HRP20090351A2 - Hydraulic energy station - battery - Google Patents

Hydraulic energy station - battery Download PDF

Info

Publication number
HRP20090351A2
HRP20090351A2 HR20090351A HRP20090351A HRP20090351A2 HR P20090351 A2 HRP20090351 A2 HR P20090351A2 HR 20090351 A HR20090351 A HR 20090351A HR P20090351 A HRP20090351 A HR P20090351A HR P20090351 A2 HRP20090351 A2 HR P20090351A2
Authority
HR
Croatia
Prior art keywords
battery
hydraulic
pressure tank
pressure
tank
Prior art date
Application number
HR20090351A
Other languages
Croatian (hr)
Inventor
Božić Ante
Original Assignee
Božić Ante
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Božić Ante filed Critical Božić Ante
Priority to HRP20090351AA priority Critical patent/HRPK20090351B3/en
Publication of HRP20090351A2 publication Critical patent/HRP20090351A2/en
Publication of HRPK20090351B3 publication Critical patent/HRPK20090351B3/en

Links

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

Hidraulička energetska stanica-baterija je kompaktni spremnik hidrauličke energije, prvenstveno namijenjen ugradnji u transmisije hidrauličkih hibridnih vozila. U svojoj osnovi predstavlja standardni hidropneumatski akumulator (1) na koji je navučen elastični elastomerni mijeh (19). Hidropneumatski akumulator služi da bi se pohranilo ulje pod visokim pritiskom, a prostor (20) između vanjske stijenke hidropneumatskog akumulatora (1) i unutarnje stijenke elastičnog elastomernog mijeha (19) služi da bi se pohranilo ulje pod niskim pritiskom. Zahvaljujući vanjskoj elastičnoj stijenci hidraulička energetska stanica-baterija se može lako prilagoditi raspoloživom prostoru te će je biti lakše uklopiti u hidrostatičke transmisije nego li dosadašnja rješenja koja su se oslanjala na odvojenim spremnicima ulja za visoki odnosno niski pritisak.Hydraulic Power Station-Battery is a compact hydraulic energy reservoir, primarily intended for transmission in hydraulic hybrid vehicle transmissions. It is basically a standard hydropneumatic accumulator (1) to which an elastic elastomer bellows (19) is drawn. The hydropneumatic accumulator serves to store high pressure oil, and the space (20) between the outer wall of the hydropneumatic accumulator (1) and the inner wall of the elastic elastomer bellows (19) serves to store the low pressure oil. Thanks to the outer elastic wall, the hydraulic energy cell-battery can easily be adjusted to the space available and will be easier to fit into hydrostatic transmissions than previous solutions that relied on separate high or low pressure oil tanks.

Description

Područje na koje se izum odnosi The field to which the invention relates

Ovaj se izum odnosi na područje pohrane energije u hidrauličnim hidrostatskim transmisijskim sistemima, sa naročitim naglaskom na hibridna vozila. This invention relates to the field of energy storage in hydraulic hydrostatic transmission systems, with particular emphasis on hybrid vehicles.

Tehnički problem Technical problem

U mnogim primjenama hidrostatskih transmisijskih sistema (u nastavku hidrostatska transmisija), a naročito u primjenama u hibridnim vozilima, dolazi do situacija kada je poželjno imati sistem za pohranu energije npr. WO2005061904. Karakteristične situacije kod hibridnih vozila su kočenje i ubrzavanje. Prilikom kočenja kinetička energija vozila se transformira u povišeni pritisak ulja/plina unutar spremnika visokog pritiska, odnosno potencijalnu energiju stlačenog plina. Potencijalna energija pohranjena u spremniku visokog pritiska, koristi se prilikom sljedećeg ubrzanja čime se direktno smanjuje potrošnja goriva. Količina ulja koja se pri tome prebacuje iz hidrauličnih vodova u spremnik visokog pritiska se nadoknađuje iz spremnika niskog pritiska. Zbog ograničenog prostora, naročito u primjenama u hibridnim vozilima, poželjno je da spomenuti spremnici visokog i niskog pritiska budu što manjih dimenzija. Također je poželjno da budu što manje mase. In many applications of hydrostatic transmission systems (hereinafter referred to as hydrostatic transmission), and especially in applications in hybrid vehicles, there are situations when it is desirable to have an energy storage system, for example WO2005061904. The characteristic situations of hybrid vehicles are braking and acceleration. During braking, the kinetic energy of the vehicle is transformed into the increased oil/gas pressure inside the high-pressure tank, i.e. the potential energy of the compressed gas. The potential energy stored in the high-pressure tank is used during the next acceleration, which directly reduces fuel consumption. The amount of oil that is transferred from the hydraulic lines to the high pressure tank is compensated from the low pressure tank. Due to the limited space, especially in applications in hybrid vehicles, it is desirable that the mentioned high and low pressure tanks be as small as possible. It is also desirable that they have as little mass as possible.

Stanje tehnike State of the art

U poznatom stanju tehnike, spomenuti spremnici visokog i niskog pritiska su uglavnom visokotlačni spremnici cilindričnog tipa. Volumen spomenutih spremnika je pomičnim brtvenim elementom podijeljen na dva dijela. Jedan dio ja napunjen stlačenim plinom a drugi dio se puni/prazni hidrauličnim uljem. Prilikom punjenja uljem, pomični brtveni element se pomiče na način da se dio napunjen uljem povećava nauštrb dijela punjenog stlačenim plinom. Kako je hidraulično ulje praktični nestlačivo sva energija se pohranjuje u vidu stlačenog plina. Pokretni brtveni dio može biti slobodni klip odnosno gumena ili metalna membrana. Plin koji se standardno koristi je dušik. Spremnici su uglavnom izrađeni od čelika ili kompozitnog materijala. In the known state of the art, the mentioned high and low pressure tanks are mostly cylindrical type high pressure tanks. The volume of the mentioned containers is divided into two parts by a movable sealing element. One part is filled with compressed gas and the other part is filled/emptied with hydraulic oil. When filling with oil, the movable sealing element moves in such a way that the part filled with oil increases at the expense of the part filled with compressed gas. As hydraulic oil is practically incompressible, all energy is stored in the form of compressed gas. The movable sealing part can be a free piston or a rubber or metal membrane. The standard gas used is nitrogen. Tanks are mostly made of steel or composite material.

