HRPK20171658B3 - Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant - Google Patents

Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant Download PDF

Info

Publication number
HRPK20171658B3
HRPK20171658B3 HRP20171658AA HRP20171658A HRPK20171658B3 HR PK20171658 B3 HRPK20171658 B3 HR PK20171658B3 HR P20171658A A HRP20171658A A HR P20171658AA HR P20171658 A HRP20171658 A HR P20171658A HR PK20171658 B3 HRPK20171658 B3 HR PK20171658B3
Authority
HR
Croatia
Prior art keywords
digestate
reactor
biogas
digester
solid fraction
Prior art date
Application number
HRP20171658AA
Other languages
Croatian (hr)
Inventor
Biljana Kulišić
Dinko Đurđević
Ivona Ivić
Original Assignee
Energetski institut Hrvoje Požar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energetski institut Hrvoje Požar filed Critical Energetski institut Hrvoje Požar
Priority to HRP20171658AA priority Critical patent/HRP20171658A8/en
Publication of HRP20171658A2 publication Critical patent/HRP20171658A2/en
Publication of HRPK20171658B3 publication Critical patent/HRPK20171658B3/en
Publication of HRP20171658A8 publication Critical patent/HRP20171658A8/en

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

Predmetni izum se odnosi na postupak i sustav za tretiranje i recikliranje digestata dobivenog anaerobnom digestijom ulazne biomase, odnosno gnoja, gnojovke, biljnih materijala i energetskih usjeva u kogeneracijskom bioplinskom postrojenju. Postupak tretiranja i recikliranja digestata i dobivanja smjese gnojiva iz organskih supstrata digestata dobivenog anaerobnom digestijom biomase u AD digestoru (10) u mezofilnim uvjetima gdje je digestat produkt ciklusa proizvodnje bioplina u kogeneracijskom bioplinskom postrojenju obuhvaća kristalizaciju smjese gnojiva u reaktoru (1) doziranjem magnezijeve soli, kalijeve soli i amonijeve lužine uz konstantno miješanje i mjerenje temperature i pH vrijednosti; separaciju krute frakcije (13;5) od tekuće frakcije (6) u separatom (4); kemijski tretman krute frakcije (5) u reaktoru (2) u kiselinskoj vodenoj otopini uz konstantno mjerenje temperature T i pH vrijednosti; sušenje kiselinom tretirane krute frakcije (5) u sušioniku (7) nakon čega se dobivena tretirana suha tvar dovodi u AD digestor (10) u kojem se miješa s ulaznom biomasom; i anaerobnu digestiju mješavine tretirane suhe tvari i ulazne biomase u AD digestoru (10) u mezofilnim uvjetima.The related invention refers to a process and system for treating and recycling of digestate obtained by anaerobic digestion of input biomass, i.e. manure, slurry, plant material and energy crops in a cogeneration biogas plant. The method of treating and recycling digestate and obtaining a fertilizer mixture from organic substrate of digestate obtained in anaerobic digestion of biomass in an AD digester (10) under mesophilic conditions where digestate is the product of biogas production cycle in a cogeneration biogas plant comprises crystallization of the fertilizer mixture in a reactor (1) by dosing magnesium salt, potassium salt and ammonium hydroxide with constant stirring and temperature and pH value measurement; separation of the solid fraction (13;5) from the liquid fraction (6) in a separator (4); chemical treatment of solid fraction (5) in a reactor (2) in acidic aqueous solution with constant temperature T and pH value measurement; drying the acid-treated solid fraction (5) in a drier (7), whereupon the resulting treated dry substance is introduced into an AD digester (10) in which it is mixed with the input biomass; and anaerobic digestion of the treated dry matter mixture and the input biomass in the AD digester (10) under mesophilic conditions.The present invention relates to a process and a system for the treatment and recycling of digestate obtained by anaerobic digestion of input biomass, ie manure, slurry, plant materials and energy crops in a cogeneration biogas plant. The process of treatment and recycling of digestate and obtaining a mixture of fertilizer from organic substrates of digestate obtained by anaerobic digestion of biomass in AD digester (10) under mesophilic conditions where digestate is a product of biogas production cycle in cogeneration biogas plant involves crystallization of fertilizer mixture potassium salts and ammonium alkalis with constant stirring and measurement of temperature and pH; separating the solid fraction (13; 5) from the liquid fraction (6) in the separator (4); chemical treatment of the solid fraction (5) in the reactor (2) in an acidic aqueous solution with constant measurement of temperature T and pH; drying the acid-treated solid fraction (5) in an oven (7) after which the resulting treated dry matter is fed to an AD digester (10) in which it is mixed with the input biomass; and anaerobic digestion of a mixture of treated dry matter and input biomass in AD digester (10) under mesophilic conditions.The related invention refers to a process and system for treating and recycling of digestate obtained by anaerobic digestion of input biomass, i.e. manure, slurry, plant material and energy crops in a cogeneration biogas plant. The method of treating and recycling digestate and obtaining a fertilizer mixture from organic substrate of digestate obtained in anaerobic digestion of biomass in an AD digester (10) under mesophilic conditions where digestate is the product of biogas production cycle in a cogeneration biogas plant comprises crystallization of the fertilizer mixture in a reactor (1) by dosing magnesium salt, potassium salt and ammonium hydroxide with constant stirring and temperature and pH value measurement; separation of the solid fraction (13; 5) from the liquid fraction (6) in a separator (4); chemical treatment of solid fraction (5) in a reactor (2) in acidic aqueous solution with constant temperature T and pH value measurement; drying the acid-treated solid fraction (5) in a drier (7), whereupon the resulting treated dry substance is introduced into an AD digester (10) in which it is mixed with the input biomass; and anaerobic digestion of the treated dry matter mixture and the input biomass in the AD digester (10) under mesophilic conditions.

Description

Područje tehnike na koje se izum odnosi Technical field to which the invention relates

Predmetni izum se odnosi na postupak i sustav za tretiranje i recikliranje digestata dobivenog anaerobnom digestijom ulazne biomase, odnosno gnoja, gnojovke, biljnih materijala i energetskih usjeva odnosno obnovljivih sirovih materijala, u kogeneracijskom bioplinskom postrojenju. Posebno, predmetni izum se odnosi na postupak i sustav za tretiranje i recikliranje tretiranog digestata, čime se uz dobivanje kvalitetne smjese gnojiva povećava prinos proizvodnje metana u kogeneracijskom bioplinskom postrojenju. The subject invention relates to a process and system for treating and recycling digestate obtained by anaerobic digestion of input biomass, i.e. manure, slurry, plant materials and energy crops, i.e. renewable raw materials, in a cogeneration biogas plant. In particular, the present invention relates to a process and system for treating and recycling treated digestate, which, in addition to obtaining a quality fertilizer mixture, increases the yield of methane production in a cogeneration biogas plant.

Tehnički problem Technical problem

Tehnički problem koji se rješava predmetnim izumom je povećanje efikasnosti proizvodnje bioplina kroz daljnji tretman preostale lignoceluloze (LC) sadržane u digestatu na način da se digestat tretira i vraća u proces anaerobne digestije (AD) čime se povećava prinos proizvodnje metana u bioplinskom postrojenju, te povećava kvaliteta dobivanja hranjivih tvari iz digestata, posebno gnojiva kao što je magnezij amonij fosfat heksahidrat, te β-kalcijev fosfat tetrahidrat i tekućina za fertigaciju. The technical problem that is solved by the present invention is to increase the efficiency of biogas production through the further treatment of the remaining lignocellulose (LC) contained in the digestate in such a way that the digestate is treated and returned to the anaerobic digestion process (AD), which increases the yield of methane production in the biogas plant, and increases the quality of obtaining nutrients from digestates, especially fertilizers such as magnesium ammonium phosphate hexahydrate, and β-calcium phosphate tetrahydrate and fertigation liquid.

Stanje tehnike State of the art

Anaerobna digestija gnojiva ili biomase je prilično složen proces koji posreduje nekoliko koegzistirajućih populacija različitih vrsta mikroorganizama, uglavnom bakterija i archaea, koji zajedno mogu organski materijal pretvoriti u bioplin kao konačni proizvod. Bioplin je izvor energije i može se koristiti za zamjenu fosilnih goriva. Sastoji se uglavnom od metana i ugljičnog dioksida, a može sadržavati tragove i drugih plinova kao što su vodik i sumporovodik. Ovaj anaerobni proces, može se podijeliti u četiri podprocesa ili faze koje slijede: hidroliza, acidogeneza, acetogeneza i metanogeneza. Tijekom ovih faza koje se odvijaju sukcesivno, veće biorazgradive molekule kao što su ugljikohidratni polimeri, proteini i masti pretvaraju se u manje spojeve, što na kraju dovodi do proizvodnje bioplina. Ulazni materijal, gnoj, gnojovka i/ili biomasa mogu se preraditi u bioplin i digestat razgradnjom u anaerobnom fermentacijskom postupku u jednom koraku koji se izvodi u jednom reaktoru ili u dvostupanjskom anaerobnom fermentacijskom procesu koji se izvodi u najmanje dva odvojena reaktora. Bez obzira na izbor razgradnje kroz postupak u jednom koraku ili u dva koraka, nakon završetka obaju alternativnih postupaka, digestat ostaje kao rezidualna frakcija. Ovaj digestat može se kasnije podijeliti u dvije frakcije: čvrsta, uglavnom organska frakcija i tekuća, uglavnom anorganska frakcija. Anaerobic digestion of manure or biomass is a rather complex process mediated by several coexisting populations of different types of microorganisms, mainly bacteria and archaea, which together can convert organic material into biogas as the final product. Biogas is a source of energy and can be used to replace fossil fuels. It consists mainly of methane and carbon dioxide, and may contain traces of other gases such as hydrogen and hydrogen sulfide. This anaerobic process can be divided into four sub-processes or phases as follows: hydrolysis, acidogenesis, acetogenesis and methanogenesis. During these successive stages, larger biodegradable molecules such as carbohydrate polymers, proteins and fats are converted into smaller compounds, ultimately leading to the production of biogas. Input material, manure, slurry and/or biomass can be processed into biogas and digestate by decomposition in a one-step anaerobic fermentation process carried out in one reactor or in a two-stage anaerobic fermentation process carried out in at least two separate reactors. Regardless of the choice of decomposition through a one-step or two-step process, after the completion of both alternative processes, the digestate remains as a residual fraction. This digestate can later be divided into two fractions: a solid, mostly organic fraction and a liquid, mostly inorganic fraction.

U bioplinskom postrojenju bioplin nastaje razgradnjom organske tvari uz pomoć mikrobioloških organizama u procesu anaerobne digestije (AD). AD je biokemijski proces u kojem se kompleksni organski spojevi razgrađuju djelovanjem različitih vrsta bakterija u anaerobnim uvjetima (bez prisustva kisika, O2). Rezultati AD procesa su bioplin i digestat. Kao ulazne sirovine za proizvodnju bioplina, u poljoprivredi, najčešće se koriste gnoj, gnojovka te biljni materijali uključujući i energetske usjeve. Dobiveni bioplin je uglavnom sastavljen od metana (CH4) i ugljikovog dioksida (CO2). Može se iskoristiti za proizvodnju električne energije, toplinske energije i biogoriva (biometan). Digestat je razgrađena biomasa preostala nakon procesa anaerobne digestije. In a biogas plant, biogas is produced by the decomposition of organic matter with the help of microbiological organisms in the process of anaerobic digestion (AD). AD is a biochemical process in which complex organic compounds are broken down by the action of different types of bacteria in anaerobic conditions (without the presence of oxygen, O2). The results of the AD process are biogas and digestate. As input raw materials for the production of biogas, manure, slurry and plant materials, including energy crops, are most often used in agriculture. The obtained biogas is mainly composed of methane (CH4) and carbon dioxide (CO2). It can be used for the production of electricity, thermal energy and biofuel (biomethane). Digestate is the decomposed biomass remaining after the anaerobic digestion process.

Glavni izvor metana unutar bioplina su šećeri i ostale male molekule koje se nalaze unutar kompleksa lignoceluloze (LC). LC sirovine (biljke) imaju slabo pristupnu molekularnu strukturu za mikroorganizme i njihove enzime. Za razliku od škroba, celulozu (β-1-4 veza D-glukoza) i hemicelulozu (polimer raznih šećera i kiseline) je puno teže razgraditi. Njihova je razgradnja otežana i zbog veza između lanaca celuloze i prisustva lignina, još jednog otegotnog polimeraza razgradnju. Bakterije AD ne mogu u potpunosti razgraditi lignin. I pektin utječe na razgradnju jer povezuje celulozna vlakna i stanice biljke. The main source of methane in biogas is sugars and other small molecules found within the lignocellulose complex (LC). LC raw materials (plants) have a poorly accessible molecular structure for microorganisms and their enzymes. Unlike starch, cellulose (β-1-4 bond of D-glucose) and hemicellulose (a polymer of various sugars and acids) are much more difficult to break down. Their decomposition is also difficult due to the bonds between the cellulose chains and the presence of lignin, another polymer that makes decomposition difficult. AD bacteria cannot fully degrade lignin. And pectin affects decomposition because it connects cellulose fibers and plant cells.

Dosadašnji napori u razgradnji LC su usmjereni na pred-tretmane ulazne sirovine (prije ulaska u proces AD), ali je njihova glavna mana neekonomičnost. Za razliku od tih istraživanja koja su usmjerena na razgradnju LC prije ulaska u AD, predmetni izum je usmjeren na obradu LC nakon procesa AD, odnosno na obradu digestata. Na taj način se AD proces koristi kao svojevrsni „pred-tretman" razgradnje LC kroz svoj uobičajeni boravak od 30-40 dana (vrijeme hidrauličke retencije) na temperaturi 38°C u anaerobnim uvjetima u digestoru. So far efforts in LC degradation have been focused on pre-treatments of input raw materials (before entering the AD process), but their main drawback is uneconomical. In contrast to those studies, which are focused on the decomposition of LC before entering the AD, the subject invention is focused on the processing of LC after the AD process, that is, on the processing of digestate. In this way, the AD process is used as a kind of "pre-treatment" of LC decomposition through its usual stay of 30-40 days (hydraulic retention time) at a temperature of 38°C in anaerobic conditions in the digester.

