HRP20010755A2 - Wing able to enhance lift by internal air flow - Google Patents

Wing able to enhance lift by internal air flow Download PDF

Info

Publication number
HRP20010755A2
HRP20010755A2 HR20010755A HRP20010755A HRP20010755A2 HR P20010755 A2 HRP20010755 A2 HR P20010755A2 HR 20010755 A HR20010755 A HR 20010755A HR P20010755 A HRP20010755 A HR P20010755A HR P20010755 A2 HRP20010755 A2 HR P20010755A2
Authority
HR
Croatia
Prior art keywords
wing
tunnel
profile
air
flow
Prior art date
Application number
HR20010755A
Other languages
Croatian (hr)
Inventor
Boueatlić Dragutin
Original Assignee
Boueatlić Dragutin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boueatlić Dragutin filed Critical Boueatlić Dragutin
Priority to HR20010755A priority Critical patent/HRPK20010755B1/en
Priority to PCT/HR2002/000049 priority patent/WO2003039949A2/en
Priority to AU2002349164A priority patent/AU2002349164A1/en
Publication of HRP20010755A2 publication Critical patent/HRP20010755A2/en
Publication of HRPK20010755B1 publication Critical patent/HRPK20010755B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
    • B64C9/20Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing by multiple flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C2003/143Aerofoil profile comprising interior channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/20Boundary layer controls by passively inducing fluid flow, e.g. by means of a pressure difference between both ends of a slot or duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/28Boundary layer controls at propeller or rotor blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Description

KRILO SA AERODINAMIČKIM PROFILOM S MOGUĆNOŠĆU UNUTARNJEG PROSTRUJAVANJA I REGULIRANOG POVEĆANJA UZGONSKE SILE WING WITH AERODYNAMIC PROFILE WITH THE POSSIBILITY OF INTERNAL FLOW AND ADJUSTABLE INCREASE OF LIFT

Opis izuma Description of the invention

Područje na koje se izum odnosi The field to which the invention relates

Ovaj izum se odnosi na krilo čiji aerodinamički profil, odnosno vertikalni poprečni presjek noseće površine krila u smjeru strujanja zraka, ima mogućnost unutarnjeg prostrujavanja zrakom duž posebno oblikovanog unutarnjeg tunela, koji vodi od donje polovine napadnog ruba profila* do donjeg dijela izlaznog ruba profila, koji se može nazvati i "unutarnje ili inverzno krilo", čijim se slobodnim ili reguliranim prostrujavanjem zrakom, postiže povećana ili regulirana promjena veličine uzgonske sile na krilu. This invention relates to a wing whose aerodynamic profile, i.e. the vertical cross-section of the bearing surface of the wing in the direction of the air flow, has the possibility of internal air flow along a specially shaped internal tunnel, which leads from the lower half of the leading edge of the profile* to the lower part of the exiting edge of the profile, which can also be called an "internal or inverse wing", whose free or regulated air flow results in an increased or regulated change in the magnitude of the lift force on the wing.

Prema međunarodnoj klasifikaciji patenata MKP/IPC izum se može primarno klasificirati kao: According to the international patent classification MKP/IPC, the invention can be primarily classified as:

B 64 C 3/14 - Krilo, profil noseće površine. B 64 C 3/14 - Wing, bearing surface profile.

Međutim, kako izum u jednoj od varijanata tehničkog rješenja omogućava regulirano unutarnje prostrujavanje krila, čime se mijenja ukupna opstrujavana i prostrujavana površina krila, od maksimalnog unutarnjeg prostrujavanja, tj. potpunog aktiviranja "unutarnjeg-inverznog krila" do potpunog onemogućavanja unutarnjeg prostrujavanja i pretvaranja krila u krilo sa konvencionalnim - zatvorenim profilom sa samo vanjskim opstrujavanjem, te kako se u jednoj od varijanti tehničkog rješenja pomoću odgovarajućih zasuna i krilaca podešava količina i smjer ulazne i izlazne zračne struje unutarnjeg tunela krila, te kako se izum primjenjuje i na krila sa ugrađenim zakrilcima na izlaznom dijelu, izum sadrži i sekundarne klasifikacije, kao: However, as the invention in one of the variants of the technical solution enables regulated internal flow of the wing, which changes the total flowed and flowed area of the wing, from maximum internal flow, i.e. complete activation of the "internal-inverse wing" to complete disabling of internal flow and turning the wing into a wing with a conventional - closed profile with only external airflow, and how in one of the variants of the technical solution, the amount and direction of the incoming and outgoing airflow of the inner tunnel of the wing is adjusted using appropriate latches and flaps, and how the invention is also applied to wings with built-in flaps on output part, the invention also contains secondary classifications, such as:

B 64 C 3/50 - Podešavanje krila, krivine krila, pomoću prednjih ili zadnjih dijelova krila. B 64 C 3/54 - Podešavanje krila, promjenom površine krila. B 64 C 3/50 - Wing adjustment, wing curve, using the front or rear parts of the wing. B 64 C 3/54 - Wing adjustment, by changing the wing surface.

U varijanti primjene izuma na krila građena iz tkanine, kao slobodno planirajuća krila ili krila iz tkanine koja je napeta između elemenata čvrste nosive konstrukcije, kao što su leteća krila (paraglideri) i leteći zmajevi, izum se može razvrstati i u: In the variant of application of the invention to wings made of fabric, as free-planning wings or wings made of fabric that is stretched between elements of a solid supporting structure, such as flying wings (paragliders) and flying kites, the invention can also be classified into:

B 64 C 31/02 - Planeri. B 64 C 31/02 - Planners.

