HRP960407A2 - Planar or quasi-planar waveguide - Google Patents

Planar or quasi-planar waveguide Download PDF

Info

Publication number
HRP960407A2
HRP960407A2 HR19532780.2A HRP960407A HRP960407A2 HR P960407 A2 HRP960407 A2 HR P960407A2 HR P960407 A HRP960407 A HR P960407A HR P960407 A2 HRP960407 A2 HR P960407A2
Authority
HR
Croatia
Prior art keywords
dielectric
waveguide
arrangement
creating
field
Prior art date
Application number
HR19532780.2A
Other languages
Croatian (hr)
Inventor
Habil Lutz Rothe
Original Assignee
Pates Technology Patentverwalt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pates Technology Patentverwalt filed Critical Pates Technology Patentverwalt
Publication of HRP960407A2 publication Critical patent/HRP960407A2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Optical Integrated Circuits (AREA)
  • Waveguides (AREA)

Description

Izum se odnosi na jedan dielektrički, posebno planarni ili kvazi-planarni vodič valova, koji ima bar jedan dielektrični raspored materijala. The invention relates to a dielectric, especially planar or quasi-planar waveguide, which has at least one dielectric arrangement of materials.

Kao planarni vodiči valova označavaju se ravanski izrađeni oblici vodiča, kod kojih je jedna dielektrična noseča ploča (supstrat) prevučena metalnim provodničkim strukturama (vodiči u obliku traka ili proreza) ili koja na metalnoj osnovnoj ploči nosi dielektrične strukture (dielektrični slijepi vodiči). U takvom obliku radi se o otvorenim provodničkim strukturama. Kod planarnih vodiča treba prenijeti na iste visoke zahtjeve točnosti. Međutim, uporabom tehnike foto-nagrizanja ovi zahtjevi se mogu ispuniti na jednostavan, jeftin i točan način. Tehnika planarnih vodiča pruža, u usporedbi s tehnikom šupljih vodiča, određene prednosti. Tako je, npr., moguće integrirati na jednoj nosećoj ploči više planarnih provodničkih komponenata uz uštedu prostora i težine. Zbog kratkih spojeva između pojedinih komponenata smanjuju se i provodnički gubici, kao i broj spojnih elemenata, a time i broj spojnih mjesta. Poluprovodnički elementi također se mogu ugrađivati na jednostavniji način. Uz to planarne strukture često imaju višu jednoznačnu širinu propusnog opsega od šupljih provodničkih struktura. Planar waveguides are defined as planar forms of conductors, in which one dielectric carrier plate (substrate) is coated with metal conductor structures (conductors in the form of strips or slots) or which carries dielectric structures on a metal base plate (dielectric blind conductors). In such a form, it is an open conductor structure. With planar conductors, the same high accuracy requirements must be met. However, by using the photo-etching technique, these requirements can be met in a simple, inexpensive and accurate way. The technique of planar conductors offers, in comparison with the technique of hollow conductors, certain advantages. Thus, for example, it is possible to integrate several planar conductor components on one carrier board while saving space and weight. Due to short connections between individual components, conductor losses are reduced, as well as the number of connecting elements, and thus the number of connection points. Semiconductor elements can also be installed in a simpler way. In addition, planar structures often have a higher uniform bandwidth than hollow conductor structures.

Nedostatak takvih planarnih vodič valova leži, međutim, u tome, što prolazni otpor valova ovisi o izabranim dimenzijama provodnika na supstratu, kao i od dielektričnog supstrata, kao takvog, i što se nakon proizvodnje vodiča valova prolazni otpor valova više ne može mijenjati. Zadatak ovog izuma bio je u tome, da se ostvari jedan dielektrični vodič valova, čiji bi se prolazni otpor valova mogao nakon izrade vodiča valova mijenjati, odn. podešavati. The disadvantage of such planar waveguides lies, however, in the fact that the transient resistance of the waves depends on the chosen dimensions of the conductors on the substrate, as well as on the dielectric substrate, as such, and that after the production of the waveguides, the transient resistance of the waves cannot be changed anymore. The task of this invention was to create a dielectric waveguide, whose transient wave resistance could be changed after the waveguide is made, or adjust.

Prema izumu, ovaj zadatak je riješen svojstvima naznačenog dijela zahtjeva 1, kao i svojstvima naznačenog dijela zahtjeva 2. Preporučljivo je da sredstva koja stvaraju polje leže kod oba oblika izvođenja direktno na vodiču valova, pri čemu su sredstva za stvaranje polja galvanski odvojena od metalnih provodničkih struktura i/ili od osnovne ploče vodiča valova. Mijenjanjem permeabiliteta i/ili permetiviteta odn. dielektričnih svojstava dielektričnog supstrata, odn. dielektričnog rasporeda materijala između osnovne ploče i provodničkih struktura, pomoću magnetskih polja ili električkih polja, moguće je mijenjati prolazni otpor valova dielektričnog vodiča valova po odsječcima, u ovisnosti o jačini svakog pojedinog proizvedenog polja. Od do sada pasivnog elektronskog sastavnog dijela, vodiča valova, postaje jedan aktivni sastavni dio s prednostima, kod kojeg je pomoću sredstava za stvaranje polja moguće ciljano mijenjati prijenosno ponašanje vodiča valova. According to the invention, this task is solved by the properties of the indicated part of claim 1, as well as by the properties of the indicated part of claim 2. It is recommended that the field-creating means lie in both embodiments directly on the waveguide, whereby the field-creating means are galvanically separated from the metal conductors structure and/or from the waveguide base plate. By changing permeability and/or permittivity or dielectric properties of the dielectric substrate, or dielectric arrangement of material between the base plate and the conductor structures, using magnetic fields or electric fields, it is possible to change the passing resistance of the waves of the dielectric waveguide by sections, depending on the strength of each produced field. From the hitherto passive electronic component, the waveguide, it becomes an active component with advantages, where it is possible to change the transmission behavior of the waveguide in a targeted manner using means for creating fields.

U jednom daljem preporučljivom obliku izvođenja, graniči s vodičem valova jedan sloj, pri čemu taj sloj nosi sredstva za stvaranje polja. Posebno dobro upravljanje prolaznog otpora valova kod vodiča valova dobija se kad su u graničnom sloju sredstva za stvaranje polja raspoređena u obliku matrica ili rešetke. Primjenom više sredstava za stvaranje polja moguće je prolazni otpor valova podesiti najtočnije na određeni opseg. In a further preferred embodiment, a layer adjoins the waveguide, wherein the layer carries the field generating means. A particularly good control of transient wave resistance in waveguides is obtained when the means for creating the field are arranged in the form of matrices or grids in the boundary layer. By applying several means to create the field, it is possible to adjust the passing resistance of the waves most accurately to a certain range.

