HRP940854A2 - Microcapsules and microencapsulation process - Google Patents

Microcapsules and microencapsulation process Download PDF

Info

Publication number
HRP940854A2
HRP940854A2 HRP-517/85A HRP940854A HRP940854A2 HR P940854 A2 HRP940854 A2 HR P940854A2 HR P940854 A HRP940854 A HR P940854A HR P940854 A2 HRP940854 A2 HR P940854A2
Authority
HR
Croatia
Prior art keywords
phase
prepolymer
etherified
alcohol
emulsion
Prior art date
Application number
HRP-517/85A
Other languages
Croatian (hr)
Inventor
Herbert Benson Scher
Marius Rodson
Original Assignee
Stauffer Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU51785A external-priority patent/YU45710B/en
Application filed by Stauffer Chemical Co filed Critical Stauffer Chemical Co
Publication of HRP940854A2 publication Critical patent/HRP940854A2/en
Publication of HRP940854B1 publication Critical patent/HRP940854B1/en

Links

Description

Područje tehnike u koju spada izum The technical field to which the invention belongs

Izum spada u područje formuliranja poljoprivrednih preparata The invention belongs to the field of formulating agricultural preparations

Tehnički problem Technical problem

Ovaj izum se odnosi na mikrokapsule i postupak za njihovu proizvodnju. Određeno, ovaj izum se odnosi na kapsulirane kapljice tekućeg materijala koji je u biti nerastopiv u vodi, gdje je sredstvo za kapsuliranje film koji je formiran iz modificiranog karbamid-formaldehidnog polimera. This invention relates to microcapsules and a process for their production. Specifically, the present invention relates to encapsulated droplets of a liquid material that is essentially insoluble in water, where the encapsulating agent is a film formed from a modified carbamide-formaldehyde polymer.

Stanje tehnike State of the art

Ova prijava je djelomičan nastavak prijave serijski br. 499,973, podnijeta 1 lipnja 1983, koja je opet djelomičan nastavak prijave serijski br. 201,686, podnijete 30 listopada, 1980, koja je sada napuštena. This application is a partial continuation of application serial no. 499,973, filed June 1, 1983, which is again a partial continuation of application serial no. 201,686, filed Oct. 30, 1980, which is now abandoned.

Korištenje membrana, prevlaka i kapsula za kontrolirano oslobađanje tekućih materijala je dobro poznato u tehnici i poljoprivrednih i nepoljoprivrednih kemikalija. U poljoprivredi, tehnike sa kontroliranim oslobađanjem poboljšale su efikasnost herbicida, insekticida, fungicida, baktericida i gnojiva. Nepoljoprivredne primjene uključuju kapsuliranje boja, tinte, farmaceutskih sredstva, mirisnih sredstva i začina. The use of membranes, coatings and capsules for the controlled release of liquid materials is well known in the art of both agricultural and non-agricultural chemicals. In agriculture, controlled release techniques have improved the effectiveness of herbicides, insecticides, fungicides, bactericides and fertilizers. Non-agricultural applications include encapsulation of dyes, inks, pharmaceuticals, fragrances and spices.

Najobičniji oblici materijala sa kontroliranim oslobađanjem su prevučene kapljice ili mikrokapsule, prevučene krute tvari uključujući i porozne i neporozne dijelove i prevučeni agregati krutih dijelova. U nekim slučajevima, poželjan je u vodi otopljen kapsulirani film, koji, oslobađa kapsulirani materijal kada se kapsula stavi u kontakt sa vodom. Druge prevlake planirane su za oslobađanje uklopljenog materijala kada se prevlaka prekine vanjskom silom. Daljnje prevlake su porozne prirode i oslobađaju uklopljeni materijal u okružujuću sredinu sporom brzinom difuzije kroz pore. Pored osiguravanja kontroliranog oslobađanja, takve prevlake također služe da olakšaju dispergiranje u vodi mješivih tekućina u vodi i sredini koja sadrži vodu kao što je mokro zemljište. Kapljice kapsulirane na ovaj način su naročito korisne u poljoprivredi, gdje je često prisutna voda od navodnjavanja, kiše i vodenih tuševa. Poznati su razni postupci za proizvodnju takvih kapsula. The most common forms of controlled release materials are coated droplets or microcapsules, coated solids including both porous and non-porous parts, and coated aggregates of solid parts. In some cases, a water-dissolved encapsulated film is desired, which releases the encapsulated material when the capsule is contacted with water. Other coatings are designed to release embedded material when the coating is broken by an external force. Further coatings are porous in nature and release the incorporated material into the surrounding environment at a slow rate of diffusion through the pores. In addition to providing controlled release, such coatings also serve to facilitate the dispersion of water-miscible liquids in water and a water-containing environment such as wet soil. Droplets encapsulated in this way are particularly useful in agriculture, where water from irrigation, rain and water showers is often present. Various procedures for the production of such capsules are known.

U jednom postupku, kapsule se formiraju odvajanjem faze iz vodene otopine kroz koacervaciju hidrofilnog koloidnog sola. Ovo je opisano u U.S. patentu br. 2,800,457 (Green et al., 23 srpanj 1957) i 2,800,458 (Green, 23 srpanj, 1957). In one process, capsules are formed by phase separation from an aqueous solution through coacervation of a hydrophilic colloidal sol. This is described in U.S. Pat. patent no. 2,800,457 (Green et al., July 23, 1957) and 2,800,458 (Green, July 23, 1957).

Međupovršinski polimerizacijski postupak opisan je u U.S. patentima br. 4,046,741 (Scher, 6 rujan, 1977) i 4,140,516 (Scher, 20 veljača, 1979) gdje su reaktanti koji formiraju film otopine u hidrofilnoj tekućini koja je dispergirana u vodi, pri čemu se reakcija javlja na međupovršini kada se faze stave u kontakt kao emulzija. An interfacial polymerization process is described in U.S. Pat. patents no. 4,046,741 (Scher, Sept. 6, 1977) and 4,140,516 (Scher, Feb. 20, 1979) where the film-forming reactants are solutions in a hydrophilic liquid that is dispersed in water, the reaction occurring at the interface when the phases are brought into contact as an emulsion .

Daljnji međupovršinski polimerizacijski postupak opisan je u U.S. patentu br. 3,726,804 Matsukawa et al., 10 travnja, 1973) gdje su svi sastojci koji formiraju film na početku hidrofobne kapljice koje također sadrže otapala niske točke ključanja ili polarno otapalo pored materijala koji' se treba kapsulirati. Poslije zagrijavanja, otapalo se oslobodi u vodenu fazu (kontinualna faza emulzije i materijala koji formiraju film akumuliraju se na međupovršini i polimeriziraju se. A further interfacial polymerization process is described in U.S. Pat. patent no. 3,726,804 Matsukawa et al., April 10, 1973) where all of the film forming ingredients are initially hydrophobic droplets that also contain low boiling point solvents or a polar solvent in addition to the material to be encapsulated. After heating, the solvent is released into the aqueous phase (the continuous phase of the emulsion and film-forming materials accumulate at the interface and polymerize.

Polimerizacija olefina korištenjem peroksidnog katalizatora opisana je u Japanskoj patentnoj publikaciji br. 9168/1961, gdje se polimer koji je neotopljen u ulju formira na površinama uljanih kapi. Polymerization of olefins using a peroxide catalyst is described in Japanese Patent Publication No. 9168/1961, where the polymer that is not dissolved in the oil is formed on the surfaces of the oil drops.

Britanski patenti br. 952,807 i 965,074 opisuju postupak u kojem se talva kruta tvar kao što je vosak ili termoplastična smola stapa, dispergira se i hladi tako da se formira kapsulirajući film oko kapljica tekućine. British patents no. 952,807 and 965,074 describe a process in which a molten solid such as a wax or thermoplastic resin is melted, dispersed and cooled to form an encapsulating film around liquid droplets.

U.S. patent br. 3,111,407 (Lindquist et al., 19 studenog, 1963) opisuje postupak za sušenje raspršivanjem koji formira kapsulirane kapljice u trenutku atomizacije. Ovi postupci variraju po cijeni opreme, energetskim zahtjevima, lakoći kontroliranja veličine mikrokapsule, potrebi za ekstrareagansima kao što su katalizatori i sredstva za taloženje, i po postupku faze mikrokapsula. Zato je cilj sadašnjeg izuma sa osigura prost, jeftin postupak za proizvodnju mikrokapsula jednobrazne i lako kontrolirane veličine, koje su podnijete za korištenje bez daljnjeg tretiranja. Drugi ciljevi izuma biti će jasni na osnovi sljedećeg opisa. LOUSE. patent no. 3,111,407 (Lindquist et al., Nov. 19, 1963) describes a spray drying process that forms encapsulated droplets at the time of atomization. These processes vary in equipment cost, energy requirements, ease of controlling microcapsule size, need for extra reagents such as catalysts and precipitating agents, and microcapsule phase process. Therefore, the aim of the present invention is to provide a simple, inexpensive process for the production of microcapsules of uniform and easily controlled size, which are submitted for use without further treatment. Other objects of the invention will be apparent from the following description.

Opis rješenja tehničkog problema sa primjerima izvođenja Description of the solution to the technical problem with implementation examples

Sada je nađeno da se tekući materijal koji je u biti neotopljen u vodi može mikrokapsulirati u poroznom omotaču postupkom koji obuhvaća It has now been found that a liquid material which is essentially insoluble in water can be microencapsulated in a porous shell by a process comprising

(a) osiguranje organske otopine koja obuhvaća spomenuti materijali karbamid-formaldehidni prepolimer u kojem su od oko 50% do oko 98% metilolnih grupa spomenutog prepolimera eterificirane sa C4-C10 alkoholom. (a) providing an organic solution comprising said carbamide-formaldehyde prepolymer materials wherein from about 50% to about 98% of the methylol groups of said prepolymer are etherified with a C4-C10 alcohol.

(b) stvaranje emulzije spomenute organske otopine u vodenoj otopini koja obuhvaća vodu i površinski aktivno sredstvo, pri čemu spomenuta emulzija obuhvaća diskretne kapljice spomenute organske otopine dispergirane u spomenutoj vodenoj otopini, i (b) forming an emulsion of said organic solution in an aqueous solution comprising water and a surfactant, wherein said emulsion comprises discrete droplets of said organic solution dispersed in said aqueous solution, and

(c) izazivanje samo-kondenzacije in situ spomenutih karbamid-formaldehidnih prepolimera dodavanjem u spomenutu emulziju sredstva za zakiseljavanje i održavanjem emulzije na pH između oko 0 i oko 4 tijekom zadovoljavajućeg vremenskog razdoblja da se omogući bitno kompletiranje kondenzacije in situ spomenutih smolnih prepolimera radi konverzije kapljica tekućine spomenute organske otopine u kapsule koje sadrže krute propusne polimerne omotače koji okružuju spomenuti tekući materijal, i (c) causing in situ self-condensation of said carbamide-formaldehyde prepolymers by adding to said emulsion an acidifying agent and maintaining the emulsion at a pH between about 0 and about 4 for a sufficient period of time to allow substantial completion of the in situ condensation of said resin prepolymers for droplet conversion liquids of said organic solution into capsules containing rigid permeable polymer shells surrounding said liquid material, and

(d) Zagrijavanje spomenute emulzije na temperaturi između oko 20°C i oko 100°C tako da se izaziva vulkanizacija spomenutih in situ formiranih polimera. (d) Heating said emulsion at a temperature between about 20°C and about 100°C so as to induce vulcanization of said in situ formed polymers.

