a matrix based on cement can become a refractory during a fire test in range of 1200-1400°C. Usually, refractoriness at such high temperatures is obtained by a binder based on aluminate cement or ceramics.
[0016] The cured material according to the invention can dehydrate and/or react in a stepwise manner within a temperature range of 70-1250°C, therefore capable of absorbing the heat step by step and diminishing the heat transfer and temperature increase in the substrate to be protected.
[0017] The cement binder of the present invention can be preferably selected from the group consisting of Portland cement (CEM I), Portland composite cement (CEM II), Blastic furnace slag cement (CEM III), Pozzolanic cement (CEM IV), other Composite cement (CEM V) according to EN 197-1 and combinations thereof.
[0018] Because Ordinary Portland Cement (OPC) is made at much lower temperature than aluminate cement, it is available over the whole world, the use of the OPC reduces the cost, saves energy and reduces C02-emissions compared to the product based on aluminate cement.
[0019] Other hydraulic setting cements, such as the calcium aluminate cement and sulfur aluminate cement, can also be used in place of Portland cement of the present invention, but the costs will be higher.
[0020] The calcite of the invention includes all forms of CaC03 and its polymorphs such as Aragonite and Vaterite, it can be either grounded calcium carbonate (GCC) or precipitated calcium carbonate (PCC), used alone or in combination thereof. The CaC03 decomposes at ca 850°C to form CaO and C02. The C02 gas has lower thermal conductivity than air at high temperatures, it improves thermal insulation. At temperature >1200°C, the CaO reacts with cement and mica to form required refractory phases. Preferred average particle size ranges up to 200 μπι. If CEM II, CEM III, CEM IV or CEM V are used which contain CaCOs already, the calcite dosing of the composition should be adapted accordingly to avoid residual CaO from the high temperature reaction.
[0021] It is important to remark that hydrated lime or Ca(OH)2 should not be used in the present invention. The Ca(OH)2 facilitates formation of ettringite during cement hydration, which affects formation of optimal combination of C2S/C3S/C2AS refractory phases at high temperatures, leads to inferior thermal insulation and/or stability during the fire test.
[0022] The third ingredient of the invention is mica, e.g. selected from the group consisting of muscovite, phlogopite or biotite. At temperatures <1000°C, the mica leads to better mechanical properties and diminishes thermal shrinkage, at temperature > 1200°C, it decomposes and reacts with cement and CaO to form the Alite, Belite and Gehlenite, therefore provides with material stability. On the other hand, this high temperature reaction consumes also large amount of energy which reduces the heat flow from fire side to the cold side. The range of mica is 8-20%, particle size is below 3 mm. Beyond of this range, either the mica shows no effect; or the sprayability will be affected.
[0023] In some embodiments, the composition comprises xonotlite, preferably not more than 5 weight %.
[0024] The xonotlite provides with both thermal insulation and thermal stability at high temperatures. It is spherical particles made by a slurry reactor in autoclaving condition as disclosed in the EP 1 326 811. However, according to the invention, needle-shaped materials may also be employed, such as, for example, the by-product in the processing of the spherical xonotlite. At high temperatures, the xonotlite dehydrates at ca 800°C and then converts to wollastonite. This dehydration is a strongly endothermic reaction and consumes much energy. The wollastonite formed thereby has a theoretical melting point at 1530°C, it offers extra thermal stability in addition to the aforementioned refractory phases. Presence of spherical xonotlite in the invention is up to 5% by weight, in order to keep low cost and good sprayability.
[0025] Expanded perlite is a light weight agent, it has low cost and is available worldwide. At temperatures below 900°C, it reduces the spray density meanwhile helps thermal insulation; at temperature above 900°C the perlite softens and acts as flux, promotes the solid-solid reaction among cement-CaO-Mica to form refractory phases of this invention. Preferred perlite dosing is 1-20%, packing density in range of 50-200 kg/m3, particle size below 6 mm, for the best pumpability and service life of the spray machine.
[0026] Although the expanded perlite is a preferred lightweight filler, other fillers may also be used, such as, e.g. pumice, foamed glass, hollow ceramic spheres from fly ash of power plant. Exfoliated vermiculite can also be used, though not the first choice of present invention.
[0027] Further components of the composition are fibers.
[0028] The fibers of this invention play important role in the material. During spray process, presence of the fibers bridges surrounding mixture. Together with action of thixotropic agent, they effectively keep the wet spray in place, the trowel finish can easily be obtained. During curing, the fibers help to reduce setting shrinkage and avoid surface cracks from the spray. When cured, the fibers function as reinforcement to improve material durability. The fibers are selected from the group consisting of, e.g. PP fiber, PVA fiber, cellulose fiber, glass fiber including alkali resistant glass fiber, rock wool or mineral wool, steel fibers. Preferred fiber dosing is 0.1 to 10 wt.-%, fiber length is below 15 mm.
[0029] When necessary, such as, for large thickness, metal mesh or plastic mesh can be used inside of the mortar to secure a good bonding between the spray and substrate to avoid material fatigue during ageing.
[0030] Commonly used additives are present in the invention to facilitate mixing, slurry pumping, sprayability, setting regulation, and durability. They are selected from the group consisting of setting accelerator, setting retarder, super plasticizer, water retention agent, thixotropic agent, pumping aid, water repellent, and re-dispersible polymers, used alone or in combination. Commonly used additives in the field can be employed, dosing is 0.01-4%.
[0031] Air entraîner and/or foaming agent of present invention help not only mixing and slurry pumping, but also the frost resistance of cured spray by creating small capillary pores to avoid the material damage during freeze thaw cycles, when tested in fully water saturated conditions exposing to temperature change from 20°C to -20°C for 100 cycles, such as described by the standard EN12467. The preferred dosing is 0.01-2%.