B 64 C 31/06 - Zmajevi. B 64 C 31/06 - Dragons.

U varijanti primjene krila kao rotora vjetrogeneratora i si. uređaja, može se razvrstati i u: In the variant of the application of the wings as rotors of wind generators and si. devices, can also be classified into:

F 03 D 1/06 - Rotori. F 03 D 1/06 - Rotors.

F 03 D 11/02 - Prijenos snage npr. korištenjem šupljih usisnih lopatica. F 03 D 11/02 - Transmission of power eg using hollow intake vanes.

Tehnički problem Technical problem

Uvod u problematiku Introduction to the issue

Krilo predstavlja najbitniji element konstrukcije zrakoplova ili npr. vjetrogeneratora koji određuje njegove letne ili uzgonske (pogonske) karakteristike. Krilo mora osigurati dovoljnu uzgonsku silu koja će podići i nositi zrakoplov uz što manji aerodinamički otpor pri svim uvjetima i fazama leta predviđenim za određeni tip letjelice. The wing is the most important element of the structure of an aircraft or, for example, a wind generator, which determines its flight or buoyancy (propulsion) characteristics. The wing must provide sufficient lift force that will lift and carry the aircraft with as little aerodynamic resistance as possible under all conditions and phases of flight provided for a specific type of aircraft.

Uzgonska sila krila je rezultat pozitivne razlike tlakova zraka na donjoj i gornjoj opstrujavanoj površini krila, a koja nastaje kao posljedica asimetrične slike opstrujavanja i cirkulacije zraka oko profila krila tokom leta. The lift force of the wing is the result of the positive difference in air pressure on the lower and upper jetted surfaces of the wing, which arises as a result of the asymmetric pattern of jetting and air circulation around the wing profile during flight.

Veličina uzgonske sile (Fu) ovisna je o sljedećim aerodinamičkim parametrima: The magnitude of the lift force (Fu) depends on the following aerodynamic parameters:

- koeficijentu uzgona (Cu) koji je karakterističan za odabrani tip aerodinamičkog profila, - lift coefficient (Cu) which is characteristic for the selected type of aerodynamic profile,

- gustoći zraka (ρ), - air density (ρ),

- brzini kretanja krila kroz zrak (V), - the speed of wing movement through the air (V),

- veličini nosive površine krila (A), - the size of the bearing surface of the wing (A),

što se u najopćenitijem obliku odnosa može izraziti kao: [image] which in the most general form of the relationship can be expressed as: [image]

Sila aerodinamičkog otpora krila (Fo) posljedica je opstrujavanja zraka kao viskoznog fluida oko i duž površine krila, a ovisna je o istim aerodinamičkim parametrima kao i sila uzgona, s tim što se karakteristika otpora za odabrani tip profila izražava koeficijentom otpora (Co), te se sila aerodinamičkog otpora u najopćenitijem obliku može izraziti kao: The wing's aerodynamic drag force (Fo) is a consequence of the flow of air as a viscous fluid around and along the wing surface, and it depends on the same aerodynamic parameters as the lift force, with the fact that the drag characteristic for the selected type of profile is expressed by the drag coefficient (Co), and the force of aerodynamic resistance can be expressed in the most general form as:

[image] [image]

Potrebno je napomenuti, da koeficijent aerodinamičkog otpora (Co), pored toga što je kao i koeficijent uzgona Cu ovisan o napadnom kutu profila krila na pravac uniformnog toka zraka ispred krila, ovisi o obliku - načinu zakrivljenosti profila, njegovoj vitkosti - odnosu visine i duljine profila, te bitno ovisi i o aerodinamičkoj čistoći profila: glatkoći površine krila i odsustvu izbočina i oštrih prijelaza oblika koji bi mogli izazvati narušavanje laminarnog (mirnog - nevrtložnog) ili kvazilaminarnog toka zračne struje duž površine krila, kao što su pojave odvajanja graničnog sloja zraka od površine krila, vrtloženja zračne struje duž površine krila i si. Očuvanje aerodinamičke čistoće profila i laminarnog opstrujavanja na što većoj duljim toka opstrujavanja oko profila, znači i očuvanje znatno, pa i višestruko niže vrijednosti koeficijenta otpora Co. It should be noted that the coefficient of aerodynamic resistance (Co), as well as the lift coefficient Cu, depends on the angle of attack of the wing profile in the direction of the uniform air flow in front of the wing, and also depends on the shape - the way the profile is curved, its slenderness - the ratio of height and length profile, and it also depends significantly on the aerodynamic cleanliness of the profile: the smoothness of the wing surface and the absence of protrusions and sharp transitions of shape that could cause disruption of the laminar (quiet - non-vortex) or quasi-laminar air flow along the wing surface, such as the phenomena of separation of the boundary layer of air from the surface wings, air current vortices along the wing surface and so on. Preservation of the aerodynamic purity of the profile and laminar flow at the greatest possible length of the flow around the profile means also the preservation of significantly, even several times lower values of the drag coefficient Co.

Iz gore datih odnosa je vidljivo, da je za veličine obje aerodinamičke sile Fu i Fo dominantan parametar brzina kretanja krila kroz zrak, što je važna činjenica kod rješavanja problematike letenja u pojedinim fazama leta letjelice, kao što su faza polijetanja i slijetanja, gdje se uslijed nužno smanjene brzine leta pojavljuje i odgovarajuće umanjena uzgonska sila. From the relationships given above, it is evident that for the magnitudes of both aerodynamic forces Fu and Fo, the dominant parameter is the wing movement speed through the air, which is an important fact when solving the problem of flying in certain phases of the aircraft's flight, such as the take-off and landing phases, where due to a necessarily reduced flight speed appears and a correspondingly reduced buoyancy force.