Mikrokapsule koje su formirane ovim postupkom mogu vršiti oslobađanje sporom brzinom kapsulirane tekućine difuzijom kroz omotač u okružujuću sredinu. Sadašnji izum obuhvaća i postupak koji je opisan gore i tako formirane mikrokapsule. Microcapsules formed by this process can release the encapsulated liquid at a slow rate by diffusion through the shell into the surrounding medium. The present invention includes the process described above and the microcapsules thus formed.

Sadašnji izum može se lako prilagoditi da prihvati varijacije u korištenim materijalima, vrsti željenog proizvoda, i uglavnom ekonomskim faktorima. Kao slijedeći redovi indiciraju i bitne opcijske karakteristike postupka i njegovog proizvoda mogu se mijenjati u širokom intervalu. The present invention can be easily adapted to accommodate variations in the materials used, the type of product desired, and mainly economic factors. As the following lines indicate, the essential optional characteristics of the process and its product can be changed in a wide range.

A. Unutrašnja tekućina A. Internal fluid

Bit je da organska otopina koja formira unutrašnjost kapsule (tj., unutrašnju tekućinu) bude bitno, netopljiva u vodi. Poželjna je topljivost pod običnim uvjetima približno 5000 dijelova na milion (ppm) po masi ili manje. Organska otopina može jedan tekući materijal ili jednu ili više aktivnih tekućina ili krutih materijala koji su otopljeni u inertnom otapalu koji najvećim djelom ima neznatnu topljivost u vodi. U posljednjem slučaju, tekući ili krut topljenak mora biti bitno u organskoj fazi kada su dvije faze u ravnoteži. The point is that the organic solution that forms the interior of the capsule (ie, the internal liquid) is essentially insoluble in water. A solubility under ordinary conditions of approximately 5,000 parts per million (ppm) by weight or less is preferred. An organic solution can be a single liquid material or one or more active liquids or solid materials that are dissolved in an inert solvent that mostly has a negligible solubility in water. In the latter case, the liquid or solid solute must be essential in the organic phase when the two phases are in equilibrium.

Široki interval tekućine može se kapsulirati sadašnjim postupkom. Najkorisnije tekućine su one koje ne reagiraju niti sa prepolimerom, niti sa kiselinom koja se koristi u fazi samo-kondenzacije prilikom formiranja zida, niti sa bilo kojim drugim komponentama u sustavu. Tako je pogodna bilo koja nereaktivna tekućina koja će difundirati kroz staničnu membranu. Tekućina može biti jedan kemijski spoj ili smjesa dva ili više spojeva. Može difundirati u vodu, zemljište, zrak ili bilo koju drugu okružujuću sredinu. A wide range of fluids can be encapsulated by the present process. The most useful liquids are those that do not react either with the prepolymer, or with the acid used in the self-condensation phase during wall formation, or with any other components in the system. Thus, any non-reactive liquid that will diffuse through the cell membrane is suitable. A liquid can be a single chemical compound or a mixture of two or more compounds. It can diffuse into water, soil, air or any other environment.

Tekućine koje su pogodne za kapsuliranje uključuju kemijsko-biološka sredstva kao što su herbicidi, insekticidi, fungicidi, nematocidi, baktericidi, rodenticidi moluscidi, akaricidi, larvicidi, odbijači životinja, insekata i ptica, regulatori rasta biljaka, gnojiva, feromoni, seksualni mamci i privlačna sredstva, i mirisne i aromatične komponente. Mikrokapsule iz sadašnjeg izuma su naročito dobro prilagođene za pesticide, uključujući tiokarbamate, ditiokarbamate, acetamide, anelide, sulfonamide triazine, organofosforne spojeve i piretroide. Slijede primjeri takvih spojeva koja su komercijalna, pri čemu su u zagradama dana njihova obična imena: . Liquids suitable for encapsulation include chemical-biological agents such as herbicides, insecticides, fungicides, nematicides, bactericides, rodenticides, molluscicides, acaricides, larvicides, animal, insect and bird repellents, plant growth regulators, fertilizers, pheromones, sex lures and attractants. agents, and fragrance and aromatic components. The microcapsules of the present invention are particularly well suited for pesticides, including thiocarbamates, dithiocarbamates, acetamides, annelides, triazine sulfonamides, organophosphorus compounds, and pyrethroids. The following are examples of such compounds which are commercial, with their common names given in parentheses: .

HERBICIDI HERBICIDES

S-etil-N-cikloheksil-N-etiltiokarbamat (cikloat) S-ethyl-N-cyclohexyl-N-ethylthiocarbamate (cycloate)

S-etil-heksahidro-1H-azepin-1-karbotioat (molinat) S-ethyl-hexahydro-1H-azepine-1-carbothioate (molinet)

S-2,3-dikloroalil di-izopropiltiokarbamat (di-alat) S-2,3-dichloroallyl di-isopropylthiocarbamate (di-alate)

S-2,3,3-trikloroalil di-izopropiltiokarbamat (tri-alat) S-2,3,3-trichloroallyl di-isopropylthiocarbamate (tri-alate)

S-etil dipropiltiokarbamat (EPTC) S-ethyl dipropylthiocarbamate (EPTC)

S-4-klorobenzil dietilkarbamat (bentiokarb) S-4-chlorobenzyl diethylcarbamate (benthiocarb)

S-etil-diizobutiltiokarbamat (butilat) S-ethyl diisobutylthiocarbamate (butylate)

S-benzil-di-sek-butiltiokarbamat S-benzyl-di-sec-butylthiocarbamate

S-propil-dipropiltiokarbamat (vernolat) S-propyl-dipropylthiocarbamate (vernolate)

S-propil-butiletiltiokarbamat (pebulat) S-propyl-butylethylthiocarbamate (pebulate)

N,N-dialilkloroacetamid (alidoklor) N,N-diallylchloroacetamide (alidochlor)

alfa-kloro-6'-etil-N-(2-metoksi-1-metiletil)-acetanilid (metolaklor) alpha-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-acetanilide (metolachlor)

N-butoksimetil-alfa-kloro-2',6'-dietilacetanilid (butaklor) N-butoxymethyl-alpha-chloro-2',6'-diethylacetanilide (butachlor)

S-(0,0-diizopropil)fosforoditioat)ester S-(0,0-diisopropyl) phosphorodithioate) ester

N-(2-merkaptoetil)benol-sulfonamid (bensulid) N-(2-mercaptoethyl)benol-sulfonamide (bensulide)

N-benzil-N-izopropiltriametilacetamid (butam) N-benzyl-N-isopropyltrimethylacetamide (butam)

2-kloroalil-dietilditiokarbamat (CDEC) 2-chloroallyl-diethyldithiocarbamate (CDEC)

2-sek-butil-4,6-dinitrofenil (dinoseb) 2-sec-butyl-4,6-dinitrophenyl (dinoseb)

2,6-dinitro-N,N-dipropilkumidin (izopropalin) 2,6-dinitro-N,N-dipropylcumidine (isopropalin)

N-(ciklopropilmetil)-alfa,alfa,alfa-trifluoro-2,6-dinitro-N-propil-p-toluidin (profluoralin) N-(cyclopropylmethyl)-alpha,alpha,alpha-trifluoro-2,6-dinitro-N-propyl-p-toluidine (profluoralin)

2-(1,2-dimetilpropilamino)-4-etilamino-6-metiltio-1,3,5-triazin (dimetametrin) 2-(1,2-dimethylpropylamino)-4-ethylamino-6-methylthio-1,3,5-triazine (dimethathrine)

2-etil-5-metil-5-(2-metilbenzoilkoksi)-1,3-dioksan 2-Ethyl-5-methyl-5-(2-methylbenzoyloxy)-1,3-dioxane

INSEKTICIDI INSECTICIDES

S-terc-butiltiometil 0,0-dietil fosforoditioat (terbufos) S-tert-butylthiomethyl 0,0-diethyl phosphorodithioate (terbufos)

0,0-dietil-0-4-metilsulfonilfenil fosforotioat (fensulfotion) 0,0-diethyl-0-4-methylsulfonylphenyl phosphorothioate (phensulfothion)

0,0-dietil 0-2-izopropil-6-metilpirimidin-4-il fosforotiorat (diazinom) 0,0-Diethyl 0-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate (Diazine)

0,0-dietil S-2-etiltioetil fosforoditioat (disulfoton) 0,0-diethyl S-2-ethylthioethyl phosphorodithioate (disulfoton)

S-klorometil 0,0-dietil fosforoditioat (klormefos) S-chloromethyl 0,0-diethyl phosphorodithioate (chlormephos)

0-etil S,S-dipropil fosforoditioat (etoprofos) 0-ethyl S,S-dipropyl phosphorodithioate (ethoprophos)

0,0-dietil S-etiltiometil fosforoditioat (etoprofos) 0,0-diethyl S-ethylthiomethyl phosphorodithioate (ethoprophos)

0,dietil S-etiltiometil fosforoditioat (forat) 0,diethyl S-ethylthiomethyl phosphorodithioate (phorate)

0-(4-bromo-2-klorofenil) 0-etil S-propil fosforoditioat (profenofos) 0-(4-bromo-2-chlorophenyl) 0-ethyl S-propyl phosphorodithioate (profenofos)

S-1,2-di(etoksikarbonil)etil 0,0-dimetil fosforoditioat (malation) S-1,2-di(ethoxycarbonyl)ethyl 0,0-dimethyl phosphorodithioate (malathion)

0,0,0',0'-tetraetil S,S'-metilen di (fosforoditioat) (etion) 0,0,0',0'-tetraethyl S,S'-methylene di(phosphorodithioate) (ethion)

0-(4-bromo-2,5-diklorofenil) 0,0-dietil fosforotioat (bromofosfetil) 0-(4-bromo-2,5-dichlorophenyl) 0,0-diethyl phosphorothioate (bromophosphetyl)

S-4-klorofeniltiometil 0,0-dietil fosforoditioat (karbofenotion) S-4-chlorophenylthiomethyl 0,0-diethyl phosphorodithioate (carbophenothion)

2-kloro-1-(2,4-diklorofenil dietilfosfat (klorfenvinfos) 2-chloro-1-(2,4-dichlorophenyl diethylphosphate (chlorfenvinphos)

0-2,5-dikloro-4-(metiltio)fenil 0,0-dietil fosforoditioat (klortiofos) 0-2,5-dichloro-4-(methylthio)phenyl 0,0-diethyl phosphorodithioate (chlorothiophos)

0-4-cijanofenil 0,0-dimetil fosforotioat (cijanofos) 0-4-cyanophenyl 0,0-dimethyl phosphorothioate (cyanophos)

0,0-dimetil 0-2-metiltioetil fosforotioat (demafion) 0,0-dimethyl 0-2-methylthioethyl phosphorothioate (demafion)

0,0-dietil 0-2-etiltioetil fosforotioat (demeton) 0,0-diethyl 0-2-ethylthioethyl phosphorothioate (demeton)

0-2,4-diklorofenil 0,0-dietil fosforotioat (diklorofention) 0-2,4-dichlorophenyl 0,0-diethyl phosphorothioate (dichlorophenthion)

0-2,4-diklorofenil 0-etilfenilfosfonotionat (EPBP) 0-2,4-dichlorophenyl 0-ethylphenylphosphonothionate (EPBP)

0,0-dietil 0-5-fenilizoksazol-3-il fosforotioat (izoksation) 0,0-diethyl 0-5-phenylisoxazol-3-yl phosphorothioate (isoxation)