[0032] The composition of the present invention is a powder mixture. When mixed with water, it forms a fire protection mortar. Depending on the proposed use, the viscosity of the mortar can be adjusted by adding more or less water.
[0033] Typically, the ratio of dry mix to water is 30 to 70 wt.-% dry mix and 70 to 30 wt.-% of water. For a spray application more water might be added than for the preparation of a product that is applied with a trowel or used for casting.
[0034] A further embodiment of the invention is a fire protection product which is obtained by hydraulic setting of the fire protection mortar of the invention after spraying or casting.
[0035] Once cured, the bulk density is below 1200 kg/m3 and preferably between 500 and 1000 kg/m3.
[0036] The material according to the invention may also be used as a repair or joint mortar to fill in broken-ofF or burnt-out parts of the material, ensuring the same or similar properties of whole protection areas.
[0037] Although intended as a cementitious spray, the current invention can also be used to produce a board or panel, by spray or casting, followed by further shaping to form a monolithic body by, such as, Filter press, Flow-on and Magnani process.
[0038] The cementitious mortar of present invention is intended for the most stringent fire test, such as the Rf RWS and Rf HCM condition. Obviously, it can also withstand less severe fire scenarios, such as the Rf RABT, Rf HC and Rf ISO conditions according to the standard EN 1363-1 and ISO 834-1, as illustrated in the Figure 1.
[0039] The following non-limiting examples, further explain the invention and its embodiments. EXAMPLE 1 [0040] The test compositions and test results are in the tables 1-2, all part by weight. The test-1 is according to present invention; the FB 135 is the commercially available product Fire Barrier 135 spray.
[0041] The ingredients of table 1 and balanced waterare mixed together by a planetary mixer to form a homogeneous cementitious mortar, then sprayed into a mould by a spray machine. After 28 days curing at20°C, key properties relevant to the fire protection, i.e., density, bending strength and thermal shrinkage at 1250°C, are tested. The results are shown in the table 2. The thermal shrinkage is the average value of length, width and thickness. It is tested by placing the test specimens in an oven, heating to required temperature and maintaining for 3 hrs. The dimension change is measured after sample cooling down to ambient conditions.
[0042] According to the table 2, thermal shrinkage of test-1 (invention) is 1%, in contrast, that of FB 135 is 12.5%. The present invention (test 1 ) is shown superior to prior art, in terms of remarkably improved thermal shrinkage. The thermal shrinkage at high temperature is one of key parameters for the Fire test. If it is too high, the thin spray will crack and fire will go through via the crack openings, leading to material collapse and poor thermal insulation.
Table 1 : Example 1
Table 2: Test results
EXAMPLE 2 [0043] Two further compositions (test 3, test 4) of the present invention (see table 3) and balanced water are mixed together by a planetary mixer to form a homogeneous cementitious mortar, then sprayed on a B35 concrete slab with 150mm thickness on ceiling by a spray machine, the spray is trowel finished to have a good surface aspect with an equal thickness of 27.5 mm. No metal meshes are used inside the spray. The B35 concrete has the minimum compressive strength of 35 MPa when cured at 28 days at 20°C.
[0044] After 40 days curing at 20°C when weight the mortar becomes constant, density and humidity (at 105°C) of the sprays are measured ca 850-900 kg/m3 and ca 7% respectively, as shown in the Table 4.
[0045] Full scale Rf RWS tests are made by placing the concrete slab on ceiling, side by side with the Promat PRO-MATECT®-H board (PT-H board) at a thickness of 27.5mm. The PT-H board is known for tunnel fire protection, it usually passes the RWS test at 27.5mm thickness. It is used here as Benchmark.
[0046] The Rf RWS test (see figure 2) shows that the test-3 and test-4 compositions keep stable on ceiling during the whole period of fire test and even after cooling down. The maximum temperature (Tmax), an average value of 5 thermal couples, is measured 356°C for PT-H board (reference), 348°C for the test-3, and 301°C for the test-4 of present invention. From statistic point of view, test-3 and the PT-H board have the same thermal insulation, the test-4 can pass the Rf RWS test at equal thickness of 27.5mm. The test-4 shows remarkably lower Tmax thanks to the effect of spherical Xonotlite, it is estimated to pass the Rf RWS test at 25mm thickness.
[0047] After the Rf RWS test, fire side of the test-3 sample is taken and analyzed by XRD. XRD quantification program identifies crystalline phases Bellte (C2S) 16.4%, Alite (C3S) 55.7%, Gehlenite (C2AS) 12.8%, others 15%. Mica, Calcite or CaO are not detected, as evidence that they have all reacted at the high temperatures. It is these refractory phases formed in situ that turn the cementitious mortar into a refractory mass with good thermal stability, that make it capable to pass the Rf RWS test with remarkably small thickness of <27.5mm, compared to traditional sprays on the market.
[0048] Freeze thaw test of the test-3 composition is made according to EN12467, by placing the water saturated sample into a refrigerator, exposing temperature change from 20°C to -20°C per cycle, 4 cycles per day, total for 100 cycles. During the test, no surface scalling or material delamination are observed.
[0049] After the frost test, bending strength of the sample is tested and results are given in the table 5. It demonstrates the material of present invention has no loss of strength during the freeze thaw cycles.
Table 3: Example 2
Table 6: Mechanical properties
[0050] When xonotlite is not present (Test-3), the results are already good for the intended application and the thermal insulation is superior to an in-house board used for RWS applications in tunnels (PROMATECT-H; Tab. 6).
[0051] When xonotlite is used, the mortar can be improved further in both thermal insulation (Max temperature in Tab. 4) and thermal stability (thermal shrinkage at 1250°C in Tab. 6). Xonotlite is a desirable component for the mortar of the invention. EXAMPLE 3
Example 3 analyzes the properties of the product described in CN101863640 A.
[0052] The materials described in the reference are
Ordinary Portland Cement (OPC)
Calcium Aluminate Cement (CAC) and fast setting Sulphur Aluminate Cement (SAC).
