HRP920410A2 - Method and apparatus for level measurement with microwaves - Google Patents

Method and apparatus for level measurement with microwaves Download PDF

Info

Publication number
HRP920410A2
HRP920410A2 HR920410A HRP920410A HRP920410A2 HR P920410 A2 HRP920410 A2 HR P920410A2 HR 920410 A HR920410 A HR 920410A HR P920410 A HRP920410 A HR P920410A HR P920410 A2 HRP920410 A2 HR P920410A2
Authority
HR
Croatia
Prior art keywords
signal
frequency
measurement
output
mixer
Prior art date
Application number
HR920410A
Other languages
Croatian (hr)
Inventor
Kurt Olov Edvardsson
Original Assignee
Saab Marine Electronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE8402960A external-priority patent/SE456538B/en
Application filed by Saab Marine Electronics filed Critical Saab Marine Electronics
Publication of HRP920410A2 publication Critical patent/HRP920410A2/en

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

Područje tehnike The field of technology

Izum se odnosi na uređaj za mjerenje udaljenosti od antene do površine tekućeg materijala kao što je tekućina ili kruti materijal u obliku čestica ili praha, primjenom mikrovalnog signala čija se učestalost mijenja linearno tijekom mjernog intervala, dio tog mikrovalnog signala se emitira sa antene ka površini s koje se treba odbiti, da bi po isteku vremena prostiranja (do, i od površine) a koje odgovara udaljenosti, bio primljen i pomiješan sa signalom koji se u tom trenutku emitira, tako da se promatra mjerni signal sa mjernom učestalošću koja ovisi o traženoj udaljenosti. Točnije, izum se odnosi na uređaj koji omogućava da se ispitivana udaljenost izračuna na temelju poznate duljine, a prema postupku iz prvobitne prijave, P-929/85. The invention relates to a device for measuring the distance from the antenna to the surface of a liquid material such as a liquid or a solid material in the form of particles or powder, by applying a microwave signal whose frequency changes linearly during the measurement interval, part of that microwave signal is emitted from the antenna to the surface with which should be rejected, so that at the end of the propagation time (to and from the surface) which corresponds to the distance, it would be received and mixed with the signal emitted at that moment, so that a measurement signal with a measurement frequency that depends on the required distance is observed . More specifically, the invention relates to a device that allows the examined distance to be calculated based on a known length, and according to the procedure from the original application, P-929/85.

Oznaka prema međunarodnoj klasifikaciji patenata je: G01S 13/34: The designation according to the international classification of patents is: G01S 13/34:

Tehnički problem Technical problem

Cilj izuma je pružiti uređaj za realizaciju postupka mjerenja prema prijavi P-929/85. Pri tome se javlja problem kako točno ustanoviti mjernu frekvenciju, kako odstraniti ometajuće refleksije koje potječu od, npr, dna rezervoara ili tanka, ili od potpornih greda i sl., i omogućiti točno mjerenje unutar međusobno zavarenih cijevi čiji se promjeri mogu među sobom malo razlikovati. The aim of the invention is to provide a device for the implementation of the measurement procedure according to application P-929/85. In doing so, the problem arises of how to accurately establish the measurement frequency, how to remove disturbing reflections originating from, for example, the bottom of a reservoir or tank, or from support beams, etc., and enable accurate measurement within mutually welded pipes whose diameters may differ slightly from each other .

Stanje tehnike State of the art

Slični uređaji koriste se naročito za mjerenje razine sadržaja u tankovima, cisternama i sl. Kod takvih mjerenja je problem precizno ustanoviti mjernu učestalost te eliminirati parazitne refleksije. Kod uređaja, poznatog iz US pat.4,044,355 taj je problem riješen prevođenjem referentnog i mjernog signala u odgovarajuće slogove impulsnih signala, iz kojih se zatim formira količnik, pri čemu je od značaja međusobni redoslijed impulsa. Kod formiranja količnika koristi se težinski faktor, koji varira tijekom mjernog intervala. Težinski faktor obuhvaća određivanje količnika metodom najmanjih kvadrata, čime se postiže dobra točnost već nakon samo jednog mjernog intervala. Spomenuti uređaj, ipak, nije pogodan za mjerenje razine tamo gdje se mikrovalni signal prostire kroz sondu naniže kroz tank, kako je to potrebno kod određenih skladišnih struktura kao što su velike cisteme sa plivajućim krovom. Similar devices are used especially for measuring the level of content in tanks, cisterns, etc. With such measurements, the problem is to precisely establish the measurement frequency and eliminate parasitic reflections. In the case of the device, known from US Pat. 4,044,355, this problem is solved by translating the reference and measurement signal into corresponding sets of pulse signals, from which a quotient is then formed, where the mutual order of the pulses is important. When forming the quotient, a weighting factor is used, which varies during the measurement interval. The weighting factor includes the determination of the quotient by the method of least squares, which achieves good accuracy after only one measurement interval. The aforementioned device, however, is not suitable for level measurement where the microwave signal is propagated through the probe down through the tank, as is required in certain storage structures such as large floating roof systems.

Gore spomenuti mjerni uređaj, posebno, bazira se na uzorku promjene učestalosti emitiranog mikrovalnog signala kroz obujam prebrisavanja, koji ostaje nepromijenjen od njegovog emitiranja pa do reflektiranja, i dok ne bude primljen. Međutim, kod sonde u obliku cijevi učestalost signala može se mijenjati ovisno o promjeru sonde, i kada se reflektirani i primljeni signal pomiješa sa direktno emitiranim signalom, promjene u prvome od njih a koje su posljedica promjera sonde mogu se tumačiti kao funkcija vremena propagacije, a time i udaljenosti koja se mjeri, izuzev ako je korekcija za promjer sonde precizno poznata. U praksi, promjer sonde je teško izmjeriti sa zadovoljavajućom točnošću, utoliko prije što se sonda može sastojati od međusobno zavarenih cijevi sa donekle različitim promjerima, ili može imati unutarnji uljani film koji prouzrokuje znatnije promjene promjera. The above-mentioned measuring device, in particular, is based on the pattern of the frequency change of the emitted microwave signal through the sweep volume, which remains unchanged from its emission until it is reflected, and until it is received. However, with a tube-shaped probe, the frequency of the signal can change depending on the diameter of the probe, and when the reflected and received signals are mixed with the directly emitted signal, the changes in the former due to the probe diameter can be interpreted as a function of the propagation time, and thus also the distance being measured, unless the correction for the probe diameter is precisely known. In practice, the diameter of the probe is difficult to measure with satisfactory accuracy, since the probe may consist of mutually welded pipes with somewhat different diameters, or may have an internal oil film that causes significant changes in diameter.