Zbog ograničenog prostora na vozilima, poželjno je da sistem za pohranu energije bude što manjih dimenzija. Do sada su se uglavnom koristili istovjetni odvojeni spremnici i za pohranu hidrauličkog ulja pod visokim i niskim pritiskom. Korištenje dvaju odvojenih spremnika zahtijeva relativno velik prostor za ugradnju a i komplicira sam proces ugradnje, jer je posebnim tlačnim vodovima potrebno povezati navedene spremnike sa ostatkom hidrostatske transmisije. Pod potrebnim prostorom za ugradnju misli se na dužinu, visinu i širinu kvadratičnog volumena potrebnog da se smjeste spomenuti spremnici. Da bi se smanjio ugradbeni prostor, u rješenju opisanom u patentu WO2005061904, predloženo je da se spremnik visokog pritiska integrira u spremnik niskog pritiska. Integracija je izvršena na način da se spremnik visokog pritiska smješta unutar, prvenstveno cilindričnog i krutog većeg spremnika, tvoreći jedan integralni spremnik hidrauličke energije. Ovim, prostor između vanjske stijenke spremnika visokog pritiska i unutarnje stijenke većeg spremnika, u koji je smješten spomenuti spremnik visokog pritiska, postaje spremnik niskog pritiska. Pošto su oba spremnika kruta, ulje u spremniku niskog pritiska u potpunosti ispunjava raspoloživi prostor, samo u specijalnom slučaju, kada je spremnik visokog pritiska potpuno ispražnjen. Slijedi, da kada je spremnik visokog pritiska djelomično ispražnjen i spremnik niskog pritiska će biti dejlomično ispunjen hidrauličkim uljem, dok će ostatak prostora biti ispunjen plinom. Kako se radi prvenstveno o spremniku koji će biti ugrađen u vozila, djelovanje inercijskih sila će dovesti do gibanja slobodne površine hidrauličkog ulja koje se nalazi u spremniku niskog pritiska. Da bi se izbjeglo da zrak ili neki drugi plin, koji ispunjava prostor iznad slobodne površine ulja, uđe u tlačne vodove hidrostatičke transmisije bit će potrebno predvidjeti veću količinu ulja od one koju može apsorbirati spremnik visokog pritiska, što će rezultirati većim volumenom čitavog rješenja. Nadalje, da pritisak u spremniku niskog pritiska nebi pretjerano porastao, kada spomenuti prostor primi svo ulje iz spremnika visokog pritiska, potrebno je predvidjeti dodatni volumen koji će primiti plin iz spremnika niskog pritiska. U spomenutom patentu WO2005061904 za ovo je predviđena dodatna, zasebna, tlačna posuda. Jasno je da se dodavanjem zasebne tlačne posude povećava ugradbeni volumen i kompleksnost rješenja. Dodatno, zbog postojanja slobodne površine, odnosno direktnog kontakta između ulja i plina u spremniku niskog pritiska, poznato rješenje je osjetljivo na položaj ugradnje. Vertikalna ugradnja će biti više poželjna zbog lakšeg razdvajanja talačnog voda, kojim spremnik niskog pritiska fluidički komunicira sa ostatkom hidrostatičke transmisije i plina koji ispunjava slobodni prostor u spremniku niskog pritiska, iznad slobodne površine hidrauličkog ulja. Due to the limited space on vehicles, it is desirable that the energy storage system be as small as possible. Up to now, the same separate tanks have been mostly used for storing hydraulic oil under high and low pressure. The use of two separate tanks requires a relatively large space for installation and complicates the installation process itself, because it is necessary to connect said tanks to the rest of the hydrostatic transmission with special pressure lines. The required space for installation refers to the length, height and width of the square volume required to accommodate the mentioned containers. In order to reduce the installation space, in the solution described in the patent WO2005061904, it is proposed to integrate the high pressure tank into the low pressure tank. The integration was carried out in such a way that the high-pressure tank is placed inside a primarily cylindrical and rigid larger tank, forming one integral tank of hydraulic energy. With this, the space between the outer wall of the high-pressure tank and the inner wall of the larger tank, in which the aforementioned high-pressure tank is placed, becomes a low-pressure tank. Since both tanks are rigid, the oil in the low-pressure tank completely fills the available space, only in the special case, when the high-pressure tank is completely emptied. It follows that when the high-pressure tank is partially emptied, the low-pressure tank will be partially filled with hydraulic oil, while the rest of the space will be filled with gas. As it is primarily a tank that will be installed in vehicles, the action of inertial forces will lead to the movement of the free surface of the hydraulic oil located in the low pressure tank. In order to avoid that air or some other gas, which fills the space above the free surface of the oil, enters the pressure lines of the hydrostatic transmission, it will be necessary to provide a larger amount of oil than can be absorbed by the high-pressure tank, which will result in a larger volume of the entire solution. Furthermore, so that the pressure in the low-pressure tank does not increase excessively, when the aforementioned space receives all the oil from the high-pressure tank, it is necessary to provide for an additional volume that will receive the gas from the low-pressure tank. In the aforementioned patent WO2005061904, an additional, separate, pressure vessel is provided for this. It is clear that adding a separate pressure vessel increases the installation volume and complexity of the solution. Additionally, due to the existence of a free surface, i.e. direct contact between oil and gas in the low pressure tank, the known solution is sensitive to the installation position. Vertical installation will be more desirable due to the easier separation of the sediment line, through which the low pressure tank fluidically communicates with the rest of the hydrostatic transmission and the gas that fills the free space in the low pressure tank, above the free surface of the hydraulic oil.

Izlaganje suštine izuma Presentation of the essence of the invention

Primarni cilj je unaprijediti rješenje opisano u WO2005061904 na način da se smanji ukupni ugradbeni volumen, da se smanji broj elemenata za ugradnju, da se pojednostavni konstrukcija te da se kreira integralni spremnik hidrauličke energije koji jednako dobro funkcionira i u vertikalnom i u horizontalnom položaju. The primary goal is to improve the solution described in WO2005061904 in such a way as to reduce the total installation volume, to reduce the number of elements for installation, to simplify the construction and to create an integral reservoir of hydraulic energy that works equally well in both vertical and horizontal positions.

Navedeni ciljevi će se postići umetanjem većeg dijela spremnika visokog pritiska u elastomerni elastični mijeh. Elastomerni elastični mijeh je manjih dimenzija nego li spremnik visokog pritiska te će umetanje spomenutog spremnika visokog pritiska, u spomenuti elastični elastomerni mijeh, rezultirati generiranjem vlačnog naprezanja u istom. Prostor između vanjske stijenke spremnika visokog pritiska i unutarnje stijenke elastičnog elastomernog mijeha tvori fleksibilni spremnik niskog pritiska. Vlačno naprezanje u elastomernom elastičnom mijehu će generirati nadtlak potreban za funkcioniranje hidrostatičke transmisije, bez obzira na inercionu i gravitacijsku silu koje djeluju na hidrauličko ulje u spremniku niskog pritiska za vrijeme vožnje, čime se dobiva rješenje koje će jednako dobro funkcionirati i u vertikalnom i u horizontalnom položaju. The stated objectives will be achieved by inserting a large part of the high-pressure tank into an elastomeric elastic bellows. The elastomeric elastic bellows has smaller dimensions than the high-pressure tank, and the insertion of the mentioned high-pressure tank into the mentioned elastic elastomeric bellows will result in the generation of tensile stress in the same. The space between the outer wall of the high-pressure tank and the inner wall of the elastic elastomer bellows forms a flexible low-pressure tank. The tensile stress in the elastomeric elastic bellows will generate the overpressure required for the operation of the hydrostatic transmission, regardless of the inertial and gravitational forces acting on the hydraulic oil in the low-pressure reservoir while driving, resulting in a solution that will work equally well in both vertical and horizontal positions.

Dodatno, fleksibilni spremnik niskog pritiska se prilagođava količini hidrauličkog ulja koje se nalazi u njemu te nema potrebe za plinom i dodatnim spremnikom istog kako bi se pratila promjena nivoa ulja u spremniku niskog pritiska. Ovim se postiže smanjenje broja elemenata za ugradnju. In addition, the flexible low-pressure tank adjusts to the amount of hydraulic oil in it, and there is no need for gas and an additional tank of the same to monitor the change in the oil level in the low-pressure tank. This reduces the number of elements to be installed.

Nadalje, elastomerni elastični mijeh se svojim oblikom može prilagoditi raspoloživom prostoru čime se smanjuje potrebni ugradbeni volumen predloženog rješenja. Furthermore, the shape of the elastomeric elastic bellows can be adapted to the available space, which reduces the required installation volume of the proposed solution.

Daljnje smanjenje ugradbenog volumena hidrauličke energetske stanice-baterije, kao i kompletnog rješenja hidrostatičke transmisije, na koju je ista priključena, može se ostvariti integriranjem elemenata hidrostatičke transmisije u hidrauličku energetsku stanicu-bateriju. Further reduction of the installed volume of the hydraulic power station-battery, as well as the complete hydrostatic transmission solution, to which it is connected, can be achieved by integrating the elements of the hydrostatic transmission into the hydraulic power station-battery.

Predloženo rješenje hidrauličke energetske stanice-baterije može se ostvariti korištenjem bilo kojeg tipa, struci poznatih spremnika visokog pritiska u vidu standardnih hidropneumatskih akumulatora. The proposed solution of the hydraulic energy station-battery can be realized using any type of high-pressure tank known to the profession in the form of standard hydropneumatic accumulators.