[0053] As OPC is used according to the invention, this was also used for the comparative experiments.
[0054] Table 7 describes compositions prepared according to the disclosure of CN101863640 A. They are based on average formulations described in the document.
[0055] MIX-1 uses a combination of expanded perlite, exfoliated vermiculite and Precipitated Calcium Carbonate (PCC).
[0056] MIX-2 uses only expanded perlite and Precipitated Calcium Carbonate (PCC) without exfoliated vermiculite.
[0057] The products were prepared and cured at 20°C for 28 days.
Table 8 compares the density and the bending strength and the shrinkage of the materials with the material Test-3 of Example 2.
Table 8: Results of comparison test
Figure 3 shows a photo of the material after the fire test.
According to the reference, the product must be able to withstand temperatures of a hydrocarbon fire. These test conditions require resistance at 1100°C, i.e. lower than the RWS fire curve (see figure 1). MIX-1 and MIX-2 do not withstand the RWS fire test.
Claims 1. A composition for the preparation of a fire protection mortar comprising - 45 to 70% by weight of cement binder, - 8 to 20% by weight calcite, - 8 to 20% by weight mica, - 0 to 5% by weight of xonotlite, -0.1 to 20% by weight of expanded perlite, -0.1 to 10% by weight of fibers, - 0.01 to 2% by weight of air entraîner and foaming agent, - 0.01 to 4% by weight of processing aids. 2. The composition of claim 1, wherein the cement binder is selected from the group consisting of Portland cement (CEM I), Portland composite cement (CEM II), Blasticfurnace slag cement (CEM III), Pozzolanic cement (CEM IV), other Composite cement (CEM V), and combinations thereof. 3. The composition of claim 1 or 2, wherein the cement binder comprises calcium aluminate cement, sulfur aluminate cement and combinations thereof. 4. The composition of claims 1 to 3, wherein the fibers are selected from the group consisting of PP fiber, PVA fiber, cellulose fiber, glass fiber including alkali resistant glass fiber, rock wool, mineral wool, steel fiber and combinations thereof. 5. The composition of claims 1 to 4, wherein the expanded perlite is partly or fully substituted by fillers selected from the group consisting of pumice, foamed glass, expanded clay, hollow ceramic spheres of fly ashes from power plant, exfoliated vermiculite and combinations thereof. 6. The composition of any one of claims 1 to 5, wherein the processing aids are selected from the group consisting of setting retarder, setting accelerator, super plasticizer, pumping aid, water retention agent, thixotropic agent, water repellent, water born re-dispersible polymers and combinations thereof. 7. The composition of any one of claims 1 to 6, wherein the fibers have an average length of less than 15 mm. 8. The composition of any one of claims 1 to 7, wherein the calcite has a particle size (d90 by weight) of less than 200 μηι. 9. A fire protection mortar obtainable by mixing the composition of any one of claims 1 to 8 with water, preferably - 30 to 70% by weight of the composition of claims 1 to 8 and - 70 to 30% water. 10. Afire protection product obtainable by spraying or casting the fire protection mortar of claim 9. 11. The fire protection product of claim 10 wherein casting includes shaping processes selected from filter press, Flow-on and Magnani process. 12. The fire protection product of claim 10 or 11 having a bulk density below 1200 kg/m3, preferably between 500 and 1000 kg/m3. 13. Method for providing a fire protection system comprising - spraying a mortar of claim 9 and/or - fixing a cast fire protection product of claim 11 or 12 on a substrate. 14. The method of claim 13 further comprising embedding a metal or plastic mesh in the mortar. 15. Use of a composition of any one of claim 1 to 8 for preparing a fire protection mortar.
Patentansprüche 1. Zusammensetzung zur Herstellung eines Brandschutzmörtels, umfassend: - 45 bis 70 Gew.-% Zementbindemittel, - 8 bis 20 Gew.-% Calcit, - 8 bis 20 Gew.-% Glimmer, - 0 bis 5 Gew.-% Xonotlit, - 0,1 bis 20 Gew.-% Blähperlit, - 0,1 bis 10 Gew.-% Fasern, - 0,01 bis 2 Gew.-% Luftporenbildner und Schäumungsmittel, - 0,01 bis 4 Gew.-% Verarbeitungshilfsmittel. 2. Zusammensetzung gemäß Anspruch 1, wobei das Zementbindemittel aus der Gruppe ausgewählt ist, die aus Portlandzement (CEM I), Portlandverbundzement (CEM II), Hochofenschlackenzement (CEM III), pozzolanischem Zement (CEM IV), anderem Verbundzement (CEM V) und Kombinationen davon besteht. 3. Zusammensetzung gemäß Anspruch 1 oder 2, wobei das Zementbindemittel Calciumaluminatzement, Schwefela-luminatzement und Kombinationen davon umfasst. 4. Zusammensetzung gemäß Anspruch 1 bis 3, wobei die Fasern aus der Gruppe ausgewählt sind, die aus PP-Faser, PVA-Faser, Cellulosefaser, Glasfaser einschließlich alkaliresistenter Glasfaser, Steinwolle, Mineralwolle, Stahlfaser und Kombinationen davon besteht. 5. Zusammensetzung gemäß Anspruch 1 bis 4, wobei der Blähperlit teilweise oder vollständig durch Füllstoffe ersetzt ist, die aus der Gruppe ausgewählt sind, die aus Bimsstein, geschäumtem Glas, Blähton, Keramikhohlkugeln aus Flugasche von Kraftwerken, geblähtem Vermiculit und Kombinationen davon besteht. 