Opis rješenja tehničkog problema Description of the solution to the technical problem

U skladu s ovim izumom, referentni signal se obrađuje tako da se formira upravljački signal koji definira valni oblik analogan onom kod referentnog signala, ali koji ima učestalost proprorcionalnu količniku odnosa između pretpostavljene vrijednosti udaljenosti od površine (razina u tanku) i poznate duljine, tj. upravljački signale uzrokovan da ima učestalost koja je približno jednaka očekivanoj mjernoj učestalosti. Upravljački signal se miješa sa mjernim signalom tako da se dobiju dva niskofrekvencijska izboja (izbijanja) sa međusobnim faznim pomakom od 90°. Učestalost svakoga od izboja, je učestalost razlike između upravljačkog i mjernog signala pa je tako mjera točnosti pretpostavljenog odnosa između tražene udaljenosti (razina tanka) i duljine poznate udaljenosti. Izbijanja se konvertiraju analogno/digitalno (A/D) i koriste se za računanje promjene fazne razlike između upravljačkog i mjernog signala tijekom mjernog intervala kojeg čini izabrani dio svipa (prebrisavanja). Iz ove promjene fazne razlike, može se, konačno, izračunati faktor korekcije za pretpostavljenu razinu, na temelju čega se može dobiti tražena udaljenost. In accordance with this invention, the reference signal is processed so that a control signal is formed that defines a waveform analogous to that of the reference signal, but which has a frequency proportional to the quotient of the relationship between the assumed value of the distance from the surface (level in the tank) and the known length, i.e. control signals caused to have a frequency that is approximately equal to the expected measurement frequency. The control signal is mixed with the measurement signal so that two low-frequency bursts (bursts) with a mutual phase shift of 90° are obtained. The frequency of each of the bursts is the frequency of the difference between the control and measurement signal, so it is a measure of the accuracy of the assumed relationship between the required distance (thin level) and the length of the known distance. Bursts are converted to analog/digital (A/D) and are used to calculate the change in the phase difference between the control and measurement signals during the measurement interval formed by the selected part of the sweep. From this change in phase difference, the correction factor for the assumed level can finally be calculated, on the basis of which the required distance can be obtained.

Prednost ovakve obrade signala je u tome, što se prilikom mjerenja u cijevi može odrediti izobličenje u mjerenju kao posljedica neujednačenosti promjera cijevi i tako može automatski korigirati mjerenu vrijednost, tako da je utjecaj cijevi na mjerenu vrijednost eliminiran. Druga prednost ovog izuma je što je uređaj za provođenje ovog mjernog postupka relativno jeftin. The advantage of this kind of signal processing is that when measuring in a pipe, the distortion in the measurement can be determined as a result of the uneven diameter of the pipe and thus the measured value can be automatically corrected, so that the influence of the pipe on the measured value is eliminated. Another advantage of this invention is that the device for carrying out this measuring procedure is relatively cheap.

Izum će se sada detaljnije opisati, s pozivom na priložene crteže, koji ilustriraju ono što se trenutačno smatra kao prvenstveno rješenje, u skladu sa izumom, i na kojima: The invention will now be described in more detail, with reference to the accompanying drawings, which illustrate what is presently considered to be a preferred solution, in accordance with the invention, and in which:

Slika 1 je blok shema uređaja kao cjeline; Figure 1 is a block diagram of the device as a whole;

Slika 2 je detaljnija blok shema dijela uređaja, što obuhvaća kolo za pomicanje faze i komparatorsku mrežu koja sadrži kolo za formiranje impulsa, pomoću koga se referentni signal digitalizira i frekvencijski množi konstantnim cijelim brojem; i Figure 2 is a more detailed block diagram of a part of the device, which includes a phase shifting circuit and a comparator network containing a pulse forming circuit, by means of which the reference signal is digitized and frequency multiplied by a constant integer; and

Slika 3 je grafički prikaz izlaza kola za pomicanje faze. Figure 3 is a graphical representation of the output of the phase shift circuit.

Na crtežu odašiljačka jedinica, općenito označena sa 1, sadrži generator 2 prebrisavanja koji je spojen na mikrovalni oscilator 3, čiji je izlaz dijelom vezan na prvi mikser 4, a dijelom na drugi mikser 5. Prvi mikser spojen je sa antenom 6 koja je instalizirana u gornjem dijelu kontejnera (nije prikazan) za skladištenje (čuvanje) fluentnog materijala. Antena je usmjerena okomito naniže tako da zrači prema površini 7 materijala, do koje treba odrediti udaljenost H od antene 6. Mikser 4 je također spojen pomoću pojačivača 8 s izlaznim priključkom 9 odašiljačke jedinice. In the drawing, the transmitter unit, generally marked with 1, contains a sweep generator 2 which is connected to a microwave oscillator 3, the output of which is partly connected to the first mixer 4 and partly to the second mixer 5. The first mixer is connected to the antenna 6 which is installed in in the upper part of the container (not shown) for storing (keeping) the fluent material. The antenna is directed vertically downward so that it radiates towards the surface 7 of the material, to which the distance H from the antenna 6 should be determined. The mixer 4 is also connected by means of the amplifier 8 to the output port 9 of the transmitter unit.

Mikrovalni oscilator 3 proizvodi uz pomoć generatora 2 bitno linearno jednostruko ili periodično ponavljano frekventno prebrisavanje oko nosive učestalosti koja može biti na primjer 10GHz. Tijekom ovog prebrisavanja učestalost se monotono mijenja, što će reći, mijenja se bitno ravnomjerno i samo u jednom smjeru, ili rastuće, ili opadajuće, tijekom prebrisavanja. Sljedeći opis obuhvaća odnose tijekom jednokratnog prebrisavanja osim ako je riješeno drukčije. The microwave oscillator 3 produces, with the help of the generator 2, an essential linear single or periodically repeated frequency sweep around the carrier frequency, which can be, for example, 10 GHz. During this overwriting, the frequency changes monotonically, that is to say, it changes essentially evenly and only in one direction, either increasing or decreasing, during the overwriting. The following description covers relationships during a one-time overwrite unless otherwise specified.