1,3-di (metoksikarbonil)-1-propen-2-il dimetilfosfat 1,3-di(methoxycarbonyl)-1-propen-2-yl dimethyl phosphate

S,S'-(1,4-dioksan-2,3-diil) 0,0,0',0'-tetraetil di fpsforoditioat) (dioksation) S,S'-(1,4-dioxane-2,3-diyl) 0,0,0',0'-tetraethyl di fpsphorodithioate) (dioxation)

0,0-dimetil-0-4-nitro-m-tolil fosforotioat (fenitrotion) 0,0-dimethyl-0-4-nitro-m-tolyl phosphorothioate (fenitrothion)

0,0-dimetil 0-4-metiltio-m-tolil fosforotioat (fention) 0,0-dimethyl 0-4-methylthio-m-tolyl phosphorothioate (fenthion)

0-(5-kloro-1-izopropil-1,2,4-triazol-3-il) 0,0-dietil fosforotioat (izazofos) 0-(5-chloro-1-isopropyl-1,2,4-triazol-3-yl) 0,0-diethyl phosphorothioate (isazophos)

S-2-izopropiltioetil 0,0-dimetilfosforoditioat (izotioat) S-2-isopropylthioethyl 0,0-dimethylphosphorodithioate (isothioate)

4-(metiltio)fenildipropilfosfat (propafos) 4-(methylthio)phenyldipropylphosphate (propaphos)

1,2-dibromo-2,2-dikloroetildimetilfosfat (naled) 1,2-dibromo-2,2-dichloroethyldimethylphosphate (naled)

0,0-dietil-alfa-cijanobenzilidenamino-oksifosfonotioat (foksim) 0,0-diethyl-alpha-cyanobenzylideneamino-oxyphosphonothioate (phoxime)

0,0-dietil 0-4-nitrofenilfosforotioat (paration) 0,0-diethyl 0-4-nitrophenylphosphorothioate (parathion)

0-2-dietilamino-6-metilpiridimidin-4-il 0,0-dietil fosforotioat (pirimidos-etil) 0-2-diethylamino-6-methylpyridimidin-4-yl 0,0-diethyl phosphorothioate (pyrimidos-ethyl)

0-2-dietilamino-6-metilpirimidin-4-il 0,0-dimetilfosforotioat (pirimifos-metil) 0-2-diethylamino-6-methylpyrimidin-4-yl 0,0-dimethylphosphorothioate (pyrimiphos-methyl)

(E)-0-2-izopropoksikarbonil-1-metilvinil 0-metiletilfosforamidotioat (propetamfos) (E)-0-2-isopropoxycarbonyl-1-methylvinyl 0-methylethylphosphoramidothioate (propetamphos)

0,0,0',0'-tetraetilditiopirofosfat (sulfotep) 0,0,0',0'-tetraethyldithiopyrophosphate (sulfotep)

0,0,0',0'-tetrametil 0,0'-tiodi-p-fenilendifosforotioat (temefos) 0,0,0',0'-tetramethyl 0,0'-thiodi-p-phenylenediphosphorothioate (temephos)

S-2-etiltioetil 0,0-dimetilfosforoditioat (tiometon) S-2-ethylthioethyl 0,0-dimethylphosphorodithioate (thiomethone)

0,0-dietil 0-1-fenil-1,2,4-triazol-3-il fosforotioat (triazofos) 0,0-diethyl 0-1-phenyl-1,2,4-triazol-3-yl phosphorothioate (triazophos)

0-etil 0-2,4,5-triklorofenil etilfosfonotioat (trikloronat) 0-ethyl 0-2,4,5-trichlorophenyl ethylphosphonothioate (trichloronate)

(±)-3-alil-2-metil-4-oksociklopent-2-enil (±)-cis, trans-hrizantemat (eltrin) (±)-3-allyl-2-methyl-4-oxocyclopent-2-enyl (±)-cis, trans-chrysanthemum (elthrin)

(±)-3-alil-2-metil-4-oksociklopent-2-enil (±)-trans-krizantemat (bioaletrin) (±)-3-allyl-2-methyl-4-oxocyclopent-2-enyl (±)-trans-chrysanthemate (bioallethrin)

3-fenoksibenzil (ń)-cis,trans-krizantemat (fenotrin) piretrini 3-phenoxybenzyl (ń)-cis,trans-chrysanthemate (phenothrin) pyrethrins

2-(2-butoksietoksi)etil tiocijanat 2-(2-butoxyethoxy)ethyl thiocyanate

izobornil tiocijanoacetat (terpinil tiocijanoacetat) ugljikdisulfid isobornyl thiocyanoacetate (terpinyl thiocyanoacetate) carbon disulfide

2-(4-terc-butilfenoksi)cikloheksil prop-2-inil sulfit (propargit) 2-(4-tert-butylphenoxy)cyclohexyl prop-2-ynyl sulfite (propargite)

4,6-dinitro-6-oktilfenil krotonati (dinokap) 4,6-dinitro-6-octylphenyl crotonates (dinocap)

etil 4,4'-diklorbenzilat (klorobenzilat) ethyl 4,4'-dichlorobenzilate (chlorobenzilate)

Sredstva za uklanjanje lišća Means for removing leaves

S,S,S-tributil fosforotritioat S,S,S-tributyl phosphorotrithioate

tributil fosforotritioat (merfos) tributyl phosphorotrithioate (merphos)

FUNGICIDI FUNGICIDES

bakar naftenati copper naphthenates

5-etoksi-3-triklorometil-1,2,4-tiadiazol (eteridiazol) 5-ethoxy-3-trichloromethyl-1,2,4-thiadiazole (etheridiazole)

O-etil S,S-difenil fosforoditioat (edifenofos) O-ethyl S,S-diphenyl phosphorodithioate (edifenofos)

ODBOJNA SREDSTVA ZA INSEKTE INSECT REPELLENTS

6-butoksikarbonil-2,3-dihidro-2,2-dimetilpiran-4-on (butopironoksil 6-butoxycarbonyl-2,3-dihydro-2,2-dimethylpyran-4-one (butopyronoxyl

N,N-dietil-m-toluamid (deat) N,N-diethyl-m-toluamide (deat)

Dibutilftalat Dibutyl phthalate

dibutilsukcinat dibutyl succinate

1, 5a ,6 ,9 ,9a ,9b-heksahidro-4a(4H9-dibenzofurankarboksaldehid 1, 5a,6,9,9a,9b-hexahydro-4a(4H9-dibenzofurancarboxaldehyde

dipropil piridin-2,5-dikarboksilat dipropyl pyridine-2,5-dicarboxylate

Od mnogih različitih tipova unutrašnjih tekućina korisnih u sadašnjem preparatu ,pesticidi su poželjni, i izvjesne klase pesticida su naročito poželjne. Jedna takva klasa su supstituirani tiokarbamati, naročito oni formule Of the many different types of internal fluids useful in the present formulation, pesticides are preferred, and certain classes of pesticides are particularly preferred. One such class is the substituted thiocarbamates, especially those of the formula

[image] [image]

gdje se R1 bira iz grupe koja sadrži C1-6 alkil C2-6 alkenil i C7-9 fenilalkil, i opcijski je supstituirana sa po tri grupe izabrane iz halogena i nitro; i R2 i R3 su ili nezavisno C1-5 alkil ili C5-7 cikloalkil ili zajednički formiraju C4-C7-alkilen. Termini "alkil", "alkenil" i "alkilen", namijenjene su uključiti i grupe pravog i rašljastog niza, i svi intervali ugljikovih atoma namijenjeni su da budu zaključni i za gornje i za donje granice. Poželjniji tiokarbamati su oni u kojima je R1 C2-4 alkil i R2 i R3 ili nezavisno formiraju C2-4 alikl ili zajednički formiraju heksametilen. Najpoželjniji su oni u kojima su R1, R2 i R3 svi neovisno C2-C4 alkil. Tiokarbamati su naročito korisni kao herbicidi sa djelovanjem prije nicanja i poslije nicanja. , wherein R 1 is selected from the group consisting of C 1-6 alkyl C 2-6 alkenyl and C 7-9 phenylalkyl, and is optionally substituted with three groups each selected from halogen and nitro; and R2 and R3 are either independently C1-5 alkyl or C5-7 cycloalkyl or together form C4-C7-alkylene. The terms "alkyl", "alkenyl" and "alkylene" are intended to include both straight and branched chain groups, and all intervals of carbon atoms are intended to be inclusive of both upper and lower limits. More preferred thiocarbamates are those in which R1 is C2-4 alkyl and R2 and R3 either independently form C2-4 alkyl or together form hexamethylene. Most preferred are those wherein R 1 , R 2 and R 3 are all independently C 2 -C 4 alkyl. Thiocarbamates are particularly useful as preemergence and postemergence herbicides. ,

Mogu se proširiti vrste usjeva na koje izvjesni pesticidi, naročito herbicidi, mogu efikasno, djelovati uključivanjem u preparat nekog antidota. Antidot pomaže da se zaštiti usjev od štete herbicidom, bez primjetnog efekta na snagu herbicida protiv. neželjene vrste korova. Antidot tako čini , herbicid selektivnijim po svom djelovanju. Korisni antidoti uključuju acetamide kao što su N,N-dialil-2,2-dikloroacetamid i N,N-dialil-2-kloroacetamid, oksazolidine kao što su 2,2,5-tri-metil-N-dikloroacetiloksazolidin i 2,2-spirocikloheksil-N-kloro-acetiloksazolidin i 1,8-naftalinski anhidrid. Za maksimalan efekt, antidot je prisutan u preparatu netoksičnoj, antidotno efikasnoj količini. Pod "nefitotoksičnom" podrazumijeva se količina koja izaziva minorno oštećenje na usjevu. Pod "antidotno efikasnom" podrazumijeva se količina koja bitno smanjuje opseg oštećenja izazvan pesticidom na usjevu. Poželjan maseni odnos pesticida prema antidotu je oko 0.1:1 do oko 30:1. najpoželjniji interval za ovaj odnos je oko 3:1 do oko 20:1. The types of crops on which certain pesticides, especially herbicides, can work effectively can be expanded by including an antidote in the preparation. The antidote helps to protect the crop from herbicide damage, without a noticeable effect on the herbicide's potency against. unwanted weed species. The antidote thus makes the herbicide more selective in its action. Useful antidotes include acetamides such as N,N-diallyl-2,2-dichloroacetamide and N,N-diallyl-2-chloroacetamide, oxazolidines such as 2,2,5-tri-methyl-N-dichloroacetyloxazolidine and 2,2 -spirocyclohexyl-N-chloro-acetyloxazolidine and 1,8-naphthalene anhydride. For maximum effect, the antidote is present in the preparation in a non-toxic, antidote-effective amount. "Non-phytotoxic" means the amount that causes minor damage to the crop. "Antidotally effective" means an amount that significantly reduces the extent of damage caused by the pesticide on the crop. The preferred mass ratio of pesticide to antidote is about 0.1:1 to about 30:1. the most desirable interval for this ratio is about 3:1 to about 20:1.