Kod posebno preporučljivih oblika izvođenja su sredstva za stvaranje polja indukcioni kalemi ili kondenzatori. Pri tome indukcioni kalemi imaju m navoja, a indukcioni kalemi su tako prostorno raspoređeni, da dijelovi magnetskih polja stvorenih prolaskom električne struje kroz indukcione kaleme bar djelomično prolaze kroz dielektrični raspored materijala. Pritom je preporučljivo da su indukcioni kalemi vezani s jednom upravljačkom elektronikom, pri čemu se pomoću te upravljačke elektronike podešava kroz svaki indukcioni kalem struja prethodno zadate jačine, čime se magnetsko polje stvoreno indukcionim kalemima određuje po pravcu i snazi. In particularly recommended embodiments, the means for creating the field are induction coils or capacitors. At the same time, the induction coils have m threads, and the induction coils are spatially distributed in such a way that parts of the magnetic fields created by the passage of electric current through the induction coils at least partially pass through the dielectric arrangement of the material. At the same time, it is recommended that the induction coils are connected to one control electronics, whereby the current of a previously set strength is adjusted through each induction coil, which determines the direction and strength of the magnetic field created by the induction coils.

Kod primjene kondenzatora kao sredstava za stvaranje polja, preporučljivo je da se pravac elektroničkog vektora polja, koje se stvara kondenzatorima postavi suštinski paralelno strukturnoj ravnini vodiča valova. Međutim, moguće je zamisliti, da kondenzatori stvaraju električno polje upravno na strukturnu ravninu vodiča valova, ako je to uvjetovano izborom primijenjenog dielektričkog supstrata. When using capacitors as a means of creating a field, it is recommended that the direction of the electronic vector of the field, which is created by the capacitors, is placed essentially parallel to the structural plane of the waveguide. However, it is possible to imagine that the capacitors create an electric field perpendicular to the structural plane of the waveguide, if this is conditioned by the choice of the applied dielectric substrate.

Posebno je preporučljivo, da se otpori prolaza valova na jednom takvom dielektričnom vodiču valova mogu međusobno podesiti u dva međusobno granična područja, odn. odsječka tako da se za val, koji se širi od prvog područja prema drugom, postigne određeni faktor refleksije r. Također je preporučljivo, ako se dužina L, širina B i/ili iznos otpora prolaza valova ZL tog odsječka, odn. područja može podešavati pomoću sredstava za stvaranje polja na takav način, da se za podešavanje dužine L, širine B i/ili iznosa otpora prolaza talasa ZL koriste samo ona sredstva za stvaranje polja, koja stvaraju samo po jedno polje prethodno određene jačine, a čija polja prodiru djelomično kroz dielektrični raspored materijala vodiča valova u području odn. odsječku. It is especially recommended that the resistances to the passage of waves on such a dielectric waveguide can be mutually adjusted in two mutually bordering areas, or section so that a certain reflection factor r is achieved for the wave, which spreads from the first area to the second. areas can be adjusted using means for creating fields in such a way that only those means for creating fields are used to adjust the length L, width B and/or the amount of resistance to the passage of waves ZL, which create only one field each of a previously determined strength, and whose fields penetrate partially through the dielectric arrangement of the waveguide material in the area or department.

Dielektrični raspored materijala odn. dielektrični supstrat osnovne ploče, između strukture i osnovne ravni, preporučljivo je da su od nekog giromagnetnog ili giroelektričnog materijala, pri čemu je vrijednost dielektrične konstante Σr dielektričnog rasporeda materijala u opsegu od 3 do 5, čime je moguće postići posebno visoku kvalitetu vodiča valova u oblasti mikrovalova. The dielectric arrangement of the material or the dielectric substrate of the base plate, between the structure and the base plane, is recommended to be made of some gyromagnetic or gyroelectric material, where the value of the dielectric constant Σr of the dielectric arrangement of the material is in the range of 3 to 5, which makes it possible to achieve a particularly high quality of waveguides in the area microwaves.

Također je preporučljivo da se raspored materijala sastoji od sloja itrij - željezo - granat. It is also recommended that the arrangement of the material consists of a layer of yttrium - iron - garnet.

Ovakav sloj od itrij - željezo - granat odlikuje se time, da pri djelovanju stalnog magnetskog polja dolazi do promjene permeabiliteta odn. tenzora permeabiliteta u području kroz koje prodire magnetsko polje, čime se također može mijenjati otpor prolaza valova kroz vodič valova. This layer of yttrium - iron - garnet is characterized by the fact that when a constant magnetic field is applied, the permeability changes or of the permeability tensor in the area through which the magnetic field penetrates, which can also change the resistance of the waves passing through the waveguide.

Kod primjene sloja od itrij - željezo - granat preporučljivo je da se između dielektričnog rasporeda materijala, odn. sloja od itrij - željezo - granat, debljine Lggg. Osnovna ravnina preporučljivo je od bakra, koja je nanijeta na stranu od itrij -željezo - granat sloja od galij - gadolinij - granat. Između dielektričnog rasporeda materijala, odn. itrij - željezo-granat preporučljivo je nanijeti kvarcni sloj debljine Lq, pri čemu se strukturna ravnina može izraditi iz kvarcnog sloja fotolitografskim postupkom. When applying a layer of yttrium - iron - garnet, it is recommended that between the dielectric arrangement of the material, or layer of yttrium - iron - garnet, thickness Lggg. The base plane is preferably made of copper, which is applied to the side of the yttrium-iron-garnet layer of gallium-gadolinium-garnet. Between the dielectric arrangement of the material, or yttrium - iron-garnet, it is recommended to apply a quartz layer of thickness Lq, whereby the structural plane can be made from the quartz layer by photolithographic process.

Preporučljivo je da su sredstva za stvaranje polja smještena na suprotnoj strani strukturne ploče, u odnosu na osnovnu ravninu, pri čemu su sredstva za stvaranje polja odvojene jednim izolacionim slojem, posebno slojem polistirola, od sprovodne osnovne ravnini na galvanski način. Preporučljivo je da sredstva za stvaranje polja budu u obliku jednog tankog sloja ili da se nalaze na istom. It is recommended that the means for creating the field are located on the opposite side of the structural board, in relation to the base plane, whereby the means for creating the field are separated by an insulating layer, especially a layer of polystyrene, from the conductive base plane in a galvanic way. It is recommended that the means for creating the field be in the form of one thin layer or that they are located on the same.

U jednom također preporučljivom obliku izvođenja, upravljačka elektronika sredstava za stvaranje polja smještena na suprotnoj strani u odnosu na sprovodnu osnovnu ravninu, na kojoj se pak nalazi tanka ravnina sa sredstvima za stvaranje polja, pri čemu upravljačka elektronika stoji uvijek u električnoj vezi sa sredstvima za stvaranje polja. Ovakvo rješenje je posebno kompaktno i jeftino za proizvodnju. Direktnim nalijeganjem upravljačke elektronike na sredstva za stvaranje polja u navedenom tankom sloju, reduciraju se spojne veze između upravljačke elektronike i sredstva za stvaranje polja na minimum. In one also recommended form of execution, the control electronics of the means for creating the field located on the opposite side in relation to the conductive base plane, on which there is a thin plane with the means for creating the field, whereby the control electronics is always in electrical connection with the means for creating fields. This solution is particularly compact and cheap to manufacture. By directly abutting the control electronics on the field-creating means in the specified thin layer, the connection connections between the control electronics and the field-creating means are reduced to a minimum.