6. Zusammensetzung gemäß einem der Ansprüche 1 bis 5, wobei die Verarbeitungshilfsmittel aus der Gruppe ausgewählt sind, die aus Abbindeverzögerern, Abbindebeschleunigern, Superverflüssigern, Pumphilfsmitteln, Wasserretentionsmitteln, thixotropen Mitteln, Wasserrepellentien, wässrigen redispergierbaren Polymeren und Kombinationen davon besteht. 7. Zusammensetzung gemäß einem der Ansprüche 1 bis 6, wobei die Fasern eine durchschnittliche Länge von weniger als 15 mm aufweisen. 8. Zusammensetzung gemäß einem der Ansprüche 1 bis 7, wobei der Calcit eine Teilchengröße (d90, gewichtsbezogen) von weniger als 200 μίτι aufweist. 9. Brandschutzmörtel, erhältlich durch Mischen der Zusammensetzung gemäß einem der Ansprüche 1 bis 8 mit Wasser, vorzugsweise - 30 bis 70 Gew.-% der Zusammensetzung gemäß Anspruch 1 bis 8 und - 70 bis 30 Gew.-% Wasser. 10. Brandschutzprodukt, erhältlich durch Spritzen oder Gießen des Brandschutzmörtels gemäß Anspruch 9. 11. Brandschutzprodukt gemäß Anspruch 10, wobei das Gießen Formverfahren umfasst, die aus Filterpressen-, Flow-On- und Magnani-Verfahren ausgewählt sind. 12. Brandschutzprodukt gemäß Anspruch 10 oder 11 mit einer Rohdichte unter 1200 kg/m3, vorzugsweise zwischen 500 und 1000 kg/m3. 13. Verfahren zum Bereitstellen eines Brandschutzsystems, umfassend - das Spritzen eines Mörtels gemäß Anspruch 9 und/oder - das Fixieren eines gegossenen Brandschutzprodukts gemäß Anspruch 11 oder 12 auf einem Substrat. 14. Verfahren gemäß Anspruch 13, weiterhin umfassend das Einbetten eines Metall-oder Kunststoffgitters in den Mörtel. 15. Verwendung einer Zusammensetzung gemäß einem der Ansprüche 1 bis 8 zur Herstellung eines Brandschutzmörtels.
Revendications 1. Composition pour la préparation d’un mortier de protection contre l’incendie comprenant - 45 à 70 % en poids de liant de ciment, - 8 à 20 % en poids de calcite, - 8 à 20 % en poids de mica, - 0 à 5 % en poids de xonotlite, - 0,1 à 20 % en poids de perlite expansée, - 0,1 à 10 % en poids de fibres, - 0,01 à 2 % en poids d’agent entraîneur d’air et moussant, - 0,01 à 4 % en poids d’adjuvants de fabrication. 2. Composition selon la revendication 1, dans laquelle le liant de ciment est choisi dans le groupe constitué du ciment Portland (CEM I), du ciment composite Portland (CEM II), du ciment au laitier de hautfourneau (CEM III), du ciment pouzzolanique (CEM IV), d’un autre ciment composite (CEM V), et de leurs combinaisons. 3. Composition selon la revendication 1 ou 2, dans laquelle le liant de ciment comprend du ciment d’aluminate de calcium, du ciment d’aluminate de soufre et leurs combinaisons. 4. Composition selon les revendications 1 à 3, dans laquelle les fibres sont sélectionnées dans le groupe constitué d’une fibre de PP, d’une fibre de PVA, d’une fibre de cellulose, d’une fibre de verre dont une fibre de verre alcali-norésistante, d’une laine de roche, d’une laine minérale, d’une fibre d’acier et de leurs combinaisons. 5. Composition selon les revendications 1 à 4, dan laquelle la perlite expansée esten partie ou entièrement substituée par des charges sélectionnées dans le groupe constitué de la ponce, du verre moussé, de l’argile expansée, de sphères céramiques creuses de cendres volantes provenant d’une centrale électrique, de la vermiculite exfoliée et de leurs combinaisons. 6. Composition selon l’une quelconque des revendications 1 à 5, dans laquelle les adjuvants de fabrication sont sélectionnés dans le groupe constitué d’un retardateur de prise, d’un accélérateur de prise, d’un super plastifiant, d’un adjuvant de pompage, d’un agent de rétention de l’eau, d’un agent thixotrope, d’un hydrofuge, de polymères redispersibles et diluables à l’eau et de leurs combinaisons. 7. Composition selon l’une quelconque des revendications 1 à 6, dans laquelle les fibres ont une longueur moyenne de moins de 15 mm. 8. Composition selon l’une quelconque des revendications 1 à 7, dans laquelle la calcite a une taille de particule (d90 en poids) de moins de 200 μηι. 9. Mortier de protection contre l’incendie pouvant être obtenu par mélange de la composition de l’une quelconque des revendications 1 à 8 avec de l’eau, de préférence - 30 à 70 % en poids de la composition des revendications 1 à 8 et - 70 à 30 % d’eau. 10. Produit de protection contre l’incendie pouvant être obtenu par pulvérisation ou coulage du mortier de protection contre l’incendie de la revendication 9. 11. Produit de protection contre l’incendie selon la revendication 10, dans lequel le coulage inclut les processus de façonnage sélectionnés parmi les processus de filtre-presse, Flow-on et Magnani. 12. Produit de protection contre l’incendie selon la revendication 10 ou 11, ayant une masse volumique apparente en dessous de 1 200 kg/m3, de préférence entre 500 et 1 000 kg/m3. 13. Procédé de fourniture d’un système de protection contre l’incendie comprenant - la pulvérisation d’un mortier de la revendication 9 et/ou - le scellement d’un produit de protection contre l’incendie coulé de la revendication 11 ou 12 sur un substrat. 14. Procédé selon la revendication 13, comprenant en outre l’enrobage d’une toile métallique ou plastique dans le mortier. 15. Utilisation d’une composition selon l’une quelconque des revendications 1 à 8, pour la préparation d’un mortier de protection contre l’incendie.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • EP 0986525 A [0005] · EP 1326811 A [0007] [0024] • EP 1001000 A [0006] [0042] · CN 101863640 A [0008] [0009] [0054]