Korisnost mnogih pesticida može se također proširiti uključivanjem sinergista u pesticidni preparat. Sinergisti su spojevi koji imaju malu ili nikakvu pesticidnu aktivnost sami po sebi, ali kada se kombiniraju sa pesticidom proizvode kombinaciju sa značajno većom snagom od aditivnog zbroja snaga spojeva primijenjenih pojedinačno. korisni sinergisti uključuju 5-1-/2-(2-etoksietoksi)-etoksi/-1,3-benzodioksaol (sesameks), 1,4-di-(1,3-benzodioksol-5-il)-tetrahidro-furo /3,4-c/furan (sesamin), 1-metil-2-(3,4-metilendioksifenil)-etiloktil sulfooksid (sulfooksid) i 5-/2-(2-butoksietoksi)-etoksimetil-6-propil-1,3-benzodioksol (piperonilbutoksid). Kada su uključeni sinergisti su prisutni u efikasnim količinama, tj., u bilo kojem odnosu pesticid-prema-sinergistu za koji se zapaža sinergetski efekt. Ovaj odnos široko varira od jedne kombinacije do slijedeće. The utility of many pesticides can also be extended by including synergists in the pesticide preparation. Synergists are compounds that have little or no pesticidal activity by themselves, but when combined with a pesticide produce a combination with significantly greater potency than the additive sum of the potencies of the compounds applied individually. useful synergists include 5-1-(2-(2-ethoxyethoxy)-ethoxy)-1,3-benzodioxaol (Sesamex), 1,4-di-(1,3-benzodioxol-5-yl)-tetrahydro-furo/ 3,4-c/furan (sesamin), 1-methyl-2-(3,4-methylenedioxyphenyl)-ethyloctyl sulfoxide (sulfoxide) and 5-/2-(2-butoxyethoxy)-ethoxymethyl-6-propyl-1, 3-benzodioxole (piperonyl butoxide). When included, synergists are present in effective amounts, i.e., in any pesticide-to-synergist ratio for which a synergistic effect is observed. This relationship varies widely from one combination to the next.

B. Prepolimer B. Prepolymer

Prepolimeri pogodni prema sadašnjem izumu su parcijalno eterificirani karbamid-formaldehidni prepolimeri sa visokom topljivošću u organskoj fazi i niskom topljivošću u vodi. U nestereficiranom obliku prapolimera sadrži veliki broj metilolnih grupa, -CH2OH, u molekulskoj strukturi. Eterifikacija je zamjena hidroksilnih vodika sa alkil grupama i postiže se kondenzacijom prapolimera sa alkoholom. Kada alkil grupe sadrže četiri ugljikova atoma ili više i zamjene više od 50% hidroksilnih vodika na molekulu prepolimera, prepolimer postaje topljiv u organskoj fazi. Međutim kompletna eterifikacija se treba izbjeći, pošto su hidroksilne grupe potrebne za samo-kondenzacionu polimerizaciju in situ koja se javlja u fazi formiranja zida. Zbog toga su prepolimeri koji su korisni u sadašnjem izumu oni u kojima je od oko 50% do oko 4 do 10 ugljikovih atoma svaka. Prepolymers suitable according to the present invention are partially etherified carbamide-formaldehyde prepolymers with high solubility in the organic phase and low solubility in water. In the non-esterified form of the prepolymer, it contains a large number of methylol groups, -CH2OH, in the molecular structure. Etherification is the replacement of hydroxyl hydrogens with alkyl groups and is achieved by condensation of the prepolymer with alcohol. When the alkyl groups contain four carbon atoms or more and replace more than 50% of the hydroxyl hydrogens on the prepolymer molecule, the prepolymer becomes soluble in the organic phase. However, complete etherification should be avoided, since hydroxyl groups are necessary for the in situ self-condensation polymerization that occurs in the wall formation phase. Therefore, the prepolymers useful in the present invention are those having from about 50% to about 4 to 10 carbon atoms each.

U poželjnoj praksi, oko 70% do oko 90% grupa eterificirano je sa C4-C6 alkoholom. I alkoholi pravog i rašljastog niza korisni su u sadašnjem izumu, i svi intervali ugljikovih atoma koji su ovdje citirani namijenjeni su da uključe njihove ,gornje i donje granice. In preferred practice, about 70% to about 90% of the groups are etherified with a C4-C6 alcohol. Both straight and branched chain alcohols are useful in the present invention, and all ranges of carbon atoms cited herein are intended to include their upper and lower limits.

Esterificirani karbamid-formaldehidni prepolimeri su komercijalno pristupačni kao otopine u alkoholu ili u smjesi alkohola i ksilola. Korišteni alkohol kao otapalo je normalno identičan sa onim koji se koristi kao sredstvo za eterifikaciju. Oni u najobičnijoj primjeni . su n-butanol i izo-butanol. Stupanj eterifikacije (butiliranja) u ovim komercijalnim proizvodima varira između 70% i 90%, i otopina sadrži od 50% do 85% masenih prepolimera. Također su često prisutne minorne količine slobodnog formaldehida. Ove otopine se tipično prodaju kao sredstva za umrežavanje za alkidne smole i koriste se primarno za formuliranje proizvoda za prevlačenje i finiširanje kao što su boje i lakovi. Esterified carbamide-formaldehyde prepolymers are commercially available as solutions in alcohol or in a mixture of alcohol and xylene. The alcohol used as a solvent is normally identical to that used as an etherification agent. Those in the most common application. are n-butanol and iso-butanol. The degree of etherification (butylation) in these commercial products varies between 70% and 90%, and the solution contains from 50% to 85% by weight of prepolymers. Minor amounts of free formaldehyde are also often present. These solutions are typically sold as crosslinkers for alkyd resins and are used primarily to formulate coating and finishing products such as paints and varnishes.

Karbamid-formaldehidni prepolimeri koji nisu bili eterificirani također su komercijalno pristupačni, ili u vodenoj otopini ili kao krute tvari koje se mogu otopiti u vodi, za primjenu kao adhezivi. Ovi se mogu eterificirati kondenzacijom sa željenim alkoholom u slabo kiseloj alkoholnoj otopini. Voda kondenzacije se odestilira ţkao azeotrop sa alkoholom sve dok se ne postigne željeni stupanj kondenzacije (eterifikacije). Urea-formaldehyde prepolymers that have not been etherified are also commercially available, either in aqueous solution or as water-soluble solids, for use as adhesives. These can be etherified by condensation with the desired alcohol in a weakly acidic alcoholic solution. Condensation water is distilled as an azeotrope with alcohol until the desired degree of condensation (etherification) is reached.

Sami karbamid-formaldehidni prepolimeri se mogu napraviti poznatim tehnikama, naročito bazno-kataliziranom reakcijom između karbamida i formaldehida u vodi pri masenom odnosu od 0.6 do 1.3 djela formaldehida na jedan maseni dio karbamida (1.2:1 do 2.6:1 na molarnoj osnovi), na pH od 7.5 do 11.0 i na temperaturi od 50°C do 90°C. Eterifikacija se tada postiže kao u prethodnom paragrafu. Stupanj eterifikacije se može pratiti količinom vode koja se istjeruje za vrijeme destilacije. Premda stupanj eterifikacije može varirati u širokom intervalu da se zadovolje potrebe reakcijskog sustava brzine polimerizacije u kasnijoj fazi formiranja zida se smanjuje kada se stupanj eterifikacije povećava. Zato jako visoki stupanj eterifikacije teži da inhibira napredovanje formiranja zida. Međutim, topljivost prepolimera u vodi također se smanjuje sa povećanjem stupnja eterifikacije. Pošto je niska topljivost u vodi poželjna karakteristika prepolimera, najbolje je da se izbjegava previše nizak stupanj eterifikacije. Tako su pogodni i poželjni intervali oni koji su navedeni gore. The carbamide-formaldehyde prepolymers themselves can be made by known techniques, in particular by a base-catalyzed reaction between carbamide and formaldehyde in water at a mass ratio of 0.6 to 1.3 parts of formaldehyde to one mass part of carbamide (1.2:1 to 2.6:1 on a molar basis), on pH from 7.5 to 11.0 and at a temperature from 50°C to 90°C. Etherification is then achieved as in the previous paragraph. The degree of etherification can be monitored by the amount of water expelled during distillation. Although the degree of etherification can be varied over a wide range to meet the needs of the reaction system, the rate of polymerization in the later stage of wall formation decreases as the degree of etherification increases. Therefore, a very high degree of etherification tends to inhibit the progress of wall formation. However, the solubility of the prepolymer in water also decreases with increasing degree of etherification. Since low solubility in water is a desirable characteristic of the prepolymer, it is best to avoid too low a degree of etherification. Thus, the intervals listed above are suitable and desirable.

Organska otopina koja obuhvaća unutrašnju tekućinu i eterificirani prepolimer se najpogodnije formira kada se posljednji prethodno otopi u nekom otapalu, kao kada se komercijalno prodaje u industriji prevlaka i finiširanja. U odsustvu takvog otapala postoji visoki stupanj vodičnog vezivanja između hidroksilnih grupa, i prepolimera je voštana tvar koja se teško otapa u unutrašnjoj tekućini kapsula. Polarna organska otapala su naročito korisna za sprečavanje vodičnog vezivanja i otapanje prepolimera; primjeri uključuju alkohole, ketone, etere, alifatične tvari i druga nepolarna otapala koja se takoder mogu koristiti. Najkorisnija otaţala su isti alkoholi koji se koriste kao sredstva za eterifikaciju, pri čemu se otopina uzima direktno iz reakcijske smjese postupka za eterifikaciju. ' An organic solution comprising the internal liquid and the etherified prepolymer is most conveniently formed when the latter is previously dissolved in a solvent, such as when sold commercially in the coating and finishing industry. In the absence of such a solvent, there is a high degree of conductive bonding between the hydroxyl groups, and the prepolymer is a waxy substance that is difficult to dissolve in the internal liquid of the capsules. Polar organic solvents are particularly useful for preventing conductive bonding and dissolving prepolymers; examples include alcohols, ketones, ethers, aliphatics and other non-polar solvents which may also be used. The most useful solvents are the same alcohols that are used as etherification agents, whereby the solution is taken directly from the reaction mixture of the etherification process. '

Koncentracija prepolimera u organskoj fazi nije kritična za prakticiranje, ali može varirati u širokom intervalu ovisno od željene jačine zida kapsule i željene količine unutrašnje tekućine u završnoj kapsuli. Međutim bit će najpogodnije da se koristi organska faza sa koncentracijom prapolimera od oko 1% do oko 70% na masenoj osnovi, poželjno od oko 5% do oko 50%. The concentration of the prepolymer in the organic phase is not critical for practice, but can vary over a wide range depending on the desired strength of the capsule wall and the desired amount of internal liquid in the final capsule. However, it will be most convenient to use an organic phase with a prepolymer concentration of from about 1% to about 70% by weight, preferably from about 5% to about 50%.

C. Opcijski aditivi C. Optional additives

Opcijski aditivi uključuju otapala, polimerizacijske katalizatore i sredstva za modifikaciju zida. Optional additives include solvents, polymerization catalysts, and wall modifiers.

Otapala osiguravaju sredstvo za kontrolu reakcije za formiranje zida. Kao što je objašnjeno u donjem Odjeljku E, reakcija se javlja kada protoni dođu u kontakt sa karbamid-formaldehidnim prepolimerom. Organska faza mora biti zadovoljavajuće hidrofilna da privuče protone na međupovršinu od mase vodene faze, a ipak zadovoljavajuće hidrofobna da spriječi da se velike količine protona križaju na međupovršini i da izazivaju javljanje polimerizacije kroz masu kapljice. Solvents provide a means of controlling the wall forming reaction. As discussed in Section E below, the reaction occurs when protons come into contact with the carbamide-formaldehyde prepolymer. The organic phase must be sufficiently hydrophilic to attract protons to the interface from the bulk of the aqueous phase, yet sufficiently hydrophobic to prevent large amounts of protons from crossing the interface and causing polymerization to occur through the bulk of the droplet.