Mikrovalni signal, moduliran kao što je upravo opisano, odašilje se pomoću antene 6 i reflektira se od površine 7 nazad na antenu, nakon čega se miješa u mikseru 4 sa signalom koji se u tom trenutku emitira iz oscilatora 3. The microwave signal, modulated as just described, is transmitted by the antenna 6 and reflected from the surface 7 back to the antenna, after which it is mixed in the mixer 4 with the signal emitted at that moment from the oscillator 3.

Ovim miješanjem proizvodi se mjerni signal sa mjernom učestalošću fm koja je proporcionalna traženoj udaljenosti H od površine 7 materijala. Konstanta proporcionalnosti tipično može biti reda 100 Hz/m. Mjerni signal se zatim pojačava u pojačivaču 8 prije no što se šalje u jedinicu za obradu signala koja je generalno označena sa 10. This mixing produces a measurement signal with a measurement frequency fm that is proportional to the required distance H from the surface 7 of the material. The proportionality constant can typically be of the order of 100 Hz/m. The measurement signal is then amplified in an amplifier 8 before being sent to a signal processing unit generally designated 10.

Radi kompenzacije nelinearnosti mikrovalnog oscilatora i varijacije brzine prebrisavanja, izlazni signal mikrovalnog oscilatora 3 također se šalje u referentni vod 11 koji funkcionira kao sredstvo za kašnjenje i koji je spojen na drugi mikser (mješač) 5. Referentni vod, koji će predstavljati točno poznatu duljinu L, trebao bi biti što je mogući dulji, imajući na umu, ipak, da njegovo prigušenje ne bi trebalo biti suviše veliko. Istim postupkom koji se odvija s tim dijelom mikrovalnog signala koji se odašilje antenom 6, referentni vod 11 reflektira nazad u mikser 5 dio signala koji mu je priveden, i, s kašnjenjem što odgovara vremenu propagacije u vodu, taj dio signala se miješa u mikseru 5 s mikrovalnim signalom koji se direktno emitira iz oscilatora 3. Kao rezultat ovog miješanja dobiva se referentni signal koji ima učestalost fr, što se odavde nadalje naziva referentna učestalost, a koja odgovara poznatoj udaljenosti, to jest, duljini referentnog voda 11. Referentni signal se pojačava u pojačivaču 12 i potom se privodi pomoću drugog izvoda 13 iz odašiljačke jedinice u jedinicu 10 za obradu signala. In order to compensate for the non-linearity of the microwave oscillator and the sweep rate variation, the output signal of the microwave oscillator 3 is also sent to a reference line 11 which functions as a delay means and which is connected to another mixer (mixer) 5. The reference line, which will represent a precisely known length L , should be as long as possible, keeping in mind, however, that its damping should not be too great. By the same procedure that takes place with that part of the microwave signal transmitted by the antenna 6, the reference line 11 reflects back to the mixer 5 a part of the signal brought to it, and, with a delay corresponding to the propagation time in the line, that part of the signal is mixed in the mixer 5 with the microwave signal that is directly emitted from the oscillator 3. As a result of this mixing, a reference signal is obtained which has a frequency fr, which is called the reference frequency from here on, and which corresponds to a known distance, that is, the length of the reference line 11. The reference signal is amplified in the amplifier 12 and then it is fed using the second output 13 from the transmitter unit to the signal processing unit 10.

Jedinica 10 za obradu signala koja može biti fizički locirana na različitom mjestu od odašiljačke jedinice, pri čemu su za povezivanje jedinica upotrijebljeni širmov vodovi, obuhvaća u ilustriranom rješenju uskopropusni filtar 14 koji je spojen sa umnoživačkim instrumentima 17 pomoću faznog šiftera 15 sa, na primjer, 2x120. Umnoživački instrument 17 je kontroliran iz jedinice 18 za računanje koja, na primjer, može sadržavati mikrokompjutor, a njen izlaz se privodi brojaču 19 koji je spojen na memoriju 20 u kojoj se skladište sinusne i kosinusne vrijednosti. The signal processing unit 10, which can be physically located at a different place from the transmitter unit, whereby shield lines are used to connect the units, comprises in the illustrated solution a narrow-pass filter 14 which is connected to the multiplying instruments 17 by means of a phase shifter 15 with, for example, 2x120. The multiplying instrument 17 is controlled from the calculation unit 18 which, for example, may contain a microcomputer, and its output is fed to the counter 19 which is connected to the memory 20 in which the sine and cosine values are stored.

Memorija ima dva izlazna priključka, jedan za sinusne vrijednosti, a drugi za kosinusne vrijednosti, koji su svaki spojeni na mikser 21, 22 respektivno. Svaki spomenuti mikser, u ovom rješenju, obuhvaća D/A konvertor koji ima ulazni priključak na naponsku referenciju što prima mjerni signal iz izvoda 9 odašiljačke jedinice 1. Svaki od mikserskih D/A konvertora 21, 22 spojen je u jednoj od dvije identične grane koje su vezane na jedinicu 18 za računanje. Svaka grana obuhvaća, uz D/A konvertor 21, 22 respektivno, niskopropusni filtar 23, 24 respektivno, i A/D konvertore 25, 26 respektivno. A/D konvertori 25, 26 primaju na svojim taktnim ulazima impulsne uzorke (odmjerke) koji su uzed sa izlaza impulsnog formatora 16 pomoću kola 27 za dijeljenje. The memory has two output ports, one for sine values and the other for cosine values, each connected to mixer 21, 22 respectively. Each mentioned mixer, in this solution, includes a D/A converter that has an input connection to a voltage reference that receives a measurement signal from output 9 of the transmitter unit 1. Each of the mixer D/A converters 21, 22 is connected in one of two identical branches that are tied to unit 18 for calculation. Each branch comprises, in addition to D/A converter 21, 22 respectively, a low-pass filter 23, 24 respectively, and A/D converters 25, 26 respectively. The A/D converters 25, 26 receive at their clock inputs pulse samples (rates) which are fed from the output of the pulse former 16 by means of the circuit 27 for division.