Takav jedan vodič valova je magnetski ili električno upravljivi refleksiono-prigušni član. Ovaj je također preporučljiv kao magnetski ili električno upravljana brana za opseg, odn. kao filter. Pritom se koristi efekt, da je otpor prolazu valova dielektričnog vodiča valova ovisan o frekvenciji. Ako se između dva vodič valova poduzima prilagođavanje, to se uvijek može izvršiti samo za utan frekventni opseg. Za frekvencije van ovog opsega do sada takvo prilagođavanje nije bilo moguće nakon izrade filtera. Mogučnošču mijenjanja otpora prolazu valova pomoću sredstava za stvaranje polja, moguće je na jednostavan način postići prilagođavanje dva dielektrična vodiča valova za različite frekvencije, jedan za drugim, pomoću istog vodiča valova. Time je omogućeno da se pomoću vodiča valova prema izumu sprovede i spektralna analiza. One such waveguide is a magnetically or electrically controllable reflection-damping member. This is also recommended as a magnetically or electrically operated scope dam, or as a filter. In doing so, the effect is used that the resistance to the passage of waves of a dielectric waveguide depends on the frequency. If an adjustment is made between two waveguides, this can always only be done for the inner frequency range. For frequencies outside this range, such adjustment was not possible until now after creating the filter. By being able to change the resistance to the passage of waves by means of field generation, it is possible to achieve in a simple way the adaptation of two dielectric waveguides for different frequencies, one after the other, using the same waveguide. This makes it possible to perform spectral analysis using the waveguide according to the invention.

Takav vodič valova može se osim toga koristiti, npr., kao promjenjivi poprečni kapacitet ili serijska induktivnost kod jednog sklopa vodiča valova. K tome električni vodič valova imaj i jedan trakasti odsečak, koji na svom kraju ima širinu B1, a u srednjem dijelu širinu B2. Za postizanje nekog određenog poprečnog kapaciteta ili serijskog induktiviteta, pomoću sredstava za stvaranje polja se vrši promjena efektivne širine B2 srednjeg odsječka, na odgovarajući način. Such a waveguide can also be used, for example, as a variable transverse capacitance or series inductance in a waveguide circuit. In addition, the electric waveguide has a strip section, which has a width of B1 at its end, and a width of B2 in the middle part. To achieve a certain transverse capacity or series inductance, the effective width B2 of the middle section is changed, in an appropriate manner, by means of field creation.

Za smanjivanje širine B2 se pomoću sredstava za stvaranje polja stvara polje unaprijed određene jačine, pri čemu polja u rubnim dijelovima dielektričnog rasporeda materijala u srednjem odsječku prodiru kroz isti bar djelomično, čime se u rubnim dijelovima srednjeg odsječka trakastog provodnog odsječka može podešavati otpor prolazu valova, čija se vrijednost kreće od nule do beskonačnog. In order to reduce the width of B2, a field of predetermined strength is created using means for creating fields, whereby the fields in the peripheral parts of the dielectric arrangement of the material in the middle section penetrate through the same bar partially, so that the resistance to the passage of waves can be adjusted in the peripheral parts of the middle section of the strip conducting section. whose value ranges from zero to infinity.

Dielektrični vodič valova može biti i jedan ubodni vod čija se dužina L može mijenjati pomoću sredstava za stvaranje polja na gore opisani način. The dielectric waveguide can also be a stab line, the length of which L can be changed using means for creating a field in the manner described above.

Također je preporučljivo, da se na kraju ubodnog voda, u slučaju graničenja sa slijedećim vodič valom, čiji se otpor prolazu valova može mijenjati pomoću sredstava za stvaranje polja, na takav način da ubodni vodič slobodno provodi pri otporu prolazu valova ZL→∝ dok je pri ZL→∝ kratko spojen. It is also recommended that at the end of the stabbing line, in the case of bordering the next guide wave, whose resistance to the passage of waves can be changed using means for creating a field, in such a way that the stabbing conductor conducts freely at the resistance to the passage of waves ZL→∝ while at ZL→∝ shorted.

Dielektrični vodič valova prema izumu je na taj način jedan aktivni elektronski sastavni dio, pri čemu se pomoću promjene otpora prolazu valova daje proizvodnje upotrebne mogućnosti. Pomoću profila impedanse vodiča valova, koji ovisi o položaja ugradnje, može se vodič valova koristiti kao refleksiono -prigušni član. Pri tome se prigušenje ne osniva na apsorpcionom principu, već na osnovi toga, da se intenzitet reflektovanog polja može mijenjati i time se zajednički upravlja intenzitetom propuštenih polja. In this way, the dielectric waveguide according to the invention is an active electronic component, whereby by means of a change in the resistance to the passage of waves, the possibility of production is given. By means of the impedance profile of the waveguide, which depends on the installation position, the waveguide can be used as a reflection-damping member. At the same time, attenuation is not based on the absorption principle, but on the basis that the intensity of the reflected field can be changed and thus the intensity of the transmitted fields is jointly managed.

U slijedećem su razjašnjavanju mogući oblici izvođenja na osnovi priloženih crteža. In the following clarification, the possible forms of execution are based on the attached drawings.

Crteži prikazuju: The drawings show:

Sl.1 Dielektrični vodič valova s integriranom indukcionom ravninom; Fig.1 Dielectric waveguide with integrated induction plane;

Sl.2 Dielektrični vodič valova s integriranom indukcionom ravninom, pri čemu indukcioni kalemi stvaraju magnetsko polje H u srednjem području; Fig.2 Dielectric waveguide with an integrated induction plane, where the induction coils create a magnetic field H in the middle region;

Sl.3 Izgled poprečnog presjeka komercijalno dobavljivog trakastog provodnika; Fig.3 Cross-sectional view of a commercially available strip conductor;

Sl.4 Izgled poprečnog presjeka kroz jedan vodič valova prema izumu; Fig. 4 View of a cross section through one waveguide according to the invention;

Sl.5 Izgled poprečnog presjeka kroz jedan vodič valova sa slojem od itrij - željezo - granat; Fig.5 View of a cross section through one waveguide with a layer of yttrium - iron - garnet;

Sl.6 Pogled odozgo na indukcionu ravninu s indukcionim kalemima u matričnom rasporedu; Fig. 6 Top view of induction plane with induction coils in a matrix arrangement;

Sl.7a-7c Pogled odozgo na jedan vodič valova sa srednjim područjem, čija se širina može mijenjati pomoću sredstava za stvaranje polja; Fig. 7a-7c Top view of a single waveguide with an intermediate region, the width of which can be varied by field generating means;

Sl.8 i 9 Izgled jednog dielektričkog vodiča valova, čije se dielektričke osobine mogu mijenjati pomoću električkog polja. Fig. 8 and 9. Appearance of a dielectric waveguide, whose dielectric properties can be changed using an electric field.