Claims (3)

Tűzvédelmi habarc«Fire-fighting mortar « s. készítmény tnxvcdehu Imhares elbállttásárm mely tæmlmm ~ 45-70 tömeg% censers! kötőanyagot, - 8-20 tömeg% kaiéitól; ~ S'20 tömegTá esti lámpáiul - CAS tömegei xonotlitel ·· OJ-20 tomvgA expandált periitel - ‘h 1 -1U i> nneg'* o vmkn, - !U>1 d tÖmeg% levegőpérus képző és babosba szert, " 0.21 -4 toroegk' tVIdidgivad \ eged am a cms. preparation tnxvcdehu Imhares assortment which is about 45-70% by weight censers! a binder, from 8 to 20% by weight of ions; ~ S'20 weight in the evening lamp - CAS masses xonotlitel ·· OJ-20 tomvgA expanded peritella - 'h 1 -1U i> nneg' * o vmkn, -! U> 1 d weight% air perm and builder, "0.21 - 4 toroegk 'VIdidgid 2. Az I. igértypom szerinti djâr es. ah el a cement kötőanyag a Portland cement ΚΈΜ lv A' .end \nmpe se όγ t'F\1 Is, o r o ,okeme« u> s V eV wn a <,í I \t ξϊ1Χ po o áo cement (C 'FM IV r egyéb kompom cement (CIAI V r és ezek kombinációi kösd! vari kváias/u a.2. The dj'd of the 1st prime pom. c cement binder for Portland cement v lv A '.end em seγ t'F 1 Is, air, «s> e e n n n <í í cement cement cement cement cement (C') FM IV r other compom cement (CIAI V r and their combinations bind vari kváias / u a. 3, Az I. vagy 2. igénypontok bármelyike szerinti készítmény, ahol a cement kötőanyag ka'H mm-,gammát cr mentet, kemalumiont cementet es ezek komhmaeimát uttaimazza, 4 v Pt igemp^mvx kínveHikv szerinti kesmunero ebei i en-Jak a l'P vzal ΙΑ Λ szál. cellulóz szál, üvegszál beleértve az alkáli-rezisztens üvegszálakat, kőzetgyapot, asvnnygyapot, acélszál, és ezek kombinációi esetiéiből vannak kiválasztom és Az !:>4, ah^|::pt.c?s^táÍÍi^U|!' részben vagy teljesen4ob&amp;myiigth van tajiysga habkö, habosított üveg, expandált agyag, erőmüvek v/állo pernyéjéből készített ideges kerámia gömbök, rétegEétt vermikulltl és ezek combinée tót csop; a tbóJ kiválasz tva. ö, Az Fa. ígmnponmk b.srmehtke a/ermn kész s t men v, ahol az elken A segédem .tg a soegs/iláMulua késleltető, megs/atarduláa gyorsno. Íuíyosííó ezd| iZAattyézási segédem ag, vixmegkoto szer, Uxotrop szer, víztaszító sem', vízben újra dtszperinlitali ipelímerídk, és ezek kompoádői kézül van kiválasztva. /, Az 1-b, igénypontok bármelyike szerinti készítmény, ahol a szálak átlagos hosszúsága kisebb, mim I a non, S-, Aä 1 ·?. igcnypomok bármelyike szeri mi készítmény, ahol a k-ikn azermmeméiíne |d#0 iimïîgp y Agit ko/mî va) kisebf·, míM 2f)ö|m:a Ö^fteifeirfn hüh^^;::^^· 1-8- Igvnypgmok bámieiyika œiml klsil»lh|: vízzel való keverésével nyelhető, elónyösea ‘ν' ;.' ronoy'A) a gjvn'}vsmok k^'Aín\ o' θ'- ' 70-30 *·*> viz: kcvouAévd. TO- Favédelmi kérnék, méh a é, »gcr.vjH*« '/enm, nowcklmi ^thsri8'.pörtesxtöw?il vagy Öntésével nyeshető 1 j. Λ 10- igénypont szerinti tűs védelmi temWk- nlml az Öntési eijájsás sÄipAI s’ V K'N *g *- > vgan ^ w go thol van kí' t 1 f > 12. A !0. vagy 1 L igénypont s/.ermd tűzvédelmi termek, iTieJv»je^:^fosaif#C^i^; I * >L í' dUv v’k'RNi'M'i' 'U!H' \*0 V ns ko a1 I ' 1 IjíOa,' fnzvv.dv.lmt tende u bbf 'M\nvtra- ό ív , n\dnkw* ' a 0, igénylőm szerimi habarcs pori asz tssíáí é A vagy -a Π. vagy 12, igénypont szerinti Ontotttűzvédelmi termék ilxàlâsât agy s/nbsztmrom Π \ ; ' ,gs'o vVir -szénán J au"' ateN rakaomve Mové^kt ogv lom v ag> t»uan> ag *"« magvasai <t acovt Iá Az 1-8.tgépypPiokfá?5«epte WW$m efiiiitására.3, The composition according to any one of claims 1 or 2, wherein the cement binder is ka'H mm-, gamma-cr, chemalumion-cement, and their comatmy matex, 4 v Pt igemp ^ mvx tormentHikv kammunero 'P vzal ΙΑ Λ thread. cellulose fiber, fiberglass including alkali-resistant glass fibers, rock wool, asparagus wool, steel fiber, and combinations of these are selected from cases and Az!:> 4, ah ^ | :: pt.c? s ^ tape ^ U |! ' partially or completely4ob & myiigth van tajiysga foam, foamed glass, expanded clay, nerve-shaped ceramic spheres made of power v / stationary fly, layer of etched vermiculite and their combiné tufts; the tyboy is chosen. ,,. m m m m m pon k.... me me me ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol, ahol,,,,,,,,,,,, Weaving shed | iZPumping aid ag, vixmegkoto agent, Uxotropic agent, water repellent ', water repellents, and their components are selected by hand. A composition according to any one of claims 1-b, wherein the average length of the fibers is less than that of non-S, S, A 1 ?. igcnypomek is any preparation where the k-ikn azermmemic | d # 0 iimïîgp y Agit ko / mî va) baby, mf 2f) ö | m: the ^thefirefin ^ ^; ^ ^ · · 1-8 - Swallow bumble bees with im ésével s s s s h h h h h h hető hető hető hető hető hető hető hető hető hető hető ronoy'A) the gjvn '} vsmok k ^' Aín o 'θ'-' 70-30 * · *> water: kcvouAévd. TO- I would ask for a tree protection, bee, gcr.vjH * «/ enm, nowcklmi ^ thsri8'.pörtesxtöw? S Needle Protection Template according to Claim 10 for Casting Knockouts S 'V K'N * g * -> vgan ^ w go thol van kí t 1 f> 12. A! 0. or 1 L s / .ermd fire protection rooms, iTieJv »phi f # C ^ i ^; I *> L í 'dUv v'k'RNi'M' 'U! H' 0 0 ns a1 I 'Ijía,' fnzvv.dv.lmt tende u bbf 'M , nnkw * 'is the A, or A, of the mortar at 0, which is the applicant's request. or a Hollow Fire Protection Product according to claim 12 or 12; ', gs'o vVir Carbon J au' 'C a a é é é é é é é é é * * * * * * * * * * * «« «« «« «« ov * * * * «« «« «« «« ov ov ov ására ására 8.
