HRP980537A2 - Intra-coronary radiation devices containing ce-144 or ru-106 - Google Patents

Intra-coronary radiation devices containing ce-144 or ru-106 Download PDF

Info

Publication number
HRP980537A2
HRP980537A2 HRP980537A HRP980537A2 HR P980537 A2 HRP980537 A2 HR P980537A2 HR P980537 A HRP980537 A HR P980537A HR P980537 A2 HRP980537 A2 HR P980537A2
Authority
HR
Croatia
Prior art keywords
wire
coil
source
bath
radiation
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Robert E Lewis
Prahlad Ramadhar Singh
Gerald P Tercho
Paul R Walsh
Original Assignee
Du Pont Pharm Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Pharm Co filed Critical Du Pont Pharm Co
Priority to HRP980537 priority Critical patent/HRP980537A2/en
Publication of HRP980537A2 publication Critical patent/HRP980537A2/en

Links

Description

Područje tehnike The field of technology

Ovaj se izum odnosi na intrakoronarne naprave za zračenje koje sadrže Ce-144 ili Ru-106, kao i na postupke za njihovu uporabu i pripravu. This invention relates to intracoronary radiation devices containing Ce-144 or Ru-106, as well as methods for their use and preparation.

Stanje tehnike State of the art

Učinkovitost zračenja u sprečavanju restenoze nakon angioplastike prikazana je u studiji iz 1995-1996. koju je proveo Paul Teirstein iz klinike Scripps, u kojoj su na bolesnike, kojima je prethodno učinjena angioplastika balonom i ugradnja stenta, primjenjivani izvori pripravljeni od Ir-192 (Teirstein i sur., N.Engl.J.Med., 336:1697-1703 (1997)). Studija je pokazala kako je u bolesnika koji su bili podvrgnuti liječenju radioaktivnim izvorom stopa restenoze pala na 16.7% u skupini koja je izložena zračenju u poredbi s 53.6% bolesnika u placebo skupini, koja nije bila izložena zračenju. The effectiveness of radiation in preventing restenosis after angioplasty was shown in a study from 1995-1996. conducted by Paul Teirstein of the Scripps Clinic, in which sources prepared from Ir-192 were applied to patients who had previously undergone balloon angioplasty and stent placement (Teirstein et al., N.Engl.J.Med., 336:1697 -1703 (1997)). The study showed that in patients who underwent treatment with a radioactive source, the rate of restenosis dropped to 16.7% in the group exposed to radiation compared to 53.6% of patients in the placebo group, which was not exposed to radiation.

Jedan od problema s današnjim intrakoronarnim napravama za zračenje (ICRD, engl. intra-coronary radiation devices) jest što je izvoru zračenja izloženo i medicinsko osoblje. Na primjer, odmah nakon primjene izvora Ir-192, operateri i drugo liječničko osoblje mora se ukloniti iz sobe u kojoj se vrši primjena, kako ne bi primili prekomjernu dozu. One of the problems with today's intra-coronary radiation devices (ICRD) is that medical personnel are also exposed to the radiation source. For example, immediately after the application of the Ir-192 source, operators and other medical personnel must be removed from the room where the application is being made, so as not to receive an excessive dose.

Sr-90 i P-32 su među ostalim ICRD izvorima koji su sada u fazi kliničkih pokusa. Oba navedena izvora imaju ozbiljna ograničenja. Sr-90 je problematičan zbog svoje visoke otrovnosti koja bi se ispoljila u slučaju rupture katetera u tijelu bolesnika. P-32 može imati beta energiju manju od optimalne za postizanje odgovarajućeg profila doze, u najmanju ruku u slučaju arterija začepljenih većim ovapnjelim plakom. Sr-90 and P-32 are among the other ICRD sources now in clinical trials. Both of these sources have serious limitations. Sr-90 is problematic due to its high toxicity, which would manifest itself in the event of a rupture of the catheter in the patient's body. P-32 may have a beta energy less than optimal to achieve an adequate dose profile, at least in the case of arteries occluded by larger calcified plaque.

Stoga je poželjno razviti ICRD koja bi mogla postići 4:1 dozu na 1 mm odnosno na 4 mm u arteriji, koja bi imala dovoljno dug poluživot koji bi omogućio primjenu na više bolesnika uz najmanje moguće troškove, a da pritom omogući najmanje moguće izlaganje zračenju medicinskog osoblja. Therefore, it is desirable to develop an ICRD that could achieve a 4:1 dose at 1 mm or at 4 mm in the artery, which would have a sufficiently long half-life that would allow application to more patients with the lowest possible costs, while allowing the lowest possible exposure to medical radiation staff.

Kratak opis izuma Brief description of the invention

Prema ovome, jedan cilj ovog izuma je opis nove intrakoronarne naprave za zračenje. Accordingly, one object of the present invention is to describe a novel intracoronary radiation device.

Slijedeći je cilj ovog izuma postupak za liječenje bolesti arterije, koji obuhvaća primjenu na domaćina, kojemu je potrebno takvo liječenje, terapijski učinkovite intrakoronarne naprave za zračenje. Another object of the present invention is a method for the treatment of arterial disease, which comprises the administration to a host in need of such treatment of a therapeutically effective intracoronary radiation device.

Slijedeći je cilj ovog izuma opis postupka za pripravu intrakoronarne naprave za zračenje. Another aim of this invention is to describe a procedure for preparing an intracoronary radiation device.

Ovaj, kao i drugi ciljevi, koji će postati očiti tijekom slijedećeg podrobnog opisa, postignuti su otkrićem autora prema kojem bi intrakoronarne naprave za zračenje koje sadrže bilo Ce-144, bilo Ru-106 trebale biti ekonomično i sigurno sredstvo za liječenje bolesti arterija. This, as well as other goals, which will become apparent during the following detailed description, were achieved by the author's discovery that intracoronary radiation devices containing either Ce-144 or Ru-106 should be an economical and safe means of treating arterial disease.

Detaljan opis izuma Detailed description of the invention

U prvom obliku, ovaj izum opisuje novu napravu za intrakoronarno liječenje zračenjem, koja sadrži: In the first form, this invention describes a new device for intracoronary radiation treatment, which contains:

(a) žicu; (a) wire;

(b) izvor zračenja nanesen ili adsorbiran na žicu, pri čemu je taj izvor zračenja Ce-144 ili Ru-106; i (b) a source of radiation applied or adsorbed to the wire, wherein this source of radiation is Ce-144 or Ru-106; and

(c) prvu biokompatibilnu tvar koja povezuje izvor zračenja i žicu. (c) the first biocompatible substance connecting the radiation source and the wire.

U slijedećem preporučenom obliku, izvor zračenja je Ru-106. In the following recommended form, the radiation source is Ru-106.

U preporučenom obliku, izvor zračenja je Ce-144. In the recommended form, the radiation source is Ce-144.

U slijedećem preporučenom obliku, žica je metalna, a odabrana je između: cirkonijske, titanske, aluminijske, niklene, bakrene, grafitne žice, žice od 304 nerđajućeg čelika ili žice od nerđajućeg čelika obloženog bakrom. In the following recommended form, the wire is metallic and is selected from: zirconium, titanium, aluminum, nickel, copper, graphite wire, 304 stainless steel wire, or copper clad stainless steel wire.

U više preporučenom obliku, žica je od 304 nerđajućeg čelika ili od nerđajućeg čelika obloženog bakrom. In the more recommended form, the wire is 304 stainless steel or copper-clad stainless steel.

U slijedećem preporučenom obliku, izvor zračenja je elektrolitski nanesen na žicu. In the following recommended form, the radiation source is electrolytically applied to the wire.

U slijedećem preporučenom obliku, izvor zračenja je nanesen na žicu oksidacijsko-redukcijskim postupkom. In the following recommended form, the radiation source is applied to the wire by an oxidation-reduction process.

U slijedećem preporučenom obliku, izvor zračenja je adsorbiran na žicu. In the following recommended form, the radiation source is adsorbed on the wire.

U slijedećem preporučenom obliku, prva biokompatibilna tvar je odabrana između: poliimida, poliamida, polivinil klorida, zlata, nikla i cijevi koja se skuplja na vrućini. In the following preferred form, the first biocompatible material is selected from: polyimide, polyamide, polyvinyl chloride, gold, nickel, and heat shrink tubing.

U slijedećem više preporučenom obliku, prva biokompatibilna tvar je cijev koja se skuplja na vrućini. In the next more preferred form, the first biocompatible substance is a heat-shrinkable tube.

U još više preporučenom obliku, prva biokompatibilna tvar je polietilen tereftalat. In an even more recommended form, the first biocompatible substance is polyethylene terephthalate.

U slijedećem preporučenom obliku, intrakoronarna naprava za zračenje je pričvršćena za žicu vodič, pri čemu je žicu vodič moguće umetnuti u kateter. In the next preferred embodiment, the intracoronary radiation device is attached to a guide wire, wherein the guide wire can be inserted into the catheter.

U slijedećem više preporučenom obliku, druga biokompatibilna tvar oblaže intrakoronarnu napravu za zračenje pričvršćenu za žicu vodič. In another preferred embodiment, a second biocompatible substance coats an intracoronary radiation device attached to a guidewire.

U slijedećem još više preporučenom obliku, druga biokompatibilna tvar je cijev koja se skuplja na vrućini. In a further preferred form, the second biocompatible material is a heat shrinkable tube.

U daljnjem preporučenom obliku, druga biokompatibilna tvar je polietilen tereftalat. In a further preferred form, the second biocompatible substance is polyethylene terephthalate.

U drugom obliku, ovaj izum opisuje novu napravu za intrakoronarno liječenje zračenjem, koja se sastoji od: In another embodiment, the present invention describes a novel device for intracoronary radiation therapy, comprising:

(a) žice, koja je dobivena istiskivanjem (engl. extruding), a sastoji se od: (a) wire, which was obtained by extruding, and consists of:

(ai) izvora zračenja odabranog između Ce-144 i Ru-106; i (ai) radiation source selected between Ce-144 and Ru-106; and

(aii) metala odabranog između bakra, aluminija, srebra, zlata i nikla. (aii) a metal selected from copper, aluminum, silver, gold and nickel.

U slijedećem preporučenom obliku, izvor zračenja je Ce-144, a metal je aluminij. In the following recommended form, the radiation source is Ce-144, and the metal is aluminum.

U slijedećem preporučenom obliku, izvor zračenja je Ru-106, a metal je aluminij. In the following recommended form, the radiation source is Ru-106, and the metal is aluminum.

U slijedećem preporučenom obliku, žica se pripravi istiskivanjem smjese izvora zračenja i metala, pri čemu su oba u obliku praška. In the next recommended form, the wire is prepared by extruding a mixture of radiation source and metal, both of which are in powder form.

U slijedećem preporučenom obliku, naprava dalje sadrži: In the following recommended form, the device further contains:

(c) biokompatibilnu tvar koji oblaže žicu. (c) a biocompatible substance that coats the wire.

U trećem obliku, ovaj izum opisuje novu napravu za intrakoronarno liječenje zračenjem, koja sadrži: In a third embodiment, the present invention describes a novel device for intracoronary radiation therapy, comprising:

(a) cijev; (a) tube;

(b) ležište unutar cijevi; i (b) the bed inside the tube; and

(c) izvor zračenja smješten u ležište, pri čemu je izvor Ce-144 ili Ru-106. (c) radiation source placed in the reservoir, where the source is Ce-144 or Ru-106.

U slijedećem preporučenom obliku, izvor zračenja je Ce-144. In the following recommended form, the radiation source is Ce-144.

U slijedećem preporučenom obliku, izvor zračenja je Ru-106. In the following recommended form, the radiation source is Ru-106.

U četvrtom obliku, ovaj izum opisuje novi postupak za pripravu intrakoronarne naprave za zračenje (ICRD), koji se sastoji od: In a fourth embodiment, the present invention describes a new method for preparing an intracoronary radiation device (ICRD), which consists of:

(a) nanošenja radioaktivnog izvora na jedan odjeljak metalne žice, pri čemu je radioaktivni izvor Ce-144 ili Ru-106.; (a) applying a radioactive source to one section of the metal wire, wherein the radioactive source is Ce-144 or Ru-106.;

(b) vezanje nanesenog radioaktivnog izvora s prvom biokompatibilnom tvari. (b) binding the applied radioactive source with the first biocompatible substance.

U slijedećem preporučenom obliku, izvor zračenja je Ru-106. In the following recommended form, the radiation source is Ru-106.

U slijedećem preporučenom obliku, izvor zračenja je Ce-144. In the following recommended form, the radiation source is Ce-144.

U slijedećem više preporučenom obliku, korak (a) se provodi adsorbiranjem, odlaganjem pomoću redukcije-oksidacije ili elektrooblaganjem. In the next more preferred form, step (a) is carried out by adsorption, reduction-oxidation deposition or electroplating.

U slijedećem još više preporučenom obliku, korak (a) se provodi adsorbiranjem. In the next even more recommended form, step (a) is carried out by adsorbing.

U slijedećem još više preporučenom obliku, korak (a) se provodi odlaganjem pomoću redukcije-oksidacije. In another still more preferred form, step (a) is carried out by reduction-oxidation disposal.

U slijedećem još više preporučenom obliku, korak (a) se provodi elektrooblaganjem. In the next even more recommended form, step (a) is carried out by electroplating.

U daljnjem preporučenom obliku, Ce-144 elektrooblaže žicu iz organske otopine. In a further preferred form, Ce-144 is electroplated on the wire from an organic solution.

U daljnjem, još više preporučenom obliku, organska otopina sadrži: 144Ce(COOCF3)3 i otapalo odabrano između metanola, etanola, izopropil alkohola i MeCN. In a further, even more recommended form, the organic solution contains: 144Ce(COOCF3)3 and a solvent selected from methanol, ethanol, isopropyl alcohol and MeCN.

U slijedećem preporučenom obliku, 144Ce(COOCF3)3 se pripravi dovođenjem u dodir 144CeCl3 s (CF3CO)2O i CF3COOH. In the following recommended form, 144Ce(COOCF3)3 is prepared by contacting 144CeCl3 with (CF3CO)2O and CF3COOH.

U slijedećem više preporučenom obliku, korak (b) se odvija: In the following more recommended form, step (b) takes place:

(bi) elektrooblaganjem žice iz koraka (a) metalom, (bi) electroplating the wire from step (a) with metal,

(bii) primjenom polimerskog ovoja na žicu iz koraka (a) i posljedičnim sušenjem polimerskog obloga, ili (bii) applying a polymer coating to the wire from step (a) and subsequently drying the polymer coating, or

(biii) umetanjem žice iz koraka (a) u cijev koja se skuplja na vrućini, te posljedičnim grijanjem cijevi kako bi se skupila. (biii) inserting the wire from step (a) into the heat-shrink tube, and subsequently heating the tube to shrink it.

U slijedećem još više preporučenom obliku, korak (b) se izvodi: (bi) elektrooblaganjem žice iz koraka (a) metalom koji je odabran između zlata i nikla. In the following still more preferred form, step (b) is performed by: (bi) electroplating the wire from step (a) with a metal selected from gold and nickel.

U slijedećem preporučenom obliku, metal je zlato. In the next recommended form, the metal is gold.

U slijedećem još više preporučenom obliku, korak (b) se provodi: (bii) primjenom polimerskog oblaganja na žicu iz koraka (a) i posljedičnim sušenjem polimerskog obloga In the following even more recommended form, step (b) is carried out: (bii) applying the polymer coating to the wire from step (a) and subsequently drying the polymer coating

U slijedećem preporučenom obliku, polimerski oblog je poliimidski. In the following recommended form, the polymer coating is polyimide.

U slijedećem još više preporučenom obliku, korak (b) se provodi: (biii) umetanjem žice iz koraka (a) u cijev koja se skuplja na vrućini, te posljedičnim grijanjem cijevi kako bi se skupila. In the following still more preferred form, step (b) is carried out by: (biii) inserting the wire from step (a) into the heat-shrinkable tube, and subsequently heating the tube to shrink it.

U slijedećem preporučenom obliku, cijev koja se skuplja na vrućini je od polietilen tereftalata. In the following recommended form, the heat-shrinkable tube is made of polyethylene terephthalate.

U slijedećem preporučenom obliku, postupak dalje obuhvaća: In the following recommended form, the procedure further includes:

(c) pričvršćivanje zataljene žice za žicu vodič, pri čemu je žicu vodič moguće umetnuti u kateter. (c) attaching the shielded wire to the guide wire, wherein the guide wire is insertable into the catheter.

U slijedećem još više preporučenom obliku, postupak dalje obuhvaća: In the following even more recommended form, the procedure further includes:

(d) primjenu druge biokompatibilne tvari na pričvršćenu zataljenu žicu iz koraka (c). (d) applying another biocompatible substance to the attached coated wire of step (c).

U slijedećem preporučenom obliku, druga biokompatibilna tvar je cijev koja se skuplja na vrućini. In the following preferred form, the second biocompatible material is a heat-shrinkable tube.

U daljnjem preporučenom obliku, cijev koja se skuplja na vrućini je od polietilen tereftalata. In a further preferred form, the heat-shrinkable tube is made of polyethylene terephthalate.

U petom obliku, ovaj izum opisuje novi postupak za liječenje oboljele arterije, koji obuhvaća: umetanje u kateter intrakoronarne naprave za zračenje (ICRD) vezane na žicu vodič, pri čemu se ICRD sastoji od: In a fifth embodiment, the present invention describes a novel method for treating a diseased artery, comprising: inserting into a catheter an intracoronary radiation device (ICRD) attached to a guide wire, wherein the ICRD consists of:

(a) žice; (a) wires;

(b) izvora zračenja nanesenog ili adsorbiranog na žicu, pri čemu je taj izvor Ce-144 ili Ru-106; i (b) a source of radiation applied or adsorbed to the wire, wherein this source is Ce-144 or Ru-106; and

(c) biokompatibilne tvari koja oblaže izvor zračenja i žicu. (c) biocompatible substances that coat the radiation source and the wire.

Opis Description

Tipične žice koje služe kao izvori u intrakoronarnim napravama za zračenje (ICRD) imaju dimenzije u rasponu od 1 do 5 cm u duljinu, te 0.1 do 0.35 mm u promjeru. Preporučljive su dimenzije od 2 do 4 cm puta 0.15 do 0.3 mm, a još su preporučljivije dimenzije 3 cm duljine i 0.20 do 0.25 mm u promjeru. Promjer je preporučljivo 0.20, 0.21, 0.22, 0.23, 0.24 ili 0.25 mm. Typical wires used as sources in intracoronary radiation devices (ICRD) have dimensions ranging from 1 to 5 cm in length and 0.1 to 0.35 mm in diameter. Dimensions of 2 to 4 cm by 0.15 to 0.3 mm are recommended, and dimensions of 3 cm in length and 0.20 to 0.25 mm in diameter are even more recommended. The recommended diameter is 0.20, 0.21, 0.22, 0.23, 0.24 or 0.25 mm.