Referentni signal sa učestalošću fr, koja je primljena od stane jedinice 10 za obradu signala iz odašiljačkog izlaznog priključka 13 propušta se kroz uskopojasni filtar 14, koji filtrira parazite i nadtonove. Uz pomoć faznog šiftera 15 i komparatorske mreže 16 koja obuhvaća impulsni formator, referentni signal se konvertira u impulsnu povorku, to jest, sekvenciju referentnih impulsa, čija je učestalost A puta viša od učestalosti fm, dolaznog referentnog signala. Broj A je fiksni cijeli broj odabran tako da je učestalost Afr, znatno viša od najviše komponente mjerene učestalosti fm kako bi se osiguralo dobro filtriranje. Ako je fazni šifter 15 za 2x120°, broj A može imati vrijednost 12. The reference signal with frequency fr, which is received from the signal processing unit 10 from the transmitter output port 13, is passed through a narrow-band filter 14, which filters out parasitics and overtones. With the help of a phase shifter 15 and a comparator network 16 that includes a pulse former, the reference signal is converted into a pulse train, that is, a sequence of reference pulses, the frequency of which is A times higher than the frequency fm of the incoming reference signal. The number A is a fixed integer chosen so that the frequency Afr is significantly higher than the highest component of the measured frequency fm to ensure good filtering. If the phase shifter is 15 for 2x120°, the number A can have a value of 12.

Ovo povećanje učestalosti, koje odgovara znatnom povećanju duljine referentnog voda, se prirodno može ostvariti na mnogo načina, ali je važno da se nikakvo kašnjenje niti izobličenje ne unese. Detaljnije, kao što se može vidjeti sa slike 2, referentni signal, nakon filtriranja u uskopojasnom filtru 14, biva propušten kroz dva kaskadna 120° fazna šiftera 15A i 15B, kako bi se proizveo trofazni valni oblik ilustriran na slici 3, sa naponskim komponentama V1, V2 i V3. Svaki fazni šifter 15A, 15B obuhvaća operacijski pojačivač sa niskopropusnom povratnom spregom. This increase in frequency, corresponding to a considerable increase in the length of the reference line, can naturally be accomplished in many ways, but it is important that no delay or distortion be introduced. In more detail, as can be seen from Figure 2, the reference signal, after filtering in the narrowband filter 14, is passed through two cascaded 120° phase shifters 15A and 15B, to produce the three-phase waveform illustrated in Figure 3, with voltage components V1 , V2 and V3. Each phase shifter 15A, 15B includes an operational amplifier with low-pass feedback.

Sa slike 3 se može vidjeti da tijekom svakog perioda trofaznog valnog oblika (tripleta), mogu se naći dvanaest točaka, u jednakim vremenskim intervalima, u kojima su naponi triplet komponenti V1, V2, V3 međusobno jednaki ili jednaki nišdci. Na izlaz filtra 14 i odgovarajuće izlaze faznih šiftera 15A i 15B vezano je šest naponskih komparatora 16A-16F, kao što je prikazano na slici 2, radi usporedbe napona svake triplet komponente sa referentnim (nultim) naponom i s naponom svake od drugih komponentni. It can be seen from Figure 3 that during each period of the three-phase waveform (triplet), twelve points can be found, in equal time intervals, in which the voltages of the triplet components V1, V2, V3 are mutually equal or equal to zero. Six voltage comparators 16A-16F are connected to the output of the filter 14 and the corresponding outputs of the phase shifters 15A and 15B, as shown in Figure 2, in order to compare the voltage of each triplet component with the reference (zero) voltage and with the voltage of each of the other components.

Izlaz svakog komparatora 16A-16F je pravokutni val, tako da svaki komparator proizvodi izlaz koji je naizmjenično visok i nizak, a šest pravokutnih valnih izlaza komparatora razlikuju se međusobno po fazi tako da u bilo kojem danom trenutku određeni komparatori proizvode visoku razinu na izlazu a ostali daju nizak izlaz. Izlazi komparatora 16A-16F se privode na logično sredstvo paran/neparan 16G, koja proizvodi nizak izlaz ukoliko je paran broj šest komparatorskih izlaza visok, a proizvodi visok izlaz ukoliko je neparan broj izlaza od šest komparatorskih izlaza na visokoj razini. Izlaz paran/neparan logičkog sredstva 16G provodi se monostabilnom kolu ili impulsnom formatoru 16H koji proizvodi kratak impuls za svaku promjenu stanja iz logičkog sredstva 16G. Na ovaj način referentni signal je digitaliziran i frekventno pomnožen sa dvanaest kako bi se proizvela referentna impulsna povorka sa učestalošću Afr, koja blisko imitira sve promjene učestalosti referentnog signala. The output of each comparator 16A-16F is a square wave, so that each comparator produces an output that is alternately high and low, and the six square wave outputs of the comparators differ in phase so that at any given time certain comparators produce a high output level and the others they give low output. The outputs of the comparators 16A-16F are fed to an even/odd logic device 16G, which produces a low output if an even number of the six comparator outputs is high, and produces a high output if an odd number of the six comparator outputs is high. The output of even/odd logic means 16G is applied to a monostable circuit or pulse former 16H which produces a short pulse for each change of state from logic means 16G. In this way, the reference signal is digitized and frequency multiplied by twelve to produce a reference pulse train with a frequency of Afr, which closely mimics any changes in the frequency of the reference signal.

Referentni impulsi na učestalosti Afr, privode se umnožaču 17 koji odaje Q individualnih impulsa za svaki impuls u impulsnoj povorci. Broj Q je promjenjivi cijeli broj, određen u jedinici za proračunavanje 18 korištenjem rezultata prethodnog mjerenja. Impulsna povorka koja izlazi iz umnožača 17, koja prema tome ima učestalost fr x A x Q, privodi se brojaču 19. Za svaki impuls priveden brojaču 19 taj brojač emitira binarni izlaz koji formira adresu za memoriju 20. U memoriji je, kako je gore spomenuto, tabela vrijednosti za sinuse i kosinuse za veliki broj Z uglova uzetih u bitno pravilnim intervalima u punom krugu od 360°. Broj Z je stupanj 2 i može biti, na primjer, 256. Nakon što je brojač 19 izdao Z binarnih izlaza on otpočinje novi ciklus. The reference pulses at the frequency Afr are fed to the multiplier 17 which outputs Q of individual pulses for each pulse in the pulse train. The number Q is a variable integer, determined in the calculation unit 18 using the results of the previous measurement. The pulse train coming out of the multiplier 17, which therefore has a frequency of fr x A x Q, is applied to the counter 19. For each pulse applied to the counter 19, that counter emits a binary output that forms an address for the memory 20. In the memory, as mentioned above, , a table of values for sines and cosines for a large number of Z angles taken at essentially regular intervals in a full circle of 360°. The number Z is stage 2 and can be, for example, 256. After counter 19 has issued Z binary outputs, it starts a new cycle.