Kratak opis crteža Brief description of the drawing

Sl. 1 Prikazuje standardni hidropneumatski akumulator sa elastičnim elastomernim mijehom kao pokretnim brtvenim elementom. Sl. 1 Shows a standard hydropneumatic accumulator with a flexible elastomeric bellows as a movable sealing element.

Sl. 2 Prikazuje standardni hidropneumatski akumulator sa klipom kao pokretnim brtvenim elementom. Sl. 2 Shows a standard hydropneumatic accumulator with a piston as a movable sealing element.

Sl. 3 Prikazuje osnovnu izvedbu hidrauličke energetske stanice-baterije bazirane na hidropneumatskom akumulatoru sa elastičnim elastomernim mijehom kao pokretnim brtvenim elementom. Sl. 3 Shows the basic performance of the hydraulic energy station-battery based on a hydropneumatic accumulator with an elastic elastomer bellows as a movable sealing element.

Sl. 4 Prikazuje osnovnu izvedbu hidrauličke energetske stanice-baterije bazirane na hidropneumatskom akumulatoru sa klipom kao pokretnim brtvenim elementom. Sl. 4 Shows the basic performance of the hydraulic energy station-battery based on a hydropneumatic accumulator with a piston as a movable sealing element.

Sl. 5 Prikazuje izvedbu hidrauličke energetske stanice-baterije bazirane na hidropneumatskom akumulatoru sa elastičnim elastomernim mijehom kao pokretnim brtvenim elementom, uz dodatak pneumatske kompenzacije. Sl. 5 Shows the performance of a hydraulic energy station-battery based on a hydropneumatic accumulator with an elastic elastomer bellows as a movable sealing element, with the addition of pneumatic compensation.

Sl. 6 Prikazuje izvedbu hidrauličke energetske stanice-baterije bazirane na hidropneumatskom akumulatoru sa klipom kao pokretnim brtvenim elementom uz dodatak pneumatske kompenzacije. Sl. 6 Shows the performance of a hydraulic energy station-battery based on a hydropneumatic accumulator with a piston as a movable sealing element with the addition of pneumatic compensation.

Sl. 7 Prikazuje izvedbu hidrauličke energetske stanice-baterije bazirane na hidropneumatskom akumulatoru sa klipom kao pokretnim brtvenim elementom uz dodatak pneumatske kompenzacije i obostranog prolaza za radni fluid. Sl. 7 Shows the performance of a hydraulic energy station-battery based on a hydropneumatic accumulator with a piston as a movable sealing element with the addition of pneumatic compensation and a bilateral passage for the working fluid.

Sl. 8 Prikazuje izvedbu hidrauličke energetske stanice-baterije direktno povezane sa hidrostatičkom transmisijom. Sl. 8 Shows the performance of the hydraulic power station-battery directly connected to the hydrostatic transmission.

Sl. 9 Prikazuje izvedbu hidrauličke energetske stanice-baterije sa zaštitnim kućištem. Sl. 9 Shows the performance of the hydraulic energy station-battery with a protective housing.

Sl. 10 Prikazuje poprečni presjek izvedbe hidraulička energetske stanica-baterije sa zaštitnim kućištem. Sl. 10 Shows a cross-section of the performance of the hydraulic power station-battery with a protective casing.

Detaljan opis nekih načina ostvarivanja izuma Detailed description of some ways of realizing the invention

Sl. 1. Prikazuje standardnu izvedbu hidropneumatskog akumulatora 1 sa elastičnim elastomernim mijehom 2 kao pokretnim brtvenim elementom, koji dijeli unutarnji volumen tijela akumulatora 3 na promjenjivi podvolumen sa stlačenim plinom 4 i promjenjivi podvolumen sa hidrauličkim uljem 5. Anti-ekstruzijski ventil 6 služi da spriječi ekstruziju elastičnog elastomernog mijeha 2 kroz prolaz 6 u trenutku kada je svo hidrauličko ulje istisnuto iz hidropneumatskog akumulatora 1 odnosno kada promjenjivi podvolumen 4 praktički iščezne. Prolaz 7 omogućuje fluidičku komunikaciju između promjenjivog podvolumenu 4 i tlačnog voda hidrostatičke transmisije, kada je na nju priključen spomenuti hidropneumatski akumulator. Ventil 8 služi za punjenje/pražnjenje plina u/iz promjenjivog podvolumena 3. Sl. 1. Shows the standard design of the hydropneumatic accumulator 1 with an elastic elastomer bellows 2 as a movable sealing element, which divides the internal volume of the accumulator body 3 into a variable subvolume with compressed gas 4 and a variable subvolume with hydraulic oil 5. The anti-extrusion valve 6 serves to prevent the extrusion of the elastic of the elastomeric bellows 2 through the passage 6 at the moment when all the hydraulic oil has been squeezed out of the hydropneumatic accumulator 1, i.e. when the variable subvolume 4 practically disappears. The passage 7 enables fluidic communication between the variable subvolume 4 and the pressure line of the hydrostatic transmission, when the mentioned hydropneumatic accumulator is connected to it. Valve 8 is used to fill/discharge gas in/out of variable subvolume 3.

Sl. 2. Prikazuje standardnu izvedbu hidropneumatskog akumulatora 9 sa klipom 10 kao pokretnim brtvenim elementom, koji dijeli unutarnji volumen tijela akumulatora 11, na promjenjivi podvolumen sa stlačenim plinom 12 i promjenjivi podvolumen sa hidrauličkim uljem 13. Prolaz 14 u elementu za zatvaranje 15 omogućuje fluidičku komunikaciju između promjenjivog volumena 13 i tlačnog voda hidrostatičke transmisije, kada je na nju priključen spomenuti hidropneumatski akumulator. Ventil 16, montiran na element za zatvaranje 17, služi za punjenje/pražnjenje plina u/iz promjenjivog podvolumena 12. Sl. 2. Shows the standard design of a hydropneumatic accumulator 9 with a piston 10 as a movable sealing element, which divides the internal volume of the accumulator body 11 into a variable subvolume with compressed gas 12 and a variable subvolume with hydraulic oil 13. The passage 14 in the closing element 15 enables fluidic communication between variable volume 13 and the pressure line of the hydrostatic transmission, when the mentioned hydropneumatic accumulator is connected to it. The valve 16, mounted on the closing element 17, serves to fill/discharge gas into/from the variable subvolume 12.

Sl. 3. Prikazuje hidrauličku energetsku stanicu – bateriju 18 u svojoj osnovnoj varijanti, a baziranoj na hidropneumatskom akumulatoru 1 sa elastičnim elastomernim mijehom. Hidropneumatski akumulator 1 nalazi se unutar vanjskog elastičnog elastomernog mijeha 19. Na slici je prikazano stanje kada je hidropnemuatski akumulator 1 gotovo u potpunosti ispražnjen tako da se većina hidrauličkog ulja nalazi u spremniku niskog pritiska 20, koji je formiran između vanjske stijenke hidropneumatskog akumulatora 1 i unutarnje stijenke elastičnog elastomernog mijeha 19. Prostor spremnika niskog pritiska 20 zatvoren je elementom za zatvaranje 21 na kojem se nalazi i prolaz 22 kojim spremnik niskog pritiska 20 komunicira sa vodom niskog pritiska hidrostatičke transmisije, kada je na nju priključen. Vanjski elastični elastomerni mijeh 19 je, u ovoj varijanti, povezan sa elementom za zatvaranje 21, posredstvom kombinacije odgovarajućih kružnih ispupčenja i udubljenja. U prikazanom rješenju kružno udubljenje 23, elementa za zatvaranje 21, ulazi u kružno ispupčenje 24, elastičnog elastomernog mijeha 19, a kružno ispupčenje 25, elementa za zatvaranje 21, ulazi u kružno udubljenje 26 elastičnog elastomernog mijeha 19. Ovako ostvarena veza osigurana je pritisnim elementom 27 koji je u traženom položaju fiksiran maticom 28. Pritisnom pločom 29 elastični elastomerni mijeh 19 je pritisnut na vanjsku stijenku hidropnematskog akumulatora kako bi se osiguralo brtveljnje na ovom dijelu gdje dio ventila 8 prolazi kroz elastični elastomerni mijeh 29. Sl. 3. Shows the hydraulic energy station - battery 18 in its basic variant, based on the hydropneumatic accumulator 1 with an elastic elastomer bellows. The hydropneumatic accumulator 1 is located inside the external elastic elastomer bellows 19. The picture shows the state when the hydropneumatic accumulator 1 is almost completely emptied so that most of the hydraulic oil is in the low pressure tank 20, which is formed between the outer wall of the hydropneumatic accumulator 1 and the inner the walls of the elastic elastomer bellows 19. The space of the low-pressure tank 20 is closed by a closing element 21 on which there is a passage 22 through which the low-pressure tank 20 communicates with the low-pressure water of the hydrostatic transmission, when it is connected to it. The external elastic elastomeric bellows 19 is, in this variant, connected to the closing element 21 by means of a combination of corresponding circular protrusions and depressions. In the shown solution, the circular recess 23 of the closing element 21 enters the circular protrusion 24 of the elastic elastomeric bellows 19, and the circular protrusion 25 of the closing element 21 enters the circular recess 26 of the elastic elastomeric bellows 19. The connection achieved in this way is secured by a pressure element 27, which is fixed in the desired position with a nut 28. With a pressure plate 29, the elastic elastomeric bellows 19 is pressed against the outer wall of the hydropneumatic accumulator in order to ensure a seal on this part where the part of the valve 8 passes through the elastic elastomeric bellows 29.