Za intrakoronarno liječenje zračenjem, matriks radioaktivne žice se pričvrsti za žicu vodič, koja se uvodi u bolesnikovu oboljelu arteriju putem kateterske cijevi. Odjeljak radioaktivne žice se pričvrsti mehanički, putem kliznog ili dodirnog muško/ženskog spoja, osiguranog bilo laserskim varom, bilo biokompatibilnim ljepilom poput poliizocijanurata. Nakon što su radioaktivna žica i žica vodič čvrsto pripojeni zajedno, može biti prikladno oblaganje ove naprave biokompatibilnom tvari poput cijevi koja se skuplja na vrućini ili sličnih materijala. For intracoronary radiation treatment, a matrix of radioactive wire is attached to a guide wire, which is introduced into the patient's diseased artery via a catheter tube. The radioactive wire section is attached mechanically, via a sliding or contact male/female connection, secured either by laser welding or a biocompatible adhesive such as polyisocyanurate. Once the radioactive wire and guide wire are firmly attached together, it may be appropriate to coat the device with a biocompatible material such as heat shrinkable tubing or similar materials.

IZVORI ZRAČENJA SOURCES OF RADIATION

Za intrakoronarne naprave za zračenje (ICRD) iz ovog izuma moguća su dva izvora zračenja, i to Ce-144 i Ru-106. Prodorno beta zračenje od 3 do 3.5 MeV se emitira iz praseodimij-144 kćeri čije je vrijeme poluživota 17.3 minute, odnosno iz rodij-106 kćeri čije je vrijeme poluživota 30 sekundi, koji su oba u sekularnoj ravnoteži sa svojim roditeljskim nuklidima. Kćerinski nuklidi raspadaju se s poluživotima roditeljskih nuklida, stoga potrebne doze beta zračenja slijede uzorak raspada roditeljskih nuklida; poluživot od 285 dana za Ce-144, odnosno od 1.02 godine za Ru-106. For the intracoronary radiation devices (ICRD) of this invention, two sources of radiation are possible, namely Ce-144 and Ru-106. Penetrating beta radiation of 3 to 3.5 MeV is emitted from the praseodymium-144 daughter with a half-life of 17.3 minutes, and from the rhodium-106 daughter with a half-life of 30 seconds, both of which are in secular equilibrium with their parent nuclides. The daughter nuclides decay with the half-lives of the parent nuclides, therefore the required doses of beta radiation follow the decay pattern of the parent nuclides; half-life of 285 days for Ce-144, or 1.02 years for Ru-106.

Očekivani sadržaj izvora je oko 6 do 7 mCi Ce-144 ili Ru-106, iako se može koristiti i veća količina nuklida, čime se skraćuje vrijeme izlaganja bolesnika i usto produljuje vijek ovim napravama. Ovi izvori u obliku žice, kada su pričvršćeni na žicu vodič, umeću se u kateter tako da budu blizu jednog kraja, i tako ne dolaze u dodir s krvlju, a posljedično tome ne moraju biti sterilni i mogu se ponovno koristiti za drugog bolesnika. The expected content of the source is about 6 to 7 mCi Ce-144 or Ru-106, although a larger amount of nuclides can be used, which shortens the exposure time of the patient and at the same time extends the life of these devices. These wire sources, when attached to the guidewire, are inserted into the catheter so that they are close to one end, and thus do not come into contact with the blood, and consequently do not need to be sterile and can be reused for another patient.

ŽICA WIRE

Žica može biti izrađena od brojnih metala, kao što su cirkonij, titan, aluminij, nikal, bakar, grafit, slitine cirkonija, titana ili nikla, mjed, konstantin, slitina aluminija, slitina magnezija, nerđajući čelik i drugi metali, slitine i međumetali koji posjeduju dovoljnu elastičnost koja odgovara nerđajućem čeliku 304. The wire can be made of many metals, such as zirconium, titanium, aluminum, nickel, copper, graphite, alloys of zirconium, titanium or nickel, brass, constantine, aluminum alloy, magnesium alloy, stainless steel and other metals, alloys and intermediate metals that possess sufficient elasticity to match stainless steel 304.

ODLAGANJE IZVORA SOURCE DISPOSAL

Izvor zračenja se može vezati na žicu brojnim postupcima, uključujući elektrolitsko odlaganje, odlaganje redukcijom-oksidacijom ili kemijsku adsorpciju. The radiation source can be attached to the wire by a number of methods, including electrolytic deposition, reduction-oxidation deposition, or chemical adsorption.

Elektrolitičko odlaganje Electrolytic deposition

Preporučeni način vezanja Ce-144 ili Ru-106 jest putem elektrolitičkog odlaganja. Elektroliti mogu biti u svojim elementarnim oblicima, ili u oksidnim, fosfatnim, sulfatnim ili drugim ionskim ili molekularnim oblicima, izravno ili vezani s ligandima poput trifluoroacetata, acetonata, klorida, oksalata, citrata, tartarata, amina, acetata, cijanida, nitrosilata, halida i drugih kelata ili liganda, kao što je stručnjacima poznato. Preporučljivo, Ce-144 je u svojem elementarnom obliku ili u svojem trifluoroacetatnom, fosfatnom ili kloridnom obliku. Preporučljivo, Ru-106 je u elemetarnom obliku. The recommended method of binding Ce-144 or Ru-106 is through electrolytic deposition. Electrolytes can be in their elemental forms, or in oxide, phosphate, sulfate or other ionic or molecular forms, directly or bound with ligands such as trifluoroacetate, acetonate, chloride, oxalate, citrate, tartrate, amine, acetate, cyanide, nitrosylate, halide and other chelates or ligands, as known to those skilled in the art. Preferably, Ce-144 is in its elemental form or in its trifluoroacetate, phosphate or chloride form. Preferably, Ru-106 is in elemental form.

Za elektroodlaganje Ce-144 može se koristiti organska otopina 144Ce(COOCF3)3. Korištena žica je preporučljivo žica od 304 nerđajućeg čelika, nerđajućeg čelika s bakrenim podslojem ili nanosom, titana, slitine titana ili slitine nikla, još preporučljivije od 304 nerđajućeg čelika ili nerđajućeg čelika s bakrenim podslojem ili nanosom. Preporučeno biokompatibilno oblaganje s Al, Au ili Pt može se posljedično provesti, čime se radioaktivnost čuva od oksidiranja ili ogoljavanja ili izloženosti. An organic solution of 144Ce(COOCF3)3 can be used for electrodeposition of Ce-144. The wire used is preferably 304 stainless steel, copper clad or coated stainless steel, titanium, titanium alloy or nickel alloy, more preferably 304 stainless steel or copper clad or coated stainless steel. The recommended biocompatible coating with Al, Au or Pt can consequently be carried out, thus preserving the radioactivity from oxidation or stripping or exposure.

144Ce(COOCF3)3 se može pripraviti reagiranjem bezvodnog 144cerij (III) klorida s (CF3CO)2O i CF3COOH. Preporučljivo je koristiti oko 1.5 ekvivalenata (CF3CO)2O i CF3COOH. Preporučljivo je smjesu grijati do refluksa oko 3 sata u bezvodnoj atmosferi. 144Ce(COOCF3)3 se ponovno prikupi uklanjanjem tekućih sastojaka. Moguće je korištenje različitih organskih otapala, uključujući metanol, etanol, izopropil alkohol i MeCN, a preporučuje se metanol. 144Ce(COOCF3)3 can be prepared by reacting anhydrous 144cerium (III) chloride with (CF3CO)2O and CF3COOH. It is recommended to use about 1.5 equivalents of (CF3CO)2O and CF3COOH. It is recommended to heat the mixture to reflux for about 3 hours in an anhydrous atmosphere. 144Ce(COOCF3)3 is collected again by removing the liquid constituents. A variety of organic solvents can be used, including methanol, ethanol, isopropyl alcohol, and MeCN, with methanol being recommended.

Bezvodna trifluoroacetatna sol 144cerija također se može pripraviti reagiranjem bezvodnog metalnog klorida s otopinom srebrnog trifluoroacetata u suhom otapalu (na pr. suhi acetonitril). Posljedičnim isparavanjem otapala pod tlakom nastaje bezvodni trifluoroacetat. The anhydrous trifluoroacetate salt of 144cerium can also be prepared by reacting the anhydrous metal chloride with a solution of silver trifluoroacetate in a dry solvent (eg dry acetonitrile). The resulting evaporation of the solvent under pressure produces anhydrous trifluoroacetate.

Elektroodlaganje Ru-106 može se postići uporabom rutenij klorida u kupki za oblaganje. Nitrozil sulfamska kiselina može se koristiti za prevođenje klorida u rutenij nitrozil sulfamat. Ova se tvar potom može odložiti na željenu žicu uporabom poznatih postupaka za oblaganje (npr. oblaganje u bubnju). Poželjno je zaštititi obloženi Ru-106 s biokompatibilnom tvari, kao što je zlato. Electrodeposition of Ru-106 can be achieved using ruthenium chloride in the plating bath. Nitrosyl sulfamic acid can be used to convert the chloride to ruthenium nitrosyl sulfamate. This material can then be deposited onto the desired wire using known coating processes (eg drum coating). It is desirable to protect the coated Ru-106 with a biocompatible substance, such as gold.

Drugi postupci za cerij uključuju elektrooblaganje Ce-144 u svojem elementarnom obliku iz kupelji s moltenskom soli na približno 900°C. Sastojci kupelji su preporučljivo KCl, NaCl i CeCl3. Preporučuje se korištenje grafitne stanice kao anode, dok je katoda od nerđajućeg čelika ili odjeljka žice od berilij-bakar slitine. Struja za oblaganje može biti u rasponu od 10 do 30 ampera po cm2. Biokompatibilna tvar je preporučljivo neelektrični nikleni nadsloj, zlatni nadsloj ili cijev koja se skuplja na vrućini. Other processes for cerium include electroplating Ce-144 in its elemental form from a molten salt bath at approximately 900°C. Bath ingredients are recommended KCl, NaCl and CeCl3. It is recommended to use a graphite cell as the anode, while the cathode is made of stainless steel or a section of beryllium-copper alloy wire. The coating current can range from 10 to 30 amps per cm2. A biocompatible substance is preferably a non-electrical nickel overlay, gold overlay, or heat-shrink tubing.

Kemijsko odlaganje Chemical disposal

Drugi preporučeni postupak vezanja nuklida na žicu jest pomoću kemijskog odlaganja kao redoks proces. Ovaj proces zahtijeva redukcijsko sredstvo (npr. natrij hipobromit) koji reducira nuklid, preporučljivo Ru-106, u nazočnosti žice. Moguća je uporaba brojnih redukcijskih sredstava, kao što su nitrit, sulfit, hipofosfit, halogeni poput jodida i hipohaliti poput hipobromita, plinoviti H2 s niklom, platinom ili drugim katalizatorom, cink kao metal, amalgamirani cink, metalni natrij u organskim otapalima, litij aluminij hidrid i drugi metalni hidridi, kao i drugi uobičajeni reducensi. Preporučeni reducensi su natrij ili kalij hipohaliti, ili natrij ili kalij hipofosfit. Another recommended method of attaching nuclides to the wire is through chemical deposition as a redox process. This process requires a reducing agent (eg sodium hypobromite) that reduces a nuclide, preferably Ru-106, in the presence of the wire. It is possible to use a number of reducing agents, such as nitrite, sulfite, hypophosphite, halogens such as iodide and hypohalites such as hypobromite, gaseous H2 with nickel, platinum or other catalyst, zinc as metal, amalgamated zinc, metallic sodium in organic solvents, lithium aluminum hydride and other metal hydrides, as well as other common reductants. Recommended reducing agents are sodium or potassium hypohalites, or sodium or potassium hypophosphite.

Adsorpcija Adsorption

Slijedeći preporučeni postupak vezanja nuklida na žicu jest putem adsorpcije na matriks žice. Adsorpcija se temelji na kemijskom afinitetu ionskog cerija ili rutenija za neorganske tvari poput titan oksida, fosfata ili sulfata, cirkonij oksida, fosfata ili sulfata, volframata, molibdata, ili na sposobnosti elementarnih ili molekularnih oblika rutenija ili cerija da se odlažu izravno na aktivnu metalnu površinu žice. The next recommended procedure for attaching nuclides to the wire is via adsorption to the wire matrix. Adsorption is based on the chemical affinity of ionic cerium or ruthenium for inorganic substances such as titanium oxide, phosphate or sulfate, zirconium oxide, phosphate or sulfate, tungstate, molybdate, or on the ability of elemental or molecular forms of ruthenium or cerium to be deposited directly on the active metal surface wires.

Adsorpcija zahtijeva prethodnu pripravu žice oksidacijskim sredstvima poput nitritne kiseline, sulfatne kiseline, fosfatne kiseline, nitrata, fosfata, sulfata, broma i drugih elementarnih halogena, jodne i drugih halogenskih kiselina, pikrične kiseline, drugih organskih oksidirajućih kiselina i njihovih soli, soli metalnih oksida poput natrij ili kalij molibdata, ili natrij ili kalij volframata. Preporučeni oksidansi uključuju fosfatnu kiselinu, nitritnu kiselinu, sulfatnu kiselinu, fosfatne soli i nitratne soli. Više preporučeni oksidansi uključuju fosfatnu kiselinu ili nitritnu kiselinu. Prethodna priprema znači da se metalna površina žice pomoću oksidacijskog postupka prevede u nanos ili sloj oksida, fosfata ili sulfata. Adsorption requires prior preparation of the wire with oxidizing agents such as nitric acid, sulfuric acid, phosphoric acid, nitrate, phosphate, sulfate, bromine and other elemental halogens, iodic and other halogen acids, picric acid, other organic oxidizing acids and their salts, salts of metal oxides such as sodium or potassium molybdate, or sodium or potassium tungstate. Recommended oxidants include phosphoric acid, nitric acid, sulfuric acid, phosphate salts, and nitrate salts. More recommended oxidants include phosphoric acid or nitric acid. Preliminary preparation means that the metal surface of the wire is transformed into a deposit or layer of oxide, phosphate or sulfate by means of an oxidation process.

Biokompatibilna tvar Biocompatible substance

Nakon odlaganja ili adsorbiranja izvora zračenja na žicu, žica se prekriva (tj. u cijelosti obloži) biokompatibilnom tvari. Svrha prekrivanja žice i izvora je sprečavanje curenja izvora u tijelo bolesnika. Ovo je poželjno čak i kada se žica odlaže u zatvoreni kateter, za slučaj curenja unutar katetera. Debljina sloja biokompatibilne tvari ovisit će o pojedinoj korištenoj tvari. Upućeni u struku će prepoznati da sloj treba biti dostatne debljine kako bi spriječio curenje izvora ako je naprava izložena tjelesnim tekućinama. After depositing or adsorbing the radiation source on the wire, the wire is covered (i.e. completely coated) with a biocompatible substance. The purpose of covering the wire and the source is to prevent the source from leaking into the patient's body. This is desirable even when the wire is placed in a closed catheter, in case of leakage within the catheter. The thickness of the layer of biocompatible substance will depend on the particular substance used. Those skilled in the art will recognize that the layer should be of sufficient thickness to prevent source leakage if the device is exposed to body fluids.

Mogu se koristiti različite tvari poput metala i polimera. Jedna od svrha prekrivanja žice je sprečavanje curenja izvora zračenja u tijelo bolesnika. Prema tome, dostatni sloj za oblaganje je taj koji omogućuje intrakoronarnoj napravi za zračenje da bude umetnuta u arteriju bolesnika, putem katetera ili kojim drugim postupkom dostave, tijekom terapijski učinkovitog vremena, a bez neželjenog otpuštanja izvora zračenja. Various substances such as metals and polymers can be used. One of the purposes of covering the wire is to prevent leakage of the radiation source into the patient's body. Therefore, a sufficient coating layer is what allows the intracoronary radiation device to be inserted into the patient's artery, via catheter or other delivery method, during a therapeutically effective time, without unwanted release of the radiation source.

Primjer biokompatibilne tvari je tanak sloj zlata, platine, rodija, srebra ili drugog plemenitog metala, uključujući slitine kao što su zlato-platina, platina-rodij, platina-iridij i druga trajna sredstva za oblaganje koja se koriste u proizvodnji nakita. Preporučuje se oblaganje zlatom ili platinom, najbolje zlatom. Debljina metalnog sloja je preporučljivo od 5x10-5 do 13x10-5 mm. An example of a biocompatible substance is a thin layer of gold, platinum, rhodium, silver, or other precious metal, including alloys such as gold-platinum, platinum-rhodium, platinum-iridium, and other permanent plating agents used in jewelry manufacturing. Plating with gold or platinum is recommended, preferably gold. The thickness of the metal layer is recommended from 5x10-5 to 13x10-5 mm.

Slijedeći primjer biokompatibilne tvari je termoplastični polimer za oblaganje, poput polivinil klorida, polivinil acetata, polietilena, polipropilena ili kojeg drugog polimera medicinskog stupnja otpornog na zračenje, koji se nanosi postupkom vrućeg umakanja ili oblaganja. Ovi polimerski oblozi mogu se zračno ili katalitički sušiti. Another example of a biocompatible substance is a thermoplastic coating polymer, such as polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, or any other radiation-resistant medical grade polymer, which is applied by a hot dip or coating process. These polymer coatings can be air or catalytically dried.

Slijedeći primjer biokompatibilne tvari je termoset polimerski oblog, kao što su epoksi, poliuretan, poliimid, politetrafluoroetilen (na pr. Teflon®) ili poliamid (na pr. Nylon®), ili koji drugi termoset polimer medicinskog stupnja otporan na zračenje, preporučljivo poliimid. Ovi se oblozi nanose postupkom oblaganja žice, koji se i inače koristi pri izradi električnih žica, ili postupkom umakanja. Oblozi ove vrste mogu se sušiti zagrijavanjem, ultraljubičastim svjetlom, uporabom katalizatora, ili uporabom kemijskih učvrščivača. Another example of a biocompatible material is a thermoset polymer coating, such as epoxy, polyurethane, polyimide, polytetrafluoroethylene (eg, Teflon®) or polyamide (eg, Nylon®), or some other radiation-resistant medical grade thermoset polymer, preferably polyimide. These coatings are applied by the wire coating process, which is also used in the production of electrical wires, or by the dipping process. Coatings of this type can be dried by heating, ultraviolet light, the use of catalysts, or the use of chemical hardeners.