Funkcioniranje memorije 20 je takvo da svaki put kada se ona adresira, binarni izlaz koji odgovara tabličnoj sinusnoj vrijednosti za odgovarajuću adresu biva izdan na njenom jednom izlazu, na primjer na izlazu za mikser 21, a binarni izlaz koji odgovara tabličnoj kosinusnoj vrijednosti biva izdan na njenom drugom izlazu, na primjer za mikser 22. Sekvencija binarnih izlaza ka svakom od miksera -A/D konvertora 21, 22 konstituira kontrolni signal, a učestalost sinusoidalnog vala označena pomoću svakog od ovih kontrolnih signala jednaka je gore spomenutoj učestalosti impulsne povorke, fr x A x Q, podijeljenoj sa Z. Ova učestalost AQfr/Z je odavde nadalje označena kao kontrolna učestalost. The operation of the memory 20 is such that each time it is addressed, a binary output corresponding to the table sine value for the corresponding address is issued at one of its outputs, for example at the mixer output 21, and a binary output corresponding to the table cosine value is issued at its to another output, for example for the mixer 22. The sequence of binary outputs to each of the mixer -A/D converters 21, 22 constitutes a control signal, and the frequency of the sinusoidal wave indicated by each of these control signals is equal to the above-mentioned frequency of the pulse train, fr x A x Q, divided by Z. This frequency AQfr/Z is henceforth designated as the control frequency.

Kontrolni signali u binarnoj formi koji se izdaju iz memorije 20 su u ovom slučaju pretvoreni u analogne signale u odgovarajućim D/A konvertorima 21, 22, da bi se olakšala usporedba sa analognim mjernim signalima na izvodu 9 odašiljačke jedinice. Pošto je Z veliki broj (npr. 256) izlazi kontrolnog signala iz A/D konvertora definiraju brojne blisko razdvojene točke duž sinusoidnog valnog oblika pa stoga izlazi binarne forme iz memorije 20 mogu biti smatrani kao prilično glatki. D/A konvertori 21, 22, pri funkcioniranju kao mikseri, služe kao umnožači pd čemu mjerni signal na izlaznom priključku 9, s mjemom učestalošću fm, biva izdan kao referentni napon. Izlazi D/A konvertera 21, 22 se respektivno filtriraju u niskopropusnim filtrima 23, 24. The control signals in binary form issued from the memory 20 are in this case converted into analog signals in the corresponding D/A converters 21, 22, in order to facilitate the comparison with the analog measurement signals at the output 9 of the transmitter unit. Since Z is a large number (eg 256) the control signal outputs from the A/D converter define a number of closely spaced points along the sinusoidal waveform and therefore the binary form outputs from memory 20 can be considered quite smooth. D/A converters 21, 22, when functioning as mixers, serve as multipliers whereby the measurement signal at the output port 9, with a constant frequency fm, is output as a reference voltage. The outputs of the D/A converters 21, 22 are respectively filtered in low-pass filters 23, 24.

Učestalost svakog nisko-propusno-filtriranog signala iznosi do učestalosti razlike kao između kontrolne učestalosti AQfr/Z i stvarne mjerne učestalosti signala fm, ili, rečeno na drugi način, jednaka je sinusu ili kosinusu, respektivno, faznog ugla ø između valnog oblika kontrolne učestalosti i mjernog signala. The frequency of each low-pass-filtered signal is up to the frequency of the difference as between the control frequency AQfr/Z and the actual measurement frequency of the signal fm, or, put another way, is equal to the sine or cosine, respectively, of the phase angle ø between the waveform of the control frequency and measurement signal.

Promjenjivi broj Q, koji je određen na bazi rezultata mjerenja dobivenog iz prethodnog prebrisavanja, je cijeli broj takvog reda da kontrolna učestalost AQfr/Z odgovara usvojenoj učestalosti mjerenja. Ukoliko se udaljenost H u kontejneru polako mijenja, kao što će obično biti slučaj, Q se može testirati na cijeli broj koji dovodi kontrolnu učestalost AQfr/Z najbliže odgovarajuće sa mjernom učestalošću fm, a tada fazni pomak kao između kontrolnog signala i mjernog signala tijekom cijelog prebrisavanja postaje samo dio od 360°. The variable number Q, which is determined on the basis of the measurement result obtained from the previous overwriting, is an integer of such order that the control frequency AQfr/Z corresponds to the adopted measurement frequency. If the distance H in the container changes slowly, as will usually be the case, Q can be tested for an integer that brings the control frequency AQfr/Z into closest agreement with the measurement frequency fm, and then the phase shift as between the control signal and the measurement signal throughout of overwriting becomes only a part of 360°.

Ovaj fazni pomak se može proračunati i upotrijebiti za korekciju vrijednosti usvojene udaljenosti. Proračunavanje faznog pomaka tijekom prebrisavanja odvija se u jedinici 18 za proračunavanje, i dotle nisko-propusno-filtrirani signali su digitalno konvertirani u A/D konvertorima 25 i 26. Ovi konvertori su taktirani sa impulsima odmjeravanja koji su formirani od referentnih impulsa iz impulsnog formatora 16 dijeljenjem njihove učestalosti Afr, konstantom K u kolu za dijeljenje 27. This phase shift can be calculated and used to correct the adopted distance value. Calculation of the phase shift during overwriting takes place in the calculation unit 18, and until then the low-pass-filtered signals are digitally converted in the A/D converters 25 and 26. These converters are clocked with measurement pulses formed from the reference pulses from the pulse formatter 16 by dividing their frequency Afr, by the constant K in the dividing circuit 27.

Čisto matematički, opisani uređaj za proizvođenje kontrolne učestalosti implicira da rezultat nije pod utjecajem toga kako se učestalost mikrovalnog oscilatora mijenja tijekom prebrisavanja, pod uvjetom samo da se promjena odvija monotono kako je ovaj termin gore definiran. Sa čisto praktične točke gledišta (između ostalog, filtar 14), daje se prednost radu sa linearnom promjenom učestalosti. Purely mathematically, the described device for producing the control frequency implies that the result is not affected by how the frequency of the microwave oscillator changes during the sweep, provided only that the change is monotonous as this term is defined above. From a purely practical point of view (among others, filter 14), operation with a linear frequency change is preferred.