Sl. 4. Prikazuje hidrauličku energetsku stanicu-bateriju 30 u jednoj od osnovnih varijanti, a baziranoj na hidropneumatskom akumulatoru 9 sa klipom. U ovom slučaju hidropneumatski akumulator 9, se svojim većim dijelom nalazi unutar vanjskog elastičnog elastomernog mjeha 31. Slikom je prikazano stanje kada je hidropneumatski akumulator 9 gotovo u potpunosti ispražnjen tako da se većina hidrauličkog ulja nalazi u spremniku niskog pritiska 32 formiranog između vanjske stijenke hidropneumatskog akumulatora 9 i unutarnje stijenke elastičnog elastomernog mijeha 31. Elastični elastomerni mijeh 31 povezan je sa hidropneumatskim akumulatorom 9 korištenjem kombinacije kružnih ispupčenja i udubljenja koji se nalaze u odgovarajućem rasporedu na elementima za zatvaranje 33 i 34 te na oba kraja elastičnog elastomernog mijeha 31, a na način koji je već opisan prethodnom slikom 3. Na elementu za zatvaranje 33 nalazi se žlijeb 35 preko kojeg spremnik niskog pritiska 32 fluidički komunicira sa prolazom 36, a time i sa vodom niskog pritiska hidrostatičke transmisije, kada je na nju priključen. Sl. 4. Shows the hydraulic energy station-battery 30 in one of the basic variants, based on the hydropneumatic accumulator 9 with a piston. In this case, the hydropneumatic accumulator 9 is mostly located inside the external elastic elastomer bellows 31. The picture shows the state when the hydropneumatic accumulator 9 is almost completely emptied, so that most of the hydraulic oil is in the low pressure tank 32 formed between the outer wall of the hydropneumatic accumulator. 9 and the inner walls of the elastic elastomeric bellows 31. The elastic elastomeric bellows 31 is connected to the hydropneumatic accumulator 9 using a combination of circular protrusions and depressions located in a suitable arrangement on the closing elements 33 and 34 and at both ends of the elastic elastomeric bellows 31, in the manner which is already described in the previous figure 3. On the closing element 33 there is a groove 35 through which the low pressure tank 32 fluidically communicates with the passage 36, and thus with the low pressure water of the hydrostatic transmission, when it is connected to it.

Sl. 5 Prikazuje jednu varijantu hidrauličke energetske stanice-baterije 37 baziranoj na hidropneumatskom akumulatoru sa elastičnim elastomernim mjehom. Ova se varijanta razlikuje od varijante opisane na slici 4 utoliko što vanjski elastomerni mjeh 38 ima dva sloja i to radni 39 i korekcijski 40. Prostor između vanjske stijenke radnog sloja 39 i unutrašnje stijenke korekcijskog sloja 40 ispunjen je plinom pod pritiskom, koji služi kako bi se korigirao pritisak ulja u spremniku niskog pritiska 20. Korekcija može imati svrhu da nadoknadi gubitak pritiska koji je nastao uslijed trajnog istezanja, zamora, materijala radnog sloja 39 i/ili da bi se u spremniku niskog pritiska generirao viši pritisak nego li je to moguće ostvariti samo elastičnim rastezanjem radnog sloja 39. Radni sloj 39 je izrađen od elastičnog elastomernog materijala. Korekcijski sloj 40 izrađen je od elastičnog elastomernog materijala u slučaju kada je potrebno korigirati gubitak pritiska uslijed trajnog istezanja radnog sloja 39. U slučaju kada u spremniku niskog pritiska 20 treba generirati pritisak veći od pritiska koji se može generirati elastičnim istezanjem radnog sloja 39 korekcijski sloj može biti izveden od elastomernog materijala ojačanog kompozitnim ili čeličnim vlaknima čime zadržava mogućnost deformiranja ali postaje praktički neelastičan. Korekcijski sloj, na jednom svom dijelu prelazi u kanal 41 u kojem je smješten ventil 42. Ventil 42 služi za punjenje/pražnjenje plina u prostor između vanjske stijenke radnog sloja 39 i unutarnje stijenke korekcijskog sloja 40. Sl. 5 Shows one variant of the hydraulic power station-battery 37 based on a hydropneumatic accumulator with an elastic elastomer bellows. This variant differs from the variant described in Figure 4 insofar as the outer elastomeric bellows 38 has two layers, the working layer 39 and the correction layer 40. The space between the outer wall of the working layer 39 and the inner wall of the correction layer 40 is filled with gas under pressure, which serves to the oil pressure in the low-pressure tank 20 has been corrected. The purpose of the correction may be to compensate for the loss of pressure caused by permanent stretching, fatigue, the material of the working layer 39 and/or to generate a higher pressure in the low-pressure tank than is possible only by elastic stretching of the working layer 39. The working layer 39 is made of elastic elastomer material. The correction layer 40 is made of an elastic elastomer material in the case when it is necessary to correct the loss of pressure due to the permanent stretching of the working layer 39. In the case when a pressure greater than the pressure that can be generated by the elastic stretching of the working layer 39 needs to be generated in the low pressure tank 20, the correction layer can be made of elastomeric material reinforced with composite or steel fibers, which retains the possibility of deformation but becomes practically inelastic. The correction layer, on one of its parts, passes into the channel 41 in which the valve 42 is located. The valve 42 serves to fill/discharge gas into the space between the outer wall of the working layer 39 and the inner wall of the correction layer 40.

Sl. 6 Prikazuje varijantu hidrauličke energetske stanice-baterije 43 baziranoj na hidropneumatskom akumulatoru sa klipom. I na ovoj je slici prikazano rješenje sa dvoslojnim vanjskim elastomernim mijehom 44, odnosno sa radnim 45 i korekcijskim 46 slojem. U ovom prikazu korekcijski sloj 46, na jednom svom dijelu, prelazi u kanal 47 kojim je fluidički, preko tlačnog voda 48 povezan sa dodatnim spremnikom 49. Spremnik 49 može biti krute izvedbe od npr čelika ili kompozitnog materijala, deformabilne izvedbe od npr. elastomernog materijala ojačanog čeličnim/kompozitnim vlaknima ili elastične izvedbe od npr. elastomernog materijala ali bez ikakvog dodatnog ojačavanja koje bi ograničilo njegovu prirodnu elastičnost. Dodatno na jednom svom dijelu prelazi u kanal 50 u kojem je smješten ventil 42 koji u ovom slučaju služi za punjenje i pražnjenje plina u/iz dodatni/og spremnik/a 49. Sl. 6 Shows a variant of the hydraulic power station-battery 43 based on a hydropneumatic accumulator with a piston. This picture also shows a solution with a two-layer external elastomeric bellows 44, that is, with a working 45 and a correction 46 layer. In this view, the correction layer 46, on one of its parts, passes into the channel 47 through which it is fluidically connected, via the pressure line 48, to the additional tank 49. The tank 49 can be of a rigid design made of, for example, steel or a composite material, or a deformable design made of, for example, an elastomeric material reinforced with steel/composite fibers or elastic design made of e.g. elastomeric material but without any additional reinforcement that would limit its natural elasticity. Additionally, on one of its parts, it passes into the channel 50 in which the valve 42 is located, which in this case is used for filling and emptying gas into/from the additional tank/s 49.