Daljnji primjer biokompatibilne tvari je polimerska ili slična čahura ili cijev, kao što je polietilen, polipropilen, polivinil klorid, polivinil acetat, poliimid, teflon ili bilo koja cijev medicinskog stupnja otporna na zračenje. Takva cijev ili čahura se pripremaju mehaničkim umetanjem aktivnog matriksa žice i pečaćenjem krajeva pomoću topline, lasera ili mehaničkog postupka pečaćenja. A further example of a biocompatible material is a polymeric or similar sleeve or tube, such as polyethylene, polypropylene, polyvinyl chloride, polyvinyl acetate, polyimide, Teflon, or any radiation resistant medical grade tube. Such a tube or sleeve is prepared by mechanically inserting an active wire matrix and sealing the ends using heat, laser, or a mechanical sealing process.

Tvari kao što su polietilen tereftalat (PET), politetrafluoroetilen, polivinilidin klorid ili druge vrste cijevi koje se skupljaju na toplini mogu se primijeniti na žičani matriks slično kao gore opisane tvari za cijevi. Preporučljivo, biokompatibilna tvar je PET ili cijevi koje se skupljaju na vrućini, preporučljivije PET. Za skupljanje cijevi se može primijeniti vrućina. Također može biti korisno primijeniti drugi sloj koji se skuplja na vrućini, nakon što se intrakoronarna naprava za zračenje pričvrsti na žicu vodič. Materials such as polyethylene terephthalate (PET), polytetrafluoroethylene, polyvinylidine chloride, or other types of heat-shrinkable tubing can be applied to the wire matrix similarly to the tubing materials described above. Preferably, the biocompatible material is PET or heat-shrinkable tubing, preferably PET. Heat may be applied to shrink the tubing. It may also be useful to apply a second heat-shrinkable layer after the intracoronary radiation device is attached to the guidewire.

Slitina za žicu Wire alloy

Intrakoronarna naprava za zračenje može biti žica načinjena od slitine ili međumetala jednim od slijedećih postupaka. Cerij i rutenij ili njihovi oksidi, fosfati, sulfati ili druge ionske tvari mogu se fizički pomiješati s metalom u prahu, u napravi za miješanje dostupnoj na tržištu, a potom se istiskuju, oblikuju ili izvlače, koristeći kalup za izvlačenje ili sličnu opremu dostupnu na tržištu. Mogu se koristiti prašci od slijedećih metala: bakra, aluminija, zlata, srebra, nikla ili bilo kojeg drugog metala se koristi, ili se koristio, za proizvodnju istisnutih žica u industriji. The intracoronary radiation device can be a wire made of an alloy or an intermediate metal by one of the following methods. Cerium and ruthenium or their oxides, phosphates, sulfates, or other ionic substances may be physically mixed with the metal powder in a commercially available mixing device and then extruded, shaped, or extruded using an extrusion die or similar commercially available equipment. . Powders of the following metals can be used: copper, aluminum, gold, silver, nickel or any other metal used, or used, for the production of extruded wires in industry.

Zrnca Grains

Intrakoronarna naprava za zračenje može se također načiniti korištenjem organskih ili neorganskih ionskih izmjenjivačkih zrnaca, ili zrnaca koja sadrže kelirajuće skupine. Zrnca koja se sastoje od, na primjer, stiren-divinil benzena, a sadrže funkcijske skupine kao što su kvatenarne aminske skupine, skupine sulfonske kiseline, skupine etilen diamin tetraoctene kiseline, peptidne skupine, imido skupine ili druge funkcijske skupine, koriste se za dobivanje kompleksa cerij ili rutenij nuklida u svojim anionskim ili kationskim oblicima, čime ih čine nepokretnima. Punjena zrnca se potom zatale plamenom na visokoj temperaturi, ili kemijski, kao npr. s furanskom smolom i etilen oksidom, čime se sprečava curenje nuklida iz matriksa zrnca. An intracoronary radiation device can also be made using organic or inorganic ion exchange beads, or beads containing chelating groups. Beads consisting of, for example, styrene-divinyl benzene, and containing functional groups such as quaternary amine groups, sulfonic acid groups, ethylene diamine tetraacetic acid groups, peptide groups, imido groups, or other functional groups, are used to obtain complexes cerium or ruthenium nuclides in their anionic or cationic forms, making them immobile. The filled beads are then sealed with a flame at a high temperature, or chemically, such as with furan resin and ethylene oxide, which prevents the leakage of nuclides from the matrix of the beads.

Zataljena zrnca se zatim pune u tanku stijenku cijevi koja može biti od nerđajućeg čelika, titana, aluminija, nikla ili druga medicinski kompatibilna metalna cijev, ili bilo koje slitine poput titanola, monela, ili bilo koje slitine gore spomenutih metala, ili može biti bilo koja medicinski kompatibilna polimerska cijev, uključujući ranije spomenute polimerske tvari. Napunjeni odjeljci cijevi se potom mehanički pričvršćuju na žicu vodič katetera, u svrhu primjene. The fused beads are then filled into a thin walled tube which can be made of stainless steel, titanium, aluminum, nickel or other medically compatible metal tube, or any alloy such as titanol, monel, or any alloy of the aforementioned metals, or it can be any a medically compatible polymeric tube, including the aforementioned polymeric substances. The filled sections of the tubing are then mechanically attached to the catheter guidewire for administration.

Preporučeni postupak je uporaba polistirenskih zrnaca sa funkcijskom skupinom od sulfonske kiseline, na primjer Dowex-50 kationska izmjenjivačka zrnca. Zrnca se pune s Ce-144 kloridom iz 0.1 do 0.5 M otopine HCl, suše i potom karboniziraju u peći, na temperaturi od oko 1100°C tijekom 1 h. Karbonizirana zrnca se potom pune u odjeljak cijevi, preporučljivo od nerđajućeg čelika, koji ima iste dimenzije i kraj modificiran kao klizni ili dodirni spoj poput segmenta žičanog matriksa. Otvoreni kraj cijevi kroz koji se zrnca pune se potom zatali, preporučljivo laserom. Ovaj odjeljak cijevi se pričvrsti za žicu vodič pomoću kliznog ili dodirnog spoja i lasera, ili adhezijskim pripajanjem, kao što je gore opisano s odjeljkom žičanog matriksa. The recommended procedure is to use polystyrene beads with a sulfonic acid functional group, for example Dowex-50 cation exchange beads. The grains are filled with Ce-144 chloride from a 0.1 to 0.5 M HCl solution, dried and then carbonized in a furnace at a temperature of about 1100°C for 1 hour. The carbonized beads are then filled into a tube section, preferably stainless steel, having the same dimensions and an end modified as a sliding or contact joint like a wire matrix segment. The open end of the tube through which the beads are filled is then sealed, preferably with a laser. This tube section is attached to the guide wire using a slip or butt joint and a laser, or by adhesive bonding, as described above with the wire matrix section.

Drugi aspekti ovog izuma postat će bjelodani tijekom slijedećih opisa oblika iz primjera, koji su izmijeti za ilustraciju izuma, a nije im svrha da ga ograničavaju. Other aspects of this invention will become apparent during the following descriptions of the exemplary embodiments, which are intended to illustrate the invention and are not intended to limit it.

PRIMJERI EXAMPLES

Priprava reprezentativnih intrakoronarnih naprava prema ovom izumu u slijedećem je tekstu podrobno opisana, s naglaskom na slijedeće specifične, ali neograničavajuće primjere. The preparation of representative intracoronary devices according to this invention is described in detail in the following text, with an emphasis on the following specific, but non-limiting examples.

Primjer 1 Example 1

Elektroodlaganje 144Ce iz 144Ce(COOCF3)3 organske otopine Electrodeposition of 144Ce from 144Ce(COOCF3)3 organic solution

Ce-144 ”izvor” za uporabu u svrhu intrakoronarne naprave za zračenje može se pripraviti elektroodlaganjem Ce-144 iz 144Ce(COOCF3)3 organske otopine. Korištena je žica od 304 nerđajućeg čelika. Ce-144 "source" for use in intracoronary radiation devices can be prepared by electrodeposition of Ce-144 from 144Ce(COOCF3)3 organic solution. 304 stainless steel wire was used.

U 3.0 g bezvodnog 144cerij (III) klorida se doda po 6 mL (CF3CO)2O i CF3COOH (ukupna količina obje kiseline odgovara približno 1.5x ekvivalentnoj količini kiselina potrebnih za reakciju s bezvodnim 144CeCl3). Smjesa se grije u refluksu tijekom ~3 h, u bezvodnoj atmosferi. Otopina se ispari u kružnom isparivaču i analizira. 6 mL of (CF3CO)2O and CF3COOH are added to 3.0 g of anhydrous 144cerium (III) chloride (the total amount of both acids corresponds to approximately 1.5x the equivalent amount of acids required for the reaction with anhydrous 144CeCl3). The mixture is heated under reflux for ~3 h, in an anhydrous atmosphere. The solution is evaporated in a rotary evaporator and analyzed.

Elektroodlaganje se može provesti na metal ili slitinu, izravno ili uporabom podložne pločice od elektrolitske kupelji na različitim temperaturama (sobna temp. do 50°C) i različitim gustoćama struje (0.5-30 A/dm2). Kao anoda se koristi platinska pločica. Topljivost i električna provodljivost 144Ce(CF3COO)3 u različitim organskim otopinama, kao što su MeOH, EtOH, i-PrOH, MeCN se određuju prije postupka elektroodlaganja, kako bi se odredili najpogodniji mediji za uporabu u kupelji. Očekuje se da dielektrična konstanta pojedinog otapala igra velik udio u određivanju topljivosti 144Ce(CF3COO)3 u pojedinom otapalu. Electrodeposition can be carried out on metal or alloy, directly or by using a substrate from an electrolytic bath at different temperatures (room temp. up to 50°C) and different current densities (0.5-30 A/dm2). A platinum plate is used as the anode. The solubility and electrical conductivity of 144Ce(CF3COO)3 in various organic solutions, such as MeOH, EtOH, i-PrOH, MeCN are determined before the electrodeposition process, in order to determine the most suitable media for use in the bath. It is expected that the dielectric constant of a particular solvent plays a large part in determining the solubility of 144Ce(CF3COO)3 in a particular solvent.

Nakon dovršetka ovog postupka elektroodlaganja, sličnim se postupkom može provesti biokompatibilno oblaganje Al, Au ili Pt. Npr., Al(COOCF3)3 se može pripraviti uporabom gore opisanog postupka i elektroodlaganjem iz Al(COOCF3)3-MeOH kupelji. After completion of this electrodeposition process, a biocompatible coating of Al, Au or Pt can be carried out using a similar process. For example, Al(COOCF3)3 can be prepared using the procedure described above and electrodeposition from an Al(COOCF3)3-MeOH bath.

Primjer 3 Example 3

Priprava Ce-144 ICRD pomoću adsorpcije Preparation of Ce-144 ICRD by adsorption

1. Pripravi odjeljke žice, koji su u ovom primjeru od čistog cirkonija, vrućom otopinom fosforne kiseline koja sadrži 10% dušične kiseline, HNO3, najmanje 4 sata. Temperatura kiseline je 120-150°F. Obrada kiselinom prevodi atome na površini u cirkonij okid i/ili cirkonij fosfat. 1. Prepare the wire sections, which in this example are of pure zirconium, with a hot solution of phosphoric acid containing 10% nitric acid, HNO3, for at least 4 hours. The temperature of the acid is 120-150°F. Acid treatment converts surface atoms into zirconium oxide and/or zirconium phosphate.

2. Isperi odjeljke žice vodom. Pripravi otopinu koja sadrži 7 mCi Ce-144 u obliku otopine cerij nitrata. Ne dodaj nosač. Podesi pH na 6. 2. Rinse the wire sections with water. Prepare a solution containing 7 mCi Ce-144 in the form of cerium nitrate solution. Do not add a bracket. Adjust the pH to 6.

3. Smjesti pripremljene odjeljke žice u otopinu Ce-144. Ostavi na 80-100°F 1 sat. Ispitaj aktivnost otopine. Ako je u otopini preostalo više od 10% izvornog Ce-144, ostavi žice u otopini dodatnih sat vremena. 3. Place the prepared wire sections in the Ce-144 solution. Leave at 80-100°F for 1 hour. Test the activity of the solution. If more than 10% of the original Ce-144 remains in the solution, leave the wires in the solution for an additional hour.

4. Ukloni žice nakon punjenja Ce-144 iz otopine, isperi odjeljke žice vodom, te ih posuši. 4. Remove the wires after filling with Ce-144 from the solution, wash the wire sections with water, and dry them.

5. Smjesti svaki odjeljak žice u čahuru, čiji je promjer 0.011-0.012 palaca, a duljina 1.38 palaca, od polietilen tereftalata koji se skuplja na vrućini, pa zagrijavaj kako bi se cijev skupila oko radioaktivnog odjeljka žice. 5. Place each wire section in a 0.011-0.012 inch diameter, 1.38 inch long, heat-shrink polyethylene terephthalate sleeve, then heat to shrink the tube around the radioactive wire section.

6. Umetni odjeljak žice na kraj žice vodiča katetera pomoću poliizocijanuratnog ljepila ili laserskim zavarivanjem, čime se zatali spoj kliznog ili frikcijskog tipa. 6. Insert the wire section to the end of the catheter guidewire using polyisocyanurate glue or laser welding, making a slip-type or friction-type joint.

7. Stavi drugu kapsulu preko odjeljka žice i primijeni vrućinu, kako bi se čahura skupila. Visokotemperaturni laser ili koji drugi izvor topline se koristi u svrhu zataljivanja viška tvari na kraju aktivne duljine. 7. Place the second capsule over the wire section and apply heat to shrink the capsule. A high-temperature laser or other heat source is used to quench the excess material at the end of the active length.

Primjer 10 Example 10

Priprava rutenij-106 IRCD pomoću oblaganja zavojnice Preparation of ruthenium-106 IRCD using coil coating

I. Namatanje zavojnice na kalem I. Winding the coil on the spool

- umetni distalni kraj zavojnice kateterske žice kroz otvor držača kalema, namotaj katetersku žicu na kalem i osiguraj s plastičnom navlakom. - insert the distal end of the coil of the catheter wire through the opening of the coil holder, wind the catheter wire onto the coil and secure it with a plastic sleeve.

- izloži 3-4 palca duljine zavojnice iza otvora kalema. - expose 3-4 inches of coil length behind the spool opening.

- pričvrsti sklop na nosač da se omogući rukovanje navojem kalem/žica tijekom postupka oblaganja. Zavojnica se postavlja vertikalno. - attach the assembly to the bracket to allow handling of the spool/wire thread during the plating process. The coil is placed vertically.

II. Čišćenje/aktiviranje zavojnice II. Coil cleaning/activation

- Aktiviraj zavojnicu na slijedeći način: - Activate the coil as follows:

a) podesi dovod struje na 2.3 volta, a) adjust the power supply to 2.3 volts,

b) poveži pozitivni odvod s platinskom anodom, b) connect the positive lead to the platinum anode,

c) poveži negativni odvod s vrhom kateterske žice u blizini kalema, c) connect the negative lead to the tip of the catheter wire near the coil,

d) spusti kalemski sklop/žicu pomoću hvataljke nosača tako da se zavojnica uroni u kupelj i aktiviraj pri prosječnoj struji od 12 miliampera tijekom 6 minuta, d) lower the coil assembly/wire using the support gripper so that the coil is immersed in the bath and activate at an average current of 12 milliamps for 6 minutes,

e) izvadi žičani svitak iz kupelji i isperi s H2O. e) remove the wire coil from the bath and rinse with H2O.

III. Kiseli sloj zlata na navojima žice III. Acidic layer of gold on the wire threads

- Pripravi kupelj za oblaganje na slijedeći način: - Prepare the coating bath as follows:

a) pipetiraj 24 mL Technic, Inc. otopine kiselog sloja zlata u čistu posudu školjkastog oblika od 27 mL, a) pipet 24 mL of Technic, Inc. solution of the acid layer of gold into a clean 27 mL shell-shaped container,

b) postavi cilindričnu platinsku anodu u posudu, b) place the cylindrical platinum anode in the container,

c) spusti kalemski sklop pomoću hvataljke nosača tako da uroniš zavojnicu koju treba obložiti u kupelj, c) lower the coil assembly using the handle of the support so that you immerse the coil to be covered in the bath,

d) miješaj kupelj koristeći magnetsku pločicu za miješanje/grijanje i šipku za miješanje. d) stir the bath using a magnetic stirring/heating plate and a stirring rod.

- Primijeni sloj na slijedeći način: - Apply the layer as follows:

a) podesi izvor struje na 2.3 volta, a) set the current source to 2.3 volts,

b) poveži pozitivni odvod s platinskom anodom, b) connect the positive lead to the platinum anode,

c) poveži negativni odvod s vrhom kateterske žice, c) connect the negative lead to the tip of the catheter wire,

d) spusti žicu u kupelj i oblaži pri 15 miliampera tijekom 4.5 minuta, d) lower the wire into the bath and coat it at 15 milliamperes for 4.5 minutes,

e) izvadi žičani svitak iz kupelji i isperi s H2O. e) remove the wire coil from the bath and rinse with H2O.

IV. Priprava zavojnice za oblaganje rutenijem-106 IV. Preparation of coil for coating with ruthenium-106

- nanesi nekoliko slojeva Microshield zaštitnog sredstva na zavojnicu kako bi se spriječilo oblaganje rutenijem-106 dijela zavojnice duljine 2.8 cm, koji je namijenjen za radioaktivni izvor zračenja. - apply several layers of Microshield protective agent to the coil to prevent ruthenium-106 coating of the 2.8 cm long part of the coil, which is intended for the radioactive radiation source.