WO 2009/004027 opisuje postupak za regeneraciju fosfata iz fermentirane biomase kao što su životinjska gnojiva, otpadne suspenzije ili organska otpadna voda. Dokument ES2292277 opisuje još jedan poznati postupak za prikupljanje fosfata iz fermentirane biomase. Dokument JP2004160304 opisuje efikasno izdvajanje fosforne komponente iz otpadne vode u vidu magnezij amonij fosfata (MAP) na način da se nakon izdvajanja MAP-a frakcija (engl. MAP-free suspension) vraća natrag u anaerobni digestor preko ulaznog spremnika u kojem se miješa recirkulirana frakcija sa svježom (neobrađenom) otpadnom vodom. Nadalje, dokument EP1496019 opisuje postupak obrade mulja u kojem se simultano dodaje izvor Mg u AD reaktor kako bi kristali magnezij amonij fosfata (MAP) nastali u samom AD reaktoru, odvajanja mulja iz AD reaktora, izdvajanja krute tvari koja sadrži kristale MAP, te vraćanja dijela mulja tekuće frakcije natrag u AD reaktor. Dokument US2016185633 opisuje postupke za obradu anaerobno obrađenih celuloznih smjesa generiranih iz proizvodnje etanola za dobivanje hranjivih tvari putem taloženja struvita. WO 2009/004027 describes a process for the regeneration of phosphate from fermented biomass such as animal manure, waste slurries or organic wastewater. Document ES2292277 describes another known process for collecting phosphate from fermented biomass. Document JP2004160304 describes the efficient extraction of the phosphorus component from waste water in the form of magnesium ammonium phosphate (MAP) in such a way that after the extraction of the MAP, the fraction (MAP-free suspension) is returned to the anaerobic digester through the inlet tank where the recirculated fraction is mixed with fresh (untreated) waste water. Furthermore, document EP1496019 describes a sludge treatment process in which a source of Mg is simultaneously added to the AD reactor so that magnesium ammonium phosphate (MAP) crystals are formed in the AD reactor itself, the sludge is separated from the AD reactor, the solid substance containing the MAP crystals is separated, and a portion is recovered sludge liquid fraction back to the AD reactor. Document US2016185633 describes processes for processing anaerobically treated cellulosic mixtures generated from ethanol production to obtain nutrients via struvite precipitation.

Niti jedan od navedenih dokumenata ne predlaže povećanje prinosa proizvodnje bioplina kroz daljnju razgradnju lignoceluloze recirkulacijom digestata. Dodatno, navedeni dokumenti se prvenstveno odnose na dobivanje struvita kao gnojiva, dok se predmetnim postupkom dobiva smjesa fosfatnih gnojiva. Nadalje, predmetnim postupkom se smanjuju operativni troškovi kogeneracijskog bioplinskog postrojenja kroz proizvodnju veće količine bioplina i proizvodnju sekundarnih sirovina (smjesa fosfatnih gnojiva i tekućina za fertigaciju). None of the mentioned documents proposes to increase the yield of biogas production through further decomposition of lignocellulose by digestate recirculation. In addition, the mentioned documents primarily refer to the production of struvite as a fertilizer, while the process in question produces a mixture of phosphate fertilizers. Furthermore, the process in question reduces the operating costs of the cogeneration biogas plant through the production of a larger amount of biogas and the production of secondary raw materials (mixture of phosphate fertilizers and fertigation liquid).

Kratak sažetak izuma Brief summary of the invention

Predmetni izum se općenito odnosi na postupak tretiranja i recirkuliranja digestata dobivenog anaerobnom obradom/digestijom biomase u kogeneracijskom bioplinskom postrojenju i na sustav za tretiranje i recirkuliranje digestata. Kao ulazna sirovina u kogeneracijsko bioplinsko postrojenje se koristi biomasa koja se pretežno sastoji od silaže i gnojovke. The subject invention generally relates to the process of treating and recirculating digestate obtained by anaerobic treatment/digestion of biomass in a cogeneration biogas plant and to a system for treating and recirculating digestate. Biomass is used as input raw material in the cogeneration biogas plant, which mainly consists of silage and slurry.

Prvi cilj predmetnog izuma je osigurati postupak i sustav za tretiranje i recirkulaciju digestata, odnosno daljnju razgradnju kompleksa LC kako bi se novonastale, jednostavne molekule šećera u digestatu ponovno vratile u digestor u proces AD (recirkulacija tretiranog digestata), čime se ostvaruje povećani prinos proizvodnje biometana, a da pri tome ne nastanu neželjeni kemijske spojevi (inhibitori) koji bi spriječili rast i aktivnost mikroorganizama u AD. The first goal of the subject invention is to provide a procedure and system for the treatment and recirculation of digestate, i.e. further decomposition of the LC complex so that the newly formed, simple sugar molecules in the digestate are returned to the digester in the AD process (recirculation of treated digestate), thereby achieving an increased yield of biomethane production , without creating unwanted chemical compounds (inhibitors) that would prevent the growth and activity of microorganisms in AD.

Drugi cilj predmetnog izuma je osigurati postupak i sustav za dobivanje hranjivih tvari iz digestata, posebno gnojiva kao što je magnezij amonij fosfat heksahidrat (MgNH4PO4 x 6H2O) poznat pod imenom struvit i β-kalcijev fosfat tetrahidrat (β-Ca2P4O12 x 4 H2O) koji digestatu daju dodatnu vrijednost kao gnojivu i tekućine za fertigaciju. Tijekom postupka hranjive tvari se zadržavaju u ciklusu kruženja tvari te sudjeluju u procesima proizvodnje navedenih gnojiva, što ima za posljedicu smanjenje koncentracije dušika u preostaloj tekućoj frakciji digestata, što posljedično uzrokuje smanjenu potrebu za vodom za navodnjavanje prilikom korištenja tekuće frakcije digestata za fertigaciju. Another goal of the present invention is to provide a process and system for obtaining nutrients from digestate, especially fertilizers such as magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O) known as struvite and β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O) which digestate they provide added value as fertilizer and fertigation liquid. During the process, nutrients are retained in the substance circulation cycle and participate in the production processes of the mentioned fertilizers, which results in a decrease in the concentration of nitrogen in the remaining liquid fraction of the digestate, which consequently causes a reduced need for irrigation water when using the liquid fraction of the digestate for fertigation.

U jednom aspektu izuma, separiranje tekuće od krute frakcije predviđa mehanički postupak procjeđivanja kako se ne bi oštetili dobiveni kristali gnojiva, a sam postupak separacije dodatno mehanički oštećuje lignoceluloznu tvar sadržanu u digestatu. In one aspect of the invention, the separation of the liquid from the solid fraction foresees a mechanical filtration process in order not to damage the resulting fertilizer crystals, and the separation process itself additionally mechanically damages the lignocellulosic substance contained in the digestate.

U jednom aspektu izuma, separirana kruta frakcija se tretira otopinom sulfitne kiseline nakon čega je izložena djelovanju povišene temperature. Tako dobivena tretirana suha tvar, a koja sadrži dodatno degradiranu lignocelulozu, se miješa s biomasom i ponovno podvrgava tretmanu anaerobne digestije, a čime se ostvaruje recirkulacija tretiranog digestata, uz povećanje prinosa bioplina i proizvodnje smjese gnojiva i tekućine za fertigaciju. In one aspect of the invention, the separated solid fraction is treated with a sulphitic acid solution after which it is exposed to elevated temperature. The thus obtained treated dry matter, which contains additionally degraded lignocellulose, is mixed with biomass and again subjected to anaerobic digestion treatment, which achieves the recirculation of the treated digestate, while increasing the yield of biogas and the production of a mixture of fertilizers and liquid for fertigation.

U jednom aspektu, izum se odnosi na za smanjenje oslobađanja proizvedenog H2S radom bioplinskog postrojenja u okoliš, čime se smanjuje neželjeni miris povezan s razgradnjom biomase. Generirani H2S se može prikladno iskoristiti kao reagens u procesu degradacije lignocelulozne stjenke otapanjem u vodi, gdje nastaje vodena otopina sumporovog (IV) oksida čime se proizvedeni sumpor zadržava u ciklusu kruženja tvari. Tako se doprinosi problemu osiguravanja samo-održavanja proizvodnje bioplina i smjese gnojiva na lokaciji bioplinskog postrojenja uz smanjenje emisije H2S u okoliš. In one aspect, the invention relates to reducing the release of H2S produced by the operation of a biogas plant into the environment, thereby reducing the undesirable odor associated with the decomposition of biomass. The generated H2S can be conveniently used as a reagent in the degradation process of the lignocellulosic wall by dissolving it in water, where an aqueous solution of sulfur (IV) oxide is formed, which keeps the produced sulfur in the substance cycle. This contributes to the problem of ensuring self-sustainability of biogas production and fertilizer mixture at the location of the biogas plant while reducing H2S emissions into the environment.

U daljnjem aspektu izuma, otpadna toplina iz kogeneracijskog bioplinskog postrojenja koristi se za održavanje temperatura u sustavu za tretman i recirkuliranje digestata, a pomoću sustava kontrole temperature i povezanih izmjenjivača. In a further aspect of the invention, the waste heat from the cogeneration biogas plant is used to maintain temperatures in the digestate treatment and recirculation system, using a temperature control system and associated exchangers.

U daljnjem aspektu izuma, predviđa se sustav za tretiranje i recirkuliranje digestata. Navedeni sustav je dio kogeneracijskog bioplinskog postrojenja te se predviđa korištenje dijela otpadne topline iz kogeneracije za toplinski tretman, proizvodnju i doziranje sulfitne kiseline, čime se smanjuju operativni troškovi kroz proizvodnju sekundarnih sirovina i učinkovitog zatvaranja ciklusa kruženja hranjivih tvari. In a further aspect of the invention, a system for treating and recirculating digestate is envisaged. The mentioned system is part of a cogeneration biogas plant, and it is planned to use part of the waste heat from the cogeneration for heat treatment, production and dosing of sulphitic acid, which reduces operating costs through the production of secondary raw materials and effectively closes the nutrient cycle.

U odnosu na uobičajeno razmatrane pred-tretmane razgradnje lignoceluloze, predmetni izum se temelji na nusproizvodima kogeneracijskog postrojenja na bioplin čime se umanjuju operativni troškovi. Digestat već sadrži djelomično razgrađenu lignocelulozu s obzirom da je lignoceluloza prošla jedan ciklus anaerobne digestije. Operativni troškovi kogeneracijskog bioplinskog postrojenja smanjuju se zbog proizvodnje smjese gnojiva koja se može plasirati na tržište ili koristiti za vlastite potrebe, a lignocelulozni materijal se dalje degradira djelovanjem kiseline koja se proizvodi pri čišćenju bioplina prije sagorijevanja. Nakon kiselinsko-toplinskog tretmana dobivena tretirana suha tvar se vraća u proces AD čime se dodatno povećava proizvodnja bioplina. In relation to the commonly considered pre-treatments of lignocellulose decomposition, the subject invention is based on the by-products of a biogas cogeneration plant, which reduces operating costs. The digestate already contains partially decomposed lignocellulose, considering that the lignocellulose has undergone one cycle of anaerobic digestion. The operating costs of the cogeneration biogas plant are reduced due to the production of a fertilizer mixture that can be marketed or used for own purposes, and the lignocellulosic material is further degraded by the action of the acid produced during the cleaning of biogas before combustion. After the acid-heat treatment, the treated dry matter is returned to the AD process, which further increases the production of biogas.

Kratki opis crteža Brief description of the drawing

U nastavku će izum biti detaljno opisan s pozivanjem na crteže pri čemu: In the following, the invention will be described in detail with reference to the drawings, whereby:

- sl. 1 prikazuje opću shemu postupka dobivanja bioplina koji se provodi u bioplinskom postrojenju; - Fig. 1 shows the general scheme of the biogas production process carried out in the biogas plant;

- sl. 2 prikazuje shemu sustava za provođenje postupka prema predmetnom izumu; - Fig. 2 shows the scheme of the system for carrying out the procedure according to the subject invention;

- sl. 3 prikazuje shemu postupka dobivanja hranjivih tvari-smjese gnojiva i dodatne količine bioplina iz digestata recirkulacijom tretiranog digestata prema predmetnom izumu; - Fig. 3 shows the scheme of the process of obtaining nutrients-fertilizer mixture and additional amount of biogas from digestate by recirculation of treated digestate according to the present invention;

- sl. 4 prikazuje dijagram - XRD analizu (rendgenska difrakcijska analiza) krute frakcije nakon kristalizacije; - Fig. 4 shows a diagram - XRD analysis (X-ray diffraction analysis) of the solid fraction after crystallization;

- sl. 5 prikazuje dijagram - XRD analizu uzorka tretirane suhe tvari pH=5,5; - Fig. 5 shows a diagram - XRD analysis of a sample of treated dry substance pH=5.5;

- sl. 6 prikazuje dijagram - XRD analizu uzorka tretirane suhe tvari pH=6,0; - Fig. 6 shows a diagram - XRD analysis of a sample of treated dry substance pH=6.0;

- sl. 7 je dijagram koji prikazuje bioplinski potencijal uzorka Standard; - Fig. 7 is a diagram showing the biogas potential of the Standard sample;

- sl. 8 je dijagram koji prikazuje bioplinski potencijal uzorka Mješavina 1; i - Fig. 8 is a diagram showing the biogas potential of the sample Mixture 1; and

- sl. 9 je dijagram koji prikazuje bioplinski potencijal uzorka Mješavina 2. - Fig. 9 is a diagram showing the biogas potential of the Mixture 2 sample.

Prije nego što se u nastavku detaljno objasne neovisne izvedbe ili konstrukcije izuma, treba razumjeti da izum nije ograničen u njegovoj primjeni na pojedinosti sustava. Također, treba shvatiti da se frazeologija i terminologija korištena u ovom tekstu ne smatra ograničavajućima. Before the independent embodiments or constructions of the invention are explained in detail below, it should be understood that the invention is not limited in its application to system details. It should also be understood that the phraseology and terminology used in this text is not intended to be restrictive.