Sl. 7 Prikazuje rješenje hidrauličke energetske stanice 51 koja ima dva prolaza 52 i 53, po jedan na svakom kraju. Spomenuti prolazi omogućuju, kao i u prethodno opisanim rješenjima, fluidičku komunikaciju spremnika niskog pritiska 54 sa ostatkom hidrostatičke transmisije, kad ja spomenuta hidraulička energetska stanica 51 na nju priključena. Ali u ovom slučaju mogu imati i dodatnu funkciju transporta hidrauličkog ulja od jednog kraja na drugi i obrnuto ali bez pohrane hidrauličkog ulja. Naime, u dosad opisanim rješenjima prolaz hidrauličkog ulja kroz otvor npr. 22 na Sl. 3 bio je povezan sa promjenom volumena spremnika niskog pritiska 20, odnosno količine hidrauličkog ulja sadržanog u njemu. U ovom slučaju, za razliku od prethodno opisanih, hidrauličko ulje pod niskim pritiskom može prolaziti između prolaza 52 i 53 bez da se mijenja volumen samog spremnika niskog pritiska 54 čime spremnik niskog pritiska postaje vod niskog pritiska izuzetno velikog poprečnog presjeka što je povoljno sa stanovišta smanjenja hidrauličkih gubitaka. Isto vrijedi i za dio hidrauličke energetske stanice-baterije 51 koja služi za pohranu hidrauličkog ulja pod visokim pritiskom koja također ima dva prolaza 55 i 56, po jedan na svakom kraju. Slijedi da prolazi 55 i 56 imaju dvostruku funkciju. Prva je da omoguće fluidičku komunikaciju dijela spremnika visokog pritiska, koji sadrži hidrauličko ulje pod visokim pritiskom 57, sa ostatkom hidrostatičke transmisije, kada je hidraulička energetska stanica-baterija na nju priključena. Druga funkcija je da služe za prolazak hidrauličkog ulja sa jednog kraja hidrauličke energetske stanice-baterije na njezin drugi kraj, i obrnuto, korištenjem tlačnog voda 58. Sl. 7 Shows the solution of the hydraulic power station 51 which has two passages 52 and 53, one at each end. The mentioned passages enable, as in the previously described solutions, the fluidic communication of the low pressure tank 54 with the rest of the hydrostatic transmission, when the aforementioned hydraulic power station 51 is connected to it. But in this case, they can also have the additional function of transporting hydraulic oil from one end to the other and vice versa, but without hydraulic oil storage. Namely, in the solutions described so far, the passage of hydraulic oil through the opening, for example, 22 in Fig. 3 was related to the change in the volume of the low-pressure tank 20, that is, the amount of hydraulic oil contained therein. In this case, unlike those previously described, low-pressure hydraulic oil can pass between passages 52 and 53 without changing the volume of the low-pressure tank 54 itself, whereby the low-pressure tank becomes a low-pressure line of extremely large cross-section, which is advantageous from the point of view of reducing hydraulic losses. The same applies to the part of the hydraulic power station-battery 51 which serves to store hydraulic oil under high pressure, which also has two passages 55 and 56, one at each end. It follows that passages 55 and 56 have a double function. The first one is to enable fluidic communication of part of the high pressure tank, which contains hydraulic oil under high pressure 57, with the rest of the hydrostatic transmission, when the hydraulic power station-battery is connected to it. Another function is that they serve to pass hydraulic oil from one end of the hydraulic energy cell-battery to its other end, and vice versa, using the pressure line 58.

Sl. 8. Prikazuje jedan od mogućih načina integracije/ugradnje hidrauličke energetske stanice-baterije 30, opisane na Sl. 4, u hidrostatičku transmisiju 59. Ovo je primjer jednostavne hidrostatičke transmisije, namijenjene pohrani energije kočenja te korištenje iste prilikom ponovnog ubrzanja, a koja se sastoji od spomenute hidrauličke energetske stanice 30, priključene direktno na hidraulički motor/pumpu promjenjive dobave 60. Veza je ostvarena preko zajedničkog razvodnog bloka 61. Zbog jasnoće prikaza na slici je dan pojednostavljen prikaz, gdje nisu prikazani ventili za kontroliranje dobave i zaštite od nadrpitiska koji su u pravilu sastavni dijelovi modernih hidrauličkih motora/pumpi promjenjive dobave, kako je to poznato stručnjacima iz područja. Iz ovog prikaza postaju jasne i dodatne prednosti predloženog rješenja, naime, kako je slikom prikazano, integriranje hidropneumatskog akumulatora 9 u spremnik niskog pritiska 32 rezultira kompaktnom izvedbom spremnika hidrauličke energije u vidu hidrauličke energetske stanice-baterije 30, koju je moguće direktno priključiti na hidrauličku pumpu/motor 61. Ovim se postižu dodatne uštede u potrebnom ugradbenom prostoru, jer tlačni vodovi, poznati u gradnji hidrostatičkih transmisija, postaju suvišni. Nadalje, direktnom vezom između hidrauličke stanice-baterije 30 i hidrauličkog motora/pumpe 61 smanjuje se rizik od curenja, odnosno, bit će moguće koristiti više maksimalne pritiske za prijenos snage. Korištenjem viših maksimalnih pritisaka, a za pohranu iste količine energije, biti će dostatan spremnik visokog pritiska manjih dimenzija što će opet za posljedicu imati daljnje smanjenje ugradbenih dimenzija. Smanjenjem ugradbenih dimenzija predloženo rješenje će omogućiti primjenu hidrostatičke transmisije u izradi hibridnih hidrauličkih pogona namijenjenih tržištu osobnih automobila. Ovako izvedena hidrostatička transmisija se preko osovine 62 mehanički povezuje sa transmisijom automobila, koji nije prikazan, Prilikom zaustavljanja okretanje kotača, odnosno mehanička energija, će se prenijeti na osovinu 62 te će hidraulička pumpa/motor 61, radeći kao pumpa, transformirati spomenutu mehaničku energiju u hidrauličku energiju pohranjenu u hidropneumatskom akumulatoru 9. Prilikom ubrzanja hidraulička energija, pohranjena u hidropneumatskom akumulatoru 9, će se posredstvom hidrauličke pumpe/motora 61 pretvoriti u mehaničku energiju koja će se preko osovine 62 prenijeti transmisiju automobila odnosno njegovim kotačima. Sl. 8. Shows one of the possible ways of integration/installation of the hydraulic power station-battery 30, described in FIG. 4, into the hydrostatic transmission 59. This is an example of a simple hydrostatic transmission, intended to store braking energy and use it during re-acceleration, which consists of the mentioned hydraulic power station 30, connected directly to the hydraulic motor/variable supply pump 60. The connection is made through the common distribution block 61. For the sake of clarity, the figure shows a simplified view, where the supply control and overpressure protection valves are not shown, which are usually integral parts of modern variable supply hydraulic motors/pumps, as is known to experts in the field. From this presentation, additional advantages of the proposed solution become clear, namely, as shown in the figure, the integration of the hydropneumatic accumulator 9 in the low-pressure tank 32 results in a compact design of the hydraulic energy tank in the form of a hydraulic energy station-battery 30, which can be directly connected to the hydraulic pump /engine 61. This achieves additional savings in the required installation space, because the pressure lines, known in the construction of hydrostatic transmissions, become redundant. Furthermore, the direct connection between the hydraulic station-battery 30 and the hydraulic motor/pump 61 reduces the risk of leakage, that is, it will be possible to use higher maximum pressures for power transmission. By using higher maximum pressures, and for storing the same amount of energy, a high-pressure tank of smaller dimensions will be sufficient, which will again result in a further reduction of installation dimensions. By reducing the installation dimensions, the proposed solution will enable the application of hydrostatic transmission in the production of hybrid hydraulic drives intended for the passenger car market. The hydrostatic transmission made in this way is mechanically connected to the transmission of the car, which is not shown, through the shaft 62. When stopping, the rotation of the wheels, i.e. the mechanical energy, will be transferred to the shaft 62 and the hydraulic pump/motor 61, working as a pump, will transform the mentioned mechanical energy into hydraulic energy stored in the hydropneumatic accumulator 9. During acceleration, the hydraulic energy stored in the hydropneumatic accumulator 9 will be converted into mechanical energy via the hydraulic pump/motor 61, which will be transmitted via the shaft 62 to the car's transmission, i.e. to its wheels.