Odgovarajuće izabrano otapalo dodano u organsku fazu može korigirati karakter organske faze za postizanje ovih rezultata. Jasno, potreba za otapalom i tipom potrebnog otapala - hidrofobnog ili hidrofilnog - zavisi od prirode tekućeg unutrašnjeg materijala. Alifatična i aliciklična otapala su primjeri hidrofilnih otapala, a alkoholi i ketoni su primjeri hidrofilnih otapala Količina otapala se može mijenjati prema potrebi tako da se dobiju željeni rezultati. An appropriately chosen solvent added to the organic phase can correct the character of the organic phase to achieve these results. Clearly, the need for a solvent and the type of solvent required - hydrophobic or hydrophilic - depends on the nature of the liquid internal material. Aliphatic and alicyclic solvents are examples of hydrophilic solvents, and alcohols and ketones are examples of hydrophilic solvents. The amount of solvent can be varied as needed to obtain the desired results.

Katalizatori koji su sposobni ojačati reakciju za formiranje zida mogu se staviti ili u vodenu ili u organsku fazu. Katalizatori se uglavnom koriste kada je unutrašnji materijal previše hidrofoban, pošto služe da privuku protone prema organskoj fazi. Može se koristiti bilo koji organski katalizator koji je topljiv u vodi i ima visok afinitet za organsku fazu i koji može nositi proton. Karboksilne i sulfonske kiseline su naročito korisne. Primjeri uključuju orto-klorobenzoevu kiselinu, 2-fenil-2,2-diklorooctenu kiselinu, benzoevu kiselinu, salicilnu kiselinu, p-toluolsulfonsku kiselinu dodecilbenzolsulfonsku kiselinu. Isti katalitički efekt se može postići otapljanjem soli ovih kiselina u vodenoj ili organskoj fazi i tada zakiseljavanjem vodene faze. Kiselinski oblik se proizvodi ionskom razmjenom. . Catalysts capable of enhancing the wall-forming reaction can be placed either in the aqueous or in the organic phase. Catalysts are mainly used when the internal material is too hydrophobic, as they serve to attract protons towards the organic phase. Any organic catalyst that is soluble in water and has a high affinity for the organic phase and can carry a proton can be used. Carboxylic and sulfonic acids are particularly useful. Examples include ortho-chlorobenzoic acid, 2-phenyl-2,2-dichloroacetic acid, benzoic acid, salicylic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid. The same catalytic effect can be achieved by dissolving the salts of these acids in the aqueous or organic phase and then acidifying the aqueous phase. The acid form is produced by ion exchange. .

Sredstva. za modifikaciju zida služe da modificiraju karakter zida mijenjanjem njegove prosušljivosti za unutrašnji materijal. Pogodna sredstva za modifikaciju zida sadrže bitno broj hidroksilnih ili merkapto grupa koje mogu reagirati sa metilolnim grupama na prepolimeru. Može se koristiti modifikator zida za adiranje metilolnih grupa na višestruke veze tako da se poveća stupanj umrežavanja, ili da se iscrpe aktivna mjesta na prepolimeru da se smanji stupanj umrežavanja. Tako, ovisno od vrste korištenog modifikatora i odnosa modifikatora prema prepolimeru, propustljivost zida (i kasnije brzina oslobađanja unutrašnje tekućine) može se ili povećati ili smanjiti. Ricinusovo ulje je jedan primjer takvog sredstva. Resources. for wall modification, they are used to modify the character of the wall by changing its dryability for the interior material. Suitable wall modifiers contain a substantial number of hydroxyl or mercapto groups that can react with methylol groups on the prepolymer. A wall modifier can be used to add methylol groups to the multiple bonds so as to increase the degree of crosslinking, or to deplete the active sites on the prepolymer to decrease the degree of crosslinking. Thus, depending on the type of modifier used and the ratio of the modifier to the prepolymer, the permeability of the wall (and subsequently the release rate of the internal liquid) can either increase or decrease. Castor oil is one example of such an agent.

D Formiranje emulzije D Emulsion formation

Pošto se formira organska otopina emulzija se formira dispergiranjem organske otopine u vodenoj otopini koja obuhvaća vodu i površinski aktivno sredstvo. Relativne količine organskih i vodenih faza nisu kritične za prakticiranje izuma, i mogu varirati u širokom intervalu, koji je najviše ograničen pogodnošću i lakoćom rukovanja. U praktičnoj primjeni, organska faza će obuhvaćati maksimum od oko 55% volumenske ukupne emulzije i obuhvatit će diskretnekapljice organske otopine dispergirane u vodenoj otopini. After the organic solution is formed, the emulsion is formed by dispersing the organic solution in an aqueous solution that includes water and a surfactant. The relative amounts of the organic and aqueous phases are not critical to the practice of the invention, and may vary over a wide range, limited at most by convenience and ease of handling. In practical application, the organic phase will comprise a maximum of about 55% by volume of the total emulsion and will comprise discrete droplets of the organic solution dispersed in the aqueous solution.

Površinski aktivno sredstvo može biti bilo koje od raznih spojeva za koje se zna da su korisni za snižavanje površinskog napona fluidne međupovršine. Korisni su i neionski i anionski tipovi. Primjeri neonskih sredstva su alkil dugog niza i merkaptanski polietoksi alkoholi, alkilaril polietoksi alkoholi, alkilaril polietarski alkoholi, alkil polietarski alkoholi, polioksietilen sorbitan ester sa masnim kiselinama, poliksietilen eteri i polietilen glikol esteri sa masenim ili smolnim kiselinama. Primjeri, anionskih sredstva su kalcijeve aminske, alkanolaminske i alkalne soli alkil i alkilaril sulfonata; biljni sulfonati i etoksilirani i propoksilirani moni i dietri fosforne kiseline. Također su korisne smjese površinski aktivnih sredstva. Poželjna površinski aktivna sredstva su polietilenglikoleteri linearnih alkohola i alkalne soli alkil i alkilaril sulfonata. The surfactant may be any of a variety of compounds known to be useful in lowering the surface tension of a fluid interface. Both nonionic and anionic types are useful. Examples of neon agents are long-chain alkyl and mercaptan polyethoxy alcohols, alkylaryl polyethoxy alcohols, alkylaryl polyether alcohols, alkyl polyether alcohols, polyoxyethylene sorbitan ester with fatty acids, polyoxyethylene ethers and polyethylene glycol esters with fatty or resin acids. Examples of anionic agents are calcium amine, alkanolamine and alkali salts of alkyl and alkylaryl sulfonates; vegetable sulfonates and ethoxylated and propoxylated mon and dieters of phosphoric acid. Mixtures of surfactants are also useful. Preferred surfactants are polyethylene glycol ethers of linear alcohols and alkali salts of alkyl and alkylaryl sulfonates.

Količine površinski aktivnog sredstva nije kritična za izum, i može varirati u širokom intervalu. Radi pogodnosti, sredstvo uglavnom obuhvaća od oko 0.1 % do 5.0% masenih vodene faze. Sredstvo se može dodati prije ili poslije formiranja emulzije. The amount of surfactant is not critical to the invention, and may vary over a wide range. For convenience, the agent generally comprises from about 0.1% to 5.0% by weight of the aqueous phase. The agent can be added before or after the formation of the emulsion.

U nekim sustavima, stabilnost emulzije se može . pojačati dodavanjem zaštitnog koloida u vodenu fazu. Zaštitni koloid stabiližira dispergiran sustav protiv agregacije, flokulacije i koalesoencije. Poznato je da mnogi materijali funkcioniraju kao zaštitni koloidi i pristupačni su komercijalno, uključujući polivinilalkohole, alginate, alfa i gama-proteine, kazein, metilcelulozu, karboksimetilcelulozu, želatinu, ljepila, prirodne gume, polikiseline i škrob. Koloid se može dodati u vodenu fazu prije formiranja emulzije, ili u samu emulziju pošto se ona formira. Premda je koloid opcijski aditiv, njegovo uključivanje u sadašnji sustav je poželjno. In some systems, the stability of the emulsion can be . strengthen by adding a protective colloid to the aqueous phase. The protective colloid stabilizes the dispersed system against aggregation, flocculation and coalescence. Many materials are known to function as protective colloids and are available commercially, including polyvinyl alcohols, alginates, alpha and gamma proteins, casein, methylcellulose, carboxymethylcellulose, gelatin, adhesives, natural gums, polyacids, and starch. The colloid can be added to the aqueous phase before the emulsion is formed, or to the emulsion itself after it is formed. Although colloid is an optional additive, its inclusion in the current system is desirable.

Polivinilalkoholni zaštitni koloidi su naročito poželjni. Polyvinyl alcohol protective colloids are particularly preferred.

Dopunski spojevi koji mogu služiti kao zaštitni koloidi su soli ligninsulfonata, kao što su natrijeve, kalijeve, magnezijeve, kalcijeve ili amonij soli. Medu komercijalnim ligninsulfonatima su TreaxR, LTS, LTK i LTM, kalijeve, magnezijeve i natrijeve soli lignosulfonata (50% vodene otopine), Scot Paper Co., Forest Chemical Products; Marasperse CRR i Marasperse CBOS-3R, natrij-lignosulfonat, American Can Co., Polyfon OR, Polyfon TR, Reax 88BR, Reax 85BR, natrijeve soli lignisulfonata i Reax C-21R, kalcijeve soli ligninsulfonata, Westvaco Polychemicals, Orzan S i Orzan A, natrijeve i amonijeve soli ligninsulfonata, ITT Rayonier, Inc. Complementary compounds that can serve as protective colloids are ligninsulfonate salts, such as sodium, potassium, magnesium, calcium or ammonium salts. Commercial ligninsulfonates include TreaxR, LTS, LTK and LTM, potassium, magnesium and sodium salts of lignosulfonate (50% aqueous solution), Scot Paper Co., Forest Chemical Products; Marasperse CRR and Marasperse CBOS-3R, sodium lignosulfonate, American Can Co., Polyfon OR, Polyfon TR, Reax 88BR, Reax 85BR, sodium salts of lignisulfonate and Reax C-21R, calcium salts of ligninsulfonate, Westvaco Polychemicals, Orzan S and Orzan A , sodium and ammonium salts of ligninsulfonate, ITT Rayonier, Inc.

Stvarna količina koloida nije kritična i bilo koja količina koja je efikasna za pojačanje stabilnosti emulzije može se koristiti. Najpogodnije je da se koristi između oko 0.1 % i oko 5.0 koloida po masi u odnosu na vodenu fazu. The actual amount of colloid is not critical and any amount effective to enhance emulsion stability may be used. It is most convenient to use between about 0.1% and about 5.0% colloid by mass relative to the aqueous phase.

Veličina kapljica u emulziji nije kritična za izum. Za veću korisnost finalnog proizvoda, veličina kapljice će padati u intervalu od oko 0.5 mikrona do oko 4000 mikrona po promjeru. Poželjan interval za mnoge pesticidne primjene je od oko 1 mikrona do oko 1000 mikrona u promjeru. Emulzija se pravi korištenjem konvencionalnog uređaja za miješanje sa velikim smicanjem. Pošto se jednom postigne željena veličina kapljice, blago miješanje je uglavnom zadovoljavajuće za sprečavanje rasta kapljice u ostatku postupka. The size of the droplets in the emulsion is not critical to the invention. For greater utility of the final product, the droplet size will fall in the range of about 0.5 microns to about 4000 microns in diameter. The preferred range for many pesticide applications is from about 1 micron to about 1000 microns in diameter. The emulsion is made using a conventional high shear mixer. Once the desired droplet size is achieved, gentle mixing is generally sufficient to prevent droplet growth for the rest of the process.