Također se podrazumijeva da bilo koji brojčani raspon naveden ovdje uključuje sve vrijednosti od niže vrijednosti do gornje vrijednosti. Na primjer, ako je koncentracijski raspon naveden kao 1% do 50%, namjeravano je da su u ovom slučaju izričito navedene vrijednosti od 2% do 40%, 10% do 30% ili 1% do 3% itd. Ovo su samo primjeri onoga što je posebno namijenjeno, a sve moguće kombinacije numeričkih vrijednosti između i uključujući najnižu vrijednost i najvišu navedenu vrijednost treba smatrati da su izričito navedene u ovoj prijavi. It is also understood that any numerical range specified here includes all values from the lower value to the upper value. For example, if a concentration range is stated as 1% to 50%, it is intended that in this case values of 2% to 40%, 10% to 30%, or 1% to 3% etc. are expressly stated. These are just examples of what which is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value stated shall be deemed to be expressly stated in this application.

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

Općenito, bez obzira na operativni rad bioplinskog postrojenja koje koristi npr. poljoprivrednu biomasu, postupak dobivanja bioplina se može podijeliti u četiri različita koraka: In general, regardless of the operational work of a biogas plant that uses, for example, agricultural biomass, the process of obtaining biogas can be divided into four different steps:

1. rukovanje supstratom (dobava, skladištenje, priprema, transport i punjenje); 1. substrate handling (supply, storage, preparation, transport and filling);

2. dobivanje plina (bioplin metan) u AD reaktoru koji se još uobičajeno zove AD digestor; 2. obtaining gas (biogas methane) in an AD reactor, which is also commonly called an AD digester;

3. skladištenje digestata i/ili sekundarna fermentacija, obrada digestata; i 3. digestate storage and/or secondary fermentation, digestate processing; and

4. skladištenje bioplina, njegova obrada i upotreba. 4. storage of biogas, its processing and use.

Slika 1 općenito shematski prikazuje gore navedena četiri koraka dobivanja bioplina u bioplinskom postrojenju. Digestat koji je rezultat anaerobne digestije se dalje može skladištiti i/ili se podvrgava sekundarnoj obradi/fermentaciji koje je rezultat dodatno dobiveni bioplin i digestat koji se još zove i tekući gnoj. Nadalje, nastali digestat se može obraditi separiranjem na tekuću frakciju i krutu frakciju, ili se isti direktno koristi za gnojenje polja, ili kompostiranje bez odvajanja tekuće i krute frakcije. Kruta i tekuće frakcija se koriste za gnojenje polja ili za daljnje kompostiranje. Figure 1 generally schematically shows the above four steps of obtaining biogas in a biogas plant. The digestate resulting from anaerobic digestion can be further stored and/or subjected to secondary processing/fermentation resulting in additional biogas and digestate, which is also called liquid manure. Furthermore, the resulting digestate can be processed by separating it into a liquid fraction and a solid fraction, or it can be directly used for field fertilization, or composting without separating the liquid and solid fraction. Solid and liquid fractions are used for field fertilization or for further composting.

Predmetni izum se općenito odnosi na postupak za tretiranje digestata, i recikliranja tretiranog digestata i dobivanje smjese gnojiva iz organskih supstrata digestata dobivenog anaerobnom digestijom biomase u kogeneracijskom bioplinskom postrojenju i na sustav za tretiranje digestata, recikliranje tretiranog digestata i za dobivanje smjese gnojiva. Predmetnim izumom osiguran je postupak i sustav za efikasnu razgradnju lignina iz digestata putem taloženja smjese gnojiva koju čine kristali magnezij amonij fosfata heksahidrata (MgNH4PO4 x 6H2O) poznatog pod imenom struvit i kristali (β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O). Dodatno, nus proizvod predmetnog postupka je i tekućina za fertigaciju. Nadalje, predmetni postupak predviđa recirkulaciju tretiranog digestata čime se ostvaruje povećani prinos proizvodnje bioplina (bio-metana). The subject invention generally relates to a process for treating digestate, recycling treated digestate and obtaining a fertilizer mixture from organic substrates of digestate obtained by anaerobic digestion of biomass in a cogeneration biogas plant and to a system for treating digestate, recycling treated digestate and obtaining a fertilizer mixture. The present invention provides a procedure and system for the efficient decomposition of lignin from digestate through the precipitation of a fertilizer mixture consisting of crystals of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O) known as struvite and crystals of β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O). In addition, the by-product of the process in question is liquid for fertigation.Furthermore, the process in question envisages the recirculation of treated digestate, which achieves an increased yield of biogas (bio-methane) production.

Anaerobna digestija biomase proizvodi digestat koji sadrži nitrate i nitrite (izvor dušika), fosfate (F), sulfate, kalijeve i natrijeve ione, nerazgrađenu lignoceluloznu tvar i bioplin koji uz metan i ugljikov dioksid sadrži i sumporni nusprodukt (kao što je H2S). Anaerobic digestion of biomass produces digestate that contains nitrates and nitrites (a source of nitrogen), phosphates (F), sulfates, potassium and sodium ions, undecomposed lignocellulosic matter and biogas, which, in addition to methane and carbon dioxide, also contains a sulfur byproduct (such as H2S).

Anaerobni digestorski reaktor sastoji se od jednog od zračnih spremnika, sustava za miješanje, sustava kontrole pH, sustava kontrole temperature T i sustava kontrole pjene. Anaerobic digester reactor consists of one air tank, mixing system, pH control system, temperature control system T and foam control system.

Sustav za miješanje može sadržavati niz mlaznica na dnu reaktora; tekućina koja teče kroz mlaznice zadržava suspendirane čvrste tvari u reaktoru od taloženja i miješa digestat. The mixing system may include a series of nozzles at the bottom of the reactor; the liquid flowing through the nozzles keeps the suspended solids in the reactor from settling and mixes the digestate.

Broj i veličina mlaznica ovisiti će o veličini reaktora. Za veće reaktore može biti neophodno koristiti dodatne pumpe za cirkuliranje tekućine kroz mlaznice. Nadalje, sustav za miješanje može biti npr. propeler, venturi miješalica ili slične konvencionalne mehaničke miješalice i / ili pneumatske miješalice pomoću sredstava za upuhivanje zraka pod tlakom kroz reaktor. Miješanje u reaktoru može biti kontinuirano ili diskontinuirano. Prema predmetnom izumu primjenjuje se kontinuirano miješanje. The number and size of nozzles will depend on the size of the reactor. For larger reactors, it may be necessary to use additional pumps to circulate the liquid through the nozzles. Furthermore, the mixing system can be eg a propeller, venturi mixer or similar conventional mechanical mixers and/or pneumatic mixers using means for blowing pressurized air through the reactor. Mixing in the reactor can be continuous or discontinuous. According to the subject invention, continuous mixing is applied.

Sustav za kontrolu pH sastoji se od sustava za praćenje pH koji daje povratnu informaciju osnovnom ili kaustičnom sustavu opskrbe koji po potrebi raspršuje i/ili dozira kemikalije kako bi se održao pH unutar raspona podešavanja. Sustav kontrole pH će održavati pH u reaktoru 1 pri neutralnim vrijednostima pH od oko 6 do oko 8, osobito između 6,8 i 7,5, a preciznije od 7,2 i do 7,3. Sustav kontrole pH vrijednosti će održavati pH u reaktoru 2 pri vrijednostima između 5,5 i 6,0 doziranjem vodene otopine kiseline. A pH control system consists of a pH monitoring system that provides feedback to a base or caustic supply system that sprays and/or doses chemicals as needed to maintain the pH within the adjustment range. The pH control system will maintain the pH in reactor 1 at neutral pH values of about 6 to about 8, particularly between 6.8 and 7.5, and more specifically between 7.2 and up to 7.3. The pH control system will maintain the pH in Reactor 2 between 5.5 and 6.0 by dosing the aqueous acid solution.

Sustav kontrole temperature sastoji se od sustava za nadzor temperature koji daje povratnu informaciju sustavu izmjenjivača topline; jer sirovina koja ulazi u reaktore može biti vruća, a izmjenjivač topline može ukloniti toplinu iz reaktora, reciklirati i ponovno koristiti. Alternativno, sirovina koja ulazi u reaktore može biti hladna te ju eventualno treba zagrijati. Sustav kontrole temperature održavati će temperaturu AD digestora 10 u rasponu od 25 do 45°C, a prema poželjnom načinu izvođenja izuma na 38°C. Nadalje, sustav kontrole temperature održavati će temperaturu reaktora 1 na sobnoj temperaturi od 25°C, temperaturu reaktora 2 na sobnoj temperaturi od 25°C, temperaturu sušionika 7 između 50 i 70°C, a prema poželjnom načinu izvođenja izuma na 60°C. The temperature control system consists of a temperature monitoring system that provides feedback to the heat exchanger system; because the feedstock entering the reactors can be hot, and the heat exchanger can remove the heat from the reactor, recycle it and reuse it. Alternatively, the raw material entering the reactors may be cold and may need to be heated. The temperature control system will maintain the temperature of the AD digester 10 in the range of 25 to 45°C, and according to the preferred method of carrying out the invention at 38°C. Furthermore, the temperature control system will maintain the temperature of the reactor 1 at a room temperature of 25°C, the temperature of the reactor 2 at a room temperature of 25°C, the temperature of the dryer 7 between 50 and 70°C, and according to the preferred method of carrying out the invention at 60°C.

Pjena se može pratiti pomoću ultrazvučnog senzora razine pjene. Kemikalije protiv stvaranja pjene mogu se dodati anaerobnim digestorima po potrebi kako bi se smanjila razina pjene kako bi se izbjegla operativna pitanja (tj. pjena u cijevima za bioplin). Foam can be monitored using an ultrasonic foam level sensor. Antifoam chemicals can be added to anaerobic digesters as needed to reduce foam levels to avoid operational issues (ie foam in biogas lines).

Sustav za rukovanje bioplinom uključuje sustav prikupljanja bioplina, sustav sušenja bioplina i sustav za pročišćavanje bioplina; u nekim izvedbama podsustav za rukovanje bioplinom može također uključivati sustav kompresije bioplina. Bioplin može sadržavati oko 70% metana, oko 30% ugljikovog dioksida i drugih sastojaka u tragovima, poput vode i vodikovog sulfida (H2S). Nakon sušenja bioplina i uklanjanja H2S, isti se može koristiti u svim primjenama u kojima se prirodni plin tradicionalno koristi. The biogas handling system includes a biogas collection system, a biogas drying system, and a biogas purification system; in some embodiments, the biogas handling subsystem may also include a biogas compression system. Biogas can contain about 70% methane, about 30% carbon dioxide and other trace elements, such as water and hydrogen sulfide (H2S). After drying biogas and removing H2S, it can be used in all applications where natural gas is traditionally used.

Pročišćavanje bioplina uklanjanjem H2S može u nekim aspektima rezultirati elementarnim sumpornim nusproduktima. Postupci za uklanjanje H2S iz bioplina pretvaranjem u elementarni sumpor dobro su poznati stručnjacima. Elementarni sumpor iz takvog postupka pročišćavanja može imati vrijednost kao roba. Prema predmetnom izumu, odstranjeni H2S iz dobivenog bioplina se koristi za dobivanje sulfitne kiseline (H2SO3) za potrebe kiselinskog tretmana u reaktoru 2. Biogas purification by H2S removal can in some aspects result in elemental sulfur by-products. Processes for removing H2S from biogas by converting it to elemental sulfur are well known to those skilled in the art. Elemental sulfur from such a purification process can have value as a commodity. According to the present invention, the removed H2S from the obtained biogas is used to obtain sulphitic acid (H2SO3) for the purposes of acid treatment in reactor 2.

Sustav za separiranje krute frakcije od tekuće frakcije uključuje opremu za mehanički postupak procjeđivanja kako se ne bi oštetili nastali kristali gnojiva prema predmetnom izumu. S obzirom da se izabranim postupkom separacije krute od tekuće frakcije dodatno mehanički oštećuje lignoceluloza, umjesto djelovanjem jakih kiselina (npr. H2SO4) ili visokih temperatura (npr. T>120 °C), lignocelulozna tvar se u daljnjem tretmanu degradira slabom kiselinskom otopinom pri nižim temperaturama. Tekućina koju proizvodi sustav za uklanjanje krutih tvari se koristi kao tekućina za fertigaciju, dok se dio krute frakcije odvaja i koristi kao poljoprivredno gnojivo. Ostatak krute frakcije se podvrgava daljnjem tretmanu s ciljem razgradnje lignocelulozne tvari u svrhu dobivanja dodatnih količina bioplina iz digestata i dodatnih količina bilo krutog bilo tekućeg gnojiva. Tretirana suha tvar može biti iskorištena 100 % za potrebe povećanja prinosa bioplina kroz kiselinsko-toplinsku obradu, ili 100 % za potrebe proizvodnje smjese gnojiva. Navedeni postotci mogu biti postavljeni i u drugačijem omjeru, ovisno o preferencijama proizvođača i spremnosti tržišta za nove proizvode. The system for separating the solid fraction from the liquid fraction includes equipment for a mechanical filtration process in order not to damage the formed fertilizer crystals according to the present invention. Given that the chosen process of separating the solid from the liquid fraction additionally mechanically damages the lignocellulose, instead of the action of strong acids (e.g. H2SO4) or high temperatures (e.g. T>120 °C), the lignocellulosic substance is degraded in further treatment with a weak acid solution at lower temperatures. The liquid produced by the solids removal system is used as a fertigation liquid, while part of the solid fraction is separated and used as agricultural fertilizer. The rest of the solid fraction undergoes further treatment with the aim of breaking down the lignocellulosic substance in order to obtain additional amounts of biogas from the digestate and additional amounts of either solid or liquid fertilizer. The treated dry matter can be used 100% for the purpose of increasing the yield of biogas through acid-heat treatment, or 100% for the purpose of producing a fertilizer mixture. The specified percentages can be set in a different ratio, depending on the preferences of the manufacturer and the readiness of the market for new products.

Sustav cjevovoda i pumpi (nije posebno opisan) koji se koristi u sustavu za tretiranje i recirkuliranje digestata prema predmetnom izumu je uobičajena oprema u području tehnike i podrazumijeva se da su pojedini elementi sustava međusobno povezani cijevima odgovarajućeg promjera i kvalitete, s ugrađenim potrebnim ventilima i odgovarajućim pumpama potrebnim za dobavljanje ili odvođenje digestata, ili tekuće frakcije, ili krute frakcije, ili tretirane suhe tvari. The piping and pump system (not specifically described) used in the digestate treatment and recirculation system according to the subject invention is common equipment in the field of technology and it is understood that the individual elements of the system are connected to each other by pipes of the appropriate diameter and quality, with the necessary valves installed and appropriate pumps required for supplying or removing digestate, or liquid fraction, or solid fraction, or treated dry matter.