HUE14703051A 2013-02-05 2014-02-03 Fire protection mortar HUE030978T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13153960 2013-02-05

Publications (1)

Publication Number Publication Date
HUE030978T2 true HUE030978T2 (en) 2017-06-28

Family

ID=47665979

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE14703051A HUE030978T2 (en) 2013-02-05 2014-02-03 Fire protection mortar

Country Status (21)

Country Link
US (1) US9034097B2 (en)
EP (1) EP2807130B1 (en)
JP (1) JP6332988B2 (en)
KR (1) KR102119216B1 (en)
CN (1) CN103964776B (en)
AU (1) AU2014200344B2 (en)
BR (1) BR102014002644B1 (en)
CA (1) CA2840343C (en)
DK (1) DK2807130T3 (en)
EA (1) EA026204B1 (en)
ES (1) ES2604658T3 (en)
HU (1) HUE030978T2 (en)
LT (1) LT2807130T (en)
MX (1) MX357372B (en)
MY (1) MY175739A (en)
PL (1) PL2807130T3 (en)
PT (1) PT2807130T (en)
SG (1) SG2014007660A (en)
SI (1) SI2807130T1 (en)
WO (1) WO2014122085A1 (en)
ZA (1) ZA201400662B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201603201QA (en) * 2013-10-22 2016-05-30 Infernoshield Pty Ltd Fire protection composition, use thereof, and method of producing and applying same
CH709106A1 (en) * 2014-01-10 2015-07-15 Synfola Gmbh Mixture of additives to be added to a mixture of flooring materials and composite flooring system formed from it.
ES2663861T3 (en) * 2014-03-28 2018-04-17 Akzo Nobel Coatings International B.V. Composition of fireproof cementitious coating
CN103979918B (en) * 2014-05-30 2016-06-01 秦菊霞 A kind of fiber reinforcement fireproof heated board and preparation technology thereof
DE102014019352B3 (en) * 2014-12-22 2016-05-19 Fermacell Gmbh Fire protection board, process for their preparation and their use
US20180022614A1 (en) * 2015-01-14 2018-01-25 Imerys Usa, Inc. A controlled process for precipitating calcium carbonate
KR101552672B1 (en) * 2015-04-09 2015-09-11 (주)에쓰에푸씨물산 A composite of fire-resistance coating materials comprising new heat-resistance materials
CN104876521A (en) * 2015-04-30 2015-09-02 安徽鑫润新型材料有限公司 Cracking-resistant thermal-insulation mortar and preparation method thereof
CN104895589A (en) * 2015-05-19 2015-09-09 济南城建集团有限公司 Construction method of fireproof coating of tunnel
KR101885197B1 (en) * 2015-05-20 2018-09-10 임기태 2 .omitted
CN104973840B (en) * 2015-07-08 2017-08-29 重庆市胡特建材有限公司 A kind of fireproof bonding mortar and its preparation method and application
US11214526B2 (en) 2015-10-20 2022-01-04 Hilti Aktiengesellschaft Use of calcium sulfate in an inorganic mortar system based on aluminous cement to increase load values
PL3365307T3 (en) 2015-10-20 2020-03-31 Hilti Aktiengesellschaft Two-component mortar system based on aluminous cement and use thereof
ES2743557T3 (en) 2015-10-20 2020-02-19 Hilti Ag Fixation and use system
US20180057730A1 (en) * 2016-08-26 2018-03-01 Baker Hughes, A Ge Company, Llc Composition and method for cementing in subterranean formations using inorganic fibers
CN106396735B (en) * 2016-08-31 2018-10-30 凌庭生 The production method of fire resisting thermal insulation noise abatement combined wall board
CN108506003B (en) * 2017-03-16 2023-09-22 中铁十八局集团有限公司 Structure and method for melting frozen layer at lower part of large rock mass loose body
RU2671010C2 (en) * 2017-03-23 2018-10-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Fire resistant fiber vermiculite pumice concrete raw mix
PL3606885T3 (en) * 2017-04-07 2021-12-06 Hilti Aktiengesellschaft Use of amorphous calcium carbonate in a fire-resistant inorganic mortar system based on aluminous cement to increase load values at elevated temperatures
EP3606886B1 (en) 2017-04-07 2021-06-09 Hilti Aktiengesellschaft Use of fine calcium carbonate in an inorganic mortar system based on aluminous cement to increase load values
CN107098650B (en) * 2017-05-31 2019-09-27 内蒙古工业大学 A kind of freeze proof PVA fiber cement composites of environment-friendly type and preparation method thereof
MX2017007995A (en) * 2017-06-16 2019-02-08 Orlando Gutierrez Obeso Mechanically activated cementitious composite for stopping the impact of firearms.