Sada će biti opisano kako se odvija račun visine razine u tanku - to će reći, udaljenosti H. Ovdje je usvojeno da tijekom mjernog intervala koji konstituira dio prebrisavanja u kojem su proizvedeni i referentni i mjerni signal, postoji M referentnih impulsa u impulsnoj povorci iz impulsnog formatora 16, koji definiraju M/A referentne periode, i da tijekom istog vremena se dobiva N impulsa odmjeravanja, gdje je N=M/K. Broj M je fiksan cijeli broj odabran tako da su i M/A i M/K cijeli brojevi. Tipično M može biti jednako 1428. Uočit će se da je referentni period vrijeme potrebno za jednu punu oscilaciju referentnog signala na učestalosti fr. It will now be described how the calculation of the height of the level in the tank - that is, the distance H - takes place. Here it is assumed that during the measurement interval that constitutes the sweep part in which both the reference and the measurement signal are produced, there are M reference pulses in the pulse train from the pulse formator 16, which define the M/A reference periods, and that during the same time, N measurement pulses are obtained, where N=M/K. The number M is a fixed integer chosen such that both M/A and M/K are integers. Typically M may be equal to 1428. It will be noted that the reference period is the time required for one full oscillation of the reference signal at frequency fr.

U cilju što je moguće veće točnosti, bitno je da proračun fazne promjene bude izvršen u tijeku cijelog broja referentnih perioda a da impulsi odmjeravanja nisu uzeti iz jednog te istog dijela periode referentnog signala. Iz tog razloga K treba biti prvi broj (npr. 17) a ukupan broj M referentnih impulsa upotrijebljenih tijekom prebrisavanja treba da je dovoljno veliki tako da je M djeljivo sa K kako bi se dobio cijeli broj impulsa odmjeravanja. In order to be as accurate as possible, it is important that the phase change calculation is performed during the entire number of reference periods and that the measurement pulses are not taken from one and the same part of the reference signal period. For this reason, K should be the first number (eg 17) and the total number M of reference pulses used during overwriting should be large enough so that M is divisible by K in order to obtain the whole number of measurement pulses.

Pošto se signali koje treba evaluirati mijenjaju prilično sporo tijekom prebrisavanja, broj impulsa odmjeravanja ne mora biti veoma velik. Brzina prebrisavanja i brzina jedinice za proračunavanje stoga nisu kritične. Za svako prebrisavanje vrši se usvajanje h za udaljenost H, pri čemu je vodilja vrijednost iz prethodnog mjerenja. Since the signals to be evaluated change quite slowly during overwriting, the number of measurement pulses does not have to be very large. The overwrite speed and the speed of the calculation unit are therefore not critical. For each overwriting, h is adopted for the distance H, where the guiding value is from the previous measurement.

Produžavajući počev od te pretpostavke, određuje se cijeli broj Q iz jednadžbe Extending from this assumption, the integer Q from the equation is determined

[image] [image]

gdje je Z koeficijent impulsne učestalosti privedene brojaču 19 podijeljen sa učestalošću kontrolnog signala na izlazu iz memorije 20, A je faktor kojim se učestalost referentnog signala množi u kolima 15 i 16, a L je duljina referentnog voda 11. Pošto je povorka referentnih impulsa što izlaze iz impulsnog formatora 16 sa impulsnom učestalošću A x fr frekventno pomnoženo sa Q i frekventno podijeljena sa Z, izlazni signal iz memorije 20 ima učestalost (h/L)x fr što će reći da je jednaka očekivanoj učestalosti mjernog signala. where Z is the coefficient of the pulse frequency brought to the counter 19 divided by the frequency of the control signal at the output from the memory 20, A is the factor by which the frequency of the reference signal is multiplied in the circuits 15 and 16, and L is the length of the reference line 11. Since the train of reference pulses that come out from the pulse formatter 16 with the pulse frequency A x fr frequency multiplied by Q and frequency divided by Z, the output signal from the memory 20 has a frequency (h/L)x fr which means that it is equal to the expected frequency of the measurement signal.

Množenjem u D/A konvertorima 21 i 22 i filtriranjem u niskopropusnim filtrima 23, 24 dobivaju se dva niskofrekventna signala koja su međusobno fazno pomaknuta za 90°. Nakon analogne u digitalnu konverziju, upravljane impulsima odmjeravanja iz kola za dijeljenje 27, ova dva signala su označena sa Sn i Cn u sinusnoj grani i u kosinusnoj grani, respektivno. Iz ovih signala fazna promjena Δø između mjernog signala i kontrolnog signala iz memorije 20 što se javlja tijekom prebrisavanja biva proračunata određivanjem fazne razlike koja se javlja između sukcesivnih impulsa odmjeravanja. Između impulsa odmjeravanja n-1 i impulsa odmjeravanja Δø se može definirati kao By multiplying in D/A converters 21 and 22 and filtering in low-pass filters 23, 24, two low-frequency signals are obtained which are phase-shifted by 90°. After analog-to-digital conversion, driven by metering pulses from the divider circuit 27, these two signals are labeled Sn and Cn in the sine branch and in the cosine branch, respectively. From these signals, the phase change Δø between the measurement signal and the control signal from the memory 20 that occurs during overwriting is calculated by determining the phase difference that occurs between successive measurement pulses. Between metering pulse n-1 and metering pulse Δø can be defined as

[image] [image]

Obično Δø postaje tako malo da se arctan funkcija može linearizirati bez gubitka točnosti. Ukupna fazna razlika F je prema tome dana pomoću Usually Δø becomes so small that the arctan function can be linearized without loss of accuracy. The total phase difference F is therefore given by

[image] [image]

F se koristi da korigira Q i da proračuna faktor D korekcije za usvojenu vrijednost udaljenosti h. Pri sumiranju Δøn, Δøn se može pomnožiti težinskim faktorima da bi se dobile iste prednosti koje su spomenute u gore spomenutom US patentu br. 4,044,355. Računata udaljenost H je konačno dana pomoću: F is used to correct Q and to calculate the correction factor D for the adopted distance value h. When summing Δøn, Δøn can be multiplied by weighting factors to obtain the same advantages mentioned in the aforementioned US Pat. 4,044,355. The calculated distance H is finally given by:

[image] [image]

Ova jednadžba vrijedi kada je brzina prostiranja konstantna a fazni ugao 0 između kontrolnog signala i mjernog signala se shodno tome linearno povećava. This equation is valid when the propagation speed is constant and the phase angle 0 between the control signal and the measurement signal increases linearly accordingly.