V. Oblaganje zavojnice rutenijem V. Coating the coil with ruthenium

- Pripravi kupelj za oblaganje na slijedeći način: - Prepare the coating bath as follows:

a) pipetiraj 300 mikrolitara koncentrirane otopine rutenij klorida koja sadrži 3.0 mg rutenija u čistu čašu od 50 mL, a) pipette 300 microliters of concentrated ruthenium chloride solution containing 3.0 mg of ruthenium into a clean 50 mL beaker,

b) pipetiraj 1.9 mCi rutenija-106 (0.182 mL volumena) u istu posudicu, b) pipette 1.9 mCi of ruthenium-106 (0.182 mL volume) into the same container,

c) oprezno zagrij pomiješanu otopinu na 60 stupnjeva Celsiusa i ispari do suhoće, kako bi se uklonio višak klorida, c) carefully heat the mixed solution to 60 degrees Celsius and evaporate to dryness, in order to remove excess chloride,

d) kvantitativno prenesi otopinu u čistu školjkastu posudu od 27 mL koja se nalazi u zaštićenoj napravi za oblaganje; smjesti cilindričnu platinsku anodu u posudu, d) quantitatively transfer the solution into a clean 27 mL shell container located in a protected coating device; place the cylindrical platinum anode in the container,

e) miješaj kupelj koristeći magnetsku pločicu za miješanje/grijanje i šipku za miješanje, e) stir the bath using a magnetic stirring/heating plate and a stirring rod,

f) otpipetiraj dva početna uzorka kupelji od po 20 mikrolitara iz otopine kupelji i prenesi ih u posude od 1 drama radi ispitivanja nazočnosti rutenija-106 na početku postupka, f) pipet two initial bath samples of 20 microliters each from the bath solution and transfer them to 1-dram containers to test for the presence of ruthenium-106 at the beginning of the procedure,

g) zagrij kupelj do približno 60°C, kako bi se rutenij klorid preveo u rutenij sulfamat. g) heat the bath to approximately 60°C, in order to convert the ruthenium chloride into ruthenium sulfamate.

- Obloži zavojnicu na slijedeći način: - Cover the coil as follows:

a) podesi izvor struje na početnu vrijednost od 2.3 volta, a) set the current source to the initial value of 2.3 volts,

b) poveži pozitivni odvod s platinskom anodom, b) connect the positive lead to the platinum anode,

c) poveži negativni odvod s vrhom kateterske žice, c) connect the negative lead to the tip of the catheter wire,

d) spusti svitak žice pomoću hvataljke nosača, tako da se zavojnica uroni u kupelj za oblaganje, d) lower the coil of wire using the handle of the carrier, so that the coil is immersed in the coating bath,

e) oblaži kupelj približno 19 h pri prosječnoj struji od 20 miliampera i napon od 2.3-2.6 volti, e) cover the bath for approximately 19 hours at an average current of 20 milliamperes and a voltage of 2.3-2.6 volts,

f) izvadi svitak iz kupelji za oblaganje, isperi destiliranom H2O i pohrani u olovnom štitniku, f) remove the coil from the plating bath, rinse with distilled H2O and store in a lead shield,

g) ukloni dva alikvota od po 50 mL iz kupelji za oblaganje i smjesti u posude od drama radi ispitivanja kupelji za zaustavljanje. g) remove two aliquots of 50 mL each from the plating bath and place in dram containers for testing the stop bath.

VI. Priprava rutenij-106 sloja YOU. Preparation of ruthenium-106 layer

- ukloni obloženu zavojnicu iz olovnog štitnika i izloži ultrazvuku 7 sekundi u vodenoj kupelji, kako bi se s površine zavojnice uklonile labavo vezane naslage. - remove the coated coil from the lead shield and expose to ultrasound for 7 seconds in a water bath, in order to remove loosely bound deposits from the surface of the coil.

- Ispitaj vodenu kupelj kako bi ustanovio gubitak radioaktivnosti u ovom koraku. - Test the water bath to determine the loss of radioactivity in this step.

VII. Oblaganje rutenijske zavojnice kiselim slojem zlata VII. Coating the ruthenium coil with an acid layer of gold

- Pripravi kupelj za oblaganje na slijedeći način: - Prepare the coating bath as follows:

a) smjesti čistu školjkastu posudu od 27 mL u zaštićenu napravu za oblaganje, a) place a clean 27 mL shell container in a protected coating device,

b) pipetiraj 24 mL tržišno dostupne otopine kiselog sloja zlata u posudu koja je opremljena cilindričnom platinskom anodom, b) pipet 24 mL of a commercially available solution of an acidic layer of gold into a vessel equipped with a cylindrical platinum anode,

c) spusti kalemski sklop pomoću hvataljke nosača tako da uroniš zavojnicu u kupelj, c) lower the coil assembly using the handle of the support by immersing the coil in the bath,

d) miješaj kupelj koristeći magnetsku pločicu i šipku za miješanje. d) stir the bath using a magnetic plate and a stirring bar.

- Primijeni sloj zlata na slijedeći način: - Apply a layer of gold as follows:

a) podesi izvor struje na 2.1 volt, a) set the current source to 2.1 volts,

b) poveži pozitivni odvod s platinskom anodom, b) connect the positive lead to the platinum anode,

c) poveži negativni odvod s vrhom kateterske žice u blizini kalema, c) connect the negative lead to the tip of the catheter wire near the coil,

d) spusti žicu u kupelj i oblaži pri 22 miliampera tijekom 2.5 minuta, d) lower the wire into the bath and coat it at 22 milliamperes for 2.5 minutes,

e) izvadi žičani svitak iz kupelji, isperi s H2O i prenesi u olovni štitnik. e) remove the wire coil from the bath, rinse with H2O and transfer to a lead shield.

VIII. Prevlačenje Orosene tvrdim zlatom VIII. Coating Orosena with hard gold

- Primijeni konačni zaštitni sloj koristeći komercijalno tvrdo zlato za oblaganje na slijedeći način: - Apply the final protective layer using commercial hard gold plating as follows:

a) smjesti čistu školjkastu posudu od 27 mL u zaštićenu napravu za oblaganje, a) place a clean 27 mL shell container in a protected coating device,

b) pipetiraj 24.0 mL Orosen999 otopine zlata od Technic. Inc. u posudu i postavi cilindričnu platinsku anodu, b) pipet 24.0 mL of Orosen999 gold solution from Technic. Inch. in the container and place a cylindrical platinum anode,

c) miješaj kupelj koristeći magnetsku pločicu za miješanje/grijanje i šipku za miješanje. c) stir the bath using a magnetic stirring/heating plate and a stirring bar.

- Provedi oblaganje na slijedeći način: - Carry out coating in the following way:

a) podesi izvor struje na 2.6 V, a) set the current source to 2.6 V,

b) podesi početni napon na 5 miliampera, b) set the initial voltage to 5 milliamps,

c) poveži pozitivni odvod s platinskom anodom, c) connect the positive lead to the platinum anode,

d) poveži negativni odvod s vrhom kateterske žice, d) connect the negative lead to the tip of the catheter wire,

e) spusti sklop zavojnice tako da zavojnica obložena s Ru-106 bude potopljena u kupelj, e) lower the coil assembly so that the coil coated with Ru-106 is immersed in the bath,

f) oblaži izvor približno 40 minuta pri 5 miliampera, f) cover the source for approximately 40 minutes at 5 milliamperes,

g) oblaži izvor daljnjih 20 minuta na 10 miliampera, g) cover the source for a further 20 minutes at 10 milliamperes,

h) izvadi zavojnicu-izvor iz kupelji za oblaganje, isperi s destiliranom H2O i pohrani u olovni štitnik. h) remove the source coil from the plating bath, rinse with distilled H2O and store in a lead shield.

IX. Preliminarno ispitivanje Ru-106 ICRD izvora IX. Preliminary investigation of Ru-106 ICRD sources

- Provedi test brisanjem pomoću metanolom natopljenih Q-vršaka. - Perform a swab test using methanol-soaked Q-tips.

- Smjesti katetersku žicu na kalemu na dno dimnog odjeljka iza štitnika i briši prema slijedećem redoslijedu: - Place the catheter wire on the spool at the bottom of the smoke compartment behind the shield and wipe according to the following order:

a) najprije dva puta prebriši, a) first delete twice,

b) napravi obrisak radioaktivnog odjeljka zavojnice, smjesti u LSC mini-posude i izbroji na detektoru/skaleru niskog NaI(Tl) u pozadini, b) make a swab of the radioactive section of the coil, place in LSC mini-vessels and count on a low NaI(Tl) detector/scaler in the background,

c) dostavi obriske u posudama, kojima je dodano 4 mL Aquasol koktela, do kalibracijskog laboratorija radi LSC brojenja, kojim se odrede trenutne vrijednosti ovih krpica-uzoraka izražene u nCi, c) deliver swabs in containers, to which 4 mL of Aquasol cocktail has been added, to the calibration laboratory for LSC counting, which determines the current values of these swabs-samples expressed in nCi,

d) potvrdi test uzoraka kupelji za oblaganje, početne kupelji i kupelji za zaustavljanje, te sadržaj izvora u obliku žičane zavojnice, izražen u mCi, prema rezultatima kalibracijskog laboratorija. d) confirm the test of samples of coating baths, starting baths and stopping baths, and the content of the source in the form of a wire coil, expressed in mCi, according to the results of the calibration laboratory.

Primjer 12 Example 12

Priprava rutenij-106 ICRD oblaganjem Preparation of ruthenium-106 by ICRD coating

I. Postavi zavojnicu na vreteno od nerđajućeg čelika promjera 0.007 mil (0.178 mm). I. Place the coil on the 0.007 mil (0.178 mm) diameter stainless steel mandrel.

- očisti vreteno metanolom, - clean the spindle with methanol,

- postavi odsječak poliimida unutarnjeg promjera 0.008 mil (0.2 mm) od 0.4 palca (1 cm) na vreteno, - place a 0.4 inch (1 cm) piece of 0.008 mil (0.2 mm) ID polyimide on the mandrel,

- postavi komad stražnjim dijelom zataljene platinske žice od 1.10 palca (26 mm) na vreteno, - place a piece of 1.10 inch (26 mm) soldered platinum wire on the spindle,

- postavi odsječak cijevi od poliimida duljine 1.57 palac (4 cm) na vreteno, na vrh zavojnice. - place a 1.57 inch (4 cm) length of polyimide tubing on the spindle, on top of the coil.

II. Aktiviraj i očisti vreteno II. Activate and clean the spindle

- Podešavanje vretena - Spindle adjustment

a) klizanjem dovedi zavojnicu i dugačku poliimidnu čahuru za zadržavanje 3 palca iznad distalnog kraja vretena, čime se oslobađa donji dio vretena koji drži zavojnicu, a) slide the coil and long polyimide retaining sleeve 3 inches above the distal end of the spindle, thereby releasing the lower part of the spindle that holds the coil,

b) ostavi 1 cm poliimidne čahure na distalnom kraju b) leave 1 cm of polyimide sleeve at the distal end

- čišćenje vretena - spindle cleaning

a) pripravi otopinu 30%-tnog trinatrij fosfata (TSP), a) prepare a solution of 30% trisodium phosphate (TSP),

b) stavi 24 mL otopine TSP u školjkastu posudu od 27 mL opremljenu s cilindričnom platinskom anodom od 1 palac, te grij na 50°C, b) put 24 mL of TSP solution in a 27 mL shell vessel equipped with a 1-inch cylindrical platinum anode, and heat to 50°C,

c) miješaj kupelj s pločicom za grijanje i miješanje i magnetskim miješalom, c) stir bath with heating and mixing plate and magnetic stirrer,

d) zagrij kupelj na 50°C, d) heat the bath to 50°C,

e) poveži pozitivni odvod izvora struje s anodom, e) connect the positive drain of the current source to the anode,

f) poveži negativni odvod s vrhom žice vretena, f) connect the negative lead to the tip of the spindle wire,

g) uroni zavojnicu u kupelj i očisti vreteno na 3.6 volti, struji od 50 miliampera tijekom 30 sekundi. Ukloni vreteno iz kupke za oblaganje i pohrani u destiliranoj vodi. g) immerse the coil in the bath and clean the spindle at 3.6 volts, a current of 50 milliamps for 30 seconds. Remove the spindle from the plating bath and store in distilled water.

- Aktiviranje vretena - Spindle activation

a) pripravi 75%-tnu otopinu H3PO4 s reagensom H3PO4, a) prepare a 75% H3PO4 solution with the H3PO4 reagent,

b) stavi 24 mL 75%-tnog H3PO4 u čistu školjkastu tikvicu od 27 mL opremljenu cilindričnom platinskom anodom i zagrij do 50°C, b) put 24 mL of 75% H3PO4 in a clean 27 mL round-necked flask equipped with a cylindrical platinum anode and heat to 50°C,

c) poveži odvode na anodu i žicu vretena kao što je gore opisano, c) connect the leads to the anode and the spindle wire as described above,

d) spusti sklop zavojnice u kupelj i aktiviraj vreteno na 3.7 volti, 50 miliampera tijekom 30 sekundi, d) lower the coil assembly into the bath and activate the spindle at 3.7 volts, 50 milliamps for 30 seconds,

e) izvadi sklop zavojnice i pohrani u čistoj destiliranoj vodi. e) remove the coil assembly and store in clean distilled water.

III. Aktiviraj/očisti sklop zavojnice i vretena III. Activate/clear the coil and spindle assembly

- Podešavanje sklopa zavojnice - Adjusting the coil assembly

a) klizanjem dovuci platinsku zavojnicu i poliimidnu čahuru za zadržavanje prema dolje, do distalnog kraja vretena, a) slide the platinum coil and the polyimide retaining sleeve down to the distal end of the spindle,

b) isperi metanolom i osuši, b) wash with methanol and dry,

c) postavi sklop zavojnica/vreteno na čahuru za zadržavanje; oslobodi 4 palca žice vretena, uključujući zavojnicu, tako da se protežu iza otvora kalema, c) place the coil/spindle assembly on the retaining sleeve; free 4 inches of spindle wire, including the coil, so that they extend past the spool opening,

d) slijepi poliimidnu cijev i vrh vretena pomoću super ljepila (Loctite ili Dow Corning), kako bi se platinska žica osigurala od pomicanja. d) glue the polyimide tube and the top of the spindle using super glue (Loctite or Dow Corning), to secure the platinum wire from moving.

- Čišćenje i aktiviranje sklopa vretena i zavojnice (kao gore u odjeljku II) - Cleaning and activating the spindle and coil assembly (as above in section II)

a) očisti sklop zavojnice pomoću TSP pri 3.4 volta, 50 miliampera struje tijekom 30 sekundi, a) clean the coil assembly using a TSP at 3.4 volts, 50 milliamps of current for 30 seconds,

b) očisti sklop s 75%-tnom H3PO4 pri 3.0 volti, 50 miliampera tijekom 30 sekundi, b) clean the circuit with 75% H3PO4 at 3.0 volts, 50 milliamps for 30 seconds,

c) ukloni zavojnicu-izvor iz kupelji i pohrani u destiliranoj vodi. c) remove the coil-source from the bath and store it in distilled water.

IV. Obloži zavojnicu kiselim slojem zlata IV. Coat the coil with an acid layer of gold

- pipetiraj 24.0 mL otopine kiselog sloja zlata u čistu školjkastu posudu od 27 mL i umetni cilindričnu platinsku anodu, - pipette 24.0 mL of the acidic gold layer solution into a clean 27 mL shell vessel and insert the cylindrical platinum anode,

- miješaj kupelj pomoću magnetske pločice za miješanje/grijanje i šipke za miješanje, - stir the bath using the magnetic stirring/heating plate and the stirring bar,

- poveži pozitivni odvod na platinsku anodu i podesi voltažu izvora struje na 0.5 volti, - connect the positive drain to the platinum anode and set the current source voltage to 0.5 volts,

- poveži negativni odvod s vrhom vretena u blizini kalema i uroni u kupelj, tako da zavojnica bude u središtu anode, - connect the negative drain to the top of the spindle near the coil and immerse it in the bath, so that the coil is in the center of the anode,

- odmah povećaj voltažu na 1.5 volti, a potom na 3.0 volti tijekom 1 minute, - immediately increase the voltage to 1.5 volts, and then to 3.0 volts for 1 minute,

- oblaži pri 3.0 volti i 90-100 miliampera tijekom 30 sekundi, - apply at 3.0 volts and 90-100 milliamps for 30 seconds,

- ukloni iz kupelji i pohrani u destiliranoj vodi. - remove from the bath and store in distilled water.

V. Oblaganje zavojnice rutenijem-106 V. Coating the coil with ruthenium-106

- Pripravi kupelj za oblaganje na slijedeći način: - Prepare the coating bath as follows:

a) stavi školjkastu posudu od 27 mL u zaštićenu napravu za oblaganje i umetni cilindričnu platinsku elektrodu presjeka 0.5 palca i duljine 0.75 palca, a) place a 27 mL shell vessel in a shielded coating device and insert a cylindrical platinum electrode 0.5 inches in cross section and 0.75 inches long,

b) pipetiraj 1.93 mL (15.6 mCi) koncentrirane otopine rutenija-106 u čistu čašu od 50 mL, b) pipet 1.93 mL (15.6 mCi) of concentrated ruthenium-106 solution into a clean 50 mL beaker,

c) zagrij otopinu gotovo do suhoće na 60°C, kako bi se uklonio višak klorida, c) heat the solution almost to dryness at 60°C, in order to remove excess chloride,

d) dodaj 12 mL sulfamatne otopine za oblaganje (pH 1.59) u posudu, kako bi se otopio Ru-106 klorid, d) add 12 mL of sulfamate coating solution (pH 1.59) to the container to dissolve the Ru-106 chloride,

e) prenesi otopinu Ru-106 sulfamata kvantitativno u posudu za oblaganje, e) transfer the solution of Ru-106 sulfamate quantitatively to the coating vessel,

f) isperi čašu od 50 mL s 15 mL sulfamatne otopine za oblaganje i prenesi kvantitativno u posudu za oblaganje; ukupni volumen kupelji je sada 27 mL, f) wash the 50 mL beaker with 15 mL of sulfamate coating solution and transfer quantitatively to the coating container; the total volume of the bath is now 27 mL,

g) pomoću magnetske pločice za miješanje/grijanje i šipke za miješanje, miješaj otopinu u kupelji, g) using a magnetic stirring/heating plate and a stirring rod, stir the solution in the bath,

h) odvoji dva alikvota od po 0.200 mL za ispitivanje početne kupelji, h) separate two aliquots of 0.200 mL each for testing the initial bath,

i) grij kupelj za oblaganje na 50°C do promjene boje otopine iz smeđe u blijedožutu (rutenij prelazi iz klorida u sulfamat). i) heat the plating bath to 50°C until the color of the solution changes from brown to pale yellow (ruthenium changes from chloride to sulfamate).