Sl.1 i 2 prikazuju jedan dielektrični vodič valova 1, izveden u obliku provodnika od mikrotraka. Vodič valova 1 ima jednu osnovnu provodnu ravninu 3, koja je nanijeta na jedan dielektrični sloj 2. Na strani, suprotnoj od osnovne ravni 3, 2a, koja je dio dielektričnog sloja od supstrata 2, smješten je trakasti provodnik 4, koje je nanijet fotolitografskim postupkom. Dielektrični supstrat 2 posjeduje relativni permeabilitet /ur i koeficijent dielektriciteta Σr. Na osnovnu ravninu 3 nanijet je na dielektrični supstrat 2 snjegove suprotne strane, tanki sloj 5, u koji su ugrađene indukcione trake 6. Indukcione trake 6 na tankom sloju 5 spojene su veznim vodovima 6c, koji nisu prikazani, s upravljačkim elektronikom 7. Pomoću upravljačke elektronike 7 mogu se ostvariti kružne struje određene jačine i smjera kroz prstenaste kaleme 6. Prstenasti kalemi 6 mogu imati i više navoja, s ciljem stvaranja jačeg magnetskog polja H. Fig. 1 and 2 show a dielectric waveguide 1, made in the form of a microstrip conductor. The waveguide 1 has one basic conducting plane 3, which is applied to one dielectric layer 2. On the side opposite to the basic plane 3, 2a, which is part of the dielectric layer of the substrate 2, there is a strip conductor 4, which is applied by the photolithographic process . Dielectric substrate 2 has relative permeability /ur and dielectric coefficient Σr. On the base plane 3, a thin layer 5, in which the induction strips 6 are embedded, is applied to the dielectric substrate 2 of the opposite side of the snow. The induction strips 6 on the thin layer 5 are connected by connecting lines 6c, which are not shown, to the control electronics 7. electronics 7 can generate circular currents of a certain strength and direction through ring coils 6. Ring coils 6 can have more threads, with the aim of creating a stronger magnetic field H.

Indukcioni kalemi 6 su, kako se vidi sa Sl.6, matričnog oblika i paralelni osnovnoj ravnini 3, na takav način, da magnetno polje 9, proizvedeno s njihove strane, prodire kroz osnovnu ravninu 3 i prolazi kroz dielektrik 2 u području, koje neposredno graniči s istim. Ovim se mijenja dielektrična osobina dielektrika 2, čime se mijenja i otpor prolazu valova ZL u ovisnosti od opsega, samog dielektričnog vodiča valova. Kako je prikazano na Sl.2, otpor prolazu valova ZL mijenja seu srednjem području uvođenjem struje kroz kaleme 6b, čime se dobija otpor prolazu valova ZLV, različit od ZL. Induction coils 6, as can be seen from Fig. 6, are matrix-shaped and parallel to the basic plane 3, in such a way that the magnetic field 9, produced on their side, penetrates through the basic plane 3 and passes through the dielectric 2 in the area, which immediately borders on the same. This changes the dielectric property of the dielectric 2, which also changes the resistance to the passage of waves ZL depending on the circumference of the dielectric waveguide itself. As shown in Fig.2, the resistance to the passage of waves ZL changes in the middle region by introducing current through the coils 6b, which results in a resistance to the passage of waves ZLV, different from ZL.

Veličina promjene otpora prolazu valova ZL ovisi od veličine proizvedenog magnetskog polja, kao i od primijenjenog materijala za dielektrični raspored 2, kao i od njegovih dimenzija, i mora se određivati u svakom pojedinačnom slučaju probama ili uračunavati. The size of the change in resistance to the passage of waves ZL depends on the size of the produced magnetic field, as well as on the applied material for the dielectric arrangement 2, as well as on its dimensions, and must be determined in each individual case by trials or calculated.

Na Sl.3 prikazan je jedan dielektrični vodič valova 1, pri čemu su dva trakasta provodnika 4 paralelna međusobno. Na Sl.3 prikazano je električno (E) polje 8, koje se siri iz provodnika od mikrotraka u obliku elektromagnetskog valova. Sl.4 prikazuje izgled poprečnog presjeka kroz jedan dielektrični vodič valova 1 prema izumu. Jasno je da tanki sloj 5 (indukciona ravnina) ima samo na određenim mjestima indukcione kaleme 6, koji služe za promjenu dielektričnih osobina dielektričkog supstrata 2. Pritom su indukcioni kalemi smješteni samo na ona mjesta, na kojima treba vršiti utjecaj na određene provodnike od mikrotraka na strukturnoj ravnini. Fig.3 shows one dielectric waveguide 1, where two strip conductors 4 are parallel to each other. Fig.3 shows the electric (E) field 8, which propagates from the microstrip conductor in the form of electromagnetic waves. Fig. 4 shows the appearance of a cross section through one dielectric waveguide 1 according to the invention. It is clear that the thin layer 5 (induction plane) only has induction coils 6 in certain places, which serve to change the dielectric properties of the dielectric substrate 2. In this case, the induction coils are placed only in those places, where they need to influence certain microstrip conductors on structural plane.

Na Sl. 5 prikazan je još jedan vodič valova 1 prema izumu, izrađen tehnikom provodnika od mikrotraka. Vodič valova 1 posjeduje jedan nosač 11 od galij - gadolinij - granat, na kojoj je epitaktično nanijet homogeni jednokristalni sloj od itrij - željezo - granat 2 s dodatkom galija, koji je u nemagnetiziranom stadiju dielektrik. Na ovom sloju od itrij - željezo - granat 2, proizvedenom epitaksijom u tekućoj fazi, pokriva se ova granična površina cijelom svojom dužinom kvrcanim slojem 10, na kojoj se površina okrenuta spojnoj površini, prevlači bakrom. Površina nosača 11 od galij - željezo - granat, koja nije pokrivena bakarnim slojem 4, također se prevlači homogenim bakarnim slojem. Debljina bakarnog sloja doređena je na 17,5 /um, pri čemu bakarni sloj na kvarcnom sloju 10 formira strukturnu ravnina 4. On Fig. 5 shows another waveguide 1 according to the invention, made using the microstrip conductor technique. The waveguide 1 has a support 11 made of gallium - gadolinium - garnet, on which a homogeneous single-crystal layer of yttrium - iron - garnet 2 with the addition of gallium, which is a dielectric in the non-magnetized stage, is epitaxially applied. On this layer of yttrium - iron - garnet 2, produced by epitaxy in the liquid phase, this boundary surface is covered along its entire length with a crimped layer 10, on which the surface facing the connecting surface is coated with copper. The surface of the carrier 11 made of gallium - iron - garnet, which is not covered by the copper layer 4, is also coated with a homogeneous copper layer. The thickness of the copper layer is set to 17.5 µm, whereby the copper layer on the quartz layer 10 forms the structural plane 4.