Cilj dobre konstrukcije krila, a posebno izbora tipa aerodinamičkog profila je postizanje što povoljnijeg odnosa sila uzgona i otpora: Fu/Fo, odnosno koeficijenata uzgona i otpora: Cu/Co, u svim uvjetima i fazama leta zrakoplova. Tako se npr. kod konvencionalnih aerodinamičkih profila**, u optimalnim uvjetima opstrujavanja, može postići odnos Fu/Fo od 6:1 pa do 20:1, a u nekim posebnim konstrukcijama i više. The goal of good wing construction, and especially the choice of aerodynamic profile type, is to achieve the most favorable ratio of lift and drag forces: Fu/Fo, or lift and drag coefficients: Cu/Co, in all conditions and phases of aircraft flight. Thus, for example, with conventional aerodynamic profiles**, under optimal flow conditions, a Fu/Fo ratio of 6:1 and up to 20:1 can be achieved, and in some special designs even more.

Načelno, nastoji se osigurati najpovoljniji odnos Fu/Fo za one uvjete i faze leta za koje je tip zrakoplova primarno namijenjen, dok je za druge kratkotrajne ili manje bitne uvjete i faze leta ovaj odnos manje povoljan. Na primjer: za putničko - transportni zrakoplov to može biti let na visini od 8000 m, pri brzini od 200 m/s, s opterećenjem 75% od maksimalne nosivosti i 55% popunjenosti pogonskim gorivom za motore. In principle, one tries to ensure the most favorable ratio Fu/Fo for those conditions and phases of flight for which the aircraft type is primarily intended, while for other short-term or less important conditions and phases of flight this ratio is less favorable. For example: for a passenger-transport aircraft, it can be a flight at an altitude of 8000 m, at a speed of 200 m/s, with a load of 75% of the maximum payload and 55% filling with engine fuel.

Pri tim uvjetima leta zrakoplova, krilo sa odabranim profilom osigurava potrebni uzgon uz najmanji aerodinamički otpor, odnosno najpovoljniji odnos Fu/Fo, što za posljedicu ima najekonomičniji utrošak goriva u najduljoj fazi leta. Under these aircraft flight conditions, the wing with the selected profile provides the necessary lift with the least aerodynamic resistance, i.e. the most favorable Fu/Fo ratio, which results in the most economical fuel consumption in the longest flight phase.

Međutim, uvjeti leta u pojedinim njegovim fazama u manjoj ili većoj mjeri odstupaju od onih optimalnih, za koje je odabran profil i konstrukcija krila. To se prije svega odnosi na sljedeće faze i uvjete leta (ili upotrebe krila u druge tehničke svrhe): However, the flight conditions in some of its phases deviate to a greater or lesser extent from the optimal ones, for which the wing profile and construction were chosen. This primarily refers to the following phases and conditions of flight (or the use of wings for other technical purposes):

- Polijetanje i slijetanje zrakoplova, kada krilo treba osigurati dovoljnu uzgonsku silu pri brzini zrakoplova koja je i do pet puta manja od optimalne brzine krstarenja zrakoplova; - Aircraft take-off and landing, when the wing needs to provide sufficient lift force at an aircraft speed that is up to five times lower than the aircraft's optimal cruising speed;

- Promjena opterećenja zrakoplova radi više ili manje ukrcanog tereta, te radi utroška goriva tijekom leta, što je posebno izraženo kod putničko - transportnih zrakoplova gdje potrošnja goriva uzrokuje promjenu opterećenja i do 30%; - Change in aircraft load due to more or less loaded cargo, and fuel consumption during the flight, which is especially pronounced in passenger-transport aircraft where fuel consumption causes a load change of up to 30%;

- Promjenu visine i brzine leta, te promjenu napadnog kuta krila pri letu ili manevrima, što je posebna karakteristika leta kod borbenih zrakoplova; - Changing the height and speed of the flight, and changing the angle of attack of the wings during flight or maneuvers, which is a special characteristic of the flight of fighter aircraft;

- Kod upotrebe krila npr. kao lopatice rotora vjetrogeneratora, rad vjetrogeneratora pri brzinama vjetra bitno manjim od optimalnih za odabrani profil lopatice vjetrogeneratora. - When using a wing, for example, as a rotor blade of a wind generator, the operation of the wind generator at wind speeds significantly lower than optimal for the selected profile of the wind generator blade.

Prilagođavanje krila promijenjenim uvjetima leta, što se postiže promjenom geometrije profila, aktiviranjem posebnih pomičnih - upravljačkih dijelova krila, dovodi do potrebne promjene uzgonske sile, ali nužno dovodi i do negativnog odstupanja od najpovoljnijeg odnosa aerodinamičkih sila Fu/Fo, odnosna karakteristika profila Cu/Co. Ovo odstupanje ima redovito za posljedicu povećanje sile otpora i povećan utrošak goriva za motore, umanjenu stabilnost u određenim manevrima, te druge nepovoljnosti. Adaptation of the wing to changed flight conditions, which is achieved by changing the geometry of the profile, by activating special movable - control parts of the wing, leads to the necessary change in lift force, but also necessarily leads to a negative deviation from the most favorable ratio of aerodynamic forces Fu/Fo, the respective characteristic of the profile Cu/Co . This deviation regularly results in an increase in drag force and increased fuel consumption for engines, reduced stability in certain maneuvers, and other disadvantages.