Kao biomasa za potrebe bioplinskog postrojenja u svrhu proizvodnje bioplina, prema predmetnom izumu koristi se gnoj, gnojovka, kukuruzna silaža, biljni materijali i energetski usjevi odnosno obnovljivi sirovi materijali, odnosno predviđa se postupak recikliranja hranjivih tvari i dobivanja gnojiva iz organskih supstrata iz digestata nastalog anaerobnom digestijom prethodno navedenih sirovina. Prema poželjnom načinu izvođenja izuma za biomasu se koristi kukuruzna silaža i gnojovka. Međutim, predmetni postupak se može primijeniti i na bilo koje otpadne tekućine čiji digestat nakon postupka anaerobne digestije i nadalje sadrži nerazgrađeni lignin/lignocelulozu. As biomass for the needs of a biogas plant for the purpose of biogas production, according to the subject invention, manure, slurry, corn silage, plant materials and energy crops, i.e. renewable raw materials, are used, i.e. the process of recycling nutrients and obtaining fertilizer from organic substrates from the digestate produced by anaerobic digestion of the aforementioned raw materials. According to the preferred way of carrying out the invention, corn silage and slurry are used for biomass. However, the process in question can be applied to any waste liquid whose digestate after the anaerobic digestion process still contains undecomposed lignin/lignocellulose.

Odvojena tekuća frakcija ima udio suhe tvari manji od 2%, a dodatno se sastoji od otopljenih hranjivih tvari poput dušika N, fosfora P i kalija K, te može biti dovoljne kvalitete da se može upotrijebiti kao tekućina za fertigaciju. Tekuća frakcija, kroz dobivanje hranjivih nutritivnih tvari (gnojiva), sadrži smanjenu koncentraciju dušika (u odnosu na početni sastav izlaznog digestata, koncentracije dušika u tekućoj fazi trostruko su smanjene) što ju čini pogodnom za fertigaciju. Primjena tekućine za fertigaciju na tlo smanjuje potrebe za vodom za navodnjavanje. The separated liquid fraction has a dry matter content of less than 2% and additionally consists of dissolved nutrients such as nitrogen N, phosphorus P and potassium K, and may be of sufficient quality to be used as a fertigation liquid. The liquid fraction, through obtaining nutritious nutrients (fertilizer), contains a reduced concentration of nitrogen (compared to the initial composition of the output digestate, the concentration of nitrogen in the liquid phase is reduced by three times), which makes it suitable for fertigation. Applying fertigation fluid to the soil reduces irrigation water requirements.

Postupak prema predmetnom izumu, prikazan na slici 3, je opisan u nastavku. The procedure according to the present invention, shown in Figure 3, is described below.

Postupak za tretiranje digestata, recikliranje tretiranog digestata i dobivanje smjese gnojiva iz organskih supstrata digestata dobivenog anaerobnom digestijom biomase u AD digestoru 10 u mezofilnim uvjetima, a koji digestat je produkt iz ciklusa proizvodnje bioplina u kogeneracijskom bioplinskom postrojenju obuhvaća sljedeće korake: The procedure for treating digestate, recycling treated digestate and obtaining a fertilizer mixture from organic substrates of digestate obtained by anaerobic digestion of biomass in AD digester 10 in mesophilic conditions, which digestate is a product of the biogas production cycle in a cogeneration biogas plant, includes the following steps:

- kristalizacija smjese gnojiva iz sastava digestata u reaktoru 1 uz doziranje magnezijeve soli, kalijeve soli i amonijeve lužine uz konstantno miješanje, mjerenje temperature i pH vrijednosti; - crystallization of the fertilizer mixture from the digestate composition in reactor 1 with the dosing of magnesium salt, potassium salt and ammonium alkali with constant mixing, temperature and pH measurement;

- separacija krute frakcije 13; 5 od tekuće frakcije 6 u separatom 4; - separation of solid fraction 13; 5 from liquid fraction 6 in separator 4;

- kemijski tretman krute frakcije 5 u reaktoru 2 u kiselinskoj vodenoj otopini uz konstantno mjerenje temperature T i pH vrijednosti; - chemical treatment of solid fraction 5 in reactor 2 in acidic aqueous solution with constant measurement of temperature T and pH value;

- sušenje kiselinom tretirane krute frakcije 5 u sušioniku 7 nakon čega se dobivena tretirana suha tvar dovodi u AD digestor 10 gdje se u AD digestoru 10 miješa s ulaznom, sirovom biomasom; i - drying of the acid-treated solid fraction 5 in the dryer 7, after which the obtained treated dry substance is fed to the AD digester 10, where it is mixed with the incoming, raw biomass in the AD digester 10; and

- anaerobna digestija mješavine, tj. tretirane suhe tvari i ulazne biomase, iz prethodnog koraka u AD digestoru 10 u mezofilnim uvjetima za dobivanje bioplina i digestata. - anaerobic digestion of the mixture, i.e. treated dry matter and input biomass, from the previous step in AD digester 10 in mesophilic conditions to obtain biogas and digestate.

Dobivena tretirana suha tvar, koja se vraća u proces AD digestije zajedno sa sirovom biomasom, sadrži osušenu degradiranu lignoceluloznu masu (lignin, hemiceluloza i celuloza) čime se preostale hranjive tvariiz početnog digestata vraćaju u proces tretiranja digestata, a čime se dodatno ostvaruje povećana proizvodnja smjese gnojiva i bioplina. The obtained treated dry matter, which is returned to the AD digestion process together with raw biomass, contains dried degraded lignocellulosic mass (lignin, hemicellulose and cellulose), which returns the remaining nutrients from the initial digestate to the digestate treatment process, and which additionally achieves increased production of the mixture fertilizers and biogas.

Kemikalije koje se doziraju u reaktor 1, za kristalizaciju smjese gnojiva koju čine kristali magnezij amonij fosfata heksahidrata (MgNH4PO4 x 6H2O) i kristali β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O), su magnezij klorid (MgCl2), kalijev dihidrogen fosfat (KH2PO4) i amonijeva lužina (NH4OH) u rasponima kako je niže opisano. The chemicals that are dosed into reactor 1, for the crystallization of the fertilizer mixture consisting of crystals of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O) and crystals of β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O), are magnesium chloride (MgCl2), potassium dihydrogen phosphate (KH2PO4) and ammonium hydroxide (NH4OH) in the ranges as described below.

Biomasa koja ulazi u AD digestor 10 se poželjno sastoji od silaže i gnojovke u omjeru silaža: gnojovka = 70% :30 %. Dobiveni bioplin se odvodi u spremnik bioplina 11, a digestat se dalje tretira tj. dovodi u reaktor 1. Dobiveni bioplin se za daljnje korištenje proizvodnje električne energije i/ili topline, a za koju proizvodnju se koristi metan iz bioplina, podvrgava pročišćavanju. Uobičajeni sastav dobivenog bioplina je 60-70 vol.% metana, 30-40 vol. % ugljičnog dioksida, dušika do 1 vol. %, sumporovodika od 0-4000 ppmv i amonijaka do 100 ppmv. Nakon pročišćavanja bioplina izdvojeni sumporni nusprodukt tj. H2S se na lokaciji bioplinskog postrojenja koristi za dobivanje sulfitne kiseline (H2SO3) koja se skladišti u spremniku 12 i koristi za kiselinski tretman smjese u reaktoru 2. Sulfitna kiselina se dobiva poznatim postupcima, tj. oksidacijom H2S u H2SO3, stripiranjem i otapanjem u sulfitnu kiselinu. Dobivena sulfitna kiselina se dovodi u spremnik 12 koji je spojen s dozatorom 9. Digestat je razrađena biomasa preostala nakon anaerobne digestije te sadrži nitrate i nitrite koji su izvor dušika, fosfate (F), sulfate, kalijeve i natrijeve ione i lignoceluloznu tvar koja se djelomično razgradila u AD digestoru 10. Udio nerazgrađene lignocelulozne tvari u digestatu se kreće u rasponu od 5 do 7 % mas. ukupne mase digestata. Digestat iz procesa anaerobne digestije dovodi se u reaktor 1 u kojem se provodi kristalizacija. Reaktor 1 je spojen s dozatorom 1 za doziranje magnezijeve soli koja magnezijeva sol je magnezij klorid (MgCl2), kalijeve soli koja sol je kalijev dihidrogen fosfat (KH2PO4) i amonijeve lužine (NH4OH) kako bi se pokrenula reakcija kristalizacije smjese gnojiva, tj. magnezij amonij fosfata heksahidrata (NH4MgPO4X6H2O) poznatog pod imenom struvit i β-kalcijevog fosfat tetrahidrata β-Ca2P4O12 x 4 H2O). Na digestat u volumenu 1 L dodaje se magnezij klorid (MgCl2) mase u rasponu od 6-10 g, u povoljnom načinu izvođenja izuma 7,8 g; kalij dihidrigen fosfat (KH2PO4) mase u rasponu od 2-4 g, u povoljnom načinu izvođenja 2,2 g; te amonijeva lužina (NH4OH) volumena u rasponu 15-25 ml, u povoljnom načinu izvođenja izuma 20 ml. Kristalizacija se odvija u reaktoru 1 tijekom konstantnog miješanja uz konstantno mjerenje pH vrijednosti i temperature T. Brzina miješanja smjese je u rasponu od 400-600 okretaja/min. U reaktoru 1 održava se pH vrijednost u rasponu od 7 do 9 pH jedinica, poželjno između 8,0 i 8,5, ili poželjnije oko 8,2, a temperatura T na 25°C. Nakon koraka kristalizacije digestata u reaktoru 1 su dobiveni kristali magnezij amonij fosfata heksahidrata (NH4MgPO4 x 6H2O) i β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O). Dobivena smjesa se odvodi u separator 4 u kojem se provodi separacija na krutu 13;5 i tekuću frakciju 6. Kako se ne bi oštetili dobiveni kristali, separacija se provodi postupkom mehaničkog procjeđivanja. Izdvojena kruta frakcija 13;5 sadrži vodu, te vlažnost uzorka iznosi oko 20 mas.%. Tekuća frakcija 6 ima udio suhe tvari manji od 2 % a dodatno se sastoji od hranjivih tvari i to dušika N, fosfora P i kalija K. Udjeli N, P, K koji su u tekućoj frakciji 6 su smanjeni na oko trećinu početne koncentracije kristalizacijom minerala struvita i β-kalcijevog fosfat tetrahidrata jer su navedene hranjive tvarikonstituenti navedene smjese kristala. Kruta frakcija 13; 5 sadrži degradiranu lignoceluloznu tvar u obliku hemiceluloze, celuloze i lignina te <70% P i <60% N u obliku struvita i u obliku β-kalcijevog fosfat tetrahidrata i vlagu u iznosu oko 20 mas.%. Proizvodnjom smjese gnojiva i smanjenjem koncentracije dušika u preostaloj tekućoj frakciji digestata, koja se ne vraća u AD digestor 10, zadržavaju se hranjive tvari u ciklusu kruženja tvari u odnosu na klasični osušeni ili kondicionirani digestat. Istovremeno, preostali tekući dio se može iskoristiti za fertigaciju zbog smanjenog udjela dušika što smanjuje potrebe za vodom za navodnjavanje. The biomass entering the AD digester 10 preferably consists of silage and slurry in the ratio of silage: slurry = 70%:30%. The obtained biogas is taken to the biogas tank 11, and the digestate is further treated, i.e. fed to the reactor 1. The obtained biogas is purified for further use in the production of electricity and/or heat, for which production methane from biogas is used. The usual composition of the obtained biogas is 60-70 vol.% methane, 30-40 vol.% carbon dioxide, nitrogen up to 1 vol.%, hydrogen sulfide from 0-4000 ppmv and ammonia up to 100 ppmv. After biogas purification, the separated sulfur by-product, i.e. H2S, is used at the location of the biogas plant to obtain sulphitic acid (H2SO3), which is stored in tank 12 and used for acid treatment of the mixture in reactor 2. Sulphitic acid is obtained by known procedures, i.e. by oxidation of H2S in H2SO3, by stripping and dissolving in sulphitic acid. The sulphitic acid obtained is fed into the tank 12 which is connected to the dispenser 9. The digestate is the processed biomass remaining after anaerobic digestion and contains nitrates and nitrites which are a source of nitrogen, phosphates (F), sulphates, potassium and sodium ions and lignocellulosic substance which is partially decomposed in the AD digester 10. The share of non-degraded lignocellulosic matter in the digestate ranges from 5 to 7% by mass. total digestate mass. The digestate from the anaerobic digestion process is fed into reactor 1 where crystallization is carried out. Reactor 1 is connected to dispenser 1 for dosing magnesium salt which magnesium salt is magnesium chloride (MgCl2), potassium salt which is potassium dihydrogen phosphate (KH2PO4) and ammonium alkali (NH4OH) in order to start the crystallization reaction of the fertilizer mixture, i.e. magnesium. ammonium phosphate hexahydrate (NH4MgPO4X6H2O) known as struvite and β-calcium phosphate tetrahydrate β-Ca2P4O12 x 4 H2O). Magnesium chloride (MgCl2) with a weight in the range of 6-10 g is added to the digestate in a volume of 1 L, in a favorable way of carrying out the invention 7.8 g; potassium dihydrogen phosphate (KH2PO4) mass in the range of 2-4 g, in a favorable way of execution 2.2 g; and ammonium lye (NH4OH) with a volume in the range of 15-25 ml, in a favorable embodiment of the invention 20 ml. Crystallization takes place in reactor 1 during constant mixing with constant measurement of the pH value and temperature T. The mixing speed of the mixture is in the range of 400-600 revolutions/min. In reactor 1, the pH value is maintained in the range of 7 to 9 pH units, preferably between 8.0 and 8.5, or more preferably around 8.2, and the temperature T at 25°C. After the digestate crystallization step in reactor 1, crystals of magnesium ammonium phosphate hexahydrate (NH4MgPO4 x 6H2O) and β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O) were obtained. The obtained mixture is taken to the separator 4, where the separation is carried out into solid 13;5 and liquid fraction 6. In order not to damage the obtained crystals, the separation is carried out by the process of mechanical filtration. The separated solid fraction 13;5 contains water, and the humidity of the sample is about 20 wt.%. Liquid fraction 6 has a proportion of dry matter of less than 2% and additionally consists of nutrients, namely nitrogen N, phosphorus P and potassium K. The proportions of N, P, K in liquid fraction 6 were reduced to about a third of the initial concentration by mineral crystallization struvite and β-calcium phosphate tetrahydrate because the mentioned nutrients are constituents of the mentioned crystal mixture. Rigid fraction 13; 5 contains degraded lignocellulosic matter in the form of hemicellulose, cellulose and lignin and <70% P and <60% N in the form of struvite and in the form of β-calcium phosphate tetrahydrate and moisture in the amount of about 20 wt.%. By producing a fertilizer mixture and reducing the concentration of nitrogen in the remaining liquid fraction of the digestate, which is not returned to the AD digester 10, nutrients are retained in the substance circulation cycle compared to classic dried or conditioned digestate. At the same time, the remaining liquid part can be used for fertigation due to the reduced nitrogen content, which reduces the need for irrigation water.