Sl. 9. Prikazuje hidrauličku energetsku stanicu–bateriju 30 smještenu unutar zaštitnog kućišta 63. Kućište može biti izrađeno od metala ili kompozita, a može biti kružnog ili kvadratičnog poprečnog presjeka. Na slici je prikazano kućište sa kvadratičnim poprečnim presjekom koje omogućuje maksimalno smanjenje ugradbenih dimenzija. Na predstavljenom rješenju zaštitno kućište 63 štiti elastični elastomerni mijeh 19, a pritisak u prostoru 64, između elastičnog elastomernog mijeha 19 i zaštitnog kućišta 63, je uvijek jednak atmosferskom pritisku. Iako to slikom nije prikazano potrebno je naglasiti da spomenuti prostor 64 može biti ispunjen plinom pod pritiskom, te u tom slučaju zaštitno kućište 63 preuzima ulogu korekcijskog sloja, kako je i opisano na Sl. 5 i SL. 6. Kada zaštitno kućište 63 preuzme ulogu i korekcijskog sloja kružni poprečni presjek će omogućiti rješenje sa najmanjom masom. Slijedi da kada je prostor 64 ispunjen plinom pod pritiskom, na kućištu 63 potrebno je predvidjeti kanal za kontrolu, punjenje i pražnjenja spomenutog plina, kao što je opisano na Sl. 5 i Sl. 6. Dodatno, spomenuti kanal, kao što je to prikazano na Sl. 5 i Sl. 6, može fluidički povezivati prostor 64 sa dodatnim spremnikom ili biti opremljen ventilom za kontrolu, punjenje i pražnjenje plina u/iz prostora 64. I kvadratično kućište može biti tlačno opterećeno, a radi izvedbe sa što većom krutosti uz što manje mase, poželjno je da stjenke budu izvedene kao kompozitni ‘sendwich’. Sl. 9. Shows the hydraulic power station-battery 30 located inside the protective housing 63. The housing can be made of metal or composite, and can be circular or square in cross-section. The picture shows a case with a square cross-section, which enables the maximum reduction of installation dimensions. In the presented solution, the protective casing 63 protects the elastic elastomeric bellows 19, and the pressure in the space 64, between the elastic elastomeric bellows 19 and the protective casing 63, is always equal to atmospheric pressure. Although this is not shown in the picture, it should be emphasized that the said space 64 can be filled with gas under pressure, and in that case the protective housing 63 takes on the role of a correction layer, as described in Fig. 5 and FIG. 6. When the protective casing 63 takes over the role of the correction layer, the circular cross-section will enable a solution with the smallest mass. It follows that when the space 64 is filled with gas under pressure, it is necessary to provide a channel on the housing 63 for control, filling and discharge of said gas, as described in Fig. 5 and Fig. 6. Additionally, the aforementioned channel, as shown in FIG. 5 and Fig. 6, can fluidically connect the space 64 with an additional tank or be equipped with a valve for controlling, filling and discharging gas in/out of the space 64. The square housing can also be pressurized, and for the sake of performance with as much rigidity as possible with as little mass as possible, it is desirable that the walls are made as a composite 'sandwich'.

Sl. 10. Prikazuje poprečni presjek A-A hidrauličko energetske stanice-baterije 30 smještene unutar kućišta 63. Kada se radi o kvadratičnom kućištu, kao u ovom slučaju, mjesta, na kojima se spajaju stranice kvadratičnog kućišta 63 koje dolaze u kontakt sa elastičnim elastomernim mijehom 19, izvedena su sa radijusom 65 kako bi se izbjegla lokalna koncentrirana opterećenja, odnosno zamor materijala, stijenke elastičnog elastomernog mijeha 19. Sl. 10. Shows a cross-section A-A of the hydraulic energy cell-battery 30 located inside the housing 63. When it is a square housing, as in this case, the places where the sides of the square housing 63 that come into contact with the elastic elastomeric bellows 19 are joined, performed are with a radius of 65 in order to avoid local concentrated loads, i.e. fatigue of the material, the walls of the elastic elastomer bellows 19.

Dodatno, slikom je predstavljena ušteda na ugradbenom volumenu, koju je moguće postići predloženim rješenjem. Ušteda je predstavljena smanjenjem ugradbene površine odnosno površinom pravokutnika koji obuhvaća poprečni presjek pojedinog rješenja. Kao referentna površina odnosno 100%, (nije prikazana na slici) uzeta je površina pravokutnika potrebnog za obuhvaćanje poprečnog presjeka dvaju hidropneumatskih akumulatora predstavljenih na Sl. 1 i Sl. 2 što odgovara poprečnom presjeku danas standardnih rješenja. Kružnicom 66 predstavljen je kružni presjek rješenja opisanih na Sl. 5 i Sl. 6, dok je kvadratom 67 predstavljena ugradbena površina spomenutog rješenja. Površina kvadrata 67 predstavlja 80% spomenute referentne površine. Kružnicom 68 predstavljen je poprečni presjek rješenja opisanih na Sl. 3 i Sl. 4, a kvadratom 69 odgovarajuća ugradbena površina. Površina kvadrata 69 predstavlja 75% posto referentne površine. Kvadrat 70 predstavlja ugradbenu površinu zaštitnog kućišta 63 i predstavlja 65% referentne površine. In addition, the picture shows the savings on the built-in volume, which can be achieved with the proposed solution. Savings are represented by the reduction of the built-in area, i.e. the area of the rectangle that includes the cross-section of an individual solution. The area of the rectangle required to cover the cross-section of the two hydropneumatic accumulators presented in Fig. 1 and Fig. 2 which corresponds to the cross-section of today's standard solutions. Circle 66 represents the circular section of the solutions described in Fig. 5 and Fig. 6, while square 67 represents the built-in surface of the mentioned solution. The area of square 67 represents 80% of the mentioned reference area. Circle 68 represents the cross-section of the solution described in Fig. 3 and Fig. 4, and square 69 is the corresponding built-in area. The area of square 69 represents 75% percent of the reference area. The square 70 represents the built-in surface of the protective housing 63 and represents 65% of the reference surface.

Potrebno je naglasiti da rješenja predstavljena na Sl. 2 i Sl. 3 mogu biti ugrađena u vozilo gdje konstrukcija vozila predstavlja zaštitno kućište te će u tom slučaju ugradbena površina biti jednaka površini kvadrata 71 koji ima 60% referentne površine. It should be emphasized that the solutions presented in Fig. 2 and Fig. 3 can be installed in a vehicle where the vehicle structure represents a protective casing, and in that case the installation area will be equal to the area of square 71, which has 60% of the reference area.