Definiranje tehničkog problema Defining the technical problem

Tehnički problem koji se postavlja pred konstruktore krila, a koji se na određeni način rješava ovim izumom, može se definirati kao: The technical problem that is posed to wing constructors, and which is solved in a certain way by this invention, can be defined as:

"Potreba da se konstruira krilo koje će pri istim aerodinamičkim parametrima ostvarivati veću uzgonsku silu, kao i potreba da se npr. u promjenama uvjeta leta letjelice u fazama polijetanja i slijetanja zrakoplova, kod dugotrajnog leta kada su utroškom goriva ili iz drugih razloga mijenja opterećenje zrakoplova, osigura potrebna veličina i prilagodljivost veličine uzgonske sile na krilu, uz što manje povećanje sile aerodinamičkog otpora i što manje opterećenje letjelice masom i složenošću tehničkog rješenja." "The need to construct a wing that, with the same aerodynamic parameters, will achieve a higher lift force, as well as the need to change the aircraft's load, for example, in changes in the flight conditions of the aircraft during the take-off and landing phases of the aircraft, during long-term flight when fuel consumption or for other reasons , ensure the necessary size and adaptability of the amount of lift force on the wing, with as little increase as possible in the force of aerodynamic resistance and as little loading of the aircraft as possible with the mass and complexity of the technical solution."

Stanje tehnike State of the art

Izneseni tehnički problem je u svojoj osnovi star gotovo koliko i zrakoplovstvo, te je do sada rješavan na cijeli niz, više ili manje uspješnih i tehnički složenih načina. The stated technical problem is fundamentally almost as old as aviation, and has been solved so far in a whole series of more or less successful and technically complex ways.

Stanje tehnike pruža uvid u mnogobrojne načine rješavanja navedenog problema, od kojih su neka već povijesna, a neka se već dugo vremena široko primjenjuju kao klasična rješenja. Aktualna publicistika upućuje i na rješenja sa kojima se intenzivno eksperimentira u cilju buduće primjene, a INPADOC pruža uvid u mnogobrojna definirana i zaštićena rješenja raznih autora. The state of the art provides an insight into numerous ways of solving the mentioned problem, some of which are already historical, and some of which have been widely used as classic solutions for a long time. Current publications also refer to solutions that are being intensively experimented with in order to be used in the future, and INPADOC provides an insight into numerous defined and protected solutions of various authors.

Među povijesna rješenja navedenog tehničkog problema mogu se, između ostalih, navesti sljedeća dva: Among the historical solutions to the mentioned technical problem, the following two can be mentioned, among others:

- Rješenje francuskog konstruktora i pionira zrakoplovstva Clementa Adera iz 1904. godine, koje se sastoji od ugradnje na izlaznom dijelu krila i horizontalnih repnih površina, pokretnih dijelova krila čijim se zakretanjem na dole ili na gore mijenja geometrija aerodinamičke površine, odn. mijenja krivina profila krila i time utječe na veličinu uzgonske sile, upravljanje i brzinu zrakoplova. Ovo rješenje je preteča kasnijih rješenja u vidu jednostavnih ili složenih zakrilaca i ailerona. - The solution of the French designer and aviation pioneer Clement Ader from 1904, which consists of installing on the exit part of the wing and horizontal tail surfaces, moving parts of the wing whose rotation downwards or upwards changes the geometry of the aerodynamic surface, or changes the curvature of the wing profile and thereby affects the magnitude of the lift force, control and speed of the aircraft. This solution is the forerunner of later solutions in the form of simple or complex flaps and ailerons.

- Rješenje ruskih konstruktora Nikitina i Ševčenka sa kojim se eksperimentiralo krajem 30-tih godina, a koje se sastoji u konstrukciji zrakoplova dvokrilca (Biplan), kod kojeg se jedan par krila nakon polijetanja mogao sklopiti uz trup. Na taj načinje ovaj zrakoplov u fazi polijetanja i slijetanja bio dvokrilac, znači zrakoplov sa povećanim krilnim površinama, većom uzgonskom silom i nosivošću pri maloj brzini, a nakon sklapanja jednog para krila je mogao uz smanjen aerodinamički otpor razviti veću brzinu leta i ostvariti potreban uzgon uz manju potrošnju goriva. Ovo rješenje nije otišlo dalje od eksperimentiranja, ali predstavlja preteču kasnijih rješenja zrakoplova tipa promjenjive geometrije krila. - The solution of the Russian constructors Nikitin and Shevchenko, which was experimented with in the late 1930s, and which consists in the construction of a biplane (Biplane), in which one pair of wings could be folded together with the fuselage after take-off. In this way, this aircraft was a biplane in the take-off and landing phase, that is, an aircraft with increased wing surfaces, greater lift and load capacity at low speed, and after folding one pair of wings, it could develop a higher flight speed with reduced aerodynamic resistance and achieve the necessary lift with lower fuel consumption. This solution did not go beyond experimentation, but it represents a forerunner of later solutions of variable wing geometry type aircraft.

Većina suvremenih rješenja navedenog tehničkog problema koja su ušla u primjenu baziraju se na dva tipa rješenja: Most of the modern solutions to the mentioned technical problem that have come into use are based on two types of solutions:

1) Rješenja sa promjenom geometrije aerodinamičkog profila; 1) Solutions with changing the geometry of the aerodynamic profile;

2) Rješenja sa promjenom površine i geometrije krila, uz dodatak elemenata za promjenu geometrije aerodinamičkog profila. 2) Solutions with changing the surface and geometry of the wings, with the addition of elements to change the geometry of the aerodynamic profile.