Ova strukturna ravnina 4 se priprema fotolitografskim postupkom, tako da se dobijaju trakasti provodnici 4 određenih dimenzija. Na strukturnoj strani 3, suprotnoj od ravnini 4, nanijeta je indukciona ravnina 5, pri čemu ovaj tanki sloj 5 ima induktivnosti 6 u obliku indukcionih traka 6a, 6b, koje su neprikazanim spojnim vezama 6c spojene s upravljačkom elektronikom 7 u električnom smislu. Indukcioni kalemi 6a, 6b su, kako se vidi sa Sl.6, raspoređeni matrično. Između tankog sloja 5 i osnovne ravnine 3 nalazi se sloj polistirola 12, s ciljem galvanskog razdvajanja indukcione ravnine 3. Magnetsko polje 9, proizvedeno pomoću indukcionih kalema 6a, 6b, prodire kroz osnovnu ravninu 3, kao i kroz noseći sloj od galij - gadolinij – granat 11 i mijenja dielektrične osobine sloja 2 od itrij -željezo - granat. Promjenom dielektričnih svojstava sloja 2 od itrij - željezo - granat, u tom području se mijenja otpor prolazu valova ZL trakastih provodnika. This structural plane 4 is prepared by a photolithographic process, so that strip conductors 4 of certain dimensions are obtained. On the structural side 3, opposite to the plane 4, an induction plane 5 is applied, whereby this thin layer 5 has inductances 6 in the form of induction strips 6a, 6b, which are electrically connected to the control electronics 7 through connections 6c, not shown. Induction coils 6a, 6b are, as can be seen from Fig. 6, arranged in a matrix. Between the thin layer 5 and the base plane 3, there is a layer of polystyrene 12, with the aim of galvanic separation of the induction plane 3. The magnetic field 9, produced by induction coils 6a, 6b, penetrates through the base plane 3, as well as through the carrier layer of gallium - gadolinium - garnet 11 and changes the dielectric properties of layer 2 of yttrium-iron-garnet. By changing the dielectric properties of layer 2 of yttrium - iron - garnet, the resistance to the passage of waves of ZL strip conductors changes in that area.

Sl. 7a do 7c prikazuju jedan dielektrični vodič valova, čiji je provodni odsječak u obliku traka podijeljen u dva odsječka 13,14, pri čemu oba krajnja odsječka 13 posjeduju širinu B1, a središnji širinu B2 pri čemu je B1 veće ili manje od B1. Posebno u srednjem odsječku 14, u indukcionom sloju 5 smješteni su indukcioni kalemi 6, na takav način, da se efektivna širina B2 srednjem odsječka provodnika 14b može mijenjati pomoću proizvedenih magnetnih polja. Mijenjanjem širine B2 je moguće mijenjati otpor prolazu valova ZL srednjeg odsječka, čime je omogućeno da se pomoću vodiča valova te vrste proizvodi serijski induktivitet L (S1.7b) ili poprečni kapacitet C (S1.7c). Pomoću indukcionih kalema 6 mogu se podešavati otpori prolazu valova ZL bočnih područja 14a srednjeg područja 14 na takav način, da ovi odgovaraju otvorenom ili kratkospojenom kraju provodnika. Sl. 7a to 7c show one dielectric waveguide, whose conducting section in the form of strips is divided into two sections 13,14, where both end sections 13 have width B1, and the central width B2, where B1 is greater or less than B1. Especially in the middle section 14, induction coils 6 are located in the induction layer 5, in such a way that the effective width B2 of the middle section of the conductor 14b can be changed using the produced magnetic fields. By changing the width of B2, it is possible to change the resistance to the passage of waves ZL of the middle section, which makes it possible to produce a series inductance L (S1.7b) or a transverse capacitance C (S1.7c) using waveguides of this type. By means of the induction coils 6, the resistances to the passage of the waves ZL of the side areas 14a of the middle area 14 can be adjusted in such a way that they correspond to the open or short-circuited end of the conductor.

Sl. 8 i 9 prikazuju jedan dielektrični vodič valova, koji ima jedan dielektrični sloj supstrata 2, s čije jedne strane je postavljena sprovodna osnovna ravnina 3, a na čijoj gornjoj površini 2a je fotolitografskim postupkom proizvedena strukturna ravnina 4. Na bočnim stranama vodiča valova 1 smještene su kondenzatorske ploče 6, pomoću kojih se može proizvoditi električno polje 15, poprečno na pravac širenja valova, proizvedenih u trakastim provodnicima. Pomoću proizvedenog električnog polja 15, mijenjaju se dielektrična svojstva sloja supstrata 2, čime se u ovom području dobija novi otpor prolazu valova ZLV. Kondenzatorske ploče 6 seprekoprekidačkih elemenata S električki u vezi s naponskim izvorom U, na takav način, da se pomoću nasuprot postavljenih parova kondenzatorskih ploča mogu proizvoditi električka polja određenog smjera i jačine. Već prema smjeru i jačini električkog polja uspostavlja se u području, kroz koje u tom slučaju prodire polje, željena vrijednost otpora prolazu valova ZLv. Sl. 8 and 9 show one dielectric waveguide, which has one dielectric layer of the substrate 2, on one side of which the conducting base plane 3 is placed, and on the upper surface 2a of which the structural plane 4 is produced by the photolithographic process. On the sides of the waveguide 1 are located capacitor plates 6, by means of which the electric field 15 can be produced, transverse to the direction of propagation of the waves, produced in the strip conductors. By means of the produced electric field 15, the dielectric properties of the substrate layer 2 are changed, which results in a new resistance to the passage of ZLV waves in this area. The capacitor plates of 6 cross-switching elements S are electrically connected to the voltage source U, in such a way that electric fields of a certain direction and strength can be produced by means of oppositely placed pairs of capacitor plates. Depending on the direction and strength of the electric field, the desired value of resistance to the passage of waves ZLv is established in the area through which the field penetrates in this case.

Claims (21)