Ovim je završen osnovni prikaz potreban za razumijevanja predloženog rješenja hidrauličke energetske stanice-baterije. Ipak potrebno je naglasiti da će stručnjaku iz područja biti jasno da su mnoge moguće varijacije predloženog rješenja bez da se napusti duh izuma sadržanom u činjenici da je ostvaren integralni spremnik za pohranu hidrauličke energije korištenjem elastičnog elastomernog mijeha kao spremnika niskog pritiska, navučenog na hidropneumatski akumulator koji služi kao spremnik visokog pritiska. This completes the basic presentation needed to understand the proposed solution of the hydraulic energy station-battery. However, it should be emphasized that it will be clear to an expert in the field that many variations of the proposed solution are possible without abandoning the spirit of the invention contained in the fact that an integral tank for storing hydraulic energy was realized using an elastic elastomeric bellows as a low-pressure tank, hooked onto a hydropneumatic accumulator that serves as a high pressure tank.

Način primjene izuma Method of application of the invention

Navedeni izum, hidraulička energetska stanica-baterija, se primjenjuje za pohranu hidrauličke energije, prvenstveno u aplikacijama gdje je bitna ušteda prostora. Hidraulička energetska stanica-baterija će stoga biti naročito interesantna za primjenu u transmisijama hidrauličkih hibridnih vozila kao spremnik energije u koji će biti pohranjena kinetička energija vozila absorbirana prilikom kočenja. Prilikom ubrzanja, pohranjen energija biti će transformirana natrag u kinetičku energiju vozila. Transformacija energije se vrši korištenjem hidrauličkog stroja promjenjive dobave, koji može funkcionirati i kao pumpa i kao motor. Prilikom kočenja, mehanička energija, oslobođena na kotačima povezanima sa transmisijom, prenosi se na osovinu spomenutog hidrauličkog stroja promjenjive dobave. Prilikom kočenja, hidraulički stroj, radeći kao pumpa, transformirat će mehaničku energiju u hidrauličku energiju. Generirana hidraulička energija pohraniti će se u hidrauličkoj energetskoj stanici-bateriji u obliku potencijalne energije stlačenog plina. Prilikom ubrzanja, hidraulički stroj će raditi kao motor, pretvarajući hidrauličku energiju, pohranjenu u hidrauličkoj stanici, u mehaničku energiju na osovini samog hidrauličkog stroja promjenjive dobave, a koja će se transmisijom prenijeti na kotače vozila. The mentioned invention, the hydraulic energy cell-battery, is used to store hydraulic energy, primarily in applications where saving space is important. The hydraulic energy cell-battery will therefore be particularly interesting for application in the transmissions of hydraulic hybrid vehicles as an energy reservoir in which the vehicle's kinetic energy absorbed during braking will be stored. During acceleration, the stored energy will be transformed back into the kinetic energy of the vehicle. Energy transformation is done using a hydraulic machine of variable supply, which can function as both a pump and a motor. During braking, the mechanical energy, released on the wheels connected to the transmission, is transferred to the shaft of the aforementioned variable supply hydraulic machine. When braking, the hydraulic machine, working as a pump, will transform mechanical energy into hydraulic energy. The generated hydraulic energy will be stored in the hydraulic energy station-battery in the form of potential energy of compressed gas. During acceleration, the hydraulic machine will work as a motor, converting hydraulic energy, stored in the hydraulic station, into mechanical energy on the shaft of the variable supply hydraulic machine itself, which will be transferred to the wheels of the vehicle through a transmission.

Nadalje, smanjenje ugradbenog volumena bit će ostvareno korištenjem hidrauličke energetske stance-baterije kao tlačnog voda velikog poprečnog presjeka, čime će se smanjiti ukupni hidraulički gubitci. Furthermore, the reduction of the installed volume will be achieved by using the hydraulic power station-battery as a pressure line with a large cross-section, which will reduce the total hydraulic losses.

Claims (10)