Rješenja navedenog tehničkog problema bazirana na promjeni geometrije aerodinamičkog profila, poglavito promjenom njegove zakrivljenosti, primjenjuju se vrlo široko, a u pogledu konstrukcije, rješenja su u rasponu od jednostavnih i rudimentarnih do vrlo složenih i onih koja su tek u fazi ispitivanja. U daljem prikazu će biti opisno navedena najtipičnija rješenja iz ove grupe, uz opis osnovnih karakteristika. Solutions to the mentioned technical problem based on changing the geometry of the aerodynamic profile, especially by changing its curvature, are applied very widely, and in terms of construction, the solutions range from simple and rudimentary to very complex and those that are still in the testing phase. The following presentation will describe the most typical solutions from this group, along with a description of the basic characteristics.

a) Promjena geometrije aerodinamičkog profila pomoću zakretanja izlaznog dijela krila tzv. zakrilce, koje je zglobno učvršćeno na osnovni - središnji dio krila i s njime čini jedinstveni profil. Pomjeranjem, obaranjem ili podizanjem ovog zakrilca, povećava se ili smanjuje zakrivljenost aerodinamičkog profila i njegova uzgonska sila. Ovo najjednostavnije i najmasovnije primjenjivano rješenje koristi se na krajnjim upravljačkim dijelovima krila (Ailerons) za podešavanje horizontalnog nagiba krila, na upravljačkim dijelovima repnih površina (Elevators), te na srednjem dijelu krila kao zakrilca (Flaps) koja se zakreću na dole u fazi polijetanja i slijetanja zrakoplova. a) Changing the geometry of the aerodynamic profile by rotating the exit part of the wing, the so-called flap, which is hinged to the basic - central part of the wing and forms a unique profile with it. By moving, lowering or raising this flap, the curvature of the airfoil and its lift force are increased or decreased. This simplest and most widely applied solution is used on the end control parts of the wings (Ailerons) to adjust the horizontal tilt of the wings, on the control parts of the tail surfaces (Elevators), and on the middle part of the wing as flaps (Flaps) that rotate downward during the take-off phase and aircraft landing.

Nedostatak ovog rješenja, posebno u obliku najjednostavnije izvedenih velikih zakrilaca (Flaps) je u tome, što je kod zakretanja zakrilaca linija profila zalomljena, te iza zakrilca dolazi do odvajanja strujnica zraka od njegove površine, turbulencije, podrhtavanja krila, te bitnog povećanja aerodinamičkog otpora krila, odn. povećanja tzv. sile zavlačenja. The disadvantage of this solution, especially in the form of the most simply designed large flaps (Flaps), is that when the flaps are turned, the profile line is broken, and behind the flap there is a separation of air currents from its surface, turbulence, shaking of the wings, and a significant increase in the aerodynamic resistance of the wings , or increase of the so-called drag forces.

b) Promjena geometrije aerodinamičkog profila pomoću manjeg stupnja zakretanja na dole prednjeg - napadnog dijela krila i zadnjeg - izlaznog dijela krila. Ovo rješenje se često primjenjuje kod borbenih zrakoplova, gdje se prilagođavanje oblika profila vrši sinhronizirano, često povezano sa senzorsko - računalnim sustavom, a sve ovisno o fazi leta i potrebi zadaće zrakoplova. Rješenje zasnovano na ovom principu se primjenjuje npr. kod borbenih zrakoplova tipa: SAAB "GRIPEN", Locheed Martin F-16, EUROFIGHTER-2000 i dr. b) Changing the geometry of the aerodynamic profile by means of a smaller degree of downward rotation of the front - attack part of the wing and the rear - exit part of the wing. This solution is often applied in combat aircraft, where the adjustment of the profile shape is performed synchronized, often connected to the sensor-computer system, and all depending on the phase of the flight and the need of the aircraft's mission. The solution based on this principle is used, for example, in combat aircraft of the type: SAAB "GRIPEN", Locheed Martin F-16, EUROFIGHTER-2000 and others.

c) Promjena geometrije aerodinamičkog profila pomoću izvlačenja i zakretanja aerodinamički oblikovanog jednodjelnog zakrilca. c) Changing the geometry of the aerodynamic profile by extending and rotating the aerodynamically shaped one-piece flap.

U osnovnom - uvučenom položaju ova zakrilca čine sa ostalim dijelom krila jedinstveni dio, odn. optimalno odabrani profil krila. Pri aktiviranju, ova se zakrilca izvlače prema nazad, zakreću i obaraju na dole (npr. kod polijetanja za 23, a kod slijetanja za 50 stupnjeva), tako da se kroz procjep nastao između osnovnog dijela krila i izvučenog zakrilca osigurava djelomično nadstrujavanje gornje površine zakrilca zračnom strujom pridošlom iz područja opstrujavanja donje površine krila. Time se otpuhuju - ispiru vrtlozi iza zakrilaca i umanjuje pojava turbulencije iza zakrilaca, podrhtavanje krila i smanjuje otpor u vidu sile zavlačenja. In the basic - retracted position, these flaps form a single part with the rest of the wing, i.e. optimally selected wing profile. When activated, these flaps are pulled back, rotated and folded down (e.g. by 23 degrees during take-off and by 50 degrees during landing), so that through the gap created between the basic part of the wing and the extended flap, a partial updraft of the upper surface of the flap is ensured by the air flow coming from the area of obstruction of the lower surface of the wing. By doing so, the vortices behind the flaps are washed away and the appearance of turbulence behind the flaps is reduced, wing shaking and resistance in the form of drag force is reduced.

Primjer rješenja su zakrilca putničkih zrakoplova tipa: Raytheon Aircraft PILATUS PC XII LEARJET-45i AIRBUS A 319. An example of a solution is the flaps of passenger aircraft of the type: Raytheon Aircraft PILATUS PC XII LEARJET-45 and AIRBUS A 319.