Također, izdvajanje smjese gnojiva, tj. struvita i β-kalcijevog fosfat tetrahidrata (organskih gnojiva), tj. separacija krute od tekuće faze dodatno mehanički oštećuje LC tako da umjesto djelovanjem jakih kiselina (npr. H2SO4) ili djelovanjem visokih temperatura (npr. T>120 °C), stjenke lignoceluloznih tvari se dalje degradiraju slabom kiselinom pri nižim temperaturama. Na lokaciji bioplinskog postrojenja se proizvodi kiselinska otopina postupkom oksidacije H2S (nusproizvod pročišćavanja bioplina) stripiranjem i otapanjem u sulfitnu kiselinu (H2SO3). Omjeri krute frakcije koja se koristi za daljnje procese degradacije i poljoprivredne primjene ovisi 0 proizvođaču i potrebama tržišta. Dio ili ukupno dobivena kruta frakcija 5 se podvrgava daljnjem kiselinsko-toplinskom tretmanu u reaktoru 2. Lignocelulozna vlakna sadržana u krutoj frakciji se tretiraju u kiselini ili kiseloj vodenoj otopini, npr. kiselina razrijeđena vodom. Kiseline koje se koriste za degradaciju stjenke lignina i lignoceluloznih tvari su mineralne kiseline poput sumporne, sulfitne, fosforne, klorovodične, dušične, borne, fluorovodične kiseline ili različitih organskih kiselina poput mravlje kiseline, octene kiseline, oksalne kiseline, limunske kiseline ili mliječne kiseline. Dakle, separirana kruta frakcija 5 formirana u reaktoru 1 za kristalizaciju se ponovno otapa u kiseloj vodenoj otopini. Količina vode i kiseline koja se koristi za ponovno otapanje krute frakcije 5 preferirano se podešava tako da se pH vrijednost u reaktoru 2 održava u rasponu između 5,5 do 6 jedinica. Kisela vodena otopina se dodaje ili kao vodena razrijeđena otopina jedne ili više gore spomenutih kiselina i vode, ili se koncentrirane kiseline dodaju odvojeno u reaktor 2. Kisela vodena otopina ili kiselina se dodaje u reaktor 2 pomoću dozatora 9. Prema predmetnom izumu, preferirana kiselina je sulfitna kiselina iz razloga jer separacija krute od tekuće faze dodatno mehanički oštećuje lignocelulozu tako da je moguće potaknuti degradaciju djelovanjem slabe kiseline i pri nižim temperaturama. Also, the separation of the mixture of fertilizers, i.e. struvite and β-calcium phosphate tetrahydrate (organic fertilizers), i.e. the separation of the solid from the liquid phase additionally mechanically damages the LC so that instead of the action of strong acids (e.g. H2SO4) or the action of high temperatures (e.g. T >120 °C), the walls of lignocellulosic substances are further degraded by weak acid at lower temperatures. At the location of the biogas plant, an acid solution is produced by the process of oxidizing H2S (a by-product of biogas purification) by stripping and dissolving it in sulphitic acid (H2SO3). The proportions of the solid fraction used for further degradation processes and agricultural applications depend on the manufacturer and market needs. Part or all of the obtained solid fraction 5 is subjected to further acid-heat treatment in reactor 2. The lignocellulosic fibers contained in the solid fraction are treated in acid or an acidic aqueous solution, eg acid diluted with water. Acids used for degradation of the lignin wall and lignocellulosic substances are mineral acids such as sulfuric, sulphitic, phosphoric, hydrochloric, nitric, boric, hydrofluoric acid or various organic acids such as formic acid, acetic acid, oxalic acid, citric acid or lactic acid. Thus, the separated solid fraction 5 formed in reactor 1 for crystallization is re-dissolved in an acidic aqueous solution. The amount of water and acid used to redissolve the solid fraction 5 is preferably adjusted so that the pH value in the reactor 2 is maintained in the range between 5.5 and 6 units. The acidic aqueous solution is added either as an aqueous dilute solution of one or more of the above-mentioned acids and water, or the concentrated acids are added separately to reactor 2. The acidic aqueous solution or acid is added to reactor 2 using a dispenser 9. According to the present invention, the preferred acid is sulfitic acid for the reason that the separation of the solid from the liquid phase additionally mechanically damages the lignocellulose so that it is possible to stimulate degradation by the action of a weak acid even at lower temperatures.

Također, sulfitna kiselina se prema predmetnom izumu dobiva na lokaciji bioplinskog postrojenja postupkom oksidacije H2S, stripiranjem i otapanjem. Also, according to the present invention, sulfitic acid is obtained at the location of the biogas plant by the process of H2S oxidation, stripping and dissolving.

Separirana i izdvojena kruta frakcija 13 koja se koristi kao poljoprivredno gnojivo može se zatim prenijeti u bilo koja sredstva za skladištenje, koje može biti stacionarni spremnik, ili izravno u prikolice-cisteme za daljnju distribuciju. The separated and separated solid fraction 13 used as agricultural fertilizer can then be transferred to any means of storage, which can be a stationary tank, or directly to trailer-systems for further distribution.

U reaktoru 2 provodi se kiselinski tretman dodavanjem sulfitne kiseline (H2SO3) za daljnju razgradnju lignocelulozne stjenke. Sulfitna kiselina se dozira tako da se pH vrijednost u reaktoru 2 održava između 5,5 i 6 jedinica. Acid treatment is carried out in reactor 2 by adding sulphitic acid (H2SO3) for further decomposition of the lignocellulosic wall. Sulphitic acid is dosed so that the pH value in reactor 2 is maintained between 5.5 and 6 units.

Da bi se smanjila proizvodnja topline u reaktoru 2, degradacija reaktorskog materijala i isparavanje sumpornih spojeva, poželjno je koristiti vodenu otopinu sulfitne kiseline, npr. 1-10%, poželjno 5-7% ili približno 6 % težinskih udjela sumporovog (IV) oksida otopljenog u vodi. Preferira se smjesa sulfitne kiseline i krute frakcije miješanjem dijela krute frakcije doziranjem sulfitne kiseline koja rezultira smanjenjem pH smjese na 5,5 do 6 jedinica. In order to reduce the production of heat in reactor 2, the degradation of the reactor material and the evaporation of sulfur compounds, it is preferable to use an aqueous solution of sulphitic acid, for example 1-10%, preferably 5-7% or approximately 6% by weight of dissolved sulfur (IV) oxide in water. A mixture of sulphitic acid and solid fraction is preferred by mixing part of the solid fraction by dosing sulphitic acid, which results in a reduction of the pH of the mixture to 5.5 to 6 units.

Pomoću sustava za regulaciju temperature, temperatura u reaktoru 2 se održava na vrijednosti sobne temperature T u rasponu od 25-30 °C. Također, pomoću sustava za kontrolu pH koji kontinuirano mjeri pH vrijednost u reaktoru 2 i daje povratnu informaciju dozatoru 9 za održavanje pH vrijednosti u rasponu između 5,5 do 6 jedinica. Nakon tretmana otopinom sulfitne kiseline u reaktoru 2, otopljena kruta frakcija 5 se dovodi u sušionik 7 u kojem se odvija sušenje tj. dobivanje tretirane suhe tvari koja sadrži osušenu degradiranu lignoceluloznu masu (lignin, hemiceluloza i celuloza). Kiselinski tretirana kruta frakcija se suši na temperaturama između 50 i 70 °C, poželjnije na 60 °C u vremenu tuk do 3 dana. Tretirana suha tvar nakon izlaza iz sušionika 7 se dovodi u AD digestor 10 u kojem se miješa s gnojovkom i kukuruznom silažom. Omjer kukuruzne silaže i gnojovke koja se koristi kao ulaz u AD digestor 10 iznosi 30% :70 %. Mješavina sirove biomase koja ulazi u AD digestor 10 i sudjeluje u procesima fermentacije sadrži 12 mas. % suhe tvari, gdje tretirana suha tvar sudjeluje s 5 mas.% na ukupnu masu sirove suhe tvari. U AD digestoru 10 se ponovno odvija anaerobna digestija tijekom 30-40 dana uz dodavanje mikroorganizama, tj. mezofilnih bakterija uz konstantno miješanje, mjerenje temperature i pH vrijednosti. Temperatura u AD digestoru 10 se pomoću sustava za kontrolu temperature održava između 25 do 45 ° C, poželjno na 38°C, a pH vrijednost pomoću sustava za kontrolu pH između 5,5 i 8,5 jedinica. Optimalni raspon pH u AD digestoru 10 je od pH 7 do pH 8. Dobiveni bioplin se dovodi u spremnik bioplina 11 koji se podvrgava pročišćavanju kako je ranije opisano. By means of a temperature control system, the temperature in reactor 2 is maintained at room temperature T in the range of 25-30 °C. Also, using a pH control system that continuously measures the pH value in the reactor 2 and gives feedback to the dispenser 9 to maintain the pH value in the range between 5.5 to 6 units. After treatment with a sulfite acid solution in reactor 2, the dissolved solid fraction 5 is fed to the dryer 7 where drying takes place, i.e. obtaining a treated dry substance containing dried degraded lignocellulosic mass (lignin, hemicellulose and cellulose). The acid-treated solid fraction is dried at temperatures between 50 and 70 °C, preferably at 60 °C for up to 3 days. After leaving the dryer 7, the treated dry matter is fed into the AD digester 10, where it is mixed with slurry and corn silage. The ratio of corn silage and slurry used as input to AD digester 10 is 30%:70%. The mixture of raw biomass that enters the AD digester 10 and participates in fermentation processes contains 12 wt. % of dry matter, where treated dry matter contributes 5 wt.% to the total mass of raw dry matter. Anaerobic digestion takes place again in AD digester 10 for 30-40 days with the addition of microorganisms, i.e. mesophilic bacteria, with constant mixing, temperature and pH measurement. The temperature in the AD digester 10 is maintained between 25 and 45°C, preferably at 38°C, and the pH value between 5.5 and 8.5 units by means of a temperature control system. The optimal pH range in the AD digester 10 is from pH 7 to pH 8. The obtained biogas is fed to the biogas tank 11, which undergoes purification as described earlier.

Primjeri izvođenja postupka Examples of performing the procedure

U AD digestor 10 se dovodi biomasa koja se sastoji od kukuruzne silaže i gnojovke u omjeru kukuruzna silaža: gnojovka = 30% :70%. Biomasa je podvrgnuta anaerobnoj digestiji u mezofilnim uvjetima pri temperaturi od 38°C tijekom 30 do 40 dana. Sadržaj dobivenog digestata je prikazan u TABLICI 1 i 2 u nastavku: Biomass consisting of corn silage and slurry is fed into AD digester 10 in the ratio corn silage: slurry = 30%:70%. The biomass was subjected to anaerobic digestion in mesophilic conditions at a temperature of 38°C for 30 to 40 days. The content of the obtained digestate is shown in TABLE 1 and 2 below:

[image] [image]

Primjer 1 Example 1

Digestat se dovodi u reaktor 1 u koji se pomoću dozatora 8 doziraju magnezijeve soli, kalijeve soli i amonijeve lužine uz konstantno miješanje i mjerenje temperature T i pH vrijednosti. Temperatura T u reaktoru 1 se održava na 25 °C, a pH vrijednost u rasponu 8,0 do 8,4, poželjnije 8,2 pH jedinica. Brzina miješanja smjese u reaktoru 1 je u rasponu od 400-600 okretaja/min. Na digestat u volumenu 1 L dodaje se magnezij klorid (MgCl2) mase od 6g; kalij dihidrigenfosfat (KH2PO4) mase 2g; te amonijeva lužina (NH4OH) volumena 15ml. Nakon koraka kristalizacije digestata u reaktoru 1 dobiveni su kristali magnezij amonij fosfata heksahidrata (NH4MgPO4 x 6H2O), β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O) i tekuća frakcija. Nakon provedenog postupka separacije u separatom 4 sadržaj dobivene krute frakcije 13;5 i tekuće frakcije 6 je prikazan u TABLICI 3 i 4 u nastavku: The digestate is fed into the reactor 1, where magnesium salts, potassium salts and ammonium alkali are dosed using a dispenser 8 with constant mixing and measurement of temperature T and pH values. The temperature T in reactor 1 is maintained at 25 °C, and the pH value is in the range 8.0 to 8.4, preferably 8.2 pH units. The mixing speed of the mixture in reactor 1 is in the range of 400-600 revolutions/min. 6g of magnesium chloride (MgCl2) is added to the digestate in a volume of 1 L; potassium dihydrogen phosphate (KH2PO4) weighing 2g; and ammonium alkali (NH4OH) volume 15ml. After the digestate crystallization step in reactor 1, crystals of magnesium ammonium phosphate hexahydrate (NH4MgPO4 x 6H2O), β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O) and liquid fraction were obtained. After the separation procedure in separator 4, the content of the obtained solid fraction 13;5 and liquid fraction 6 is shown in TABLE 3 and 4 below:

[image] [image]

[image] [image]

Kruta frakcija 5 podvrgava se daljnjem tretmanu u reaktoru 2 u koji se pomoću dozatora 9 dozira 6% otopina sulfitne kiseline uz konstantno mjerenje temperature i pH vrijednosti. Temperatura T se održava u rasponu od 25-30°C, a pH vrijednost u rasponu od 5,5 do 6 jedinica. The solid fraction 5 is subjected to further treatment in the reactor 2, into which a 6% sulphitic acid solution is dosed using a dispenser 9 with constant temperature and pH value measurement. The temperature T is maintained in the range of 25-30°C, and the pH value in the range of 5.5 to 6 units.