- Obloži zavojnicu na slijedeći način: - Cover the coil as follows:

a) smjesti sklop kalem/zavojnica u pneumatsku napravu sa stezaljkom, a) place the spool/coil assembly in the pneumatic device with clamp,

b) poveži pozitivni odvod iz izvora struje na anodu, b) connect the positive drain from the current source to the anode,

c) poveži negativni odvod za vrh vretena u blizini kalema, c) connect the negative drain to the top of the spindle near the coil,

d) podesi struju za oblaganje na maksimalno 14 miliampera, a napon na 2.2 volta, d) set the coating current to a maximum of 14 milliamps, and the voltage to 2.2 volts,

e) s udaljenosti spusti zavojnicu u kupelj do postizanja vertikalnog i radijalnog centriranja u odnosu na anodu, e) lower the coil into the bath from a distance until it achieves vertical and radial centering in relation to the anode,

f) oblaži zavojnicu s Ru-106 tijekom 17 do 18 sati pri 14 miliampera struje i 2.2-2.3 volta, f) cover the coil with Ru-106 for 17 to 18 hours at 14 milliamperes of current and 2.2-2.3 volts,

g) ukloni izvor iz kupelji za oblaganje i pohrani u destiliranoj vodi u zaštićenoj posudi, g) remove the source from the plating bath and store it in distilled water in a protected container,

h) odvoji dva uzorka kupelji za zaustavljanje od po 1.0 mL radi ispitivanja. h) separate two stop bath samples of 1.0 mL each for testing.

VI. Površinsko čišćenje Ru-106 sloja YOU. Surface cleaning of the Ru-106 layer

- Čišćenje ultrazvukom - Ultrasound cleaning

a) prenesi izvor u kupelj s ultrazvukom, s pneumatskom napravom sa stezaljkom, a) transfer the source to a bath with ultrasound, with a pneumatic device with a clamp,

b) izloži ultrazvuku tijekom 1.5 minuta, kao bi se uklonila ostatna zagađenja kupke, b) expose to ultrasound for 1.5 minutes, in order to remove the rest of the bath pollution,

c) prenesi izvor natrag na njegovo zaštićeno mjesto, c) transfer the source back to its protected location,

d) ostavi kupelj s ultrazvukom za ispitivanje Ru-106. d) leave the ultrasound bath for testing Ru-106.

- Kemijsko čišćenje i aktiviranje - Chemical cleaning and activation

a) pripravi kupelj od 27 mL koja sadrži 24 mL trinatrij fosfata (TSP) i cilindričnu platinsku anodu u zaštićenoj napravi za oblaganje, a) prepare a 27 mL bath containing 24 mL of trisodium phosphate (TSP) and a cylindrical platinum anode in a protected device for coating,

b) miješaj i grij na 50°C, b) mix and heat to 50°C,

c) prenesi izvor u TSP kupelj i elektrolitički očisti izvor pri 3.1 volti i 50 miliampera struje tijekom 45 sekundi, c) transfer the source to the TSP bath and electrolytically clean the source at 3.1 volts and 50 milliamps of current for 45 seconds,

d) s udaljenosti ukloni sklop zavojnice-izvora iz kupelji i pohrani u zaštićenoj posudi koja sadrži destiliranu vodu, d) remotely remove the coil-source assembly from the bath and store it in a protected container containing distilled water,

e) pripravi aktivacijsku kupelj sa 75%-tnim H3PO4 u zaštićenoj napravi za oblaganje, e) prepare an activation bath with 75% H3PO4 in a protected device for coating,

f) miješaj i grij na 50°C, f) mix and heat to 50°C,

g) prenesi zavojnicu-izvor u H3PO4 kupelj i aktiviraj pri 3.0 volti, struji od 50 miliampera tijekom 30 sekundi, g) transfer the coil-source to the H3PO4 bath and activate at 3.0 volts, a current of 50 milliamps for 30 seconds,

h) primijeni ultrazvuk u destiliranoj vodi tijekom 1 minute, h) apply ultrasound in distilled water for 1 minute,

i) ostavi kupelj s ultrazvukom za ispitivanje Ru-106. i) leave the ultrasound bath for testing Ru-106.

VII. Oblaganje rutenij-106 zavojnice slojem kiselog zlata VII. Coating the ruthenium-106 coil with a layer of acidic gold

- Pripravi kupelj za oblaganje na slijedeći način: - Prepare the coating bath as follows:

a) postavi školjkastu posudu od 27 mL u zaštićenu napravu za oblaganje, a) place a 27 mL shell container in a protected coating device,

b) umetni cilindričnu platinsku elektrodu promjera 1 palac, b) insert a cylindrical platinum electrode with a diameter of 1 inch,

c) pipetiraj 24.0 mL otopine kiselog sloja zlata u posudu, c) pipet 24.0 mL of the acidic gold layer solution into the container,

d) miješaj kupelj s magnetskim miješalom i šipkom za miješanje. d) stir the bath with a magnetic stirrer and a stirring rod.

- Nanesi sloj zlata na slijedeći način: - Apply a layer of gold in the following way:

a) podesi izvor struje na 0.5 volti i poveži pozitivni odvod na anodu, a) set the current source to 0.5 volts and connect the positive drain to the anode,

e) prenesi izvor iz štita nad kupelj za oblaganje i poveži negativni odvod za vrh vretena, e) transfer the source from the shield over the coating bath and connect the negative drain to the top of the spindle,

f) spusti zavojnicu-izvor u kupelj za oblaganje, tako da zavojnica bude vertikalno i radijalno centrirana u odnosu na anodu, f) lower the coil-source into the coating bath, so that the coil is vertically and radially centered in relation to the anode,

g) odmah povećaj napon na 1.5 volta, a potom postupno diži napon do 3.0 volti tijekom 1 minute, g) immediately increase the voltage to 1.5 volts, and then gradually increase the voltage to 3.0 volts for 1 minute,

b) oblaži na 3.0 volti 1 minutu, b) cover at 3.0 volts for 1 minute,

c) izvadi izvor iz kupelji i pregledaj ga ispred crne podloge, kako bi se uvjerio da je zlato obložilo rutenij-106, c) take the source out of the bath and examine it in front of the black substrate, to make sure that the gold has coated ruthenium-106,

d) prenesi sklop zavojnice-izvora u zaštićenu posudu koja sadrži čistu destiliranu vodu, d) transfer the coil-source assembly into a protected container containing pure distilled water,

e) ukloni kupelj kiselog zlata iz zaštićene naprave za oblaganje. e) remove the acid gold bath from the protected plating device.

VIII. Konačni nadsloj Orosene zlata VIII. The final layer of Dew Gold

- Pripravi kupelj za nadslojavanje tvrdim zlatom na slijedeći način: - Prepare the bath for layering with hard gold as follows:

a) smjesti čistu školjkastu posudu od 27 mL u zaštićenu napravu za oblaganje, a) place a clean 27 mL shell container in a protected coating device,

b) pipetiraj 24.0 mL otopine zlata za oblaganje Orosene999, od Technic, Inc., u posudu i umetni cilindričnu platinsku anodu promjera 1 palac, b) pipet 24.0 mL of Orosene999 plating gold solution, from Technic, Inc., into the container and insert a 1 inch diameter cylindrical platinum anode,

c) miješaj kupelj magnetskim miješalom i šipkom za miješanje. c) stir the bath with a magnetic stirrer and a stirring bar.

- Provedi oblaganje na slijedeći način: - Carry out coating in the following way:

a) podesi napon izvora struje na 2.6 volti, a) set the voltage of the current source to 2.6 volts,

b) podesi struju na 9 miliampera, b) set the current to 9 milliamps,

c) prenesi zavojnicu-izvor iz štita, s pneumatskom napravom sa stezaljkom, na mjesto iznad posude za oblaganje, c) transfer the coil-source from the shield, with a pneumatic device with a clamp, to a place above the coating container,

d) poveži pozitivni odvod s anodom, a negativni odvod s vrhom vretena, d) connect the positive lead to the anode, and the negative lead to the top of the spindle,

e) spusti zavojnicu-izvor u kupelj za oblaganje, tako da bude vertikalno i radijalno centrirana u odnosu na anodu, e) lower the coil-source into the plating bath, so that it is vertically and radially centered in relation to the anode,

f) oblaži 20 minuta pri 9 miliampera, f) apply for 20 minutes at 9 milliamperes,

g) ukloni iz kupelji za oblaganje i prenesi u štit. g) remove from the plating bath and transfer to the shield.

IX. Naknadno čišćenje izvora rutenija-106 IX. Subsequent cleaning of the ruthenium-106 source

- prenesi zavojnicu-izvor iz štita u kupelj s ultrazvukom koja sadrži 0.1%-tnu Contrad-70 otopinu za čišćenje, - transfer the coil-source from the shield to an ultrasound bath containing 0.1% Contrad-70 cleaning solution,

- izloži ultrazvuku 2 minute, - expose to ultrasound for 2 minutes,

- izloži zavojnicu-izvor tijekom 2 minute u kupelji koja sadrži destiliranu vodu - expose the coil-source for 2 minutes in a bath containing distilled water

- ostavi posude iz kupelji s ultrazvukom za ispitivanje Ru-106. - leave containers from the ultrasound bath for testing Ru-106.

X. Čišćenje izvora i cikličko testiranje X. Source cleaning and cyclic testing

- provedi postupak cikličkog testiranja prema Guidant protokolu - carry out the cyclic testing procedure according to the Guidant protocol

- provedi testove brisanjem na zavojnici žice nakon cikličkog testiranja, kako bi se provjerilo da na površini radioaktivnog izvora nema zagađenja (vrijednosti manje od 5 nCi). - perform wiping tests on the coil of wire after cyclic testing, in order to verify that there is no contamination on the surface of the radioactive source (values less than 5 nCi).

Primjer 14 Example 14

Priprava rutenij-106 izvora na žici vodiču katetera Preparation of a ruthenium-106 source on a catheter guide wire

Ovaj postupak opisuje materijale, tehnike i procese potrebne za izradu zataljenog radioaktivnog izvora na žici vodiču katetera. This procedure describes the materials, techniques, and processes required to fabricate a concealed radioactive source on a catheter guidewire.

SIGURNOSNE NAPOMENE SAFETY NOTES

OPREZ: tijekom provođenja slijedećih koraka postoji opasnost od izlaganja jakom zračenju i/ili kontaminaciji. Prije provođenja postupka obvezna je uporaba rukavica, laboratorijskih ogrtača i štitnika za ruke. Ovaj postupak smije izvoditi uvježbano osoblje koje je sposobno što je više moguće umanjiti izlaganje zračenju, vlastito i svojih suradnika, koje nosi i/ili koristi svu dozimetrijsku i sigurnosnu opremu i slijedi sve postupke za zaštitu od zračenja. Naročito je važno trajno motrenje postupka zbog visokih polja zračenja, kontaminacije rubova pokrivala za glavu i drugih površina. Tijekom postupka treba periodički uzimati obriske i ispitati ih pomoću gm brojača s otvorenim prozorom ili tekuće scintilacije ako je potrebna visoka učinkovitost brojenja. Radovi koji obuhvaćaju proizvodnju veće količine žice vodiča s rutenijem-106 kao izvorom moraju se provoditi u vrućoj komori. CAUTION: During the following steps there is a risk of exposure to strong radiation and/or contamination. Before carrying out the procedure, it is mandatory to use gloves, laboratory coats and hand protectors. This procedure may be performed by trained personnel who are able to minimize their own and their co-workers' exposure to radiation as much as possible, who wear and/or use all dosimetric and safety equipment and follow all radiation protection procedures. Continuous monitoring of the procedure is particularly important due to high radiation fields, contamination of the edges of headgear and other surfaces. During the procedure, swabs should be taken periodically and examined using an open-window gm counter or liquid scintillation if high counting efficiency is required. Work involving the production of large quantities of conductor wire with ruthenium-106 as a source must be carried out in a hot chamber.

SVOJSTVA ZRAČENJA PROPERTIES OF RADIATION

Oblik raspada: Ru-106 beta raspad Decay form: Ru-106 beta decay

kćerinski Rh-106 beta, gama raspad daughter Rh-106 beta, gamma decay

Poluživot: 366.5 dana Half-life: 366.5 days

Osnovne energije: Basic energies:

roditeljski Ru-106 parental Ru-106

beta: 39.6 keV 100% beta: 39.6 keV 100%

kćerinski Rh-106 daughter's Rh-106

beta: 3.55 MeV 67.2% beta: 3.55 MeV 67.2%

3.1 MeV 11.3% 3.1 MeV 11.3%

2.44 MeV 12.3% 2.44 MeV 12.3%

2.0 MeV 3.1% 2.0 MeV 3.1%

gama: 0.512 MeV 19.1% gamma: 0.512 MeV 19.1%

ostalo the rest

IZVOR RADIOAKTIVNOSTI SOURCE OF RADIOACTIVITY

Ru-106 se proizvodi neutronskom fisijom urana-235 u reaktoru i procesira iz potrošenih uranskih šipki koje su služile kao gorivo. Procesirani nuklid se kupuje preko tvrtke Chemotrade (Rusija). Ru-106 is produced by neutron fission of uranium-235 in a reactor and processed from spent uranium rods that served as fuel. The processed nuclide is purchased through Chemotrade (Russia).

7.0 OPREMA I MATERIJALI 7.0 EQUIPMENT AND MATERIALS

7.1 Oprema 7.1 Equipment

7.1.1 Prijenosni GM brojač, Ludlum model br. 3, ili odgovarajući 7.1.1 Portable GM counter, Ludlum model no. 3, or corresponding

7.1.2 Mini pločice za grijanje/miješanje 7.1.2 Mini heating/mixing plates

7.1.3 Izvor istosmjerne struje, Hewlett Packard 3012A, ili odgovarajući 7.1.3 DC power source, Hewlett Packard 3012A, or equivalent

7.1.4 0-250 mikrolitarski Pipetman s nastavcima od 10 i 100 mikrolitara 7.1.4 0-250 microliter Pipetman with 10 and 100 microliter attachments

7.1.5 Kalibrirani Sartorius balans, ili ekvivalent 7.1.5 Calibrated Sartorius balance, or equivalent

7.1.6 Capintec ionska komora, kalibrirana 7.1.6 Capintec ion chamber, calibrated

7.1.7 Obični olovo-pleksi štit za posude za oblaganje/sklop vrućih ploča i čepovi za posude 7.1.7 Plain Lead Plexiglas Shield for Lining Vessels/Hot Plate Assembly and Vessel Plugs

7.1.8 Peristaltička crpka i cijev 7.1.8 Peristaltic pump and pipe

7.1.9 Pneumatički sustav vođenja sa stezaljkom 7.1.9 Pneumatic guide system with clamp

7.1.10 Obični sklop žičanog svitka i kalema 7.1.10 Simple wire coil and spool assembly

7.1.11 Obični olovo-pleksi štitovi za C-konuse 7.1.11 Ordinary lead-plexi shields for C-cones

7.1.12 Mikroskop s adapterom za polaroidnu kameru 7.1.12 Microscope with adapter for Polaroid camera

7.1.13 Polaroidna kamera za mikroskopiranje 7.1.13 Polaroid camera for microscopy

7.2 Materijali 7.2 Materials

7.2.1 1 mL pipetor, tip za uranjanje 7.2.1 1 mL pipettor, immersion type

7.2.2 Čaše od 50, 100, 250 i 400 mL 7.2.2 Glasses of 50, 100, 250 and 400 mL

7.2.3 Pokrovi od satnog stakla 7.2.3 Hour glass covers

7.2.4 Poli pipete od 1, 5 i 10 mL 7.2.4 Poly pipettes of 1, 5 and 10 mL

7.2.5 Bulbus pipetora 7.2.5 Bulbus pipetora

7.2.6 Poli boce od 60 i 125 mL 7.2.6 Poly bottles of 60 and 125 mL

7.2.7 Poli pipete za prijenos 7.2.7 Poly transfer pipettes

7.2.8 Dvanaestopalačna kliješta 7.2.8 Duodenal forceps

7.2.9 Posudice od 1 dram i čepovi s vijcima 7.2.9 Containers of 1 dram and screw caps

7.2.10 Štitovi od olova i olovnog stakla 7.2.10 Lead and lead glass shields

7.2.11 Platinske anode, cilindrične, promjera 1.25 i 2.5 cm, 2.0 cm visine 7.2.11 Platinum anodes, cylindrical, diameter 1.25 and 2.5 cm, height 2.0 cm

7.2.12 pH papir uskog raspona, 1-2.5 7.2.12 pH paper narrow range, 1-2.5

7.2.13 Magnetske šipke za miješanje, 1/8’’ x 1/2‘’ 7.2.13 Magnetic stir bars, 1/8'' x 1/2''

7.2.14 Vinil, lateks cijev 7.2.14 Vinyl, latex pipe

7.2.15 Prstenasti stalak sa stezaljkom 7.2.15 Ring stand with clamp

7.2.17 Q-vrškovi 7.2.17 Q-peaks

7.2.18 Poli konusi za centrifugiranje od 50 mL 7.2.18 Poly cones for centrifugation of 50 mL

7.2.19 Poli jahači za vaganje 7.2.19 Pole riders for weighing

7.2.20 12, 16, 20, 27 mL školjkaste posude i čepovi 7.2.20 12, 16, 20, 27 mL shell containers and caps

7.3 Kemikalije 7.3 Chemicals

7.3.1 Otopina sulfamske kiseline/natrij sulfamata, 45-50 g/L, pH 1.50-1.80 7.3.1 Sulfamic acid/sodium sulfamate solution, 45-50 g/L, pH 1.50-1.80

7.3.2 Metanol čistoće za reagens 7.3.2 Methanol of reagent grade

7.3.3 Technic sloj kiselog zlata, ili odgovarajuća zamjena, 0.25 troy oz. po galonu 7.3.3 Technic layer of acid gold, or suitable substitute, 0.25 troy oz. per gallon

7.3.4 6 M HCl 7.3.4 6 M HCl

7.3.5 Milli-Q voda, ili odgovarajuća zamjena 7.3.5 Milli-Q water, or a suitable substitute

7.3.6 Otopina nosača rutenija 7.3.6 Ruthenium carrier solution

7.3.7 Rutenij-106 nuklid, koncentriran u 6-8 M HCl 7.3.7 Ruthenium-106 nuclide, concentrated in 6-8 M HCl

7.3.8 Technic Orosene999 otopina za oblaganje zlatom, 1 galon 7.3.8 Technic Orosene999 Gold Plating Solution, 1 gallon

7.3.9 Aquasol® LSC smjesa 7.3.9 Aquasol® LSC mixture

8.0 DOBIVANJE ZAVOJNICE S RUTENIJEM-106 8.0 OBTAINING A COIL WITH RUTHEnium-106

8.1 PRIPRAVLJANJE SKLOPA ZAVOJNICE 8.1 PREPARATION OF THE COIL ASSEMBLY

8.1.1 Provjeri broj modela, oblik i dimenzije žica i zavojnica kako bi osigurao da su ispravne 8.1.1 Check the model number, shape and dimensions of the wires and coils to ensure they are correct

8.1.2 POZORNO pregledaj vreteno i zavojnice. Posljednjih 6 cm vrha žice na vretenu mora biti ravno, bez čvorova i oštrih savinuća. Navoji moraju biti čvrsto namotani, bez praznina ili izobličenih odsječaka. 8.1.2 Carefully inspect the spindle and coils. The last 6 cm of the tip of the wire on the spindle must be straight, without knots and sharp bends. Threads must be tightly wound, without gaps or distorted sections.