Usavršenija varijanta ovoga rješenja je zakrilce koje na svom prednjem dijelu ima fiksno ugrađeno malo predkrilce koje pojačava efekt nadstrujavanja gornje strane zakrilca u izvučenom položaju, a kako je npr. primijenjeno je na putničkom zrakoplovu tipa IPTN N-250-100. A more advanced variant of this solution is a flap that has a small flap fixed on its front part that enhances the effect of the superflow of the upper side of the flap in the extended position, and as it was used, for example, on the passenger aircraft type IPTN N-250-100.

d) Promjena geometrije aerodinamičkog profila pomoću izvlačenja prema naprijed aerodinamički oblikovanog predkrilca (Slat) ugrađenog u napadni rub krila, sinkronizirano sa izvlačenjem i zakretanjem višedjelnih aerodinamički oblikovanih zakrilaca (Flaps). Ovim rješenjem, karakterističnim za velike putničko - transportne zrakoplove, se pri visokim napadnim kutevima krila u fazi polijetanja i slijetanja, osigurava dobro opstrujavanje gornje površine krila, sa pomjeranjem točke odvajanja strujnica i graničnog sloja dalje niz krivinu krila, te osigurava dobro prostrujavanje zaleđa obično vrlo velikih višedjelnih zakrilaca uz bitno smanjenje turbulencije iza zakrilaca, podrhtavanja krila i smanjenje sile zavlačenja. Primjer ovakvog rješenja su krila na zrakoplovima tipa BOEING -747 i BOEING - 737-200. Navedeno rješenje ima nedostatke u tehničkoj složenosti i nemogućnosti ostvarivanja finog i kontinuiranog reguliranja sile uzgona u svim fazama leta. d) Changing the geometry of the aerodynamic profile by pulling forward the aerodynamically shaped slat (Slat) built into the leading edge of the wing, synchronized with the extension and turning of the multi-part aerodynamically shaped flaps (Flaps). With this solution, characteristic of large passenger-transport aircraft, at high angles of attack of the wings during the take-off and landing phase, good flow is ensured on the upper surface of the wing, with the displacement of the point of separation of the flow lines and the boundary layer further down the curve of the wing, and it ensures good flow of the rear, usually very large multi-part flaps with significant reduction of turbulence behind the flaps, wing shaking and drag force reduction. An example of this solution is the wings on BOEING -747 and BOEING - 737-200 aircraft. The aforementioned solution has shortcomings in terms of technical complexity and the impossibility of achieving fine and continuous regulation of the buoyancy force in all phases of flight.

e) Promjena geometrije aerodinamičkog profila pomoću kontinuirane promjene zakrivljenja napadnog i izlaznog dijela krila u svim fazama leta, a u funkciji potrebe letačke zadaće. Navedeno rješenje je poznato pod nazivom MAW - Mission Adaptive Wing (krilo prilagodljivo zadatku) ili VCW - Variable Camber Wing (krilo promjenljive krivine), teži visokom ispunjenju zahtjeva za reguliranjem uzgona u svim fazama leta uz minimum povećanja aerodinamičkog otpora, odn. narušavanja najpovoljnijeg odnosa glavnih karakterističnih aerodinamičkih koeficijenata Cu/Co. U tehničko - tehnološkom pogledu rješenje se bazira na primjeni novih tehnologija: oplata napadnog i izlaznog dijela gornje površine krila rađena od fleksibilnog kompozitnog tvoriva pojačanog kartonskim vlaknima, a prilagođivanje oblika profila se vrši putem složenih polužnih mehanizama pokretanih snažnim i brzim aktuatorima upravljanim od strane senzorsko - računalnog sustava. Osnovicu ovog krila čini središnji kruti korpus, na koji je nadograđen prednji - napadni dio rađen sa oplatom od elastičnog kompozitnog tvoriva koji se deformacijama prilagođava traženoj zakrivljenosti. Izlazni dio krila je građen od 3 segmenta povezanih polužnim sustavom koji je sa gornje strane obuhvaćen jedinstvenim oplošjem od elastičnog kompozita koje se kod zakrivljenja profila savija, a sa donje strane je obložen trodjelnim elastičnim oplošjem koje se kod zakrivljenja profila skraćuje savijanjem i preklapanjem. e) Changing the geometry of the aerodynamic profile by continuously changing the curvature of the attack and exit part of the wing in all phases of flight, as a function of the needs of the flight task. The mentioned solution is known as MAW - Mission Adaptive Wing (wing adaptable to the task) or VCW - Variable Camber Wing (wing of variable curvature), it strives to meet the requirements for regulating lift in all phases of flight with a minimum increase in aerodynamic resistance, or violation of the most favorable ratio of the main characteristic aerodynamic coefficients Cu/Co. From a technical-technological point of view, the solution is based on the application of new technologies: the formwork of the attack and exit part of the upper surface of the wing is made of a flexible composite material reinforced with cardboard fibers, and the adjustment of the profile shape is done by means of complex lever mechanisms driven by powerful and fast actuators controlled by sensor - computer system. The basis of this wing is the central rigid body, on which the front - attack part is superimposed, made with a formwork made of elastic composite material that adapts to deformations to the required curvature. The exit part of the wing is built from 3 segments connected by a lever system, which is covered on the upper side by a unique cover made of elastic composite that bends when the profile is curved, and on the lower side it is coated with a three-part elastic cover that is shortened by bending and folding when the profile is curved.