E Formiranje zida E Wall formation

Kada se jednom postigne dispergiranje i željena veličina kapljice, sustav se zakiseli na pH između oko 0 i oko 4.0, poželjno između oko 1.0 i oko 3.0. Ovo tjera eterificiran karbamid-formaldehidni prepolimer da se polimerizira samo-kondenzacijom in situ i da formira omotač koji kompletno okružuje svaku kapljicu. Zakiseljavanje se može postići bilo kojim pogodnim sredstvom, uključujući dodavanje bilo koje kiseline koja je otopljena u vodi, uključujući mravlju kiselinu, limunsku kiselinu, klorovodičnu kiselinu, sumpornu kiselinu, fosfornu kiselinu i slične. Once dispersion and the desired droplet size are achieved, the system is acidified to a pH between about 0 and about 4.0, preferably between about 1.0 and about 3.0. This causes the etherified carbamide-formaldehyde prepolymer to polymerize by self-condensation in situ and form a shell that completely surrounds each droplet. Acidification can be accomplished by any convenient means, including the addition of any acid that is dissolved in water, including formic acid, citric acid, hydrochloric acid, sulfuric acid, phosphoric acid, and the like.

Zakiseljavanje se također može postići korištenjem kiselih disperzanata ili površinski aktivnih sredstva, pod uvjetom da se takve komponente dodaju na sustav pošto je emulzija formirana. Acidification can also be achieved using acidic dispersants or surfactants, provided such components are added to the system after the emulsion is formed.

Kada zid polimera postane krući, kontakt između aktivnih grupa prapolimera postaje povećano otežan. Tako je in situ samo-kondenzacijska reakcija polimerizacije samo-ograničavajuća i uglavnom se pusti da se vrši do kraja. Međutim reakcija se može zaustaviti prije kompletiranja, povećanjem pH. Na ovaj način, debljina zida, krutost i propustljivost se mogu kontrolirati. Ovo se također može postići u mnogim slučajevima pomoću modifikatora zida kao što je opisano gore. When the polymer wall becomes stiffer, the contact between the active groups of the prepolymer becomes increasingly difficult. Thus, the in situ self-condensation polymerization reaction is self-limiting and is generally allowed to proceed to completion. However, the reaction can be stopped before completion by increasing the pH. In this way, wall thickness, stiffness and permeability can be controlled. This can also be achieved in many cases using wall modifiers as described above.

Brzina samo-kondenzacijske reakcije polimerizacije in situ se povećava sa kiselošću i temperaturom ovisno od pH. Reakcija se zato može vršiti negdje u intervalu od oko 20°C do oko 100°C., poželjno između 40°C i oko 70°C. Reakcija će uglavnom biti završena za nekoliko sati, iako pri visokoj kiselosti i na visokoj temperaturi, reakcija se može završiti za nekoliko minuta. The rate of the self-condensation reaction of in situ polymerization increases with acidity and temperature depending on the pH. The reaction can therefore be carried out somewhere in the interval from about 20°C to about 100°C., preferably between 40°C and about 70°C. The reaction will generally be completed in a few hours, although at high acidity and at high temperature, the reaction may be completed in a few minutes.

Pošto se jednom formiraju kapsule, mogu se uskladištiti i koristiti kao vodena disperzija, ili regenerirati filtracijom u obliku suhih kapsula. U bilo kojem obliku, kapsule su korisne i efikasne za lagano oslobađanje unutrašnje tekućine. Disperzije se poželjno stabiliziraju pomoću disperzanata otopljenim u kontinualnoj fazi. Pošto je najveći broj disperzanata efikasan u neutralnim ili baznim uvjetima, poželjno je da se postigne pH disperzija pošto je zid formiran. Ovo se postiže sa bilo kojom bazom koja je topljiva u vodi. Može se koristiti bilo koji konvencionalni disperzan. Tipični disperzanti uključuju lininsulfonate, polimerne alkilnaftalin sulfonate, natrij-naftalinsulfonat, polimerilen bis-naftalin sulfonat i natrij-N-metil-N-(kisleina dugog niza) taurate. Once the capsules are formed, they can be stored and used as an aqueous dispersion, or regenerated by filtration in the form of dry capsules. In any form, capsules are useful and effective for the gentle release of internal fluid. Dispersions are preferably stabilized using dispersants dissolved in the continuous phase. Since most dispersants are effective in neutral or basic conditions, it is desirable to achieve pH dispersion after the wall is formed. This is achieved with any base that is soluble in water. Any conventional dispersant can be used. Typical dispersants include linoleic sulfonates, polymeric alkylnaphthalene sulfonates, sodium naphthalene sulfonate, polymerylene bis-naphthalene sulfonate, and sodium N-methyl-N-(long chain acid) taurates.

Slijedeći primjeri nude se kao ilustracija, postupak i proizvod sadašnjeg izuma, i nije im namjera niti definirati niti ograničiti izum na bilo koji način. The following examples are offered by way of illustration, process and product of the present invention, and are not intended to define or limit the invention in any way.

Primjer 1 Example 1

Napravi se vodena otopina koja obuhvaća 2.0% mas. GelvatolaR 40-20 i 0.3% TergitolaR 15-6-7, sa ukupnom masom otopine, 300 g. Galvatola 40-20 je polivinilalkoholni zaštitni koloid (stupanj hidrolize 73-77%), sa prosječnom molekulskom težinom oko 3000, dobiven od Monzanto Company, Indian Orohard, Massaţchusetta. Tergitol 15-6-7 je neionski surfaktant koji sadrži polietilenglikoleter linearnog alkohola, dobiven od Union carbide Chemicals i Plasticd Company, New York. An aqueous solution containing 2.0% wt. GelvatolaR 40-20 and 0.3% TergitolaR 15-6-7, with a total mass of the solution, 300 g. Galvatola 40-20 is a polyvinyl alcohol protective colloid (degree of hydrolysis 73-77%), with an average molecular weight of about 3000, obtained from Monzanto Company , Indian Orohard, Massachusetts. Tergitol 15-6-7 is a nonionic surfactant containing linear alcohol polyethylene glycol ether, obtained from Union Carbide Chemicals and Plastics Company, New York.

U posebnoj posudi 100 g S-etil diizobutiltiokarbamat (herbicid koji je poznat pod običnim imenom "pultilat") i 50g BeckamineR 21-625 primiješaju se u homogenu otopinu. Beckamine 21-625 je 70-75% n-butanolna otopina parcijalnog butiliranog karbamid-formaldehidnog prepolimera u kojem je stupanj butiliranja približno 80-90%, dobiven od Reinhold Chemicals, Inc., White Plains, New York. In a separate container, 100 g of S-ethyl diisobutylthiocarbamate (a herbicide known under the common name "pultilate") and 50 g of BeckamineR 21-625 are mixed into a homogeneous solution. Beckamine 21-625 is a 70-75% n-butanol solution of a partially butylated carbamide-formaldehyde prepolymer in which the degree of butylation is approximately 80-90%, obtained from Reinhold Chemicals, Inc., White Plains, New York.

Tikarbamat /prepolimerna (organska) otopina se doda na vodenu otopinu i formira se emulzija smicanjem, pri čemu organska otopina formira dispergiranu fazu sa kapljicama koje variraju po veličini od 5 do 40 mikrona u primjeru. Premda održava blago miješanje, pH emulzija se namjesti na 2.0 sa koncentriranom kolorovodičnom kiselinom i temperatura se popne na SO°C tokom tri sata. Dobivena suspenzija se tada pusti hladiti na sobnu temperaturu i doda se koncentriran vodeni natrij-hidroksid da se pH popne na 7.0. The ticarbamate/prepolymer (organic) solution is added to the aqueous solution and a shear emulsion is formed, with the organic solution forming a dispersed phase with droplets varying in size from 5 to 40 microns in the example. While maintaining gentle stirring, the pH of the emulsion is adjusted to 2.0 with concentrated hydrochloric acid and the temperature is raised to 50°C over three hours. The resulting suspension is then allowed to cool to room temperature and concentrated aqueous sodium hydroxide is added to bring the pH to 7.0.

Promatranje suspenzije i pod laboratorijskim mikroskopom i pod elektronskim mikroskopom otkrilo je diskretne, grubo sferne, potpuno uklopljenje kapsule sa vanjskim zidovima glatkih površina. Kapsule su bile promjera oko 5 do 40 mikrona i premda su se neke dodirivale nisu bile slijepljene jedna za drugu. Observation of the suspension under both a laboratory microscope and an electron microscope revealed discrete, roughly spherical, fully embedded capsules with smooth surface outer walls. The capsules were about 5 to 40 microns in diameter and although some were touching, they were not glued to each other.

Primjer 2 Example 2

Napravljena je organska otopina koja obuhvaća 162.2 g 2-metoksi-9-(p-izopropilfenil)-2,6-dimetilnonana (poznat inhibitor sazrijevanja insekata-vidi U.S. patent br. 4,002769, objavljen 11 siječnja 1977, Schwarz et al. ) i 48.0 g ResimeneR X-918. Posljednji je 70% n-butanolna otopina parcijalno butiliranog karbamid-formaldehidnog prepolimera sa stupnjem butiliranja približno 80'90%, proizvod Monzanto Plastics and Resins Company, Newport Beach, California. An organic solution containing 162.2 g of 2-methoxy-9-(p-isopropylphenyl)-2,6-dimethylnonane (a known insect maturation inhibitor-see U.S. Patent No. 4,002769, issued January 11, 1977, Schwarz et al.) was prepared. and 48.0 g ResimeneR X-918. The latter is a 70% n-butanol solution of a partially butylated carbamide-formaldehyde prepolymer with a degree of butylation of approximately 80-90%, a product of Monzanto Plastics and Resins Company, Newport Beach, California.

Ova otopina se doda na vodenu otopinu koja obuhvaća 168.1 g vode i 1.87 g Glavatola 40-20 i formira se emulzija kao u primjeru 1, sa kapljicama koje variraju po promjeru od 1 do 40 mikrona. U ovu emulziju se doda 20 g vode koja sadrži 1.87 g i disperzanata Lomar NCOR i DarvanR #2. Prvi je proizvod Diamonf Shamrock Chemical Company, Ropco Divison Morristown, New Jersey i to je natrijeva sol supstituiranih benzoevih alkil sulfonskih kiselina. Posljednji je proizvod R.T. Vanderbilt Company, Inc. Norwalk, Connecticut i sadrži natrijeve soli polimeriziranih natrijevih soli susptituiranih benžoevih alkil sulfonskih kiselina. This solution is added to an aqueous solution comprising 168.1 g of water and 1.87 g of Glavatol 40-20 and an emulsion is formed as in Example 1, with droplets varying in diameter from 1 to 40 microns. 20 g of water containing 1.87 g of Lomar NCOR and DarvanR #2 dispersants are added to this emulsion. The first is a product of Diamonf Shamrock Chemical Company, Ropco Division Morristown, New Jersey and is the sodium salt of substituted benzoic alkyl sulfonic acids. The last product is R.T. Vanderbilt Company, Inc. Norwalk, Connecticut and contains sodium salts of polymerized sodium salts of substituted benzoic alkyl sulfonic acids.