8.1.3 Ispitaj krajnji odsječak zavojnice pod mikroskopom uz povećanje 30x. Zavojnica treba biti pritegnuta, s jednoliko raspoređenim namotajima, bez čvorova i izobličenja. Konačni izgled treba biti vrlo sjajan i gladak. 8.1.3 Examine the end section of the coil under a microscope with 30x magnification. The coil should be tight, with uniformly distributed windings, without knots and distortion. The final look should be very shiny and smooth.

8.2 ČIŠĆENJE I AKTIVIRANJE ŽIČANE ZAVOJNICE 8.2 CLEANING AND ACTIVATION OF THE WIRE COIL

8.2.1 Stavi 1 cm duljine 7.5 mil I.D. poliimidne cijevi na vreteno i smjesti pokraj završne kugle vretena. Potom, sklizni zavojnicu od platina/nikla na žicu vretena promjera 7 mil. Konačno, sklizni 8-10 cm duljine 7.5-8 mil I.D. poliimidne cijevi nad zavojnicu. Otkliži zavojnicu i dugačku poliimidnu cijev najmanje 4 cm od poliimidne čahure u blizini završne kugle na vretenu, za slijedeće korake čišćenja, 8.2.2-8.2.4. 8.2.1 Place a 1 cm length of 7.5 mil I.D. polyimide tube on the spindle and place next to the end ball of the spindle. Next, slip a platinum/nickel coil onto a 7 mil diameter spindle wire Finally, slip an 8-10 cm length of 7.5-8 mil I.D. polyimide tubes over the coil. Slip the coil and the long polyimide tube at least 4 cm away from the polyimide sleeve near the end ball on the spindle, for the next cleaning steps, 8.2.2-8.2.4.

8.2.2 Isperi vreteno i zavojnicu metanolom. Smjesti vreteno u školjkastu posudu od 27 mL koja sadrži 8 g trinatrij fosfata otopljenog u 24 mL vode, grijane na 50°C. Pridrži vreteno malom hvataljkom. 8.2.2 Rinse the spindle and coil with methanol. Place the spindle in a 27 mL beaker containing 8 g of trisodium phosphate dissolved in 24 mL of water heated to 50°C. Hold the spindle with small pliers.

8.2.3 Pripoji crveni odvod (+) na anodu, a crni odvod (-) na vreteno. Katodno očisti vreteno strujom od 50 miliampera tijekom 30 sekundi. Isperi vreteno s milli-Q H2O. 8.2.3 Connect the red lead (+) to the anode, and the black lead (-) to the spindle. Cathodically clean the spindle with a current of 50 milliamps for 30 seconds. Wash the spindle with milli-Q H2O.

8.2.4 Stavi 24 mL svježe otopine 75%-tnog H3PO4 u čistu školjkastu posudu od 27 mL i zagrij kupelj na 50°C. Umetni čistu platinsku anodu od 1’’. Pripoji crveni odvod (+) na anodu, a crni odvod (-) na vreteno. 8.2.4 Place 24 mL of fresh 75% H3PO4 solution in a clean 27 mL beaker and heat the bath to 50°C. Insert a 1" pure platinum anode. Connect the red lead (+) to the anode, and the black lead (-) to the spindle.

8.2.5 Spusti vreteno u kupelj i katodno aktiviraj vreteno pri 50 mA tijekom 30 sekundi. Ukloni i isperi vreteno s milli-Q H2O. 8.2.5 Lower the spindle into the bath and cathodically activate the spindle at 50 mA for 30 seconds. Remove and wash the spindle with milli-Q H2O.

8.2.6 Otkliži platinsku zavojnicu na njen položaj za oblaganje na vretenu, nasuprot odsječka poliimidne čahure u blizini završne kugle. Pomoću super-ljepila, pričvrsti vrh dugačke poliimidne cijevi za vreteno. 8.2.6 Slide the platinum coil into its plating position on the spindle, opposite the section of the polyimide sleeve near the end ball. Using super glue, attach the tip of the long polyimide tube to the spindle.

8.2.7 Isperi zavojnicu metanolom, osuši i pripravi sklop u kupelji za oblaganje s trinatrij fosfatom, oblikovanoj kao u 8.2.2, i zagrij na 50°C. Pričvrsti crveni (+) odvod na platinsku anodu, a crni (-) na vreteno. Katodno očisti zavojnicu na 3.0 volta tijekom 1 min. Ukloni i dobro isperi s milli-Q H2O. 8.2.7 Wash the coil with methanol, dry and prepare the assembly in a trisodium phosphate plating bath, shaped as in 8.2.2, and heat to 50°C. Attach the red (+) lead to the platinum anode and the black (-) lead to the spindle. Cathodically clean the coil at 3.0 volts for 1 min. Remove and rinse well with milli-Q H2O.

8.2.8 Pripravi 75%-tnu otopinu H3PO4 u školjkastoj posudi od 27 mL s malom šipkom za miješanje i platinskom anodom. Pripoji crveni odvod (+) na anodu, a crni odvod (-) na vreteno. Katodno aktiviraj zavojnicu na 3.0 volta u 75%-tnoj H3PO4 grijanoj na 50°C, 1 minutu. 8.2.8 Prepare a 75% solution of H3PO4 in a 27 mL beaker with a small stir bar and a platinum anode. Connect the red lead (+) to the anode, and the black lead (-) to the spindle. Cathodically activate the coil at 3.0 volts in 75% H3PO4 heated to 50°C for 1 minute.

8.2.9 Ukloni i isperi zavojnicu s milli-Q H2O i pohrani u posudi koja sadrži milli-Q H2O. 8.2.9 Remove and rinse the coil with milli-Q H2O and store in a container containing milli-Q H2O.

8.2.10 Primijeni 6 slojeva Micro-štita na završnu kuglu kako bi osigurao površinu od nerđajućeg čelika. Ostavi sušiti (1 minutu svaki sloj) i isperi sklop zavojnice s milli-Q H2O, te pohrani u svježoj milli-Q H2O. 8.2.10 Apply 6 coats of Micro-Shield to the final ball to provide a stainless steel surface. Allow to dry (1 minute each layer) and rinse coil assembly with milli-Q H2O, and store in fresh milli-Q H2O.

8.2.11 Uzmi sklop kalema, ukloni plastični ovoj i allen vijak. Umetni bliži kraj vretena tako da se oblaže kroz rupu u otvoru kalema od prednjeg otvora. Povuci vreteno kroz otvor tako da ostaviš 4 palca duljine vrha vretena (i zavojnice) izložene iza otvora kalema. 8.2.11 Take the spool assembly, remove the plastic wrap and allen screw. Insert the near end of the spindle so that it lines up through the hole in the spool opening from the front opening. Pull the spindle through the opening leaving 4 inches of the length of the spindle tip (and coil) exposed behind the spool opening.

8.2.12 Držeći žicu kažiprstom nasuprot kalemu na mjestu gdje ulazi u rupu, čvrsto namotaj žicu vodič ili zavojnicu žice vodiča na kalem. 8.2.12 Holding the wire with your index finger opposite the spool where it enters the hole, tightly wind the guide wire or coil of guide wire onto the spool.

8.2.13 Čvrsto držeći zavojnicu, sklizni plastični ovoj na kalem, tako da drugi kraj žice vodiča prođe kroz središnju rupu allen vijka. Osiguraj pomoću allen vijka. Ostavi otprilike 1-2 palca žice da viri kroz šupljinu vijka na pokrovu kalema. 8.2.13 Holding the coil firmly, slide the plastic wrap onto the coil so that the other end of the conductor wire passes through the center hole of the Allen screw. Secure with an allen screw. Leave about 1-2 inches of wire sticking out through the screw hole on the spool cover.

8.2.14 Pohrani urez vretena/zavojnicu u čistu milli-Q vodu, kako bi se površina održala vlažnom. 8.2.14 Store the spindle notch/coil in clean milli-Q water to keep the surface moist.

8.3 ELEKTROODLAGANJE SLOJA KISELOG ZLATA NA ZAVOJNICU 8.3 ELECTRODEPOSITION OF AN ACID GOLD LAYER ON THE COIL

8.3.1 Pripravi kupelj za sloj kiselog zlata otapanjem 12.0 ili 24.0 mL Technic otopine sloja kiselog zlata u čistoj školjkastoj posudi od 10 ili 27 mL. Umetni čistu platinsku cilindričnu anodu, 1/2’’ promjera, 3/4’’ duljine zavojnice, i čistu mini posudu za miješanje 1/8’’ x 1/2’’. Pričvrsti kupelj nad ploču za miješanje. Zagrij kupelj na temperaturu 50°C. 8.3.1 Prepare the acid gold plating bath by dissolving 12.0 or 24.0 mL of Technic acid gold plating solution in a clean 10 or 27 mL clamshell container. Insert a clean platinum cylindrical anode, 1/2'' diameter, 3/4'' coil length, and a clean 1/8'' x 1/2'' mini mixing bowl. Attach the bath over the mixing plate. Heat the bath to a temperature of 50°C.

8.3.2 Dovedi sklop žice/kalema nad kupelj za oblaganje. Poveži crni odvod (-) s krajem vretena, a crveni odvod (+) s platinskim anodnim odvodom. 8.3.2 Bring the wire/spool assembly over the plating bath. Connect the black lead (-) to the end of the spindle and the red lead (+) to the platinum anode lead.

8.3.3 Podesi izvor struje na vrijednost od 0.5 volti. Spusti stezaljku, umećući vrh žice kroz središnju rupu u pokrovu kupelji do unutar 1/8’’ od vrha magnetske šipke za miješanje. Podesi magnetsko miješalo na 2.5-3. Vrh žice mora biti centriran vertikalno i lateralno u odnosu na platinsku anodu. 8.3.3 Adjust the current source to a value of 0.5 volts. Lower the clamp, inserting the tip of the wire through the center hole in the bath cover to within 1/8'' of the tip of the magnetic stir bar. Set the magnetic stirrer to 2.5-3. The tip of the wire must be centered vertically and laterally in relation to the platinum anode.

8.3.4 Polako povećavaj napon do 1.5 volti tijekom 30 sekundi, a potom povećaj na 3 volta. Oblaži 60 sekundi. 8.3.4 Slowly increase the voltage to 1.5 volts for 30 seconds, then increase to 3 volts. Cover for 60 seconds.

8.3.5 Ukloni sklop kalema žice iz kupelji za oblaganje. Obrati pozornost na boju; žica treba biti jasno zlatne boje. Isperi vrh žice s H2O i pohrani u milli-Q H2O. 8.3.5 Remove the wire spool assembly from the plating bath. Pay attention to the color; the wire should be clearly golden in color. Rinse the wire tip with H2O and store in milli-Q H2O.

8.3.6 Ispitaj boju zavojnice pod H1104 mikroskopom na povećanju 30 puta. Zabilježi zapažanja. Sloj zlata treba biti savršeno gladak i sjajan. Ne smije biti čvorića, izbočina ili rupa na sloju. 8.3.6 Examine the color of the coil under the H1104 microscope at 30x magnification. Record your observations. The gold layer should be perfectly smooth and shiny. There should be no knots, bumps or holes in the layer.

PROVEDI OVO ISKLJUČIVO NA HLADNO ILI UZ PROTOTIPE U TRAGOVIMA! DO THIS ONLY COLD OR WITH PROTOTYPES IN TRACK!

NAPOMENA: Ako se žice ne oblažu radiorutenijem odmah, pohrani sklop vreteno/zavojnica u milli-Q vodi. NOTE: If the wires are not coated with radioruthenium immediately, store the spindle/coil assembly in milli-Q water.

8.4 PRIPRAVA RUTENIJA-106 ZA ELEKTROODLAGANJE 8.4 PREPARATION OF RUTHEnium-106 FOR ELECTRODEPOSITION

8.4.1 Prenesi traženu količinu Ru-106, +20%, u posudu od 1 dram i ispitaj u CRC12R kalibriranoj Capintec ionskoj izmjenjivačkoj komori u H1111. Pretpostavljena vrijednost obloženosti je ~80%. 8.4.1 Transfer the required amount of Ru-106, +20%, to a 1 dram container and test in a CRC12R calibrated Capintec ion exchange chamber in H1111. The assumed coverage value is ~80%.

OPREZ: Koristi 2’’ štit od olovnog stakla i 12’’ kliješta, kako bi smanjio izloženost tijela i ruku. CAUTION: Uses a 2'' lead glass shield and 12'' pliers to minimize body and hand exposure.

8.4.2 Pripravi čistu školjkastu posudu od 10 ili 27 mL kao kupelj za oblaganje i stavi u posudu mini šipku za miješanje i platinsku zavojničku elektrodu. Duljina zavojnice anode je 1.9 cm (3/4’’), promjer je 1.25 cm (1/2’’); mora biti vertikalna i postranično centrirana u posudi. 8.4.2 Prepare a clean 10 or 27 mL shell vessel as a plating bath and place a mini stir bar and a platinum coil electrode in the vessel. The length of the anode coil is 1.9 cm (3/4''), the diameter is 1.25 cm (1/2''); it must be vertical and laterally centered in the container.

Dodaj 8.0 ili 24.0 mL H2O u posudu i obilježi visinu meniska crtom na posudi. Odbaci vodu. Add 8.0 or 24.0 mL of H2O to the container and mark the height of the meniscus with a line on the container. Discard the water.

8.4.3 Smjesti posudu unutar sklopa sita za oblaganje. Proksimalni kraj vretena treba se protezati oko 1-2’’ iza pokrova sklopa. 8.4.3 Place the container inside the coating screen assembly. The proximal end of the spindle should extend about 1-2'' behind the assembly cover.

8.4.4 Postavi ulazni dio crpnog sustava u posudu za ispitivanje koja sadrži Ru-106. Postavi izlazni dio u plastičnu čašu od 50 mL. 8.4.4 Place the inlet part of the pumping system in the test vessel containing Ru-106. Place the exit portion in a 50 mL plastic beaker.

8.4.5 Prenesi Ru-106 u čašu iz posude za ispitivanje pomoću Master Flex peristaltičke crpke i cijevi. Dodaj 3 mL 6M HCl u posudu od drama i prenesi ovu otopinu u istu čašu pomoću crpke. Zaštiti čašu uporabom olovo/pleksi štita ili olovnog stakla. 8.4.5 Transfer Ru-106 into the beaker from the test vessel using a Master Flex peristaltic pump and tubing. Add 3 mL of 6M HCl to the beaker and transfer this solution to the same beaker using a pump. Protect the glass using a lead/plexi shield or lead glass.

8.4.6 Ponovi ispiranje kao u 8.4.5, prenoseći u istu čašu. Očitaj praznu čašu na uređaju Ludlum, model 3, s otvorenim beta prozorom. Ako očitavanje prelazi 300 mr/h na aparatu Ludlum model 3, uz otvoren beta prozor, treba provesti još jedno ispitivanje, uz prenošenje u čašu od 50 mL. 8.4.6 Repeat the rinsing as in 8.4.5, transferring to the same beaker. Read the empty glass on the Ludlum, model 3, with the beta window open. If the reading exceeds 300 mr/h on the Ludlum model 3 apparatus, with the beta window open, another test should be performed, transferring to a 50 mL beaker.

8.4.7 Smjesti čašu koja sadrži Ru-106 na mini vruću pločicu i ispari otopinu Ru-106 gotovo do suhoće uz podešenost na “3-3.5”. Razrijedi 3.0 mL ili 12.0 mL sulfamske kiseline u 50 mL C-konusa i prenesi peristaltičkom crpkom u čašu da bi preveo Ru-106 u rutenij sulfamat. Ostavi da se RuCl3 potpuno otopi. 8.4.7 Place the beaker containing Ru-106 on a mini hot plate and evaporate the Ru-106 solution almost to dryness with the setting at “3-3.5”. Dilute 3.0 mL or 12.0 mL of sulfamic acid in a 50 mL C-cone and transfer with a peristaltic pump to a beaker to convert Ru-106 to ruthenium sulfamate. Allow the RuCl3 to dissolve completely.

8.4.8 Umetni izlaz cijevi kroz otvor poklopca posude za oblaganje i prenesi otopljeni Ru-106 u komoru za oblaganje pomoću peristaltičke crpke. 8.4.8 Insert the outlet of the tube through the cover opening of the plating vessel and transfer the dissolved Ru-106 into the plating chamber using a peristaltic pump.

8.4.9 Otpipetiraj 3.0 mL ili 6.0 mL otopine sulfamske kiseline u čašu za ispiranje, ovisno o veličini posude za oblaganje. Prenesi ispirak u komoru za oblaganje pomoću peristaltičke crpke. 8.4.9 Pipette 3.0 mL or 6.0 mL of the sulfamic acid solution into a wash beaker, depending on the size of the plating dish. Transfer the wash to the coating chamber using a peristaltic pump.

8.4.10 Ponovi korake ispiranja sa drugih 2.0 mL ili 6.0 mL sulfamske kiseline. Prenesi u komoru za oblaganje. Ukupni volumen u komori za oblaganje je 8.0 mL ili 24.0 mL. 8.4.10 Repeat the washing steps with another 2.0 mL or 6.0 mL of sulfamic acid. Transfer to the coating chamber. The total volume in the coating chamber is 8.0 mL or 24.0 mL.

8.4.11 Provjeri volumen koji je prenesen u posudu za oblaganje; on treba biti na razini 8.0 ili 24.0 mL označenoj na posudi. Ako nije, dodaj još sulfamske kiseline da razina dođe do oznake. 8.4.11 Check the volume that was transferred to the coating container; it should be at the 8.0 or 24.0 mL level marked on the container. If not, add more sulfamic acid to bring the level up to the mark.