1. Hidraulička energetska stanica-baterija je integralni spremnik za pohranu hidrauličke energije koji objedinjuje spremnik visokog pritiska i spremnik niskog pritiska naznačena time da je spremnik niskog pritiska formiran između barem jednog dijela vanjske stijenke, barem jednog spremnika visokog pritiska i barem jednog dijela unutarnje stijenke elastičnog elastomernog mijeha navučenog na spomenuti spremnik visokog pritiska, a gdje je navlačenjem spomenutog elastičnog elastomernog mijeha na spomenuti spremnik visokog pritiska generirano vlačno naprezanje u, barem jednom dijelu, stijenke spomenutog elastičnog elastomernog mijeha, čime je osigurano održavanje nadtlaka u ulju koje se nalazi u spomenutom spremniku niskog pritiska.1. The hydraulic energy station-battery is an integral hydraulic energy storage tank that combines a high-pressure tank and a low-pressure tank, characterized by the fact that the low-pressure tank is formed between at least one part of the outer wall, at least one high-pressure tank and at least one part of the inner wall of the elastic elastomeric bellows pulled onto the mentioned high-pressure tank, and where by pulling the said elastic elastomeric bellows onto the said high-pressure tank, tensile stress was generated in at least one part of the wall of the said elastic elastomeric bellows, which ensured the maintenance of overpressure in the oil located in the said tank low pressure. 2. Hidraulička energetska stanica-baterija prema zahtjevu 1 naznačena time da je veza između elastičnog elastomernog mijeha i spremnika visokog pritiska ostvarena kombinacijom barem jednog kružnog ispupčenja i barem jednog udubljenja na elementu za zatvaranje, fiksiranom na spomenuti spremnik visokog pritiska, te kombinaciji barem jednog kružnog ispupčenja i barem jednog kružnog udubljenja na elastičnom elastomernom mijehu, te da su izrađeni na način da kružno ispupčenje na spomenutom elementu za zatvaranje odgovara kružnom udubljenju na spomenutom elastičnom elastomernom mijehu, odnosno da kružno udubljenje na spomenutom elementu za zatvaranje odgovara kružnom ispupčenju na spomenutom elastičnom elastomernom mijehu. 2. Hydraulic power station-battery according to claim 1, characterized in that the connection between the elastic elastomer bellows and the high-pressure tank is achieved by a combination of at least one circular protrusion and at least one depression on the closing element, fixed to the said high-pressure tank, and a combination of at least one circular protrusions and at least one circular recess on the elastic elastomer bellows, and that they are made in such a way that the circular protrusion on the said closing element corresponds to the circular recess on the said elastic elastomer bellows, i.e. that the circular recess on the said closing element corresponds to the circular protrusion on the said elastic elastomer bellows. 3. Hidraulička energetska stanica-baterija prema zahtjevu 2 naznačena time da je ostvarena veza između elastičnog elastomernog mijeha i spremnika visokog pritiska odnosno elementa za zatvaranje preko kojeg je spomenuta veza ostvarena, fiksirana pomoću pritisnog elementa u obliku kružnog prstena te osigurana maticom koja naliježe na spomenuti pritisni element.3. Hydraulic power station-battery according to claim 2, characterized by the fact that the connection between the elastic elastomer bellows and the high-pressure tank, i.e. the closing element through which the mentioned connection is made, is fixed by means of a pressure element in the form of a circular ring and secured by a nut that rests on the said push element. 4. Hidraulička energetska stanica-baterija prema zahtjevima 1, 2 i 3 naznačena time da na spomenutoj hidrauličko energetskoj staniC1-bateriji postoji barem jedan prolaz koji pripada spremniku niskog pritiska i omogućuje fluidičku komunikaciju spomenutog spremnika niskog pritiska sa vodovima niskog pritiska hidrauličke instalacije na koju je spomenuta hidraulička energetska stanica-baterija priključena, te da postoji barem jedan prolaz koji pripada spremniku visokog pritiska, a omogućuje fluidičku komunikaciju spomenutog spremnika visokog pritiska, odnosno onog dijela spremnika visokog pritiska koji sadrži hidrauličko ulje pod visokim pritiskom, i vodova visokog pritiska hidrauličke instalacije na koju je spomenuta hidraulička energetska stanica – baterija priključena.4. Hydraulic energy station-battery according to requirements 1, 2 and 3, characterized by the fact that on the mentioned hydraulic energy stationC1-battery there is at least one passage that belongs to the low-pressure tank and enables the fluidic communication of the mentioned low-pressure tank with the low-pressure lines of the hydraulic installation to which it is attached the mentioned hydraulic power station-battery is connected, and that there is at least one passage belonging to the high-pressure tank, which enables the fluidic communication of the mentioned high-pressure tank, i.e. that part of the high-pressure tank that contains hydraulic oil under high pressure, and the high-pressure lines of the hydraulic installation on mentioned hydraulic power station - battery connected. 5. Hidraulička energetska stanica-baterija prema zahtjevima 1, 2, 3 i 4 naznačena time da je spremnik visokog pritiska izveden kao hidropneumatski akumulator.5. Hydraulic energy station-battery according to claims 1, 2, 3 and 4, characterized by the fact that the high-pressure tank is designed as a hydropneumatic accumulator. 6. Hidraulička energetska stanica-baterija prema zahtjevu 5 naznačena time da je kapacitet hidropneumatskog akumulatora povećan dodatnim spremnikom plina pod visokim pritiskom, fluidički povezanim sa prostorom u hidropneumatskom akumulatoru ispunjenim plinom pod visokim pritiskom.6. Hydraulic energy station-battery according to claim 5 characterized by the fact that the capacity of the hydropneumatic accumulator is increased by an additional high-pressure gas tank, fluidically connected to the space in the hydropneumatic accumulator filled with high-pressure gas. 7. Hidraulička energetska stanica-baterija u svojoj prvoj varijanti prema zahtjevima 1, 2, 3, 4, 5 i 6 naznačena time da elastični elastomerni mijeh ima dva sloja, radni i korekcijski, da je prostor između radnog i korekcijskog sloja ispunjen plinom koji služi kako bi se korigirao pritisak ulja u spremniku niskog pritiska, nadalje na korekcijskom sloju nalazi se kanal sa ventilom koji omogućuje kontrolu, punjenje i pražnjenje plina u/iz spomenutog prostora ispunjenog plinom.7. Hydraulic energy station-battery in its first variant according to claims 1, 2, 3, 4, 5 and 6 characterized by the fact that the elastic elastomer bellows has two layers, working and correction, that the space between the working and correction layers is filled with gas that serves in order to correct the oil pressure in the low-pressure tank, further on the correction layer there is a channel with a valve that enables control, filling and discharging of gas in/out of the said space filled with gas. 8. Hidraulička energetska stanica-baterija u svojoj drugoj varijanti prema zahtjevima 1, 2, 3, 4, 5 i 6 naznačena time da elastični elastomerni mijeh ima dva sloja, radni i korekcijski, da je prostor između radnog i korekcijskog sloja ispunjen plinom koji služi kako bi se korigirao pritisak ulja u spremniku niskog pritiska, nadalje na korekcijskom sloju nalazi se kanal koji je povezan sa barem jednim dodatnim spremnikom na kojem se nalazi dodatni kanal sa ventilom koji omogućuje kontrolu, punjenje i pražnjenje plina u/iz spomenutog prostora ispunjenog plinom.8. Hydraulic energy station-battery in its second variant according to claims 1, 2, 3, 4, 5 and 6 characterized by the fact that the elastic elastomer bellows has two layers, working and correction, that the space between the working and correction layers is filled with gas that serves in order to correct the oil pressure in the low pressure tank, further on the correction layer there is a channel that is connected to at least one additional tank on which there is an additional channel with a valve that enables control, filling and discharging of gas into/from the said gas-filled space. 9. Hidraulička energetska stanica-baterija u svojoj trećoj varijanti prema zahtjevima 1, 2, 3, 4, 5,6, 7 i 8 naznačena time da je spomenuta hidraulička energetska stanica-baterija umetnuta u zaštitno kućište kvadratičnog oblika kojem su rubovi stranica, koji dolaze u doticaj sa elastomernim mijehom, izvedeni kao dijelovi cilindra radi izbjegavanja stvaranja koncentriranog naprezanja u stijenci elastomernog mijeha.9. Hydraulic energy cell-battery in its third variant according to claims 1, 2, 3, 4, 5, 6, 7 and 8, characterized by the fact that the mentioned hydraulic energy cell-battery is inserted into a square-shaped protective housing, the edges of which are they come into contact with the elastomeric bellows, designed as parts of a cylinder in order to avoid the creation of concentrated stress in the wall of the elastomeric bellows. 10. Hidraulička energetska stanica-baterija u svojoj četvrtoj varijanti prema zahtjevima 1, 2, 3, 4, 5, 6, 7, 8 i 9 naznačena time da je element zatvaranja hidrauličke energetske stanice-baterije ujedno i dio hidrauličkog stroja na koji je priključena spomenuta hidraulička energetska stanica-baterija, te da sadrži ventile potrebne za kontrolu rada hidrauličkog stroja.10. Hydraulic power station-battery in its fourth variant according to claims 1, 2, 3, 4, 5, 6, 7, 8 and 9, characterized by the fact that the closing element of the hydraulic power station-battery is also part of the hydraulic machine to which it is connected the mentioned hydraulic power station-battery, and that it contains the valves necessary to control the operation of the hydraulic machine.
HRP20090351AA 2009-06-12 2009-06-12 Hydraulic energy station - battery HRPK20090351B3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20090351AA HRPK20090351B3 (en) 2009-06-12 2009-06-12 Hydraulic energy station - battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20090351AA HRPK20090351B3 (en) 2009-06-12 2009-06-12 Hydraulic energy station - battery

Publications (2)

Publication Number Publication Date
HRP20090351A2 true HRP20090351A2 (en) 2010-12-31
HRPK20090351B3 HRPK20090351B3 (en) 2012-06-30

Family

ID=43384732

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20090351AA HRPK20090351B3 (en) 2009-06-12 2009-06-12 Hydraulic energy station - battery

Country Status (1)

Country Link
HR (1) HRPK20090351B3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976170A (en) * 2015-07-15 2015-10-14 中冶华天南京工程技术有限公司 Hydraulic pump station with energy-saving buffering protection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976170A (en) * 2015-07-15 2015-10-14 中冶华天南京工程技术有限公司 Hydraulic pump station with energy-saving buffering protection device

Also Published As

Publication number Publication date
HRPK20090351B3 (en) 2012-06-30

Similar Documents

Publication Publication Date Title
JP4938757B2 (en) Sleeve type accumulator with built-in light weight and low permeability piston
US7107767B2 (en) Hydraulic energy storage systems
US8991433B2 (en) Energy storage system including an expandable accumulator and reservoir assembly
JP2010530049A (en) Compact hydraulic accumulator
US8701398B2 (en) Strain energy accumulator
US9920775B2 (en) Distributed piston elastomeric accumulator
US20120273076A1 (en) Compact hydraulic accumulator
HRP20090351A2 (en) Hydraulic energy station - battery
US7247005B2 (en) Oil seal arrangement
CN105221490B (en) Hydraulic device
EP2791569B1 (en) Distributed piston elastomeric accumulator
US8438845B2 (en) Hoseless hydraulic system
AU2002230015C1 (en) Hydraulic energy storage systems
CN215805446U (en) Hydraulic pressure stabilizing device under emergent operating mode of hydraulic submersible pump
AU2002230015A1 (en) Hydraulic energy storage systems
CN117529618A (en) Accumulator with reinforcing structure
CN115638246A (en) Piston, selector and selector lever
CN113847415A (en) Transmission case pressure control device, slot milling machine and method
CN110439803A (en) A kind of water pump
JPS6019367B2 (en) Auxiliary device for supporting the load of a jack-up type offshore work platform

Legal Events

Date Code Title Description
A1OB Publication of a patent application
NPPZ Continued processing
NPPU Continued processing adopted
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
PKB1 Consensual patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20180201

Year of fee payment: 10

PK10 Patent expired after termination of 10 years for consensual patent

Effective date: 20190612