1. Dielektrični, posebno planarni ili kvaziplanarni vodič valova (1), koji ima bar jedan dielektrični raspored materijala (2), naznačen time, što je dielektrični raspored materijala (2) bar djelomično od materijala, čiji se permeabilitet ili tenzor permeabiliteta i/ili permitivitet ili tenzor permitiviteta mogu mijenjati pomoću jednog magnetnog polja (9), koje prodire područjima kroz materijal (2) i što je predviđeno bar jedno sredstvo (6) za stvaranje bar jednog magnetnog polja (9), pri čemu se pomoću magnetnog polja (9), proizvedenog pomoću sredstava (6) mogu bar djelomično mijenjati permeabilitet odn. tenzor permeabiliteta i/ili permitivitet ili tenzor permitiviteta rasporeda materijala (2).1. Dielectric, especially planar or quasi-planar waveguide (1), which has at least one dielectric arrangement of material (2), characterized by the fact that the dielectric arrangement of material (2) is at least partially made of a material whose permeability or permeability tensor and/or permittivity or the permittivity tensor can be changed by means of one magnetic field (9), which penetrates the areas through the material (2) and which is provided by at least one means (6) for creating at least one magnetic field (9), whereby by means of the magnetic field (9 ), produced by means (6) can at least partially change the permeability or the permeability tensor and/or permittivity or the permittivity tensor of material arrangement (2). 2. Dielektrični, posebno planarni ili kvaziplanarni vodič valova (1), koji ima bar jedan dielektrični raspored materijala (2), naznačen time, što je raspored materijala (2) bar djelomično od nekog materijala, čiji se permeabilitet ili tenzor permeabiliteta i/ili permitivitet ili tenzor permitiviteta može menjati po područjima prodiranjem električnog polja (15) kroz materijal (2) i što je predviđeno bar jedno sredstvo (6) za stvaranje bar jednog magnetnog polja (15), pri čemu se pomoću sredstava (6) može mijenjati permeabilitet ili tenzor permeabiliteta i/ili permitivitet ili tenzor permitiviteta rasporeda materijala (2), bar po pojedinim područjima.2. Dielectric, especially planar or quasi-planar waveguide (1), which has at least one dielectric arrangement of material (2), indicated by the fact that the arrangement of material (2) is at least partially made of some material, whose permeability or permeability tensor and/or the permittivity or the permittivity tensor can change in areas by the penetration of the electric field (15) through the material (2) and at least one means (6) is provided for creating at least one magnetic field (15), whereby the permeability can be changed using the means (6) or the permeability tensor and/or permittivity or the permittivity tensor of material arrangement (2), at least in certain areas. 3. Dielektrični vodič valova (1) prema jednom od Zahtjeva 1 ili 2, naznačen time, što uz vodič valova (1) leži sredstvo za stvaranje polja (6) i sredstva za stvaranje polja (6) su pritom galvanski odvojena od metalnih provodnih struktura (4) i/ili od osnovne ravnine (3) vodiča valova (1) i ovo galvansko odvajanje je izvršeno posebno pomoću jednog sloja polistirola.3. Dielectric waveguide (1) according to one of Claims 1 or 2, indicated by the fact that the means for creating a field (6) lies next to the waveguide (1) and the means for creating a field (6) are galvanically separated from the metal conductive structures (4) and/or from the base plane (3) of the waveguide (1) and this galvanic separation was carried out separately using a layer of polystyrene. 4. Dielektrični vodič valova (1) prema Zahtjevu (3), naznačen time, što se s vodičem valova (1) graniči jedan sloj, posebno najmanje jedan tanki sloj (5), u kojem, uz kojeg ili na kojem leže sredstva za stvaranje polja (6).4. Dielectric waveguide (1) according to Claim (3), characterized in that the waveguide (1) is bordered by one layer, especially at least one thin layer (5), in which, next to or on which the means for creating fields (6). 5. Dielektrični vodič valova (1) prema Zahtjevu 4, naznačen time, što su u graničnom sloju (5) sredstva za stvaranje polja (6) u matričnom ili rešetkastom rasporedu, posebno u područjima metalnih provodničkih struktura (4).5. Dielectric waveguide (1) according to Claim 4, characterized in that in the boundary layer (5) there are means for creating the field (6) in a matrix or lattice arrangement, especially in the areas of metal conductor structures (4). 6. Dielektrični vodič valova (1) prema Zahtjevu (5), naznačen time, što su sredstva za stvaranje polja (6) u obliku jednog indukcionog kalema s m navoja, pri čemu je indukcioni kalem tako usmjeren u prostoru, da jedan dio magnetskog polja (9) proizveden od strane indukcionog kalema proticanjem struje prodire bar djelomično kroz dielektrični raspored materijala (2), pri čemu je indukcioni kalem postavljen sa suprotne strane trakastog provodnika (4) na osnovnoj ploči (3).6. Dielectric waveguide (1) according to Claim (5), indicated by the fact that the means for creating the field (6) are in the form of one induction coil with m threads, wherein the induction coil is oriented in space in such a way that one part of the magnetic field ( 9) produced by the induction coil by the flow of current penetrates at least partially through the dielectric arrangement of the material (2), whereby the induction coil is placed on the opposite side of the strip conductor (4) on the base plate (3). 7. Dielektrični vodič valova (1) prema Zahtjevu 6, naznačen time, što je (su) indukcioni kalem(i) (6) u svezi s upravljačkom elektronikom (7) i pomoću indukcionog(onih) kalem(a) (6) stvara(ju) bar jedno magnetno polje (9) prethodno zadate jačine i/ili pravca, pri čemu upravljačka elektronika (7) indukcione(ih) kalem(a) (6) nalaže na tanki sloj (5) sa suprotne strane osnovne ravnini (3) i nalazi se u električnoj vezi sa indukcionim kalemom(ovima).7. Dielectric waveguide (1) according to Claim 6, characterized in that the induction coil(s) (6) is connected to the control electronics (7) and by means of the induction coil(s) (6) creates (ju) at least one magnetic field (9) of a predetermined strength and/or direction, whereby the control electronics (7) imposes the induction coil(s) (6) on a thin layer (5) on the opposite side of the basic plane (3) ) and is in electrical connection with the induction coil(s). 8. Dielektrični vodič valova (1) prema Zahtjevu 5, naznačen time, što je sredstvo za stvaranje električnog polja (15) jedan kondenzator, pri čemu je pravac vektora električnog polja, proizvedenog pomoću kondenzatora, uglavnom približno paralelan strukturnoj ravnini vodiča valova (1).8. Dielectric waveguide (1) according to Claim 5, characterized in that the means for creating the electric field (15) is a capacitor, wherein the direction of the vector of the electric field produced by the capacitor is generally approximately parallel to the structural plane of the waveguide (1) . 9. Dielektrični vodič valova (1) prema Zahtjevu 8, naznačen time, što je kondenzator (6) jedan pločasti kondenzator, čije su ploče upravne na pravac širenja elektromagnetnih valova i pri čemu je pločasti kondenzator povezan s upravljačkom elektronikom (7).9. Dielectric waveguide (1) according to Claim 8, characterized in that the capacitor (6) is a plate capacitor, the plates of which are perpendicular to the direction of propagation of electromagnetic waves, and the plate capacitor is connected to the control electronics (7). 10. Dielektrični vodič valova (1) prema osnovnom dijelu Zahtjevu 1 ili prema nekom od predhodnih zahtjeva, naznačen time, što se vrijednost otpora prolazu valova ZL vodiča valova (1) može podešavati pomoću bar jednog sredstva za stvaranje polja (6) bar po područjima odn. po odsječcima.10. Dielectric waveguide (1) according to the basic part of Claim 1 or according to one of the previous claims, characterized in that the value of resistance to the passage of waves ZL of the waveguide (1) can be adjusted using at least one means for creating a field (6) at least per area or by sections. 