Navedeno rješenje omogućava kontinuirano krivljenje profila krila u oblike krivine po potrebi svih faza leta: polijetanje, krstarenje i slijetanje, uključujući i u fazi brzih manevara kakvim su izloženi borbeni zrakoplovi. Pri tome se zadržava visoka čistoća i glatkoća površine, bez pojave ranog odvajanja graničnog sloja zraka i turbulencije. Registrirana sila zavlačenja je i do 30% manja u odnosu na konvencionalna rješenja krila sa zakrilcima. MAW koncept se primjenjuje eksperimentalno od 1985. godine od strane NASA i BOEING Co. na adaptiranom zrakoplovu General Dynamics F-111 AFTI. Činjenica da borbeni zrakoplov F-111 raspolaže sa zakretnim krilima doprinosi visokoj djelotvornosti ovog koncepta. Radi složenosti i cijene MAW koncepta, isti još nije dobio punu vojnu primjenu, a komercijalnu primjenu niti u pojednostavljenom obliku. The mentioned solution enables continuous bending of the wing profile into curves as needed in all phases of flight: take-off, cruise and landing, including in the phase of fast maneuvers such as combat aircraft are exposed to. At the same time, the high cleanliness and smoothness of the surface is maintained, without the appearance of early separation of the air boundary layer and turbulence. The registered drag force is up to 30% less compared to conventional wing solutions with flaps. The MAW concept has been applied experimentally since 1985 by NASA and BOEING Co. on the adapted General Dynamics F-111 AFTI aircraft. The fact that the F-111 fighter jet has swivel wings contributes to the high effectiveness of this concept. Due to the complexity and cost of the MAW concept, it has not yet received full military application, and commercial application even in a simplified form.

Rješenja iznesenog tehničkog problema bazirana na promjeni površine i geometrije krila inicirana su uglavnom potrebama borbenih zrakoplova pred koje se postavljaju zadaće naglih promjena brzine leta i nošenja korisnog tereta koji se u toku leta odbacuje. Većina primjenjivanih rješenja su u načelu ista, a sastoje su u sljedećem: Solutions to the stated technical problem based on changing the surface and geometry of the wings were initiated mainly by the needs of fighter aircraft, which are faced with the tasks of sudden changes in flight speed and carrying payloads that are discarded during flight. Most of the applied solutions are basically the same, and consist of the following:

a) Krilo pokretne geometrije i djelomično promjenjive površine sastoji se iz dijela nepokretnog krila vezanog uz trup zrakoplova u kojem se nalazi zglobna veza i pokretački mehanizam za zakretanje i povećanje kuta zakošenja preostalog - pokretnog dijela krila. U fazama polijetanja i slijetanja i letu pod najvećim korisnim opterećenje, krila su ispružena u svom najvećem rasponu, dok se prelaskom u fazu brzog leta (nakon polijetanja ili odbacivanja korisnog tereta) krila zakreću u strijelu, smanjujući čeoni otpor i djelomično površinu krila. Ujedno se smanjuje relativna zakrivljenost profila krila po liniji opstrujavanja, što točku odvajanja graničnog sloja pomjera dalje niz profil krila, dodatno smanjujući otpor i omogućavajući postizanje znatno većih brzina leta. Krila pokretne geometrije upotpunjena su i sustavom za promjenu geometrije profila tipa zakrilaca i obaranja napadnog ruba krila. Ovo rješenje je primijenjeno isključivo na borbenim zrakoplovima, a karakteristični primjeri su: MRCA "TORNADO", Gruman F-14 "Tomcat", Suhoj Su-24 i dr. a) A wing with a movable geometry and partially variable surface consists of a part of the immovable wing attached to the fuselage of the aircraft in which there is a joint connection and a driving mechanism for turning and increasing the bevel angle of the remaining - movable part of the wing. In the phases of take-off and landing and flight under the highest payload, the wings are extended to their maximum range, while when moving to the phase of fast flight (after take-off or discarding the payload) the wings rotate in the boom, reducing the frontal drag and partially the wing area. At the same time, the relative curvature of the wing profile along the flow line is reduced, which moves the point of separation of the boundary layer further down the wing profile, further reducing drag and enabling significantly higher flight speeds to be achieved. The movable geometry wings are completed with a system for changing the geometry of the flap type profile and lowering the leading edge of the wing. This solution was applied exclusively on combat aircraft, and typical examples are: MRCA "TORNADO", Gruman F-14 "Tomcat", Sukhoi Su-24 and others.

Dostupne stručne i patentne informacije o kojima je ovaj autor imao mogućnost uvida daju podatke o mnogobrojnim rješenjima iznesenog tehničkog problema koje su tehničke varijacije ovdje već iznesenih primjena ali i drugih inovativnih i patentiranih rješenja koja su našla praktičnu primjenu ili su do sada ostala bez primjene. Kao karakteristična rješenja, koja ne spadaju u prethodno iznesene primjere dvije 1) i 2) grupe rješenja, navesti će se slijedeća specifična tehnička rješenja: The available professional and patent information, which this author had the opportunity to see, provides information on numerous solutions to the technical problem presented, which are technical variations of the applications already presented here, but also other innovative and patented solutions that have found practical application or have remained without application until now. The following specific technical solutions will be listed as characteristic solutions, which do not fall into the previously presented examples of the two 1) and 2) groups of solutions:

a) EP 78-245, rješenje ALITALIA SPA zrakoplov na turbomlazni pogon koji dio mlazeva iz turbofanskih motora usmjerava lepezasto iznad gornje površine krila, čime se postiže povećani uzgon kao posljedica cirkulacije mlaza iznad krila i njegova otklona prema dolje preko ruba krila i zakrilaca uslijed Coandinog efekta. Reguliranjem intenziteta i smjera ovih mlaznica regulira se i promjena veličine uzgonske sile. a) EP 78-245, ALITALIA SPA solution, a turbojet-powered aircraft that directs part of the jets from the turbofan engines in a fan-like manner over the upper surface of the wing, which achieves increased lift as a result of the circulation of the jet above the wing and its deflection downwards over the edge of the wing and flaps due to Coanda effect. By regulating the intensity and direction of these jets, the change in the magnitude of the buoyant force is also regulated.