8.4.12 Provjeri postoji li u čaši ostatna aktivnost pomoću detektora Ludlum model 3, očitanje treba biti manje od 500 mr/h. 8.4.12 Check whether there is residual activity in the beaker using a Ludlum model 3 detector, the reading should be less than 500 mr/h.

8.5 ELEKTROODLAGANJE RUTENIJA-106 NA ZAVOJNICU 8.5 ELECTRODEPOSITION OF RUTHEnium-106 ON THE COIL

8.5.1 Miješaj otopinu rutenij-106 sulfamata u školjkastoj posudi na ploči za miješanje/grijanje tijekom 1-2 minute. Uzmi dva uzorka od 50 ili 200 μL iz kupelji nakon miješanja, koristeći Pipetman sa 1/2’’ štitom za ruke od olova/pleksi. Dopremi otopinu kroz ulaz za cijev u kapicu. Za uzorke koristi crne vršne posude od 1 dram. 8.5.1 Stir the solution of ruthenium-106 sulfamate in a beaker on a stirring/hot plate for 1-2 minutes. Take two 50 or 200 μL samples from the bath after mixing, using a Pipetman with a 1/2'' lead/Plexi hand shield. Feed the solution through the tube inlet into the cap. He uses 1 dram black top containers for samples.

NAPOMENA: Ne uzimaj volumene veće od 50 μL iz kupelji za oblaganje od 11 mL! NOTE: Do not take volumes greater than 50 μL from the 11 mL plating bath!

8.5.2 Ispitaj uzorke na Cal lab Capintec S/N 12819 ionskoj komori u H1111 uz fiksnu geometriju. Koristi dial-in faktor namijenjen za Ru-106. Korišteni dial-in faktor bio je 48. Zabilježi rezultate testa za oba uzorka. 8.5.2 Test samples on Cal lab Capintec S/N 12819 ion chamber in H1111 with fixed geometry. Uses dial-in factor intended for Ru-106. The dial-in factor used was 48. Record the test results for both samples.

8.5.3 Smjesti sklop kalema u pneumatsku štipaljku, tako da vrh gleda prema dolje, a da drugi kraj žice gleda od štipaljke. 8.5.3 Place the spool assembly in the pneumatic clip, with the tip facing down and the other end of the wire facing away from the clip.

Osiguraj kalem s pneumatskom štipaljkom i potom umetni odjeljak svitka žice kroz središnju rupu do dubine od 3.5 cm ili 1/8’’ iznad magnetske šipke za miješanje. Podesi žicu i elektrode tako da završni dio svitka žice bude centriran. Secure the coil with a pneumatic clamp and then insert the coil section of wire through the center hole to a depth of 3.5 cm or 1/8'' above the magnetic stir bar. Adjust the wire and electrodes so that the end of the coil of wire is centered.

Kraj svitka žice je oko 1/8’’ ispod dna anode. The end of the coil of wire is about 1/8'' below the bottom of the anode.

NAPOMENA: Ove su udaljenosti procijenjene i provedene odoka, kroz zaštitni sloj olovnog stakla. NOTE: These distances were estimated and carried out from outside, through the protective layer of leaded glass.

8.5.4 Podesi grijanje na “2.5” na vrućoj ploči, što odgovara temperaturi od -50°C. Podesi šipku za miješanje na “2.5-3”. Provjeri da šipka za miješanje ne dolazi u dodir s vrhom zavojnice. 8.5.4 Set the heating to “2.5” on the hot plate, which corresponds to a temperature of -50°C. Set the stir bar to “2.5-3”. Make sure the stir bar does not come into contact with the top of the coil.

NAPOMENA: Ove vruće ploče su prethodno ispitane na podešavanje temperature u loncu, pomoću termometra. NOTE: These hot plates have been previously tested to adjust the temperature in the pot, using a thermometer.

8.5.5 Pripoji crveni (+) odvod na platinsku elektrodu. Pripoji crni odvod (-) na kraj žice vretena. Podesi izvor struje na 14 miliampera-trajno. Oprezno spusti žicu/zavojnicu u kupelj za oblaganje pomoću pneumatske naprave. Kraj zavojnice treba biti 1/8’’ do 1/4’’ ispod dna anode. Oblaži 18 sati (preko noći). Zabilježi početno i završno vrijeme. 8.5.5 Connect the red (+) lead to the platinum electrode. Connect the black lead (-) to the end of the spindle wire. Set the current source to 14 milliamps-permanent. Carefully lower the wire/coil into the plating bath using the pneumatic device. The end of the coil should be 1/8'' to 1/4'' below the bottom of the anode. Cover for 18 hours (overnight). Record the start and end times.

8.5.6 Nakon dovršenja oblaganja, ukloni 2 x 1.0 mL uzorke iz kupelji i izbroji na H1111 CRC12R kalibriranoj Capintec ionskoj komori, uz istu geometriju kao i uzorci iz početne kupelji. Ako je obloženo >80% Ru-106, zaustavi postupak. Ako je vrijednost <80%, oblaži još 1-2 sata. 8.5.6 After plating is complete, remove 2 x 1.0 mL samples from the bath and count on an H1111 CRC12R calibrated Capintec ion chamber, using the same geometry as the samples from the initial bath. If >80% Ru-106 is coated, stop the process. If the value is <80%, apply another 1-2 hours.

Izračunaj postotak koji je obložen pomoću formule: Calculate the percentage that is coated using the formula:

[(br. u početnoj kupelji - br. u kupelji nakon zaustavljanja) / br. u početnoj kupelji] x 100 = %-tak obloženog dijela [(No. in the initial bath - No. in the bath after stopping) / No. in the initial bath] x 100 = % of the coated part

[(………………-………………) / …………… ] x 100 = …….% obloženog [(………………-………………) / …………… ] x 100 = …….% coated

8.5.7 Podigni sklop kalem/zavojnica iz kupelji pomoću pneumatske vodilice, povuci ulijevo i zaokreni vodilicu za 45°. Oprezno spusti izvor u prethodno postavljeni F štit koji sadrži školjkastu posudu od 27 mL punjenu s milli-Q H2O. Drži kalem kliještima od 12’’, otpusti peumatsku štipaljku i spusti kalem na vrat štita koji pridržava kalem izvora. 8.5.7 Lift the spool/coil assembly from the bath using the pneumatic guide, pull to the left and rotate the guide by 45°. Carefully lower the source into the previously placed F shield containing a 27 mL clamshell filled with milli-Q H2O. Hold the coil with 12" pliers, release the rubber clip and drop the coil onto the neck of the shield holding the source coil.

8.5.8 Umetni ulaznu poli liniju kroz ulaz u pokrovu do dna posude za oblaganje. Smjesti izlaznu poli liniju u oklopljeni spremnik za otpad. Koristeći peristaltičku crpku, prenesi otopinu kupelji u vrući otpad. 8.5.8 Insert the inlet poly line through the inlet in the cover to the bottom of the coating pan. Place the outgoing poly line in a shielded waste container. Using a peristaltic pump, transfer the bath solution to the hot waste.

8.5.9 Kao slijedeće, smjesti otpadnu liniju za izlaz u C-konus koji sadrži 27 mL H2O, uključi peristaltičku crpku u obrnutom smjeru i prenesi H2O u posudu s kupelji za oblaganje. Premjesti izlaznu liniju iz komore za oblaganje u obrnutu crpku za otpad niske razine, i crpi otopinu za ispiranje u spremnik za otpad niske razine. 8.5.9 Next, place the outlet waste line into a C-cone containing 27 mL of H2O, turn on the peristaltic pump in reverse, and transfer the H2O to the plating bath vessel. Move the outlet line from the coating chamber to the reverse low-level waste pump, and pump the rinse solution to the low-level waste tank.

8.5.10 Ukloni praznu ispranu kupelj za oblaganje Ru-106 i anodu iz sita za oblaganje/štita i smjesti u olovni štit. 8.5.10 Remove the empty rinsed Ru-106 plating bath and anode from the plating screen/shield and place in the lead shield.

8.5.11 Stavi ultrazvučnu kupelj sa štitom na vrhu na podlogu u blizini sita za oblaganje. Pomoću pneumatske stezaljke prenesi svitak žice iz F kalupa u školjkastu posudu od 20 mL ispunjenu 0.1%-tnom Contrad-70 otopinom za čišćenje koja je smještena u ultrazvučnu kupelj. Potopi odsječak žice i primijeni ultrazvuk na golu zavojnicu Ru-106 tijekom 1 minute. 8.5.11 Place the ultrasonic bath with the shield on top on the base near the coating screen. Using a pneumatic clamp, transfer the coil of wire from the F mold to a 20 mL beaker filled with 0.1% Contrad-70 cleaning solution placed in an ultrasonic bath. Submerge the wire section and apply ultrasound to the bare Ru-106 coil for 1 minute.

8.5.12 Prenesi zavojnicu-izvor natrag u F kalup koji sadrži školjkastu posudu od 27 mL ispunjenu s milli-Q H2O, pomoću pneumatske naprave. Ukloni čašu za ultrazvuk, poklopi je, smjesti je u 1/2’’ štit, uzmi je i ispitaj u H1111 Capintec CRC12R ionsku komoru. Korišten je dial-in faktor 48. 8.5.12 Transfer the source coil back into the F mold containing the 27 mL clamshell filled with milli-Q H2O, using a pneumatic device. Remove the ultrasound beaker, cover it, place it in the 1/2'' shield, take it and test it in the H1111 Capintec CRC12R ion chamber. A dial-in factor of 48 was used.

8.5.13 Stavi školjkastu posudu od 20 mL koja sadrži milli-Q H2O u ultrazvučnu kupelj. Pneumatski prenesi zavojnicu-izvor iz F štita u kupelj. Izloži ultrazvuku 1 minutu. Vrati zavojnicu-izvor u F kalup. Poklopi drugu čašu za ultrazvuk, obriši je, uzmi i ispitaj kao u koraku 8.5.12. 8.5.13 Place the 20 mL beaker containing milli-Q H2O in the ultrasonic bath. Pneumatically transfer the source coil from the F shield to the bath. Expose to ultrasound for 1 minute. Return the source coil to the F mold. Cover the second ultrasound cup, wipe it, take it and examine it as in step 8.5.12.

8.5.14 Stavi treću školjkastu posudu od 20 mL napunjenu s milli-Q H2O u ultrazvučnu kupelj. Pneumatski prenesi zavojnicu-izvor u ultrazvučnu kupelj i izloži ultrazvuku 1 minutu. Vrati zavojnicu-izvor u F štit/voda rezervoar. 8.5.14 Place the third 20 mL beaker filled with milli-Q H2O into the ultrasonic bath. Pneumatically transfer the source coil into the ultrasonic bath and expose to ultrasound for 1 minute. Return the source coil to the F shield/water tank.

8.5.15 Poklopi treću čašu za ultrazvuk, obriši, uzmi i ispitaj na način kao u koraku 8.5.11. 8.5.15 Cover the third ultrasound cup, wipe it, take it and examine it in the same way as in step 8.5.11.

8.5.16 Stavi školjkastu posudu od 27 mL koja sadrži 8 grama komercijalnog trinatrij fosfata otopljenog u 24 mL H2O i platinsku elektrodu promjera 1’’ u sito za oblaganje i zagrij na 50°C. Podesi brzinu magnetskog miješala na 2-2.5. 8.5.16 Place a 27-mL beaker containing 8 grams of commercial trisodium phosphate dissolved in 24 mL of H2O and a 1'' diameter platinum electrode in a coating sieve and heat to 50°C. Adjust the speed of the magnetic stirrer to 2-2.5.

8.5.17 Pripoji crveni odvod (+) na anodu, a crni odvod (-) na vreteno. Prenesi zavojnicu-izvor iz F štita u kupelj za oblaganje. Katodno očisti obloženu zavojnicu strujom od 50 miliampera tijekom 30 sekundi. Vrati zavojnicu-izvor u F štit koji sadrži čistu čašu od 27 mL napunjenu s milli-Q H2O. 8.5.17 Connect the red lead (+) to the anode, and the black lead (-) to the spindle. Transfer the source coil from the F shield to the plating bath. Cathodically clean the coated coil with a current of 50 milliamps for 30 seconds. Return the source coil to the F shield containing a clean 27 mL beaker filled with milli-Q H2O.

8.5.18 Stavi 24 mL svježe 75%-tne otopine H3PO4 u čistu školjkastu posudu od 27 mL i zagrij kupelj na 50°C. Umetni čistu platinsku elektrodu promjera 1’’. Podesi brzinu miješanja na 2-2.5 ako je potrebno. Pričvrsti crveni odvod (+) na anodu, a crni odvod (-) na vreteno. 8.5.18 Place 24 mL of fresh 75% H3PO4 solution in a clean 27 mL beaker and heat the bath to 50°C. Insert a pure platinum electrode with a diameter of 1''. Adjust the mixing speed to 2-2.5 if necessary. Attach the red lead (+) to the anode, and the black lead (-) to the spindle.

8.5.19 Pneumatski prenesi Ru-106 zavojnicu u kupelj za oblaganje i katodno aktiviraj zavojnicu-izvor pri 50 mA tijekom 30 sekundi. Vrati zavojnicu u F polje. Odbaci kupelj u spremnik za otpad niske razine. 8.5.19 Pneumatically transfer the Ru-106 coil into the plating bath and cathodically activate the source coil at 50 mA for 30 seconds. Return the coil to the F field. Discard the bath in a low-level waste container.

8.6 ELEKTROODLAGANJE SLOJA KISELOG ZLATA NA ŽICU VODIČ OBLOŽENU RUTENIJEM-106 8.6 ELECTRODEPOSITION OF AN ACID GOLD LAYER ON A GUIDE WIRE COATED WITH RUTHEnium-106

8.6.1 Stavi čistu školjkastu posudu od 10 ili 27 mL koja sadrži 8 ili 24 mL prethodno zagrijanog sloja kiselog zlata i anodu u sito/štit za oblaganje. Podesi miješalo na 2-2.5. 8.6.1 Place a clean 10 or 27 mL beaker containing 8 or 24 mL of preheated acid gold layer and anode into the plating screen/shield. Adjust the mixer to 2-2.5.

8.6.2 Poveži crveni odvod na anodu, a crni odvod na distalni kraj žice vretena. Podesi napon na 0.5 volti, potom prenesi zavojnicu-izvor iz F kalupa u komoru za oblaganje s pneumatskom napravom. 8.6.2 Connect the red lead to the anode and the black lead to the distal end of the spindle wire. Adjust the voltage to 0.5 volts, then transfer the source coil from the F mold to the coating chamber with the pneumatic device.

8.6.3 Polako povećavaj napon tijekom 1 minute na 1.5 volti. Konačno, povećaj napon na 3 volta tijekom 1 minute i održavaj na toj vrijednosti 60 sekundi. Zaustavi oblaganje nakon 60 sekundi. 8.6.3 Slowly increase the voltage over 1 minute to 1.5 volts. Finally, increase the voltage to 3 volts for 1 minute and hold at that value for 60 seconds. Stop coating after 60 seconds.

8.6.4 U��vrsti komad crnog papira na stražnju stijenku točno iza sita za oblaganje. Izvadi zavojnicu-izvor iz kupelji za oblaganje i promotri ju kroz štit od olovnog stakla. Nad crnom podlogom djelovat će zlatno obojena. 8.6.4 Attach a piece of black paper to the back wall just behind the lining screen. He removed the source coil from the plating bath and viewed it through the lead glass shield. A gold-colored one will look good on a black background.

8.6.5 Vrati zavojnicu-izvor u F štit koji sadrži čistu čašu od 27 mL napunjenu s milli-Q H2O. 8.6.5 Return the source coil to the F shield containing a clean 27 mL beaker filled with milli-Q H2O.

8.6.6 Prenesi zavojnicu-izvor iz F štita u ultrazvučnu kupelj koja sadrži 0.1%-tnu Contrad-70 otopinu u posudu od 5 dram (20 mL). Izloži ultrazvuku 2 minute, kako bi uklonio tragove čestica onečišćenja sa zavojnice i vretena. Prenesi izvor natrag u F štit. 8.6.6 Transfer the source coil from the F shield to an ultrasonic bath containing 0.1% Contrad-70 solution in a 5 dram (20 mL) container. Expose it to ultrasound for 2 minutes to remove traces of dirt particles from the coil and spindle. Transfer the source back to the F shield.

8.6.7 Poklopi ultrazvučnu posudu, ukloni iz kupelji, obriši, uzmi i ispitaj u H1111 Capintec CRC12R ionskoj komori. Zabilježi rezultate. 8.6.7 Cover the ultrasonic vessel, remove from the bath, wipe, take and test in the H1111 Capintec CRC12R ion chamber. Record the results.

8.7 ELEKTROODLAGANJE ZAVRŠNOG SLOJA ZLATA NA ŽICU VODIČ 8.7 ELECTRODEPOSITION OF THE FINAL LAYER OF GOLD ON THE GUIDE WIRE

8.7.1 Dodaj 8.0 ili 24 mL OROSENE 999 otopine za oblaganje zlatom u čistu posudu za oblaganje. Pokreni motor miješala na brzinu 2-2.5 tako da se šipka za miješanje vrlo sporo okreće. Motor ploče za miješanje dat će dovoljno topline. 8.7.1 Add 8.0 or 24 mL of OROSENE 999 gold plating solution to a clean plating container. Start the mixer motor on speed 2-2.5 so that the mixing rod turns very slowly. The mixing plate motor will provide enough heat.

8.7.2 Podesi napon izvora struje na 2.6 volti. Poveži crveni (+) odvod s anodom, a crni odvod (-) s vretenom. Spusti zavojnicu u kupelj pomoću pneumatske štipaljke i oblaži strujom od 6 do 10 miliampera tijekom 15 do 30 minuta, ovisno o željenoj debljini nadsloja. Ovim bi se vremenom oblaganja i strujom trebalo odložiti 0.1 do 0.2 mil (0.0001 do 0.0002 palca) sloja zlata. 8.7.2 Set the power source voltage to 2.6 volts. Connect the red (+) lead to the anode and the black (-) lead to the spindle. Lower the coil into the bath using a pneumatic clamp and cover with a current of 6 to 10 milliamps for 15 to 30 minutes, depending on the desired thickness of the overlay. This plating time and current should deposit 0.1 to 0.2 mil (0.0001 to 0.0002 inch) of gold layer.