US10450230B2 (en) 2017-09-26 2019-10-22 Nano And Advanced Materials Institute Limited Fire resistant eco concrete blocks containing waste glass
KR101913388B1 (en) * 2018-05-11 2018-10-30 (주)홍성이엔지 Finishing material composition for semi-nonflammabe and insulation, manufacturing method of the same and painting method using the same
CN108640714A (en) * 2018-05-28 2018-10-12 钦州学院 The method for repairing and mending of Nixing pottery
CN108456006A (en) * 2018-05-28 2018-08-28 钦州学院 The recyclability restorative procedure of Nixing pottery hallrcuts
CN108643926B (en) * 2018-06-20 2024-03-12 北京城建集团有限责任公司 Freezing water stop construction method for pilot tunnel of section tunnel
CN109400076B (en) * 2018-12-26 2021-03-23 上海兆捷实业发展有限公司 High-strength concrete and preparation process thereof
CN109721305B (en) * 2019-01-17 2021-07-16 青岛鑫光正建筑节能开发有限公司 EPS molding line and preparation method thereof
CN111472715A (en) * 2019-01-23 2020-07-31 中石化石油工程技术服务有限公司 Hard formation open hole sidetrack drilling and filling material and application method thereof
PL3741734T3 (en) * 2019-05-22 2022-11-07 Knauf Aquapanel Gmbh Building panel with high fire resistance
MY196206A (en) * 2019-06-18 2023-03-22 Guangxi Siwei Materials Tech Co Ltd White Dry-Mixed Mortar and Application Method Thereof
RU2720540C1 (en) * 2019-08-02 2020-05-12 ООО "ПО Химцентр" Composition for making fireproof mortar
CN110862248A (en) * 2019-11-08 2020-03-06 安徽焦冲矿业有限公司 Thermal insulation material based on mine tailings and preparation method thereof
CN110922129A (en) * 2019-11-28 2020-03-27 同济大学 Self-fireproof ultrahigh-performance concrete for reinforcing underground structure and application thereof
CN111039631A (en) * 2019-12-23 2020-04-21 应急管理部四川消防研究所 Fireproof coating for concrete structure
WO2022004749A1 (en) * 2020-07-01 2022-01-06 株式会社ジェイエスピー Fire-resistant heat insulation composition, fire-resistant heat insulation composition slurry, fire-resistant heat insulation board, and fire-resistant heat insulation structure
CN112209663A (en) * 2020-09-27 2021-01-12 安徽华城兴建材科技有限公司 Production process of fiber cement explosion-proof board
AR125111A1 (en) * 2020-11-17 2023-06-14 Etex Building Performance Int Sas PLASTER COMPOSITION FOR FIRE-RESISTANT PLASTERBOARD
CN113321474B (en) * 2021-07-21 2023-03-17 四川佰汇混凝土工程有限公司 Anti-seepage sprayed concrete
FI130090B (en) * 2021-08-02 2023-01-31 Parma Oy Concrete composition
CN114380553A (en) * 2021-12-29 2022-04-22 江西远洋威利实业有限公司 Fire-resistant silicate fireproof FCA board and preparation method thereof
CN114685135A (en) * 2022-05-10 2022-07-01 江苏吉邦材料科技有限公司 Light gypsum mortar with high coating rate
WO2024007251A1 (en) 2022-07-07 2024-01-11 Sika Technology Ag A human friendly high performance fireproof mortar
CN115196921A (en) * 2022-07-13 2022-10-18 山东建筑大学 Fireproof anti-cracking common concrete and preparation method thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149163A (en) * 1979-05-07 1980-11-20 Showa Denko Kk Manufacture of reinforced concrete product
DE3608544C1 (en) * 1986-03-14 1987-04-09 Redco Nv Lightweight insulation panels and methods of making the same
JP2881077B2 (en) * 1992-09-19 1999-04-12 菊水化学工業株式会社 Non-polluting refractory coating composition
DE19501100C2 (en) * 1995-01-16 1999-10-21 Pro Mineral Ges Shotcrete binder mix
JP3988843B2 (en) * 1997-03-24 2007-10-10 株式会社エーアンドエーマテリアル Wet spray fireproof coating composition
NO981106D0 (en) 1998-03-12 1998-03-12 Ronny O Solsvik Process for the manufacture of heat-retardant material and its use
EP1001000A1 (en) 1998-11-11 2000-05-17 Thermal Ceramics Italiana S.R.L. Fire protection for buildings and other civil engineering constructions
DE19961633A1 (en) * 1999-12-10 2001-06-21 Walter Lukas Production of fire-resistant tunnel construction made of concrete, especially spray concrete, comprises applying flexible sliding and water-impermeable sealing layer and inner layer made of concrete mixture
AU9505501A (en) 2000-10-04 2002-04-15 James Hardie Res Pty Ltd Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances
US7101614B2 (en) * 2000-10-05 2006-09-05 Promat International N.V. Fire-proof material
JP2002293600A (en) * 2001-04-02 2002-10-09 Dantani Plywood Co Ltd Fire proof, humidity conditionable building material
US6699915B2 (en) * 2001-09-03 2004-03-02 W.R. Grace & Co.-Conn. Foamed fireproofing composition and method
JP2003292360A (en) * 2002-04-01 2003-10-15 Taiheiyo Cement Corp Mortar-kneading material for fireproofing protection
RU2222508C1 (en) * 2002-08-20 2004-01-27 Усов Михаил Витальевич Method of manufacture of building materials on base of magnesial binder
JP2004196602A (en) * 2002-12-19 2004-07-15 Toray Amenity & Civil Engineering Co Ltd Lightweight inorganic molding excellent in fire resistance and method for manufacturing the same
KR100473347B1 (en) * 2003-01-22 2005-03-10 김경애 Incombustible panel composite used lightweight aggregate
JP2004224622A (en) * 2003-01-22 2004-08-12 Taiheiyo Cement Corp Refractory coating cement mortar composition for injection
JP2006182628A (en) * 2004-12-28 2006-07-13 Taiheiyo Material Kk Aggregate for fire-proofing coating material and fire-proofing coating mortar composition using the same
CN1687254A (en) * 2005-04-18 2005-10-26 四川大学 Single system and composite fire retardant coating for tunnel
KR100698550B1 (en) * 2005-05-16 2007-03-22 원종필 Refractory?and adiabatic?cement mortar composition
NO325801B1 (en) * 2006-06-12 2008-07-21 Hallvar Eide Method of dressing a matrix with a fire-, water- and frost-proof barrier, as well as so formed clothing.