Nakon provedenog postupka u reaktoru 2 provodi se sušenje otopljene krute frakcije u sušioniku 7 pri temperaturama između 50 i 70°C, poželjno na 60°C u vremenu tuk dana (72h). Sadržaj dobivene tretirane suhe tvari je prikazan u TABLICI 5 i 6 u nastavku: After the procedure in reactor 2, the dissolved solid fraction is dried in dryer 7 at temperatures between 50 and 70°C, preferably at 60°C during the day (72h). The content of the obtained treated dry matter is shown in TABLE 5 and 6 below:

[image] [image]

Primjer 2 Example 2

Digestat se dovodi u reaktor 1 u koji se pomoću dozatora 8 doziraju magnezijeve soli, kalijeve soli i amonijeve lužine uz konstantno miješanje i mjerenje temperature i pH vrijednosti. Temperatura u reaktoru 1 se održava na 25°C, a pH vrijednost u rasponu od 8,0 do 8,4, poželjnije 8,2 pH. Brzina miješanja smjese u reaktoru 1 je u rasponu od 400-600 okretaja/min. Na digestat 1 u volumenu 1 L dodaje se magnezij klorid (MgCl2) mase od 10g; kalij dihidrogenfosfat (KH2PO4) mase 4; te amonijeva lužina (NH4OH) volumena 25ml. Nakon koraka kristalizacije digestata 1 u reaktoru 1 dobiveni su kristali magnezij amonij fosfata heksahidrata (NH4MgPO4 x 6H2O), β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O) i kalijevog magnezij klorid heksahidrata (KMgCl3 x 6 H2O) i tekuća frakcija. Nakon provedenog postupka separacije u separatom 4 sadržaj dobivene krute frakcije 13;5 i tekuće frakcije 6 je prikazan u TABLICI 7 i 8 u nastavku: The digestate is fed into the reactor 1, where magnesium salts, potassium salts and ammonium alkali are dosed using a dispenser 8 with constant mixing and measurement of temperature and pH value. The temperature in reactor 1 is maintained at 25°C, and the pH value is in the range of 8.0 to 8.4, preferably 8.2 pH. The mixing speed of the mixture in reactor 1 is in the range of 400-600 revolutions/min. 10g of magnesium chloride (MgCl2) is added to digestate 1 in a volume of 1 L; potassium dihydrogen phosphate (KH2PO4) mass 4; and ammonium alkali (NH4OH) volume 25ml. After the crystallization step of digestate 1 in reactor 1, crystals of magnesium ammonium phosphate hexahydrate (NH4MgPO4 x 6H2O), β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O) and potassium magnesium chloride hexahydrate (KMgCl3 x 6 H2O) and liquid fraction were obtained. After the separation procedure in separator 4, the contents of the obtained solid fraction 13;5 and liquid fraction 6 are shown in TABLE 7 and 8 below:

[image] [image]

Kruta frakcija podvrgava se daljnjem tretmanu u reaktoru 2 u koji se pomoću dozatora 9 dozira 6% otopina sulfitne kiseline uz konstantno mjerenje temperature i pH vrijednosti. Temperatura T se održava u rasponu od 25-30 °C, a pH vrijednost u rasponu od 5,5 do 6 jedinica. The solid fraction is subjected to further treatment in reactor 2, into which a 6% sulfitic acid solution is dosed using a dispenser 9, with constant temperature and pH value measurement. The temperature T is maintained in the range of 25-30 °C, and the pH value in the range of 5.5 to 6 units.

Nakon provedenog postupka u reaktoru 2 provodi se sušenje otopljene krute frakcije 5 u sušioniku 7 pri temperaturama između 50 i 70 °C, poželjno na 60°C u vremenu tuk dana (72h). Sadržaj dobivene tretirane suhe tvari je prikazan u TABLICI 9 i 10 u nastavku: After the procedure in reactor 2, the dissolved solid fraction 5 is dried in the dryer 7 at temperatures between 50 and 70 °C, preferably at 60 °C during the day (72 hours). The content of the obtained treated dry matter is shown in TABLE 9 and 10 below:

[image] [image]

[image] [image]

Primjer 3 Example 3

Digestat se dovodi u reaktor 1 u koji se pomoću dozatora 8 doziraju magnezijeve soli, kalijeve soli i amonijeve lužine uz konstantno miješanje i mjerenje temperature i pH vrijednosti. Temperatura u reaktoru 1 se održava na 25 °C, a pH vrijednost u rasponu od 8,0 do 8,4, poželjnije 8,2 pH. Brzina miješanja smjese u reaktoru 1 je u rasponu od 400-600 okretaja/min. Na digestat 1 u volumenu 1 L dodaje se magnezij klorid (MgCl2) mase od 7,8g; kalij dihidrogenfosfat (KH2PO4) mase 2,2; te amonijeva lužina (NH4OH) volumena 20ml. Nakon koraka kristalizacije digestata 1 u reaktoru 1 dobiveni su kristali magnezij amonij fosfata heksahidrata (NH4MgPO4 x 6H2O), β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O) i tekuća frakcija. Nakon provedenog postupka separacije u separatom 4 sadržaj dobivene krute frakcije 13;5 i tekuće frakcije 6 je prikazan u TABLICI 11 i 12 u nastavku, a sl. 4 je dijagram koji prikazuje rendgensku difrakcijsku analizu (XRD analizu) krute frakcije nakon kristalizacije: The digestate is fed into the reactor 1, where magnesium salts, potassium salts and ammonium alkali are dosed using a dispenser 8 with constant mixing and measurement of temperature and pH value. The temperature in reactor 1 is maintained at 25 °C, and the pH value is in the range of 8.0 to 8.4, preferably 8.2 pH. The mixing speed of the mixture in reactor 1 is in the range of 400-600 revolutions/min. Magnesium chloride (MgCl2) weighing 7.8 g is added to digestate 1 in a volume of 1 L; potassium dihydrogen phosphate (KH2PO4) mass 2.2; and ammonium alkali (NH4OH) volume 20ml. After the crystallization step of digestate 1 in reactor 1, crystals of magnesium ammonium phosphate hexahydrate (NH4MgPO4 x 6H2O), β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O) and liquid fraction were obtained. After the separation process in separator 4, the content of the obtained solid fraction 13;5 and liquid fraction 6 is shown in TABLE 11 and 12 below, and Fig. 4 is a diagram showing the X-ray diffraction analysis (XRD analysis) of the solid fraction after crystallization:

[image] [image]

[image] [image]

Kruta frakcija 5 podvrgava se daljnjem tretmanu u reaktoru 2 u koji se pomoću dozatora 9 dozira 6% otopina sulfitne kiseline uz konstantno mjerenje temperature i pH vrijednosti. Temperatura T se održava u rasponu od 25-30 °C, a pH vrijednost 5,5 do 6 jedinica. The solid fraction 5 is subjected to further treatment in the reactor 2, into which a 6% sulphitic acid solution is dosed using a dispenser 9 with constant temperature and pH value measurement. The temperature T is maintained in the range of 25-30 °C, and the pH value is 5.5 to 6 units.

Nakon provedenog postupka u reaktoru 2 provodi se sušenje otopljene krute frakcije u sušioniku 7 pri temperaturama između 50 i 70 °C, poželjno na 60 °C u vremenu tuk 3 dana (72h). Sadržaj dobivene tretirane suhe tvari je prikazan u TABLICI 13 i 14 u nastavku, a slike 5 i 6 su dijagrami koji prikazuju XRD analizu uzorka tretirane suhe tvari pH=5,5 i pH=6,0: After the procedure in reactor 2, the dissolved solid fraction is dried in dryer 7 at temperatures between 50 and 70 °C, preferably at 60 °C for 3 days (72 hours). The content of the obtained treated dry matter is shown in TABLE 13 and 14 below, and Figures 5 and 6 are diagrams showing the XRD analysis of the treated dry matter sample pH=5.5 and pH=6.0:

[image] [image]

U odnosu na sastav lignoceluloznih vlakana sadržanih u uzorku svježeg digestata provedenim analizama tretirane suhe tvari utvrđena je degradacija stjenke koja se očituje u smanjenju koncentracija hemiceluloze, celuloze i lignina. Mješavina sirove biomase koja ulazi u AD digestor 10 i sudjeluje u procesima anaerobne digestije sadrži 12 mas. % suhe tvari, gdje tretirana suha tvar sudjeluje s 5 mas.% na ukupnu masu sirove suhe tvari. Recirkulacijom tretirane suhe tvari, prema predmetnom postupku, koja sadrži ovako degradiranu lignoceluloznu tvar postiže se povećanje prinosa bioplina u AD digestoru 10, odnosno u cjelokupnom kogeneracijskom bioplinskom postrojenju. Određivanjem bioplinskog potencijala dobivene su vrijednosti kojima je dokazano povećanje bioplinskog potencijala dodavanjem tretirane suhe tvari, kao zamjene za kukuruznu silažu. Rezultati analiza sastava bioplina za uzorke Standard, Mješavina 1 (tretirana suha tvar tretirana pri pH od 5,5 jedinica) i Mješavina 2 (tretirana suha tvartretirana pri pH od 6,0 jedinica) prikazani su u TABLICI 15. Za svaki uzorak analizirana su dva uzorka bioplina sakupljena kao kumulativni plin u razdoblju od 1.9.-13.9. i 14.9.-25.9. In relation to the composition of lignocellulosic fibers contained in the sample of fresh digestate, the analysis of the treated dry matter revealed the degradation of the wall, which is manifested in a decrease in the concentrations of hemicellulose, cellulose and lignin. The mixture of raw biomass that enters AD digester 10 and participates in anaerobic digestion processes contains 12 wt. % of dry matter, where treated dry matter contributes 5 wt.% to the total mass of raw dry matter. Recirculation of treated dry matter, according to the procedure in question, which contains lignocellulosic matter degraded in this way, increases the yield of biogas in AD digester 10, i.e. in the entire cogeneration biogas plant. By determining the biogas potential, values were obtained that proved an increase in the biogas potential by adding treated dry matter, as a substitute for corn silage. The results of biogas composition analyzes for the samples Standard, Mixture 1 (treated dry matter treated at a pH of 5.5 units) and Mixture 2 (treated dry matter treated at a pH of 6.0 units) are shown in TABLE 15. For each sample, two of biogas samples collected as cumulative gas in the period from 1.9.-13.9. and 14.9.-25.9.

[image] [image]

Iz TABLICE 15 je moguće uočiti povećanje sadržaja metana kod Mješavine 2 za 3-5 vol.% naspram standardne mješavine, dok je za Mješavinu 1, on ostao isti kao i u slučaju standardne mješavine. Također je u slučaju obje mješavine, došlo do povećanja omjera CH4 i CO2, u korist metana, što je iznimno bitno za bioplinsko postrojenje jer doprinosi energetskoj vrijednosti bioplina. From TABLE 15, it is possible to see an increase in the methane content of Mixture 2 by 3-5 vol.% compared to the standard mixture, while for Mixture 1, it remained the same as in the case of the standard mixture. Also in the case of both mixtures, there was an increase in the ratio of CH4 and CO2, in favor of methane, which is extremely important for a biogas plant because it contributes to the energy value of biogas.

U slučaju određivanja prinosa bioplina, povećanja i smanjenja bioplinskog potencijala smjese s dodatkom tretirane suhe tvari naspram standardnog uzorka su prikazana na sljedećim slikama, a dobivene vrijednosti u TABLICI 16, a slike 7 do 9 su dijagrami koji prikazuju bioplinski potencijal uzorka Standard, Mješavina 1 i Mješavina 2. In the case of determining the biogas yield, the increase and decrease in the biogas potential of the mixture with the addition of treated dry matter versus the standard sample are shown in the following figures, and the values obtained in TABLE 16, and figures 7 to 9 are diagrams showing the biogas potential of the Standard sample, Mixture 1 and Mixture 2.

[image] [image]

Općenito, kogeneracijsko bioplinsko postrojenje se sastoji od nekoliko elemenata: spremnika za miješanje, digestora, spremnika za plin, spremnika za gnoj i energetske jedinice. Supstrat/biomasa se dodaje u spremnik za miješanje, gdje se miješa i usitnjava. Ukoliko je potrebno, može se prethodno zagrijati kako bi se izbjegao temperaturni šok nakon pumpanja u digestor. Digestor je izolirani spremnik od betona ili čelika u kojem se supstrat razgrađuje da bi se proizveo bioplin. Njegov oblik i veličina variraju ovisno o količini i tipu supstrata koji će se kasnije upotrijebiti. U slučajevima industrijske proizvodnje potrebni su veći digestori. Da bi se osigurao protok supstrata, digestori su obično opremljeni rotirajućim elisama ili rotorima. Neovisno o tome je li digestor mezofilnog ili termofilnog tipa, potreban mu je izvor topline. Općenito se toplina proizvodi u energetskoj jedinici koja je sastavni dio bioplinskog postrojenja. Bioplin koji se proizvede se sakuplja i pohranjuje u spremniku za plin. In general, a cogeneration biogas plant consists of several elements: a mixing tank, a digester, a gas tank, a manure tank and an energy unit. The substrate/biomass is added to the mixing tank, where it is mixed and shredded. If necessary, it can be preheated to avoid a temperature shock after pumping into the digester. A digester is an insulated container made of concrete or steel in which the substrate is decomposed to produce biogas. Its shape and size vary depending on the amount and type of substrate that will be used later. In cases of industrial production, larger digesters are required. To ensure substrate flow, digesters are usually equipped with rotating propellers or rotors. Regardless of whether the digester is of the mesophilic or thermophilic type, it needs a heat source. In general, heat is produced in the energy unit that is an integral part of the biogas plant. The biogas that is produced is collected and stored in a gas tank.