11. Dielektrični vodič valova (1) prema Zahtjevu (10), naznačen time, što se dužina L, širina B i/ili vrijednost otpora prolazu valova ZL odsječka odn. područja može podešavati odn. određivati tako, što se za podešavanje dužine L, širine B i/ili vrijednosti otpora prolazu valova ZL koriste samo sredstva za stvaranje polja (9,15) predhodno određene jačine, pri čemu ta polja (9,15) prodiru kroz raspored materijala (2) vodiča valova (1) bar djelomično u oblasti tog područja, odn. odsječka.11. Dielectric waveguide (1) according to Claim (10), characterized in that the length L, width B and/or value of resistance to the passage of waves ZL is cut off or areas can be adjusted or be determined by adjusting the length L, width B and/or the value of the resistance to the passage of waves ZL using only means for creating fields (9,15) of a previously determined strength, whereby these fields (9,15) penetrate through the arrangement of materials (2) ) waveguides (1) at least partially in the area of that area, or section. 12. Dielektrični vodič valova (1) prema Zahtjevu 11, naznačen time, što vodič valova (1) ima u prvom području odn. odsječku (13) vrijednost otpora prolazu valova ZL1, pri čemu jedno drugo područje odn. odsječak (14), koje se nastavlja na područje (13) vodiča valova (1) ima vrijednost otpora prolazu valova ZL2, koja se može podešavati, čime se postiže određeni unaprijed zadati refleksioni faktor r, i pri čemu se taj refleksioni faktor sračunava iz količnika [image] 12. Dielectric waveguide (1) according to Claim 11, characterized in that the waveguide (1) has in the first region or section (13) the value of resistance to the passage of waves ZL1, where one other area or the section (14), which continues to the area (13) of the waveguide (1) has a value of resistance to the passage of waves ZL2, which can be adjusted, which achieves a predetermined reflection factor r, and where this reflection factor is calculated from the coefficient [image] 13. Dielektrični vodič valova (1) prema jednom od prethodnih zahtjeva, naznačen time, što je dielektrični raspored materijala (2) od nekog giroelektričkog ili giromagnetskog materijala i vrijednost dielektričkog koeficijenta Σr dielektričkog rasporeda materijala (2) leži posebno unutar opsega od 3 do 5.13. Dielectric waveguide (1) according to one of the preceding claims, characterized in that the dielectric arrangement of the material (2) is of a gyroelectric or gyromagnetic material and the value of the dielectric coefficient Σr of the dielectric arrangement of the material (2) lies in particular within the range from 3 to 5 . 14. Dielektrični vodič valova (1) prema Zahtjevu 13, naznačen time, što je raspored materijala (2) u obliku sloja od itrij - željezo - granat.14. Dielectric waveguide (1) according to Claim 13, characterized in that the arrangement of the material (2) is in the form of a layer of yttrium - iron - garnet. 15. Dielektrični vodič valova (1) prema jednom od prethodnih zahtjeva, naznačen time, što dielektrični vodič valova (1) ima jednu provodnu osnovnu ravninu (3) i bar jedan trakasti provodnik (4) ili jednu strukturnu ravninu (4), a između osnovne ravnine (3) i trakastog provodnika (4) ili strukturne ravnine (4) se nalazi dielektrični raspored materijala (2), pri čemu je između dielektričkog rasporeda materijala (2) i osnovne ravnine (3) jedan sloj (11) od galij - gadolinij - granat debljine LGGG.15. Dielectric waveguide (1) according to one of the preceding claims, characterized in that the dielectric waveguide (1) has one conductive base plane (3) and at least one strip conductor (4) or one structural plane (4), and between between the basic plane (3) and the strip conductor (4) or the structural plane (4) there is a dielectric arrangement of the material (2), whereby between the dielectric arrangement of the material (2) and the basic plane (3) there is one layer (11) of gallium - gadolinium - garnet thickness LGGG. 16. Dielektrični vodič valova (1) prema Zahtjevu 15, naznačen time, što se između dielektričkog rasporeda materijala (2) i trakastog provodnika (4) ili strukturne ravni (4) nalazi kvarcni sloj debljine LQ.16. Dielectric waveguide (1) according to Claim 15, indicated by the fact that between the dielectric arrangement of the material (2) and the strip conductor (4) or the structural plane (4) there is a quartz layer of thickness LQ. 17. Dielektrični vodič valova (1) prema jednom od prethodnih zahtjeva, naznačen time, što je vodič valova (1) jedan magnetski ili električki upravljivi refleksiono - prigušni član ili jedna magnetski ili električki upravljiva brana za opseg, odn. jedan filter.17. Dielectric waveguide (1) according to one of the previous claims, characterized in that the waveguide (1) is one magnetically or electrically controllable reflection-damping member or one magnetically or electrically controllable perimeter barrier, or one filter. 18. Dielektrični vodič valova (1) prema Zahtjevu 17, naznačen time, što je svakom valu vođenom dielektričnim vodič valom (1) pripada jedna vrijednost frekvencije f1 kojem odgovara otpor prolazu valova ZLf i koji je podesiv, pri čemu se pripadajuća frekvencija f1, samo neznatno prigušuje, a sve druge frekvencije f = f1 prigušuju se jače.18. Dielectric waveguide (1) according to Claim 17, indicated by the fact that each wave guided by the dielectric waveguide (1) has one value of frequency f1 which corresponds to the resistance to the passage of waves ZLf and which is adjustable, whereby the associated frequency f1, only attenuates slightly, and all other frequencies f = f1 are attenuated more strongly. 19. Dielektrični vodič valova (1) prema jednom od prethodnih zahtjeva, naznačen time, što jedan trakasti odsječak provodnika (4) ima na svojim krajevima (13) širinu B1 a na srednjem odsječku (14) širinu B2 i što je za dobijanje jednog određenog poprečnog kapaciteta ili serijske induktivnosti pomoću sredstava za stvaranje polja (6), širina B2 srednjeg odsječka (14b) može da se mijenja, na takav način, da se za sužavanje širine B2 proizvode polja (9,15) prethodno utvrđene jačine, a pomoću sredstava za stvaranje polja (6), pri čemu polja (9,15) bar djelomično prodiru kroz rubna područja (14a) dielektričkog rasporeda materijala (2) srednjeg područja (14).19. Dielectric waveguide (1) according to one of the previous claims, indicated by the fact that one strip section of the conductor (4) has a width of B1 at its ends (13) and a width of B2 at the middle section (14) and that is to obtain a certain transverse capacitance or series inductance by means of field generation means (6), the width B2 of the middle section (14b) can be changed in such a way that to narrow the width of B2, fields (9,15) of a previously determined strength are produced, and by means to create a field (6), whereby the fields (9,15) at least partially penetrate through the edge regions (14a) of the dielectric arrangement of the material (2) of the middle region (14). 20. Dielektrični vodič valova (1) prema jednom od prethodnih zahtjeva, naznačen time, što je vodič valova (1) u obliku jednog ubodnog vodiča, čija se dužina L može mijenjati pomoću sredstava (6) za stvaranje polja.20. Dielectric waveguide (1) according to one of the preceding claims, characterized in that the waveguide (1) is in the form of a single stab conductor, whose length L can be changed by means (6) for creating a field. 21. Dielektrični vodič valova (1) prema Zahtjevu 20, naznačen time, što se s krajem ubodnog vodiča graniči jedan drugi vodič valova (1’), čiji se otpor prolazu valova ZL može mijenjati pomoću sredstava za stvaranje polja (6) na takav način, da je ubodni vodič pri otporu prolazu valova ZL→∝ otvoren, a pri otporu prolaza valova ZL→∝ kratko spojen.21. Dielectric waveguide (1) according to Claim 20, characterized in that the end of the stab conductor is bordered by another waveguide (1'), whose resistance to the passage of waves ZL can be changed by the means for creating the field (6) in such a way , that the stabbing conductor is open at resistance to the passage of waves ZL→∝, and short-circuited at resistance to the passage of waves ZL→∝.
HR19532780.2A 1995-09-06 1996-09-06 Planar or quasi-planar waveguide HRP960407A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19532780A DE19532780A1 (en) 1995-09-06 1995-09-06 Dielectric waveguide