8.7.3 Isključi izvor struje i ploču za miješanje/grijanje, odvoji odvode i pneumatski podigni sklop žica/kalem. Promatraj krajnji odsječak žice kroz olovo/pleksi štit prema crnoj pozadini. Boja treba biti jasno zlatna. 8.7.3 Turn off the power source and mixing/heating plate, disconnect the leads and pneumatically lift the wire/coil assembly. Observe the end of the wire through the lead/plexi shield towards the black background. The color should be clear golden.

8.7.4 Obrađenu žicu izloži ultrazvuku u čistoj školjkastoj posudi od 20 mL ispunjenoj s 0.1%-tnom Contrad-70 tijekom 1 minute. Prenesi izvor u F štit koji sadrži čistu milli-Q H2O u školjkastoj posudi od 27 mL. 8.7.4 Expose the treated wire to ultrasound in a clean 20 mL shell container filled with 0.1% Contrad-70 for 1 minute. Transfer the source to an F shield containing pure milli-Q H2O in a 27 mL beaker.

8.7.5 Poklopi ultrazvučnu posudu, obriši ju, uzmi i podvrgni ispitivanju na H1111 Capintec CRC12R. Zabilježi očitanja. 8.7.5 Cover the ultrasonic vessel, wipe it, take it and test it on the H1111 Capintec CRC12R. Record the readings.

8.7.6 Stavi školjkastu posudu od 20 mL ispunjenu s H2O u ultrazvučnu kupelj. Prenesi zavojnicu-izvor u kupelj i izloži ultrazvuku 1 minutu. Premjesti zavojnicu-izvor u F štit. 8.7.6 Place a 20 mL beaker filled with H2O into the ultrasonic bath. Transfer the coil-source to the bath and expose to ultrasound for 1 minute. Move the source coil to the F shield.

8.7.7 Poklopi ultrazvučnu posudu, obriši ju, uzmi i podvrgni ispitivanju na H1111 Capintec CRC12R. Zabilježi očitanja. 8.7.7 Cover the ultrasonic vessel, wipe it, take it and test it on the H1111 Capintec CRC12R. Record the readings.

8.7.8 Primijeni ionsku komoru na Ru-106 zavojnicu-izvor obloženu zlatom, i to H1111 CRC12R ionsku komoru s poboljšanom dial podešenošću. Korišteni dial bio je 24. Zabilježi očitanja. 8.7.8 Apply an ion chamber to a gold-plated Ru-106 source coil, namely an H1111 CRC12R ion chamber with an improved dial setting. The dial used was 24. Record the readings.

8.8 PRIPRAVA ZA PRIJENOS VRETENA I CIKLIČKO TESTIRANJE 8.8 PREPARATION FOR SPINDLE TRANSMISSION AND CYCLIC TESTING

8.8.1 Prije prijenosa zavojnice-izvora u mehanički oklop za prijenos, treba provesti slijedeće preliminarno testiranje brisevima. Uzmu se četiri krpice za brisanje s Q-vršcima natopljenima metanolom, potom 4 konačna obriska sa svake strane zavojnice. Obrisci se priprave za LSC i dobivene vrijednosti se zabilježe. Ako vrijednost bilo kojeg obriska prelazi 5 x 10-3 μCi, treba provesti daljnje čišćenje. 8.8.1 Before transferring the source coil into the mechanical transfer case, the following preliminary swab testing should be performed. Four methanol-soaked Q-tip swabs are taken, followed by 4 final swabs on each side of the coil. Wipes are prepared for LSC and the values obtained are recorded. If the value of any swab exceeds 5 x 10-3 μCi, further cleaning should be performed.

8.8.2 Provedi testove obriscima na hladnoj površini žice na vretenu. U slučaju kontaminacije, ove se površine moraju čistiti dok rezultati obrisaka ne postanu manji od 1 x 10-3 μCi. 8.8.2 Carry out scratch tests on the cold surface of the wire on the spindle. In case of contamination, these surfaces must be cleaned until swab results are less than 1 x 10-3 μCi.

8.8.3 Konačni obrisci se izlože 4 mL koktela u LSC mini-posudama. Popuni analitičku zahtjevnicu i odnesi u kalibracijski laboratorij s posudama. 8.8.3 The final swabs are exposed to 4 mL of cocktail in LSC mini-containers. Fill out the analytical request form and take it to the calibration laboratory with the containers.

8.8.4 Prenesi F štit koji sadrži dovršeni izvor u mehanički oklop za prijenos od vretena do vretena. 8.8.4 Transfer the F shield containing the completed source to the spindle-to-spindle transfer mechanical shield.

8.8.5 Izvedi stres opterećenja na uzorcima žica pomoću srčanog modela sustavnog ciklusa. 8.8.5 Derive stress loads on wire specimens using the cardiac model of the systemic cycle.

Primjena Application

U slijedećem se tekstu razmatraju prednosti uporabe Ce-144 ili Ru-106 u ICRD u poredbi s ICRD koje sadrže Co-57 ili Ir-192. The following text discusses the advantages of using Ce-144 or Ru-106 in ICRD compared to ICRD containing Co-57 or Ir-192.

a) S Ce-144 ili Ru-106, potrebno je samo oko 5-10 mCi da bi se dobila potrebna doza zračenja na 1 i 4 mm u arteriji uz odgovarajući 4:1 omjer, u poredbi s 1300 do 2300 mCi Co-57 ili 100 mCi Ir-192. Prema tome, učinkovitost ovog pristupa ima prednost u pogledu optimiziranja ciljne doze. a) With Ce-144 or Ru-106, only about 5-10 mCi are needed to deliver the required radiation dose at 1 and 4 mm in the artery with a corresponding 4:1 ratio, compared to 1300 to 2300 mCi of Co-57 or 100 mCi Ir-192. Therefore, the efficiency of this approach has an advantage in terms of optimizing the target dose.

b) Tvari koje emitiraju fotone, kao što su Co-57 ili Ir-192, odašilju znatnu dozu izvan bolesnika, u nazočnog liječnika ili tehnologe, pa je potrebno da oni nose nezgrapne štitove ili napuste laboratorij za kateterizaciju. Vanjska doza za Ce-144 ili Ru-106 se procjenjuje na 0.5 do 5 mR na udaljenosti 30 cm od žice izvora, tijekom 15 minuta izlaganja. Procjenjuje se kako je vanjska doza Ir-192 veća za 200 mR na istoj udaljenosti od žice izvora. b) Photon-emitting substances, such as Co-57 or Ir-192, transmit a significant dose beyond the patient to the attending physician or technologist, requiring them to wear cumbersome shields or leave the catheterization laboratory. The external dose for Ce-144 or Ru-106 is estimated at 0.5 to 5 mR at a distance of 30 cm from the source wire, during 15 minutes of exposure. It is estimated that the external dose of Ir-192 is higher by 200 mR at the same distance from the source wire.

c) Uporabom Ce-144 ili Ru-106, okolna zdrava tkiva ili organi dobivaju mnogo manju dozu u poredbi s dozama koje bi dobili od Co-57 ili Ir-192. Obilje fotona energije 122 keV do 468 keV koje ovi nuklidi odašilju je mnogo prodornije, što dovodi do njihovog vrlo neučinkovitog djelovanja na udaljenosti 1 do 4 mm, jer mnogo više svoje energije ostavljaju u udaljenijim anatomskim područjima. Tome nasuprot, snažne beta čestice energije od 3 do 3.5 MeV koje emitiraju Ce-144 ili Ru-106 djeluju gotovo isključivo u ciljnom rasponu od 1 do 4 mm, dakle na mjestu gdje se nalazi plak i tkivo arterije. c) By using Ce-144 or Ru-106, the surrounding healthy tissues or organs receive a much lower dose compared to the doses they would receive from Co-57 or Ir-192. The abundance of photons of energy 122 keV to 468 keV emitted by these nuclides is much more penetrating, which makes them very ineffective at a distance of 1 to 4 mm, because they leave much more of their energy in more distant anatomical areas. In contrast, the strong beta particles of energy from 3 to 3.5 MeV emitted by Ce-144 or Ru-106 act almost exclusively in the target range of 1 to 4 mm, that is, in the place where plaque and artery tissue are located.

d) U poredbi s Sr-90 koji emitira beta čestice od 2.2 MeV, prodornije beta čestice od 3-3.5 MeV koje emitiraju Ce-144 ili Ru-106 imaju veći raspon dostatan za prodiranje do vanjske arterijske stijenke, dok slabije beta zračenje Sr-90 daje omjer doze manji od optimalnog, tj. da omjer na 1 mm i na 4 mm bude 4:1. Stoga je potrebno više aktivnosti, što potencijalno predozira endotelno tkivo stijenke manjih arterija. Pored toga, obilno je dokumentirana otrovnost Sr-90 čiji je poluživot 29 godina, a nakuplja se u kostima; u slučaju prsnuća izvora, nuklid može doći do koštanog tkiva bolesnika, što ima za posljedicu značajnu dozu kojom se ozrači koštana srž. d) Compared to Sr-90, which emits beta particles of 2.2 MeV, the more penetrating beta particles of 3-3.5 MeV emitted by Ce-144 or Ru-106 have a greater range sufficient to penetrate the outer arterial wall, while the weaker beta radiation of Sr- 90 gives a dose ratio less than optimal, i.e. that the ratio at 1 mm and at 4 mm should be 4:1. Therefore, more activity is required, which potentially overloads the endothelial tissue of the wall of smaller arteries. In addition, the toxicity of Sr-90, whose half-life is 29 years and accumulates in bones, is abundantly documented; in case of bursting of the source, the nuclide can reach the patient's bone tissue, which results in a significant dose that irradiates the bone marrow.

e) Dugačka vremena poluživota Ce-144 (285 dana) i Ru-106 (1.02 godine) omogućuju produljenu uporabu (izvori za opetovanu uporabu) u današnjim intrakoronarnim napravama za zračenje, u poredbi s napravom koja sadrži Ir-192, čiji je poluživot samo 74 dana. e) The long half-lives of Ce-144 (285 days) and Ru-106 (1.02 years) allow extended use (reusable sources) in today's intracoronary radiation devices, compared to devices containing Ir-192, whose half-life is only 74 days.

U slijedećem se tekstu razmatraju prednosti uporabe Ce-144 ili Ru-106 u ICRD u poredbi s ICRD koje sadrže P-32. Fosfor-32, beta-emiter s energijom završne točke od 1.7 MeV također se koristi u ICRD. Način podrazumijeva uporabu kateterskog balona koji je ispunjen P-32 nuklidom otopljenim u fiziološkoj otopini. Nedostaci ovog pristupa su: (a) beta energija nije uvijek dostatna za pružanje optimalne doze na udaljenosti od 4-6 mm, posebno ako arterija sadrži ovapnjeli plak; (b) potencijal za curenje nuklida iz balona u krvotok bolesnika je viši nego pri uporabi krute, zataljene žice kao izvora; (c) kratak poluživot (14 dana) P-32 znači kako se izvori izrađeni iz ovog radionuklida ne mogu ponovno koristiti ili su namijenjeni odbacivanju, što ih čini mnogo skupljima. The following text discusses the advantages of using Ce-144 or Ru-106 in ICRD compared to ICRD containing P-32. Phosphorus-32, a beta-emitter with an endpoint energy of 1.7 MeV is also used at ICRD. The method involves the use of a catheter balloon that is filled with P-32 nuclide dissolved in physiological solution. The disadvantages of this approach are: (a) beta energy is not always sufficient to deliver the optimal dose at a distance of 4-6 mm, especially if the artery contains calcified plaque; (b) the potential for leakage of nuclides from the balloon into the patient's bloodstream is higher than when using a rigid, shielded wire as a source; (c) the short half-life (14 days) of P-32 means that sources made from this radionuclide cannot be reused or are intended for disposal, which makes them much more expensive.

Razvidno je kako su u svjetlu gore izloženog moguće brojne modifikacije i varijacije. Stoga treba uvidjeti kako se, unutar područja opisanog patentnim zahtjevima, izum može primjenjivati na načine različite od ovdje specifično opisanih. It is clear that numerous modifications and variations are possible in light of the above. It should therefore be appreciated that, within the scope of the claims, the invention may be applied in ways other than those specifically described herein.

Claims (10)

1. Nova naprava za intrakoronarno liječenje zračenjem, naznačena time, što sadrži: (a) žicu, (b) izvor zračenja odložen ili adsorbiran na žicu, pri čemu je izvor zračenja Ce-144 ili Ru-106, (c) prvu biokompatibilnu tvar koji povezuje izvor zračenja i žicu.1. A new device for intracoronary radiation treatment, characterized by the fact that it contains: (a) wire, (b) radiation source deposited or adsorbed on the wire, where the radiation source is Ce-144 or Ru-106, (c) the first biocompatible substance connecting the radiation source and the wire. 2. Naprava prema Zahtjevu 1, naznačena time, što je žica od metala odabranog između: cirkonija, titana, aluminija, nikla, bakra, grafita, 304 nerđajućeg čelika ili nerđajućeg čelika obloženog bakrom.2. Device according to Claim 1, characterized in that the wire is made of a metal selected from: zirconium, titanium, aluminum, nickel, copper, graphite, 304 stainless steel or copper-clad stainless steel. 3. Naprava prema Zahtjevu 1, naznačena time, što je izvor zračenja elektrolitički nanesen na žicu.3. Device according to Claim 1, characterized in that the radiation source is electrolytically applied to the wire. 4. Naprava prema Zahtjevu 1, naznačena time, što je izvor zračenja nanesen na žicu oksidacijsko-redukcijskim postupkom.4. Device according to Claim 1, characterized in that the radiation source is applied to the wire by an oxidation-reduction process. 5. Naprava prema Zahtjevu 1, naznačena time, što je izvor zračenja adsorbiran na žicu.5. Device according to Claim 1, characterized in that the radiation source is adsorbed on the wire. 6. Naprava prema Zahtjevu 1, naznačena time, što je prva biokompatibilna tvar odabrana između: poliimida, poliamida, polivinil klorida, zlata, nikla i cijevi koja se skuplja na vrućini.6. Device according to Claim 1, characterized in that the first biocompatible substance is selected from: polyimide, polyamide, polyvinyl chloride, gold, nickel and heat shrinkable tube. 7. Naprava prema Zahtjevu 1, naznačena time, što je intrakoronarna naprava za zračenje pričvršćena za žicu vodič, pri čemu je žicu vodič moguće umetnuti u kateter.7. The device according to Claim 1, characterized in that the intracoronary radiation device is attached to a guide wire, wherein the guide wire can be inserted into the catheter. 8. Naprava prema Zahtjevu 7, naznačena time, što druga biokompatibilna tvar oblaže intrakoronarnu napravu za zračenje pričvršćenu za žicu vodič.8. The device according to Claim 7, characterized in that the second biocompatible substance coats the intracoronary radiation device attached to the guide wire. 9. Nova naprava za intrakoronarno liječenje zračenjem, naznačena time, što se sastoji od: (a) žice, koja je dobivena istiskivanjem (engl. extruding), a sastoji se od: (ai) izvora zračenja odabranog između Ce-144 i Ru-106; i (aii) metala odabranog između bakra, aluminija, srebra, zlata i nikla.9. A new device for intracoronary radiation treatment, characterized by the fact that it consists of: (a) wire, which was obtained by extruding, and consists of: (ai) radiation source selected between Ce-144 and Ru-106; and (aii) a metal selected from copper, aluminum, silver, gold and nickel. 10. Postupak za pripravu intrakoronarne naprave za zračenje, koji se sastoji od: (a) nanošenja radioaktivnog izvora na jedan odjeljak metalne žice, pri čemu je radioaktivni izvor Ce-144 ili Ru-106, i (b) vezanje nanesenog radioaktivnog izvora s prvom biokompatibilnom tvari.10. Procedure for the preparation of an intracoronary device for radiation, which consists of: (a) applying a radioactive source to one section of the metal wire, wherein the radioactive source is Ce-144 or Ru-106, and (b) binding the applied radioactive source with the first biocompatible substance.
HRP980537 1998-10-06 1998-10-06 Intra-coronary radiation devices containing ce-144 or ru-106 HRP980537A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP980537 HRP980537A2 (en) 1998-10-06 1998-10-06 Intra-coronary radiation devices containing ce-144 or ru-106

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP980537 HRP980537A2 (en) 1998-10-06 1998-10-06 Intra-coronary radiation devices containing ce-144 or ru-106

Publications (1)

Publication Number Publication Date
HRP980537A2 true HRP980537A2 (en) 2000-04-30

Family

ID=10946827

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP980537 HRP980537A2 (en) 1998-10-06 1998-10-06 Intra-coronary radiation devices containing ce-144 or ru-106

Country Status (1)

Country Link
HR (1) HRP980537A2 (en)

Similar Documents

Publication Publication Date Title
US6254552B1 (en) Intra-coronary radiation devices containing Ce-144 or Ru-106
US6475644B1 (en) Radioactive coating solutions methods, and substrates
US6638205B1 (en) Radioactive medical device for radiation therapy
DE19724229C1 (en) Radioactive stents used in the production of implant for restenosis prophylaxis
US6413271B1 (en) Method of making a radioactive stent
US20020077520A1 (en) Device and method for dilating and irradiating a vascular segment or body passageway
US20020169353A1 (en) Radioactively coated devices
US5713828A (en) Hollow-tube brachytherapy device
JP4588141B2 (en) Medical radioactive iodine 125 small radiation source and method for producing the same
US5938604A (en) Radioactive needle for biopsy localization and a method for making the radioactive needle
WO2002078785A9 (en) A brachytherapy device and method of use
HRP980595A2 (en) Radioactive seeds for brachytherapy and a process for making the same
US6143431A (en) Production of Palladium-103
HRP980537A2 (en) Intra-coronary radiation devices containing ce-144 or ru-106
JP2003516172A (en) Radioactive coating device for restenosis prevention and method for producing the same
JP2004538109A (en) Radioimplantable devices and methods and devices for making and using the same
CA2326075C (en) Radioactive medical device for radiation therapy
EP1208874B1 (en) Radioactive medical device for radiation therapy
Zhang et al. Preparation and characterization of radioactive Co/188Re stents intended for lung cancer treatment using an electrodeposition method
JP2006326311A (en) Radioactive medical implant and its manufacturing method
CZ382399A3 (en) Stents, radioactive coated on surface, process of their preparation and their use in prophylaxis of restenosis

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20001110

Year of fee payment: 3

ODBC Application rejected