5% otopina klorovodične kiseline doda se da se snizi pH emulzija na 2.0 i temperatura se popne na 50°C sa nastavljenim miješanjem tijekom tri sata. Dobivena disperzija se tada ohladi na sobnu temperaturu i doda se koncentrirana kautična otopina da se pH popne na 9.0. 5% hydrochloric acid solution was added to lower the pH of the emulsion to 2.0 and the temperature was raised to 50°C with continued stirring for three hours. The resulting dispersion is then cooled to room temperature and a concentrated caustic solution is added to raise the pH to 9.0.

Mikroskopsko promatranje disperzije otkrilo je potpuno formirane, diskretne kapsule kao u primjeru l. Microscopic observation of the dispersion revealed fully formed, discrete capsules as in Example 1.

Primjer 3 Example 3

Organska otopina za ovaj primjer sadržao je 139.0 g O-etil-S-fenil-etilfosfonoditioata (komercijalni insekticidi koji je također poznat pod običnim imenom "fonofos") i 39.9 g Resimene X-918. Ova otopina se emulgirana u vodenoj otopini koja sadrži 200 g vode i 2.35 g Galvatola 40-20 do veličine kapljice 1 do 40 mikrona, i doda se 35 g vode koja sadrži po 2.35 g i disperzanata Lomar NCO i Darvan #2 kao i 2.4 g p-toluolsulfonske kiseline. Temperatura se popne na 60°C i miješanje se nastavi tri sata. Disperziji se tada dopusti da se ohladi na sobnu temperaturu i pH se popne na 9.0 sa kaustičnom otopinom. The organic solution for this example contained 139.0 g of O-ethyl-S-phenyl-ethylphosphonodithioate (a commercial insecticide also known by the common name "fonofos") and 39.9 g of Resimene X-918. This solution is emulsified in an aqueous solution containing 200 g of water and 2.35 g of Galvatol 40-20 to a droplet size of 1 to 40 microns, and 35 g of water containing 2.35 g each of Lomar NCO and Darvan #2 dispersants as well as 2.4 g of p -toluenesulfonic acids. The temperature is raised to 60°C and stirring is continued for three hours. The dispersion is then allowed to cool to room temperature and the pH is brought up to 9.0 with caustic solution.

Mikroskopsko promatranje disperzije otkrilo je potpuno formirane diskretne kapsule kao u primjeru 1. Microscopic observation of the dispersion revealed fully formed discrete capsules as in Example 1.

Primjer 4 Example 4

Organska otopina za ovaj primjer sadržavala je 156 g HI-SOLR 4-3 i 43.5 g Beckamina 21-625. Prva je teška aromatična nafta, sa temperaturom ključanja koja varira od 238°C do 286°C, proizvod Ashlan Chemical Company, Industrial Chemicals i Solvents Divison, Columbu Ohio. Ova otopina je emulgirana u vodenoj otopini koja sadrži 194.6 g vode, 3.9 g Gelvatola 40-20 i 7.8 g Darvana #2, do veličine kapljica od 1 do 40 mikrona. pH se podesi na 2.0 sa 5% otopinom klorovodične kiseline i temperatura se popne na 50°C sa kontinualnim mješanjem tijekom tri sata. Disperzija se tada ostavi hladiti na sobnu temperaturu i pH se popne na 9.0 sa kaustičnom otopinom. The organic solution for this example contained 156 g of HI-SOLR 4-3 and 43.5 g of Beckamine 21-625. The first is a heavy aromatic naphtha, with a boiling point varying from 238°C to 286°C, a product of Ashlan Chemical Company, Industrial Chemicals and Solvents Division, Columbus Ohio. This solution is emulsified in an aqueous solution containing 194.6 g of water, 3.9 g of Gelvatol 40-20 and 7.8 g of Darvan #2, to droplet sizes of 1 to 40 microns. The pH is adjusted to 2.0 with 5% hydrochloric acid solution and the temperature is raised to 50°C with continuous stirring for three hours. The dispersion is then allowed to cool to room temperature and the pH is raised to 9.0 with caustic solution.

Mikroskopsko promatranje otkrilo je potpuno formirane, diskretne kapsule kao u primjeru 1. Microscopic observation revealed fully formed, discrete capsules as in Example 1.

Primjer 5 Example 5

Vodena otopina koja sadrži 251.6 g vode, 5g Gelvatola 40-20 i 2.5 g TamolaR SN zagrijava se na 50°C. Tamol SN je disperzent koji je identificiran kao natrijeva sol kondenzirane naftalinsulfonske kiseline, dobiven od Rohm and Haas Company, Philadelphia, Pannsylavania. Ovoj zagrijanoj vodenoj otopini doda se organska otopina koja sadrži 173.4 g S-etil diizobutiltiokarbamata (butilat), 7.5 g N,N-dialil-dikloroacetamida i 22.5 g Resimene X-918. Tiokarbamat/ acetamidna kombinacija je poznati herbicid/antidotna kombinacija, vidi U.S. patent br. 4,021,224, objavljen 3 svibnja, 1977, od Pallos-a et. al. Formira se emulzija pomoću miješalice velikog pomicanja kao u gornjim, primjerima, do veličine kapljica 1 do 40 mikrona. Održava se visoka temperatura i pH se snizi na 2.0 sa 5% klorovodičnom kiselinom. Poslije tri sata dopunskog miješanja, disperzija se ohladi na sobnoj temperaturi i pH se popne na 9.0 sa kaustičnom otopinom. An aqueous solution containing 251.6 g of water, 5 g of Gelvatol 40-20 and 2.5 g of TamolaR SN is heated to 50°C. Tamol SN is a dispersant identified as the sodium salt of condensed naphthalene sulfonic acid, obtained from the Rohm and Haas Company, Philadelphia, Pennsylvania. An organic solution containing 173.4 g of S-ethyl diisobutylthiocarbamate (butylate), 7.5 g of N,N-diallyl-dichloroacetamide and 22.5 g of Resimene X-918 was added to this heated aqueous solution. The thiocarbamate/acetamide combination is a known herbicide/antidote combination, see U.S. Pat. patent no. 4,021,224, issued May 3, 1977, to Pallos et. al. An emulsion is formed using a high displacement mixer as in the above examples, to a droplet size of 1 to 40 microns. A high temperature is maintained and the pH is lowered to 2.0 with 5% hydrochloric acid. After additional stirring for three hours, the dispersion was cooled to room temperature and the pH was raised to 9.0 with caustic solution.

Mikroskopsko promatranje otkrilo je potpuno formirane, diskretne kapsule kao u primjeru 1. Microscopic observation revealed fully formed, discrete capsules as in Example 1.

Primjer 6 Example 6

U ovom primjeru demonstrirana je dopunska karakteristika uključivanje organskog otapala (kerozina) u organsku fazu, pa je tako otpalo postalo dio kapsulirane tekućine. In this example, an additional characteristic was demonstrated, the inclusion of an organic solvent (kerosene) in the organic phase, so that the solvent became part of the encapsulated liquid.

Tako je napravljena otopina sa 177.12 g vode, 2 g, 2 g Galvatola 40-20 i 2 g Darvana #2. Organska otopina je napravljena sa 132.74 g S-etil heksahidro-1H-azepin-1-karbotioata (komercijalni herbicid poznat pod običnim imenom "molinat"), 44.25 g kerozina i 35.48 g BeetleR 1050-10. Posljednji je 50% n-butanolna otopina parcijalno butiliranog karbamid-formaldehidnog prepolimera u kojem je stupanj butiliranja približno 70-90°, dobiven od American Cyanamide Company, Rezins Department, Wayne, New Jersey. Thus, a solution was made with 177.12 g of water, 2 g, 2 g of Galvatol 40-20 and 2 g of Darvan #2. The organic solution was made with 132.74 g of S-ethyl hexahydro-1H-azepine-1-carbothioate (a commercial herbicide commonly known as "molinate"), 44.25 g of kerosene and 35.48 g of BeetleR 1050-10. The latter is a 50% n-butanol solution of partially butylated carbamide-formaldehyde prepolymer in which the degree of butylation is approximately 70-90°, obtained from American Cyanamide Company, Resins Department, Wayne, New Jersey.

Organska otopina se emulgira u vodenoj otopini pomoću miješalice visokog pomicanja do prosječnog presjeka kapljice 18 mikrona, i doda se 19.68 g vode koja sadrži 2 g DAXADR LAA Lagano, tako da se snizi pH emulzija na 1.7. DAXAD LA.A je disperzant u kiselom obliku, identificiran kao polimerizirana alkilnaftalinsulfonska kiselina, proizvod W.R. Grace and Company Organic Chemicals Dividion, Lexington, Massachusetts. The organic solution is emulsified in aqueous solution using a high agitation stirrer to an average droplet cross section of 18 microns, and 19.68 g of water containing 2 g of DAXADR LAA Light is added to lower the pH of the emulsion to 1.7. DAXAD LA.A is a dispersant in acidic form, identified as polymerized alkylnaphthalenesulfonic acid, a product of W.R. Grace and Company Organic Chemicals Division, Lexington, Massachusetts.

Temperatura emulzije se tada popne na 50°C tijekom tri sata sa nastavljenim miješanjem. Tako formirana disperzija se ohladi na sobnu temperaturu i pH se popne na 7.5 sa kaufatičnom otopinom. The temperature of the emulsion is then raised to 50°C for three hours with continued stirring. The dispersion thus formed is cooled to room temperature and the pH is raised to 7.5 with a cauphatic solution.

Mikroskopsko promatranje otkrilo je potpuno formirane, diskretne kapsule kao u primjeru 1. Microscopic observation revealed fully formed, discrete capsules as in Example 1.

Primjer 7 Example 7

U ovom primjeru, demonstrirane su dvije dopunske karakteristike- uključivanje kerozina kao u primjeru 6 i dodavanje komponente za modifikaciju zida (ricinusovo ulje) u prepolimer. Napravljena je vodena otopina sa 181.6 g vode, 2 g, 2 g Galvatola 40-20 i 2 g Darvana #2. Organska otopina je napravljena sa 132.7 g S-etil leksahidro-1H-azepin-1-karbotioata, 44.25 g kerozina i 22.97 g Beetle 1050-10 i 6.9 g ricinusovog ulja. Formirana je emulzija sa prosječnim promjerom kapljice 18 mikrona, i doda se 20.2 g vode koja sadrži 2 g DAXADR LAA uz snižavanje pH na 1.7. Temperatura emulzije se tada popne na 50°C tijekom tri sata sa kontinualnim miješanjem. Dobivena disperzija se tada ohladi na sobnu temperaturu i pH se popne na 7.5 sa kaufatičnom otopinom. In this example, two additional features are demonstrated - the inclusion of kerosene as in example 6 and the addition of a wall-modifying component (castor oil) to the prepolymer. An aqueous solution was made with 181.6 g of water, 2 g, 2 g of Galvatol 40-20 and 2 g of Darvan #2. The organic solution was made with 132.7 g of S-ethyl lexahydro-1H-azepine-1-carbothioate, 44.25 g of kerosene and 22.97 g of Beetle 1050-10 and 6.9 g of castor oil. An emulsion with an average droplet diameter of 18 microns was formed, and 20.2 g of water containing 2 g of DAXADR LAA was added while lowering the pH to 1.7. The temperature of the emulsion is then raised to 50°C for three hours with continuous stirring. The resulting dispersion is then cooled to room temperature and the pH is brought up to 7.5 with a caustic solution.

Mikroskopsko promatranje otkrilo je potpuno formirane, diskretne kapsule kao u primjeru 1. Microscopic observation revealed fully formed, discrete capsules as in Example 1.