Posljednji element bioplinskog postrojenja je energetska jedinica, koja koristi proizvedeni bioplin i proizvodi električnu energiju i toplinu koje se mogu iskoristiti za potrebe postrojenja, kompanije ili kućanstva. The last element of the biogas plant is the energy unit, which uses the produced biogas and produces electricity and heat that can be used for the needs of the plant, company or household.

Nusproizvod anaerobne razgradnje je digestat koji sadrži iskoristive hranjive tvari, a koji se prema predmetnom izumu dalje tretira i recirkulira u sustavu prema predmetnom izumu. The by-product of anaerobic digestion is a digestate containing useful nutrients, which according to the subject invention is further treated and recirculated in the system according to the subject invention.

Uobičajeni sustav za tretiranje i recirkuliranje digestata je koncipiran na kogeneracijskom bioplinskom postrojenju koje se sastoji od sljedećih jedinica: prihvatne jame za ocjedak od silaže i tekuću gnojovku, dozirnog kontejnera krute sirovine koja je npr. kukuruz, stajnjak i suhi kokošji izmet; dva digestora spojena u seriju; spremnika za bioplin i digestat; sustava za hlađenje bioplina koji kao gorivo ulazi u kogenerator za proizvodnju topline i električne energije; i sustava za separaciju tekućeg i krutog gnojiva iz digestata. Kogeneracijsko bioplinsko postrojenje koristi dio generirane topline za vlastitu potrošnju, tj. toplinu potrebnu za anaerobnu digestiju, putem sustava izmjenjivača topline kojima se upravlja sustavom za kontrolu temperature u navedenim digestorima. Također se i dio proizvedene električne energije koristi za potrebe kogeneratora, a ostatak se predaje u elektroenergetski sustav. The usual system for treating and recirculating digestate is designed at a cogeneration biogas plant, which consists of the following units: receiving pit for silage runoff and liquid slurry, dosing container for solid raw materials such as corn, manure and dry chicken droppings; two digesters connected in series; tanks for biogas and digestate; biogas cooling system, which enters the cogenerator as fuel for the production of heat and electricity; and a system for separating liquid and solid fertilizer from digestate. The cogeneration biogas plant uses part of the generated heat for its own consumption, i.e. the heat needed for anaerobic digestion, through a system of heat exchangers that are controlled by the temperature control system in the said digesters. Also, part of the produced electricity is used for the needs of the cogenerator, and the rest is handed over to the power system.

Prema predmetnom izumu, za razliku od uobičajenog kogeneracijskog bioplinskog postrojenja u kojemu se digestat odmah nakon izlaska iz anaerobnog digestora separira na kruto i tekuće gnojivo, predviđa se daljnji tretman digestata koji je produkt anaerobne digestije u AD digestoru 10 za mikrobiološku pretvorbu biomase u bioplin, a koji AD digestor 10 sadrži najmanje jedan ulaz za primanje biomase; najmanje jedan ulaz za dodavanje mikroorganizama; najmanje jedan izlaz za odvođenje bioplina; i najmanje jedan izlaz za odvođenje digestata u daljnji tretman u svrhu dobivanja visokokvalitetne smjese gnojiva i recirkulaciju hranjivih tvari. According to the present invention, unlike the usual cogeneration biogas plant in which the digestate is separated into solid and liquid fertilizer immediately after leaving the anaerobic digester, further treatment of the digestate that is the product of anaerobic digestion in the AD digester 10 is foreseen for the microbiological conversion of biomass into biogas, and which AD digester 10 contains at least one inlet for receiving biomass; at least one inlet for adding microorganisms; at least one outlet for the removal of biogas; and at least one exit for taking the digestate to further treatment for the purpose of obtaining a high-quality fertilizer mixture and recirculation of nutrients.

Sustav za tretiranje i recikliranje tretiranog digestata i za dobivanje smjese gnojiva iz organskih supstrata digestata dobivenog anaerobnom digestijom biomase u AD digestoru 10 u mezofilnim uvjetima gdje je digestat produkt ciklusa proizvodnje bioplina u kogeneracijskom bioplinskom postrojenju, shematski prikazan na slici 2, sadrži: The system for treatment and recycling of treated digestate and for obtaining a fertilizer mixture from organic substrates of digestate obtained by anaerobic digestion of biomass in AD digester 10 in mesophilic conditions where the digestate is a product of the biogas production cycle in a cogeneration biogas plant, schematically shown in Figure 2, contains:

- reaktor 1 za kristalizaciju smjese gnojiva, odnosno magnezij amonij fosfat heksahidrata i β-kalcijev fosfat tetrahidrata, koji reaktor 1 je spojen s dozatorom 8 kemikalija, sustavom za kontrolu temperature i Ph vrijednosti, gdje reaktor 1 sadrži najmanje jedan ulaz za primanje digestata, i najmanje jedan izlaz za odvođenje dobivene tekuće 6 i krute frakcije 13,5; - reactor 1 for crystallization of the fertilizer mixture, i.e. magnesium ammonium phosphate hexahydrate and β-calcium phosphate tetrahydrate, which reactor 1 is connected to a chemical dispenser 8, a temperature and Ph value control system, where reactor 1 contains at least one inlet for receiving digestate, and at least one exit for removing the obtained liquid 6 and solid fraction 13.5;

- separator 4 za separiranje krute 13;5 od tekuće frakcije 6; - separator 4 for separating solid 13;5 from liquid fraction 6;

- reaktor 2 za kiselinski tretman krute frakcije 5 koji je spojen s dozatorom 9 kemikalija, sustavom za kontrolu temperature i pH vrijednosti, gdje reaktor 2 sadrži najmanje jedan ulaz za dovođenje krute frakcije 5, najmanje jedan ulaz za dovod kemikalija i najmanje jedan izlaz za odvođenje tretirane krute frakcije 5 u sušionik 7; - reactor 2 for the acid treatment of the solid fraction 5 which is connected to a chemical dispenser 9, a temperature and pH value control system, where the reactor 2 contains at least one inlet for supplying the solid fraction 5, at least one inlet for the supply of chemicals and at least one outlet for removal treated solid fractions 5 in dryer 7;

- AD digestor 10 za anaerobnu digestiju tretirane suhe tvari nakon sušionika 7 i ulazne biomase, gdje AD digestor 10 sadrži najmanje jedan ulaz za biomasu, najmanje jedan ulaz za tretiranu suhu tvar, najmanje jedan izlaz za odvođenje bioplina, i najmanje jedan izlaz za odvođenje digestata u reaktor 1. - AD digester 10 for anaerobic digestion of treated dry matter after dryer 7 and input biomass, where AD digester 10 contains at least one inlet for biomass, at least one inlet for treated dry matter, at least one outlet for removing biogas, and at least one outlet for removing digestate into reactor 1.

Reaktor 1 za kristalizaciju je šaržnog tipa. Kemikalije koje se putem dozatora 8 dodaju u reaktor 1 su magnezijev klorid, kalijeve soli i amonijeve lužine, tj. magnezij klorid (MgCl2); kalij dihidrigenfosfat (KH2PO4); te amonijeva lužina (NH4OH). Unutar reaktora 1 smješten je najmanje jedan uređaj za mjerenje temperature i najmanje jedan izmjenjivač topline kojim se upravlja putem sustava za kontrolu temperature s ciljem održavanja temperature na 25°C. Pomoću sustava za mjerenje i kontrolu pH vrijednosti, pH vrijednost se održava u rasponu od 7 do 9 pH jedinica, poželjno između 8,0 i 8,4, ili poželjnije oko 8,2. Reactor 1 for crystallization is a batch type. Chemicals that are added to reactor 1 via dispenser 8 are magnesium chloride, potassium salts and ammonium alkalis, i.e. magnesium chloride (MgCl2); potassium dihydrogen phosphate (KH2PO4); and ammonium alkali (NH4OH). At least one temperature measuring device and at least one heat exchanger are located inside the reactor 1, which is controlled by a temperature control system with the aim of maintaining the temperature at 25°C. Using a pH measurement and control system, the pH value is maintained in the range of 7 to 9 pH units, preferably between 8.0 and 8.4, or more preferably around 8.2.

Separator 4 za mehaničko procjeđivanje digestata uključuje uobičajenu opremu za mehanički postupak procjeđivanja. Separator 4 for mechanical filtering of digestate includes the usual equipment for the mechanical filtering process.

Tekuća frakcija 6 skladišti se na lokaciji bioplinskog postrojenja u pokrivenom spremniku, te se dalje plasira farmama u vidu tekućine za navodnjavanje. Liquid fraction 6 is stored at the location of the biogas plant in a covered tank, and is further distributed to farms in the form of irrigation liquid.

Dio krute frakcije 13 se odvaja i koristi kao poljoprivredno gnojivo. Ostatak krute frakcije 5 se podvrgava daljnjem tretmanu s ciljem razgradnje lignocelulozne tvari u svrhu dobivanja dodatnih količina bioplina iz digestata i dodatnih količina bilo krutog bilo tekućeg gnojiva. Kruta frakcija 5 se dalje dovodi u reaktor 2 koji je šaržnog tipa. Kemikalija koja se putem dozatora 9 dodaje u reaktor 2 je poželjno 6%-tna vodena otopina sumporovog (IV) oksida (H2SO3). Unutar reaktora 2 smješten je najmanje jedan uređaj za mjerenje temperature i najmanje jedan izmjenjivač topline kojim se upravlja putem sustava za kontrolu temperature s ciljem održavanja sobnih uvjeta temperature (25°C). Pomoću sustava za mjerenje i kontrolu pH vrijednosti, pH vrijednost se održava u rasponu od 5,5 do 6,0. Part of the solid fraction 13 is separated and used as agricultural fertilizer. The rest of the solid fraction 5 is subjected to further treatment with the aim of breaking down the lignocellulosic substance in order to obtain additional amounts of biogas from the digestate and additional amounts of either solid or liquid fertilizer. Solid fraction 5 is further fed into reactor 2, which is of batch type. The chemical that is added to the reactor 2 through the dispenser 9 is preferably a 6% aqueous solution of sulfur (IV) oxide (H2SO3). At least one temperature measuring device and at least one heat exchanger are located inside the reactor 2, which is controlled by a temperature control system with the aim of maintaining room temperature conditions (25°C). Using a pH measurement and control system, the pH value is maintained in the range of 5.5 to 6.0.

Bioplin koji sadrži H2S prenosi se u oksidacijski reaktor (nije prikazano) gdje se sulfitna kiselina se dobiva poznatim postupcima, tj. oksidacijom H2S u H2SO3, stripiranjem i otapanjem u vodenu otopinu sulfitne kiseline. Dobivena vodena otopina sulfitne kiseline se dovodi u spremnik 12 koji je spojen s dozatorom 9. Dozator 9 služi za doziranje 6% sulfitne kiseline u reaktor 2, gdje putem sustava za kontrolu i mjerenje pH vrijednosti se ista održava u rasponu od 5,5 do 6,0 pH jedinica. Biogas containing H2S is transferred to an oxidation reactor (not shown) where sulphitic acid is obtained by known procedures, i.e. oxidation of H2S to H2SO3, stripping and dissolution in an aqueous solution of sulphitic acid. The resulting aqueous solution of sulphitic acid is fed into tank 12, which is connected to dispenser 9. Dispenser 9 is used to dose 6% sulphitic acid into reactor 2, where the pH value is maintained in the range of 5.5 to 6 by means of a control and measurement system. .0 pH unit.

Sušionik 7 za sušenje kemijski tretirane krute frakcije 5 koristi dio generirane topline od strane kogeneracijskog bioplinskog postrojenja, a sastoji se od sustava izmjenjivača topline i/ili sustava za upuhivanje toplog zraka i sl. The dryer 7 for drying the chemically treated solid fraction 5 uses part of the heat generated by the cogeneration biogas plant, and consists of a heat exchanger system and/or a system for blowing warm air, etc.

Sustav cjevovoda i pumpi (nije posebno opisan) koji se koristi u sustavu za tretiranje i recirkuliranje digestata prema predmetnom izumu je uobičajena oprema u području tehnike i podrazumijeva se da su pojedini elementi sustava međusobno povezani cijevima odgovarajućeg promjera i kvalitete, s ugrađenim potrebnim ventilima i pumpama potrebnim za dobavljanje ili odvođenje digestata, ili tekuće frakcije, ili krute frakcije, ili tretirane suhe tvari. The piping and pump system (not specifically described) used in the digestate treatment and recirculation system according to the subject invention is common equipment in the field of technology and it is understood that the individual elements of the system are interconnected by pipes of appropriate diameter and quality, with the necessary valves and pumps installed necessary for supplying or removing digestate, or liquid fraction, or solid fraction, or treated dry matter.

Anaerobni digestorski AD digestor 10 sastoji se od jednog od zračnih spremnika, sustava za miješanje, sustava kontrole pH, sustava kontrole temperature T i sustava kontrole pjene. Anaerobic digester AD digester 10 consists of an air tank, a mixing system, a pH control system, a temperature control system T, and a foam control system.

Prethodni opis izuma je ilustrativan i nije ograničavajući. Stoga će stručnjacima u ovom području tehnike biti jasno da se izum može modificirati kako je opisano, a da se ne odstupa od opsega navedenih patentnih zahtjeva. The foregoing description of the invention is illustrative and not restrictive. Therefore, it will be apparent to those skilled in the art that the invention may be modified as described without departing from the scope of the appended claims.