Publications (1)

Publication Number Publication Date
HRP960407A2 true HRP960407A2 (en) 1997-08-31

Family

ID=7771335

Family Applications (1)

Application Number Title Priority Date Filing Date
HR19532780.2A HRP960407A2 (en) 1995-09-06 1996-09-06 Planar or quasi-planar waveguide

Country Status (8)

Country Link
EP (1) EP0848860A1 (en)
CN (1) CN1148279A (en)
DE (1) DE19532780A1 (en)
HR (1) HRP960407A2 (en)
UY (1) UY24324A1 (en)
WO (1) WO1997009748A1 (en)
YU (1) YU49896A (en)
ZA (1) ZA967040B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922021B2 (en) 2000-07-31 2005-07-26 Luxim Corporation Microwave energized plasma lamp with solid dielectric waveguide
US6737809B2 (en) * 2000-07-31 2004-05-18 Luxim Corporation Plasma lamp with dielectric waveguide
JP4537339B2 (en) * 2006-03-31 2010-09-01 京セラ株式会社 Phase shifter and high-frequency transmitter, high-frequency receiver, high-frequency transmitter / receiver, radar device, and antenna device including the same
CN102479999B (en) * 2011-03-18 2012-12-12 深圳光启高等理工研究院 Impedance matching element
EP3879623A1 (en) * 2020-03-11 2021-09-15 Nokia Technologies Oy Apparatus comprising a waveguide for radio frequency signals
US11239539B1 (en) * 2020-09-04 2022-02-01 Knowles Cazenovia, Inc. Substrate-mountable electromagnetic waveguide
CN117978260A (en) * 2024-03-29 2024-05-03 浙江中星光电子科技有限公司 Satellite communication terminal and installation method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1227407A (en) * 1959-03-05 1960-08-19 Csf Ferrite phase shifter
US3560893A (en) * 1968-12-27 1971-02-02 Rca Corp Surface strip transmission line and microwave devices using same
US3697901A (en) * 1970-12-07 1972-10-10 Lignes Telegraph Telephon Microstrip circuits wherein non-magnetic insulating substrate and magnetic insert have same crystalline structure
DE2444228C3 (en) * 1974-09-16 1978-08-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen Arrangement for increasing the wave resistance of striplines
GB1464511A (en) * 1975-10-17 1977-02-16 Gen Electric Co Ltd Manufacture of microwave devices
FR2407610A1 (en) * 1977-10-25 1979-05-25 Thomson Csf SURFACE MAGNETOELASTIC WAVES INTERACTION DEVICE
US5023573A (en) * 1989-09-21 1991-06-11 Westinghouse Electric Corp. Compact frequency selective limiter configuration
JP3082377B2 (en) * 1991-02-28 2000-08-28 ソニー株式会社 Distributed constant circuit type magnetic field detector
DE4122290C1 (en) * 1991-07-05 1992-11-19 Ant Nachrichtentechnik Gmbh, 7150 Backnang, De
US5355104A (en) * 1993-01-29 1994-10-11 Hughes Aircraft Company Phase shift device using voltage-controllable dielectrics
US5329261A (en) * 1993-05-27 1994-07-12 Satyendranath Das Ferroelectric RF limiter
DE4327375A1 (en) * 1993-08-14 1995-02-16 Rothe & Partner Dr Method for selective acquisition of magnetic and dielectric susceptibility profiles
JPH07170111A (en) * 1993-12-14 1995-07-04 Murata Mfg Co Ltd Magnetostatic wave device

Also Published As

Publication number Publication date
WO1997009748A1 (en) 1997-03-13
CN1148279A (en) 1997-04-23
DE19532780A1 (en) 1997-03-13
ZA967040B (en) 1997-07-14
EP0848860A1 (en) 1998-06-24
UY24324A1 (en) 1996-09-10
YU49896A (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US6674339B2 (en) Ultra wideband frequency dependent attenuator with constant group delay
US20180083364A1 (en) Liquid-crystal tunable metasurface for beam steering antennas
Kuki et al. Microwave variable delay line using dual-frequency switching-mode liquid crystal
DE2636999C3 (en) Method for non-contact measurement of the specific electrical conductivity of a plate
US3681716A (en) Tunable microminiaturized microwave filters
DE10118742A1 (en) Microwave or extremely high frequency module with integrated slot antenna
KR20190051208A (en) Variable phase shifter comprising defected ground structure and radio frequency communication module comprising the same
HRP960407A2 (en) Planar or quasi-planar waveguide
Gomez-Tornero et al. Control of leaky-mode propagation and radiation properties in hybrid dielectric-waveguide printed-circuit technology: Experimental results
US8558120B2 (en) Multilayer board for suppressing unwanted electromagnetic waves and noise
CA1233532A (en) Microstrip circuit
DE19907966A1 (en) Connection structure of coupling and transmission line to dielectric resonator
DE69934749T2 (en) Transducers for electrically transversal or quasi-transversal modes in waveguide modes
US4160220A (en) Precision microwave delay circuit and method
US4554519A (en) Magnetostatic wave delay line
Anagnostou et al. A 0–55-GHz coplanar waveguide to coplanar strip transition
US5633613A (en) Modulator-coupled transmission structure and method
KR100263642B1 (en) Magnetostatic-wave device
RU2707756C1 (en) Controlled by electric field power divider on magnetostatic waves with filtration function
Misra et al. Study of impedance and radiation properties of a concentric microstrip triangular-ring antenna and its modeling techniques using FDTD method
US4992760A (en) Magnetostatic wave device and chip therefor
Singh et al. Design of aperture coupled fed micro-strip patch antenna for wireless communication
Togo et al. Propagation of magnetostatic surface waves in a tunable one-dimensional magnonic crystal
US5101182A (en) Drop-in magnetically tunable microstrip bandpass filter
US3922620A (en) Circulator with connecting arms designed in accordance with the MIC technique

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 19990906

Year of fee payment: 4

ODBI Application refused