Primjer 8 Example 8

Ovaj primjer demonstrira pravljenje mikrokapsula prema sadašnjem izumu bez korištenja zaštitnog koloida. This example demonstrates the preparation of microcapsules according to the present invention without the use of a protective colloid.

Organska otopina sadržavala je 154 g butilata, 6.7 g N,N-dialil-dikloroacetamida i 47.6 g Resimene X-918. (isti sastojci kao u primjeru 5) Otopina se emulgira u 197.8 g 4.0% (maseni) vodene otopine Darvana #2 do veličine kapljice 1 do 40 mikrona pH disperzije se tada popne na 2.0 sa 5% otopine klorovodične kiseline i temperatura se popne na 50°C sa kontinualnim miješanjem tijekom tri sata. Disperzija se tada pusti da se ohladi na sobnu temperaturu i pH se popne na 9.0 sa kaufatičnom otopinom. The organic solution contained 154 g of butylate, 6.7 g of N,N-diallyl-dichloroacetamide and 47.6 g of Resimene X-918. (same ingredients as in example 5) The solution is emulsified in 197.8 g of 4.0% (by weight) aqueous solution of Darvan #2 to a droplet size of 1 to 40 microns, the pH of the dispersion is then raised to 2.0 with 5% hydrochloric acid solution and the temperature is raised to 50 °C with continuous stirring for three hours. The dispersion is then allowed to cool to room temperature and the pH is brought up to 9.0 with caufatic solution.

Mikroskopsko promatranje disperzije otkrilo je . potpuno formirane, diskretne kapsule ţ kao u primjeru 1. . Microscopic observation of the dispersion revealed . fully formed, discrete capsules ţ as in example 1. .

Claims (17)

1. Postupak za mikrokapsuliranje tekućeg materijala koji je bitno netopljiv u vodi unutar poroznog omotača tako da se vrši oslobađanje spomenutog materijala laganom brzinom kroz spomenuti omotač, naznačen time, što obuhvaća. (a) osiguranje organske otopine koja obuhvaća spomenuti materijali karbamid-formaldehidni prepolimer u kojem su od oko 50% do oko 98% metilolnih grupa spomenutog prepolimera eterificirane sa C4-C10 alkoholom. (b) stvaranje emulzije spomenute organske otopine u vodenoj otopini koja obuhvaća vodu i površinski aktivno sredstvo, pri čemu spomenuta emulzija obuhvaća diskretne kapljice spomenute organske otopine dispergirane u spomenutoj vodenoj otopini, i (c) izazivanje samo-kondenzacije in situ spomenutih karbamid-formaldehidnih prepolimera dodavanjem u spomenutu emulziju sredstva za zakiseljavanje i održavanjem emulzije na pH između oko 0 i oko 4 tijekom zadovoljavajućeg vremenskog razdoblja da se omogući bitno kompletiranje kondenzacije in situ spomenutih smolnih prepolimera radi konverzije kapljica tekućine spomenute organske otopine u kapsule koje sadrže krute propusne polimerne omotače koji okružuju spomenuti tekući materijal, i (d) Zagrijavanje spomenute emulzije na temperaturi između oko 20°C i oko 100°C tako da se izaziva vulkanizacija spomenutih formiranih polimera in situ.1. A method for microencapsulating a liquid material that is substantially insoluble in water within a porous shell so that said material is released at a slow rate through said shell, characterized in that it comprises. (a) providing an organic solution comprising said carbamide-formaldehyde prepolymer materials wherein from about 50% to about 98% of the methylol groups of said prepolymer are etherified with a C4-C10 alcohol. (b) forming an emulsion of said organic solution in an aqueous solution comprising water and a surfactant, wherein said emulsion comprises discrete droplets of said organic solution dispersed in said aqueous solution, and (c) causing in situ self-condensation of said carbamide-formaldehyde prepolymers by adding to said emulsion an acidifying agent and maintaining the emulsion at a pH between about 0 and about 4 for a sufficient period of time to allow substantial completion of the in situ condensation of said resin prepolymers for droplet conversion liquids of said organic solution into capsules containing rigid permeable polymer shells surrounding said liquid material, and (d) Heating said emulsion at a temperature between about 20°C and about 100°C so as to induce vulcanization of said formed polymers in situ. 2. Postupak prema Zahtjevu 1, naznačen time, što je od oko 70% do oko 90% metilolnih grupa prepolimera iz faze (a) eterificirano.2. Process according to Claim 1, characterized in that from about 70% to about 90% of the methylol groups of the prepolymer from phase (a) are etherified. 3. Postupak prema Zahtjevu 1, naznačen time, što je alkohol sa kojim su metilolne grupe prepolimera iz faze (a) eterificirane sa C4-C10 alkoholom.3. The method according to Claim 1, characterized in that the alcohol with which the methylol groups of the prepolymer from phase (a) are etherified is a C4-C10 alcohol. 4. Postupak prema Zahtjevu 1, naznačen time, što je alkohol sa kojim su metilolne grupe prepolimera iz faze (a) eterificirane n-butanol ili izo-butanol.4. The method according to Claim 1, characterized in that the alcohol with which the methylol groups of the prepolymer from phase (a) are etherified is n-butanol or iso-butanol. 5. Postupak prema Zahtjevu 1, naznačen time, što je od oko 70% do oko 90% metilolnih grupa prepolimera iz faze (a) eterificirano, a alkohol sa kojim su spomenute metilolne grupe etertificirane je n-butanol5. The method according to Claim 1, indicated by the fact that from about 70% to about 90% of the methylol groups of the prepolymer from phase (a) are etherified, and the alcohol with which the mentioned methylol groups were etherified is n-butanol 6. Postupak prema Zahtjevu 1, naznačen time, što se prije formiranja organske otopine iz faze (a), prepolimer iz faze (a) otopi u alkoholu koji je identičan sa onim sa kojim je prapolimer eterificiran.6. The method according to Claim 1, indicated by the fact that, before the formation of the organic solution from phase (a), the prepolymer from phase (a) is dissolved in an alcohol identical to that with which the prepolymer was etherified. 7. Postupak prema Zahtjevu 1, naznačen time, što se površinski aktivno sredsto iz faze (b) bira od alkalnih soli alkil alkilaril sulfonata.7. The method according to Claim 1, characterized in that the surfactant from phase (b) is selected from the alkali salts of alkyl alkylaryl sulfonates. 8. Postupak prema Zahtjevu 1, naznačen time, što vodena otopina iz faze (b) dalje obuhvaća zaštitni koloid.8. The method according to Claim 1, characterized in that the aqueous solution from phase (b) further comprises a protective colloid. 9. Postupak prema Zahtjevu 1, naznačen time, što vodena otopina iz faze (b) dalje obuhvaća od oko 0.1% do oko 5.0% mas. polivinil-alkoholnog zaštitnog koloida.9. The method according to Claim 1, characterized in that the aqueous solution from phase (b) further comprises from about 0.1% to about 5.0% wt. polyvinyl-alcohol protective colloid. 10. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što prepolimer iz faze (a) obuhvaća od oko 1% do oko 70% organske otopine na bazi mase.10. The method according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9 characterized in that the prepolymer from phase (a) comprises from about 1% to about 70% of the organic solution on a mass basis. 11. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što prepolimer iz faze (a) obuhvaća od oko 5% do oko 50% organske otopine na bazi mase.11. The method according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9 characterized in that the prepolymer from phase (a) comprises from about 5% to about 50% of the organic solution on a mass basis. 12. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što je zaštitni koloid iz faze (b) polivinilalkohol i obuhvaća od oko 0.1% do oko 5.0% mas. od vodene faze.12. The method according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized in that the protective colloid from phase (b) is polyvinyl alcohol and comprises from about 0.1% to about 5.0% by weight. from the aqueous phase. 13. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što su kapljice formirane disperzije formirane u fazi (b) od oko 0.5 mikrona do oko 4000 mirkona u promjeru.13. The method according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9 characterized in that the droplets of the formed dispersion formed in phase (b) are from about 0.5 microns to about 4000 microns in diameter. 14. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što su kapljice disperzije formirane u fazi (b) od oko 1 mikrona do oko 100 mirkona u promjeru.14. The method according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized in that the dispersion droplets formed in phase (b) are from about 1 micron to about 100 microns in diameter. 15. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što se samo-kondenzacija in situ u fazi (c) vrši na pH između oko 1.0 i oko 3.0.15. The process according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized in that the self-condensation in situ in phase (c) is carried out at a pH between about 1.0 and about 3.0. 16. Postupak prema Zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 ili 9 naznačen time, što se samo-kondenzacija in situ u fazi (c) vrši na pH između oko 1.0 i oko 3.0 na temperaturi između oko 40°C i oko 70°C.16. The process according to Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized in that the self-condensation in situ in phase (c) is carried out at a pH between about 1.0 and about 3.0 at a temperature between about 40°C and around 70°C. 17. Mikrokapsule koje obuhvaća tekući unutarnji materijal u biti neotopljiv u vodi, naznačen time, što su uklopljene unutar krutog propustljivog omotača od samo-kondenziranog eterificiranog karbamid-formaldehidnog polimera, i napravljene su postupkom iz Zahtjeva 1, 2, 3, 4, 5, 6, 7, 8 ili 9.17. Microcapsules comprising a liquid inner material essentially insoluble in water, indicated by the fact that they are incorporated inside a rigid permeable shell of self-condensed etherified carbamide-formaldehyde polymer, and are made by the process of Claims 1, 2, 3, 4, 5, 6, 7, 8 or 9.
HRP-517/85A 1984-03-30 1994-10-28 Microcapsules and microencapsulation process HRP940854B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59513684A 1984-03-30 1984-03-30
YU51785A YU45710B (en) 1984-03-30 1985-03-29 PROCEDURE FOR MICROCAPPSULATION OF LIQUID MATERIAL

Publications (2)

Publication Number Publication Date
HRP940854A2 true HRP940854A2 (en) 1997-06-30
HRP940854B1 HRP940854B1 (en) 1999-02-28

Family

ID=27082176

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-517/85A HRP940854B1 (en) 1984-03-30 1994-10-28 Microcapsules and microencapsulation process

Country Status (1)

Country Link
HR (1) HRP940854B1 (en)

Also Published As

Publication number Publication date
HRP940854B1 (en) 1999-02-28

Similar Documents

Publication Publication Date Title
US5332584A (en) Microcapsules
CA2101641C (en) Microcapsules and microencapsulation process
EP0158449B1 (en) Microcapsules and microencapsulation process
CA2328826C (en) Microcapsule and process for production thereof
RU2159037C2 (en) Microcapsules and method of preparation thereof
KR100474644B1 (en) Novel water-in-oil microencapsulation process and microcapsules produced thereby
EP0623052B1 (en) Process for formaldehyde content reduction in microcapsule formulations
US6113935A (en) Water-in-oil microencapsulation process and microcapsules produced thereby
AU716412B2 (en) Microencapsulation process and product
HRP940854A2 (en) Microcapsules and microencapsulation process
US4448929A (en) Encapsulation process
US4456569A (en) Encapsulation process
US5773030A (en) Multiply-coated particles
US5993842A (en) Microcapsules containing suspensions of biologically active compounds

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
PPPP Transfer of rights

Owner name: AVENTIS CROPSCIENCE USA INC., US

Owner name: ZENECA AG PRODUCTS INC., US

ODRP Renewal fee for the maintenance of a patent

Payment date: 20030212

Year of fee payment: 19

PBON Lapse due to non-payment of renewal fee

Effective date: 20040330