U cijevi, pak, brzina prostiranja nije konstanta, već ovisi o učestalosti, pa konzekvetno faza ø neće linearno varirati sa učestalošću. Gornja jednadžba za H se još uvijek može koristiti, ali uz određene modifikacije. Za ovo je neophodno razlikovati prividnu udaljenost H i stvarnu fizičku udaljenost d. Problem je pojednostavljen pretpostavkom da cijev ima jednolik promjer po cijeloj svojoj duljini i da se duljina unutar uređaja može zanemariti. U ovom pojednostavljenom slučaju faza ø je dana pomoću: In the pipe, however, the propagation speed is not constant, but depends on the frequency, so consequently the phase ø will not vary linearly with the frequency. The above equation for H can still be used, but with some modifications. For this it is necessary to distinguish between the apparent distance H and the actual physical distance d. The problem is simplified by assuming that the pipe has a uniform diameter throughout its length and that the length inside the device can be neglected. In this simplified case the phase ø is given by:

[image] [image]

gdje je k valni broj (= 2π podijeljeno sa valnom duljinom; k je proporcionalno mikrovalnoj učestalosti) a kc je pri graničnoj frekvenciji. U ovom slučaju usvojeno je da duljina prostiranja za mikrovalni signal obuhvaća cijev koja ima promjer takav da je kc jednako 3.68/promjer, Koeficijent vrijedi ako se koristi osnovni oblik (model) cijevi (sonde). where k is the wavenumber (= 2π divided by the wavelength; k is proportional to the microwave frequency) and kc is at the cutoff frequency. In this case, it is assumed that the propagation length for the microwave signal includes a pipe with a diameter such that kc is equal to 3.68/diameter. The coefficient is valid if the basic shape (model) of the pipe (probe) is used.

Promjer cijevi, kako je ovdje gore spomenuto, je u praksi teško odrediti sa dovoljnom točnošću, pa stoga kc i ø također se ne mogu točno odrediti. Ako se ø derivira, kc se pak može eliminirati iz jednadžbe za d. Prvi i drugi izvodi za u odnosu na k postaju: The pipe diameter, as mentioned above here, is difficult to determine with sufficient accuracy in practice, and therefore kc and ø cannot be determined accurately either. If ø is derived, kc can be eliminated from the equation for d. The first and second derivatives for with respect to k become:

[image] [image]

[image] [image]

U linearnmom slučaju, to će reći, kada je brzina prostiranja konstantna a ø se linearno povećava sa učestalošću (valni broj), prvi izvod ø' = konstantni, a drugi ø" = 0. Izraz pod korijenom u posljednjoj jednadžbi, gore, tada postaje 1, a d = (ø' + 2h)/2. Tako se ø' može odrediti iz drugog izraza u gornjoj jednadžbi za H. In the linear case, that is, when the velocity of propagation is constant and ø increases linearly with frequency (wavenumber), the first derivative ø' = constant, and the second ø" = 0. The expression under the root in the last equation, above, then becomes 1, and d = (ø' + 2h)/2. Thus, ø' can be determined from the second expression in the above equation for H.

Pomak k tijekom efektivnog prebrisavana je πM/ALK, što potvrđuje da se ø" može izračunati kao: The displacement k during the effective sweep is πM/ALK, which confirms that ø" can be calculated as:

[image] [image]

Prirodno se još točnija vrijednost za ø" može izračunati korištenjem svih Δø za preciznije snimanje krivulje. U općem slučaju, kada kc nije isto za sve dijelove razmaka (udaljenost), mogu se razviti odgovarajuće formule. Naturally, an even more accurate value for ø" can be calculated using all Δø to plot the curve more precisely. In the general case, when kc is not the same for all parts of the gap (distance), appropriate formulas can be developed.

Mada je uređaj opisan da ima i sinusnu i kosinusnu granu što obuhvaćaju odgovarajuće miksere - D/A konvertore 21, 22, uređaj je ostvariv sa ili samo sinusnom granom ili samo kosinusnom granom. Ipak, u takvom slučaju neophodno je učiniti tako da učestalost referentnog signala ne može nikada postati postati jednaka učestalosti mjernog signala, ili da slučaj kada je učestalost ova dva signala ista može se razlikovati od slučaja kada nema signala. Although the device is described as having both a sine and cosine branch, which include the corresponding mixers - D/A converters 21, 22, the device can be realized with either only a sine branch or only a cosine branch. However, in such a case it is necessary to make it so that the frequency of the reference signal can never become equal to the frequency of the measurement signal, or that the case when the frequency of these two signals is the same can be distinguished from the case when there is no signal.

Umjesto proračuna vršenih kao gore u blokovima 17, 19, 20 i 27, iste funkcije se mogu ugraditi u mikroprocesor konvencionalnog tipa. Instead of the calculations performed as above in blocks 17, 19, 20 and 27, the same functions can be incorporated into a conventional type microprocessor.

Filtri 23 i 24 mogu biti digitalni filtri kontrolirani impulsima odmjeravanja koje daje kolo 27 za dijeljenje. Također će biti jasno da uređaj naznačen blokovima 17, 19 i 20 može biti ugrađen u formi mikroprocesora. Filters 23 and 24 can be digital filters controlled by the metering pulses provided by the dividing circuit 27. It will also be clear that the device indicated by blocks 17, 19 and 20 can be incorporated in the form of a microprocessor.