CN100591502C (en) * 2006-06-19 2010-02-24 淄博矿业集团有限责任公司 Dry mixing gunite material in use for underworkings of coal mine, and preparation method
US8070878B2 (en) * 2007-07-05 2011-12-06 United States Gypsum Company Lightweight cementitious compositions and building products and methods for making same
DE102008036376A1 (en) * 2007-08-06 2009-02-19 Heidelbergcement Ag Concrete mixture, useful for producing a concrete, which is useful e.g. in architectural engineering, civil engineering or system building construction, comprises a binding agent and an aggregate
CN101863640A (en) * 2009-04-15 2010-10-20 中国京冶工程技术有限公司 Environment-friendly colored fire-proof coating for tunnels
CN101570422A (en) * 2009-05-31 2009-11-04 江西龙正科技发展有限公司 Novel fireproof coating exclusively for tunnel
JP5536509B2 (en) * 2010-03-31 2014-07-02 三井住友建設株式会社 Lightweight fireproof insulation cement mortar
CN101880145B (en) * 2010-06-13 2012-11-14 成都威邦科技有限公司 Tunnel fire retardant coating and preparation process and construction process thereof

Also Published As

Publication number Publication date
KR102119216B1 (en) 2020-06-05
PL2807130T3 (en) 2017-03-31
AU2014200344B2 (en) 2017-03-02
EP2807130B1 (en) 2016-08-24
CN103964776A (en) 2014-08-06
BR102014002644B1 (en) 2021-06-01
LT2807130T (en) 2017-03-10
MX2014001274A (en) 2014-11-04
MX357372B (en) 2018-07-06
PT2807130T (en) 2016-12-06
EA026204B1 (en) 2017-03-31
US9034097B2 (en) 2015-05-19
SI2807130T1 (en) 2017-02-28
DK2807130T3 (en) 2016-12-12
CA2840343C (en) 2021-02-23
US20140216653A1 (en) 2014-08-07
SG2014007660A (en) 2014-09-26
EP2807130A1 (en) 2014-12-03
CN103964776B (en) 2016-07-06
JP6332988B2 (en) 2018-05-30
WO2014122085A1 (en) 2014-08-14
CA2840343A1 (en) 2014-08-05
BR102014002644A2 (en) 2015-12-08
EA201400102A1 (en) 2014-08-29
JP2014152101A (en) 2014-08-25
ES2604658T3 (en) 2017-03-08
MY175739A (en) 2020-07-07
ZA201400662B (en) 2015-04-29
AU2014200344A1 (en) 2014-08-21
KR20140100446A (en) 2014-08-14
BR102014002644A8 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
HUE030978T2 (en) Fire protection mortar
RU2662741C2 (en) Insulating mortar composition
CN110272244B (en) Crack-resistant concrete and preparation process thereof
Liguori et al. Fiber-reinforced lime-based mortars: Effect of zeolite addition
DE102013200122A1 (en) Water-resistant binder based on calcium sulfate
KR100655260B1 (en) Water proof admixtures for concrete and mortar
EP2943447A1 (en) Water-resistant binder based on anhydrite
JP5041521B2 (en) High strength restoration material
KR100590517B1 (en) Mortar for Repairing of Drain Pipe
CN104556767B (en) One wraps aglite and its preparation method and application
RU2660154C1 (en) Dry mixture for fire-protective coating
WO2011122746A1 (en) Lightweight foamed concrete using a raw material for high-strength concrete, and method for manufacturing same
EP2943446A1 (en) Water-resistant binder based on alpha-calcium sulfate hemihydrate
KR100516758B1 (en) High strength cement composition and method of high strength cement panel
KR100399618B1 (en) Manufacture Method of Expansive Material for Cement and Concrete Crack
Jain et al. A Review of Effect of Micro Silica in Concrete
EP3896046A1 (en) Dry cement-based ceramic composition for preparing a cooling material for reinforcement insert or filling of aluminum systems, reinforcement filling for aluminum systems comprising it, method of providing fire protection of aluminum system and use of dry cement-based ceramic composition for preparing reinforcement filling or insert
JP2006306655A (en) Method for suppressing deterioration of mortar or concrete
KR101559346B1 (en) Fireproof coating material using slag, powder type fireproof coating material and method for using the same
JP2024504711A (en) Low-carbon binders and building materials for summer comfort
Vessalas et al. Pitchstone Fines: A New Inorganic Binder For Portland Cement-Based Construction Products
LT6226B (en) Frost-resistant gypsum cement pozzolana binder
KR20120070989A (en) Composition with fire-resistance of light-weight mortar for plaster comprising gypsum and method for preparing the same