Claims (15)

1. Postupak za tretiranje digestata, recikliranje tretiranog digestata i dobivanje smjese gnojiva iz organskih supstrata digestata dobivenog anaerobnom digestijom biomase u AD digestoru (10) u mezofilnim uvjetima gdje je digestat produkt ciklusa proizvodnje bioplina u kogeneracijskom bioplinskom postrojenju, naznačen time da postupak obuhvaća slijedeće korake: - kristalizacija smjese gnojiva u reaktoru (1), koju smjesu gnojiva čine kristali magnezij amonij fosfata heksahidrata (MgNH4PO4 x 6H2O) i kristali β-kalcijevog fosfat tetrahidrata (β-Ca2P4O12 x 4 H2O), doziranjem magnezijeve soli, kalijeve soli i amonijeve lužine uz konstantno miješanje i mjerenje temperature i pH vrijednosti; - separacija krute frakcije (13;5) od tekuće frakcije (6) u separatoru (4); - kemijski tretman krute frakcije (5) u reaktoru (2) u kiselinskoj vodenoj otopini uz konstantno mjerenje temperature T i pH vrijednosti; - sušenje kiselinom tretirane krute frakcije (5) u sušioniku (7) nakon čega se dobivena tretirana suha tvar dovodi u AD digestor (10) u kojem se miješa s ulaznom biomasom; i - anaerobnu digestiju mješavine tretirane suhe tvari i ulazne biomase u AD digestoru (10) u mezofilnim uvjetima.1. Process for treating digestate, recycling treated digestate and obtaining a fertilizer mixture from organic substrates of digestate obtained by anaerobic digestion of biomass in an AD digester (10) in mesophilic conditions where the digestate is a product of the biogas production cycle in a cogeneration biogas plant, indicated that the procedure includes the following steps : - crystallization of the fertilizer mixture in the reactor (1), which consists of crystals of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O) and crystals of β-calcium phosphate tetrahydrate (β-Ca2P4O12 x 4 H2O), by dosing magnesium salt, potassium salt and ammonium alkali constant mixing and measurement of temperature and pH values; - separation of the solid fraction (13;5) from the liquid fraction (6) in the separator (4); - chemical treatment of the solid fraction (5) in the reactor (2) in an acidic aqueous solution with constant measurement of temperature T and pH value; - drying of the acid-treated solid fraction (5) in the dryer (7), after which the obtained treated dry substance is fed to the AD digester (10) where it is mixed with the input biomass; and - anaerobic digestion of the mixture of treated dry matter and incoming biomass in the AD digester (10) under mesophilic conditions. 2. Postupak prema zahtjevu 1, naznačen time da se u reaktor (1) po 1L digestata dodaje magnezij klorid (MgCl2) mase u rasponu od 6-10 g, poželjno 7,8 g; kalij dihidrigenfosfat (KH2PO4) mase u rasponu od 2-4 g, poželjno 2,2g; te amonijeva lužina (NH4OH) volumena u rasponu od 15-25 ml, poželjno 20ml.2. The method according to claim 1, characterized in that magnesium chloride (MgCl2) mass in the range of 6-10 g, preferably 7.8 g, is added to the reactor (1) per 1 L of digestate; potassium dihydrogen phosphate (KH2PO4) mass in the range of 2-4 g, preferably 2.2 g; and ammonium alkali (NH4OH) volume in the range of 15-25 ml, preferably 20 ml. 3. Postupak prema zahtjevima 1 i 2, naznačen time da se u reaktoru (1) održava pH vrijednost u rasponu od 7 do 9 pH jedinica, poželjno između 8.0 i 8.5, poželjnije 8.2, a temperatura T na 25°C.3. The method according to claims 1 and 2, characterized in that the pH value in the reactor (1) is maintained in the range of 7 to 9 pH units, preferably between 8.0 and 8.5, more preferably 8.2, and the temperature T at 25°C. 4. Postupak prema zahtjevu 1, naznačen time da se separacija krute frakcije (13; 5) od tekuće frakcije (6) odvija postupkom mehaničkog procjeđivanja.4. The method according to claim 1, characterized in that the separation of the solid fraction (13; 5) from the liquid fraction (6) takes place by a mechanical filtration process. 5. Postupak prema zahtjevu 1, naznačen time se kruta frakcija (5) tretira dodavanjem vodene otopine sulfitne kiseline, koja vodena otopina sulfitne kiseline je 1-10%, poželjno 5-7% ili približno 6 % težinskih udjela sumporovog (IV) oksida otopljenog u vodi, koja otopina sulfitne kiseline se dobiva iz bioplina koji sadrži H2S postupkom oksidacije H2S u H2SO3, stripiranjem i otapanjem vodenu otopinu sulfitne kiseline.5. The method according to claim 1, characterized in that the solid fraction (5) is treated by adding an aqueous solution of sulphitic acid, which aqueous solution of sulphitic acid is 1-10%, preferably 5-7% or approximately 6% by weight of dissolved sulfur (IV) oxide in water, which sulphitic acid solution is obtained from biogas containing H2S by the process of oxidizing H2S to H2SO3, stripping and dissolving the aqueous sulphitic acid solution. 6. Postupak prema zahtjevu 5, naznačen time da se u reaktor (2) pomoću dozatora (9) dozira otopina sulfitne kiseline u količini koja održava pH vrijednost između 5,5 do 6 jedinica.6. The method according to claim 5, characterized in that a sulfite acid solution is dosed into the reactor (2) using a dispenser (9) in an amount that maintains a pH value between 5.5 and 6 units. 7. Postupak prema zahtjevima 1 i 5, naznačen time da se u reaktoru (2) održava vrijednosti sobne temperature T u rasponu od 25-30 °C.7. The process according to claims 1 and 5, characterized in that the room temperature T is maintained in the reactor (2) in the range of 25-30 °C. 8. Postupak prema zahtjevu 1, naznačen time da nakon tretmana otopinom sulfitne kiseline u reaktoru (2), otopljena kruta frakcija (5) se suši na temperaturi T između 50 i 70 °C, poželjno na temperaturi T=60 °C u vremenu tuk do 3 dana.8. The method according to claim 1, characterized by the fact that after treatment with a sulfitic acid solution in the reactor (2), the dissolved solid fraction (5) is dried at a temperature T between 50 and 70 °C, preferably at a temperature T=60 °C in a time tuk up to 3 days. 9. Postupak prema zahtjevima 1 do 8, naznačen time da mješavina tretirane suhe tvari i ulazne biomase u AD digestor (10) sadrži 12 mas. % suhe tvari, gdje tretirana suha tvar sudjeluje s 5mas.% na ukupnu masu sirove suhe tvari.9. The process according to claims 1 to 8, characterized in that the mixture of treated dry matter and input biomass to the AD digester (10) contains 12 wt. % of dry matter, where treated dry matter contributes 5% by mass to the total mass of raw dry matter. 10. Sustav za tretiranje, recikliranje tretiranog digestata i za dobivanje smjese gnojiva iz organskih supstrata digestata dobivenog anaerobnom digestijom biomase u AD digestoru (10) u mezofilnim uvjetima gdje je digestat produkt ciklusa proizvodnje bioplina u kogeneracijskom bioplinskom postrojenju, naznačen time da sadrži: - reaktor (1) za kristalizaciju magnezij amonij fosfat heksahidrata i β-kalcijev fosfat tetrahidrata; - separator (4) za separiranje krute (13; 5) od tekuće frakcije (6); - reaktor (2) za kiselinski tretman krute frakcije (5); i - sušionik (7).10. System for treatment, recycling of treated digestate and for obtaining a mixture of fertilizers from organic substrates of digestate obtained by anaerobic digestion of biomass in an AD digester (10) in mesophilic conditions where the digestate is a product of the biogas production cycle in a cogeneration biogas plant, characterized by the fact that it contains: - reactor (1) for crystallization of magnesium ammonium phosphate hexahydrate and β-calcium phosphate tetrahydrate; - separator (4) for separating the solid (13; 5) from the liquid fraction (6); - reactor (2) for acid treatment of solid fraction (5); and - dryer (7). 11. Sustav prema zahtjevu 10, naznačen time da je reaktor (1) spojen s dozatorom (8) kemikalija, sustavom za kontrolu temperature T i pH vrijednosti, gdje reaktor (1) sadrži najmanje jedan ulaz za primanje digestata, najmanje jedan izlaz za odvođenje dobivene tekuće (6) i krute frakcije (13; 5) i sustav za miješanje ulaznog digestata i kemikalija.11. System according to claim 10, characterized in that the reactor (1) is connected to a chemical dispenser (8), a system for controlling temperature T and pH values, where the reactor (1) contains at least one input for receiving digestate, at least one output for removal obtained liquid (6) and solid fractions (13; 5) and a system for mixing input digestate and chemicals. 12. Sustav prema zahtjevu 10, naznačen time da je reaktor (2) spojen s dozatorom (9) vodene otopine sumporovog (IV) oksida (H2SO3), sustavom za kontrolu temperature T i pH vrijednosti, gdje reaktor (2) sadrži najmanje jedan ulaz za dovođenje krute frakcije (5) i najmanje jedan izlaz za odvođenje kemijski tretirane krute frakcije (5).12. System according to claim 10, characterized in that the reactor (2) is connected to a dispenser (9) of an aqueous solution of sulfur (IV) oxide (H2SO3), a system for controlling the temperature T and pH values, where the reactor (2) contains at least one inlet for supplying the solid fraction (5) and at least one outlet for the removal of the chemically treated solid fraction (5). 13. Sustav prema zahtjevu 10, naznačen time da AD digestor (10) za anaerobnu digestiju tretirane suhe tvari i ulazne biomase sadrži najmanje jedan ulaz za biomasu, najmanje jedan ulaz za tretiranu krutu frakciju, najmanje jedan izlaz za odvođenje bioplina, najmanje jedan izlaz za odvođenje digestata u reaktor (1) i sustav za miješanje ulazne biomase i tretirane suhe tvari.13. System according to claim 10, characterized in that the AD digester (10) for anaerobic digestion of treated dry matter and input biomass contains at least one inlet for biomass, at least one inlet for treated solid fraction, at least one outlet for removing biogas, at least one outlet for leading the digestate to the reactor (1) and the system for mixing the incoming biomass and treated dry matter. 14. Sustav prema zahtjevima 10 do 13, naznačen time da sustav za kontrolu temperature T u AD digestoru (10), reaktoru (1), reaktoru (2) i sušioniku (7) se sastoji od sustava za nadzor temperature koji daje povratnu informaciju sustavu izmjenjivača topline smještenih unutar navedenih elemenata, koji sustav izmjenjivača topline koristi dio generirane topline od strane kogeneracijskog bioplinskog postrojenja.14. System according to claims 10 to 13, characterized in that the temperature control system T in the AD digester (10), reactor (1), reactor (2) and dryer (7) consists of a temperature monitoring system that provides feedback to the system of heat exchangers placed inside the mentioned elements, which heat exchanger system uses part of the heat generated by the cogeneration biogas plant. 15. Sustav prema zahtjevu 14, naznačen time da sušionik (7) za sušenje kemijski tretirane krute frakcije (5) sadrži sustav izmjenjivača topline ili sustav za upuhivanje toplog zraka.15. The system according to claim 14, characterized in that the dryer (7) for drying the chemically treated solid fraction (5) contains a heat exchanger system or a system for blowing warm air.
HRP20171658AA 2017-10-31 2017-10-31 Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant HRP20171658A8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20171658AA HRP20171658A8 (en) 2017-10-31 2017-10-31 Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20171658AA HRP20171658A8 (en) 2017-10-31 2017-10-31 Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant

Publications (3)

Publication Number Publication Date
HRP20171658A2 HRP20171658A2 (en) 2019-05-03
HRPK20171658B3 true HRPK20171658B3 (en) 2020-06-26
HRP20171658A8 HRP20171658A8 (en) 2020-07-10

Family

ID=66321676

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20171658AA HRP20171658A8 (en) 2017-10-31 2017-10-31 Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant

Country Status (1)

Country Link
HR (1) HRP20171658A8 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230166996A1 (en) * 2021-02-25 2023-06-01 Tongji University High-Value Treatment System or Method for Urban Wet Garbage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230166996A1 (en) * 2021-02-25 2023-06-01 Tongji University High-Value Treatment System or Method for Urban Wet Garbage

Also Published As

Publication number Publication date
HRP20171658A2 (en) 2019-05-03
HRP20171658A8 (en) 2020-07-10

Similar Documents

Publication Publication Date Title
Yellezuome et al. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review
Fuchs et al. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China
Issah et al. Biogas optimisation processes and effluent quality: A review
Zupančič et al. Anaerobic treatment and biogas production from organic waste
US8771980B2 (en) Combined liquid to solid-phase anaerobic digestion for biogas production from municipal and agricultural wastes
CN101935139B (en) Method for producing mash gas from municipal sludge through dry method anaerobic fermentation
AU2017267291B2 (en) Method for recovery of phosphate
US20120135491A1 (en) Method for producing biogas or sewage gas
US20110117620A1 (en) Process for producing methane from process water and biogenic material
US20120058534A1 (en) Optimized biogas (biomethane) production process
WO2012152266A2 (en) Process for producing biogas from predominantly animal excrements
WO2011072369A1 (en) Anaerobic treatment system and device
Yang et al. Influence of reflux ratio on the anaerobic digestion of pig manure in leach beds coupled with continuous stirred tank reactors
Radwan et al. Dry anaerobic fermentation of agricultural residues
Arifan et al. Effect of Organic Waste Addition into Animal Manure on Biogas Production Using Anaerobic Digestion Method.
Adghim et al. Post-hydrolysis ammonia stripping as a new approach to enhance the two-stage anaerobic digestion of poultry manure: Optimization and statistical modelling
CN101368190B (en) Method for improving volume of production of corn straw biogas with sodium hydroxide wet-type solid state treatment at normal temperature
ŞENOL Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure
HRPK20171658B3 (en) Process and system for treating, recycling treated digestate and for obtaining fertilizer mixture from digestate obtained by ananerobic digestion of biomas in cogenerative biogas plant
Arifan et al. Kinetic study of biogas production from animal manure and organic waste in Semarang City by using anaerobic digestion method
Melville et al. Anaerobic digestion
Vasiliadou et al. Production of biogas via anaerobic digestion
DUNGAN et al. Small scale determinations for biogas production using anaerobic fermentation-2l batch scenarios
PL233236B1 (en) Method for increasing power efficiency of a biogas plant and the system for increasing power efficiency of a biogas plant
Jame et al. Production of Bio-methane Gas as Renewable Energy Source-A Review

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
ODRP Renewal fee for the maintenance of a patent

Payment date: 20191022

Year of fee payment: 3

PKB1 Consensual patent granted
A8IS Corrected front page of an hr-a document
ODRP Renewal fee for the maintenance of a patent

Payment date: 20200914

Year of fee payment: 4

ODRP Renewal fee for the maintenance of a patent

Payment date: 20210929

Year of fee payment: 5

ODRP Renewal fee for the maintenance of a patent

Payment date: 20221014

Year of fee payment: 6

PBKO Lapse due to non-payment of renewal fee for consensual patent

Effective date: 20231031