Claims (3)

1. Uređaj za mjerenje udaljenosti između antene i površine tekućeg materijala pomoću mikrovalova, koji sadrži mikrovalni generator 2, 3 za generiranje mikrovalnog signala koji se emitira u svakom od niza prebrisavanja, i čija učestalost se mijenja bitno ravnomjerno u samo jednom smjeru tijekom svakog prebrisavanja, gdje je generator 2, 3 spojen s antenom 6 radi emitiranja signala ka površini 7 da bi se od nje reflektirao nazad na antenu 6, prvi mikser 4 koji je spojen s antenom 6 i generatorom 2, 3 za miješanje signala reflektiranog sa površine 7 sa signalom koji je direktno emitiran iz generatora 2, 3 radi proizvođenja mjernog signala mjernme učestalosti fm koja ovisi od udaljenosti H površine 7 od antene 6, liniju za kašnjenje 11 i drugi mikser 5 koji su međusobno spojeni a mikser 5 vezan je na generator 2, 3 radi proizvođenja referentnog signala koji ima referentnu učestalost fr koja odgovara poznatoj duljini L, i sklop kola za obradu signala radi određivanja odnosa između mjerne učestalosti fm i referentne učestalosti fr i proračunavanja odatle vrijednosti za udaljenost H, sklop kola za obradu signala je naznačen time, što su u kaskadi vezana kola (14, 15, 16) spojena sa izlazom pojačivača (12) čiji je ulaz vezan sa izlazom drugog miksera (5), i što je impulsni množitelj (17) vezan sa jedinicom (18) za izračunavanje i kolom mrežnog komparatora (16) pri čemu je brojač (19) vezan sa impulsnim množiteljem (17) i sa memorijom (20) i što su D/A konvertori (21, 22) vezani na memoriju (20) i na izlaz pojačivača (8) čiji je ulaz vezan sa izlazom prvog miksera (4).1. A device for measuring the distance between an antenna and the surface of a liquid material using microwaves, which contains a microwave generator 2, 3 for generating a microwave signal that is emitted in each of a series of sweeps, and whose frequency changes substantially uniformly in only one direction during each sweep, where the generator 2, 3 is connected to the antenna 6 in order to emit a signal to the surface 7 to be reflected from it back to the antenna 6, the first mixer 4 which is connected to the antenna 6 and the generator 2, 3 for mixing the signal reflected from the surface 7 with the signal which is directly emitted from the generator 2, 3 in order to produce the measurement signal of the measurement frequency fm which depends on the distance H of the surface 7 from the antenna 6, the delay line 11 and the second mixer 5 which are connected to each other and the mixer 5 is connected to the generator 2, 3 for generating a reference signal having a reference frequency fr corresponding to a known length L, and a signal processing circuit to determine the relationship between the measurement constant fm and the reference frequency fr and the calculation of the value for the distance H from there, the circuit circuit for signal processing is characterized by the fact that in a cascade the circuits (14, 15, 16) are connected to the output of the amplifier (12) whose input is connected to the output of another mixer (5), and that the pulse multiplier (17) is connected to the unit (18) for calculation and the network comparator circuit (16), while the counter (19) is connected to the pulse multiplier (17) and to the memory (20) and that are D/A converters (21, 22) connected to the memory (20) and to the output of the amplifier (8) whose input is connected to the output of the first mixer (4). 2. Uređaj prema zahtjevu 1, naznačen time, što je kolo (27) za dijeljenje vezano s kolom mrežnog komparatora (16) i sa A/D konvertorima (25, 26) koji su vezani s jedinicom (18) za izračunavanje.2. Device according to claim 1, characterized in that the division circuit (27) is connected to the network comparator circuit (16) and to the A/D converters (25, 26) which are connected to the calculation unit (18). 3. Uređaj prema zahtjevu 2, naznačen time, što je kolo (27) za dijeljenje vezano s jedinicom (18) za izračunavanje.3. Device according to claim 2, characterized in that the division circuit (27) is connected to the calculation unit (18).
HR920410A 1984-06-01 1992-09-21 Method and apparatus for level measurement with microwaves HRP920410A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8402960A SE456538B (en) 1984-06-01 1984-06-01 SET AND DEVICE FOR NIVAMATING WITH MICROVAGOR
YU68988A YU46256B (en) 1984-06-01 1988-04-07 DEVICE FOR MEASURING DISTANCE BETWEEN ANTENNA AND FLUENT MATERIAL SURFACE USING MICROWAVES

Publications (1)

Publication Number Publication Date
HRP920410A2 true HRP920410A2 (en) 1995-12-31

Family

ID=26658736

Family Applications (1)

Application Number Title Priority Date Filing Date
HR920410A HRP920410A2 (en) 1984-06-01 1992-09-21 Method and apparatus for level measurement with microwaves

Country Status (2)

Country Link
HR (1) HRP920410A2 (en)
SI (1) SI8810689A8 (en)

Also Published As

Publication number Publication date
SI8810689A8 (en) 1996-04-30

Similar Documents

Publication Publication Date Title
EP0167505B1 (en) Method and apparatus for level measurement with microwaves
US10416018B2 (en) Paired ZF sampling for pulse running time filling level sensor
US4044355A (en) Measurement of contents of tanks etc. with microwave radiations
CN202501902U (en) Radar level measurement system
CN102822643B (en) Use the radar levelmeter amount of frequency modulation on pulse ripple
US4847623A (en) Radar tank gauge
CA2074608C (en) Velocity measurement system
US20140085132A1 (en) Radar level gauging using frequency modulated pulsed wave
CN101201400A (en) Method and device for correcting non-ideal intermediate-frequency signals in an FMCW radar
EP0234479A2 (en) Radar tank gauge
US4494067A (en) Fast frequency measuring system
CN1971221A (en) Method for measuring liquid level by using radar and radar level gauge using same
EA005504B1 (en) Level-measuring device which functions with microwaves
HRP920410A2 (en) Method and apparatus for level measurement with microwaves
FI61246C (en) SAETT OCH ANORDNING FOR THE PURPOSE OF THE ENVIRONMENTAL LEVEL
RU2431155C1 (en) Method of measuring distance by range finder with frequency modulation of sounding radio waves
EP0601884A2 (en) Distance measuring arrangement
RU2152595C1 (en) Contact-free pulse-phase method of measurement of level of separation of heterogeneous liquids and of relative change of level with increased accuracy
GB2035578A (en) Method and apparatus for determining the attenuation of a signal path
SU983572A1 (en) Electric signal phase shift measuring method
RU2649665C1 (en) Non-contacting radio wave level gauge
RU2231798C2 (en) Analyzer of characteristic function of signal
SU428293A1 (en) METHOD OF COMPARISON FOR CLOSE FREQUENCIES
GB1490850A (en) Electronic network analyzer
SU1267166A1 (en) Method for calibration of liquid flowmeters with analogue electric output signal

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBC Application rejected