b) Rješenje povećanja uzgona pomoću tzv. "zračnih zakrilaca" koje se primjenjuje eksperimentalno na najnovijim ruskim borbenim zrakoplovima. Rješenje se sastoji u izdvajanju dijela zraka pod tlakom iz turbomlaznog pogonskog motora koji se kroz krilo provodi posebnim kanalom sve do ispod izlaznog ruba krila, gdje se pomoću posebnih pokretnih žaluzina usmjerava na dole. Time se stvara zračna zavjesa koja ima funkciju zakrilaca u fazi polijetanja i slijetanja ili borbenih manevara, bez da se zakrivljenjem profila krila narušava čistoća opstrujavanja gornje površine krila. b) The solution to increasing buoyancy using the so-called "air flaps" which is applied experimentally on the latest Russian fighter planes. The solution consists in extracting part of the pressurized air from the turbojet propulsion engine, which is carried through the wing through a special channel all the way to below the exit edge of the wing, where it is directed downwards using special movable louvers. This creates an air curtain that has the function of flaps in the phase of take-off and landing or combat maneuvers, without the curvature of the wing profile impairing the cleanness of the flow on the upper surface of the wing.

c) Zaštićeno rješenje engleskog autora, koje nije u primjeni, a sastoji se iz zrakoplova dvokrilca -biplana sa dva para vitkih krila koja su postavljena jedno iznad drugoga sa međusobnim razmakom koji je manji nego kod poznatih konstrukcija biplana, gdje se sinhroniziranim radom zakrilaca na izlaznim rubovima oba krila usmjerava zrak koji protječe između krila. c) The protected solution of the English author, which is not in use, and consists of a biplane - a biplane with two pairs of slender wings that are placed one above the other with a mutual distance that is smaller than in known biplane designs, where the synchronized operation of the flaps on the exit the edges of both wings direct the air flowing between the wings.

d) Specifično rješenje iz grupe "utjecaja na granični sloj zraka" sa kojim eksperimentira kompanija Me Dounnell Douglas kroz program nazvan "MD Flight Approach". Rješenje se sastoji u utjecaju na granični sloj opstrujavanog zraka putem istiskivanja zraka pod tlakom kroz poroznu površinu oplate na oko 75% površine krila u cilju stvaranja klizećeg graničnog sloja i produljenja laminarnog opstrujavanja oko krila. Rezultat je manji otpor opstrujavanja, povećan uzgon i npr. za eksperimentalni zrakoplov DC-10-30 skraćenja duljine polijetanja za 15%. d) A specific solution from the group of "influences on the boundary layer of the air" with which the Me Dounnell Douglas company is experimenting through the program called "MD Flight Approach". The solution consists in affecting the boundary layer of the jetted air by pushing air under pressure through the porous surface of the formwork on about 75% of the wing surface in order to create a sliding boundary layer and prolong the laminar jetting around the wing. The result is lower drag, increased lift and, for example, for the experimental DC-10-30 aircraft, a 15% reduction in take-off length.

Rješenja iznesenog tehničkog problema kod krila rađenih iz tkanine kao što su planeri - paraglideri i leteći zmajevi su mnogobrojna, a jedna od karakterističnih su: The solutions to the stated technical problem with wings made of fabric such as gliders - paragliders and flying kites are numerous, and one of the characteristic ones is:

a) Krilo planera - paraglidera rađeno iz dvije plohe tkanine međusobno povezane rebrima postavljenim u smjeru kretanja krila, na način da su plohe na prednjem - napadnom rubu razmaknute čineći prednji otvor, a na izlaznom rubu spojene, tako da sa rebrima čine izabrani aerodinamički profil krila čiju formu održava zrak nabijen unutar krila aerodinamikom leta. Upravljanje krilom se vrši potezanjem posebnih konopa vezanih za rubove nosive plohe krila. Rješenje se je pokazalo dobrim, mnogo boljim od jednostrukih krila i kupola padobrana, a jedan od nedostataka je kovitlanje zraka na otvorima duž napadnog ruba krila, što kvari čistoću daljeg opstrujavanja krila duž profila. Što je još važnije, evidentne su teškoće pri startu paraglidera, kada pilot zatrčavanjem niz padinu nastoji podići krilo, napuhati ujednačeno njegovu unutrašnjost cijelim rasponom krila i postići potrebnu formu krila, što npr. radi vjetra nije uvijek uspješno. Ukoliko se pri startu obje strane krila ne otvore i ne napune podjednako, krilo bježi u stranu, uvrće se i ima tendenciju pada, a start zatrčavanjem niz padinu postaje opasan; a) The wing of a glider - paraglider made of two sheets of fabric connected to each other by ribs placed in the direction of the movement of the wing, in such a way that the sheets on the front - leading edge are spaced apart to form the front opening, and on the trailing edge they are joined, so that with the ribs they form the selected aerodynamic profile of the wing the shape of which is maintained by the air packed inside the wings by the aerodynamics of flight. Wing control is done by pulling special ropes tied to the edges of the wing's bearing surface. The solution turned out to be good, much better than single wings and parachute domes, and one of the disadvantages is the swirling of air at the openings along the leading edge of the wing, which spoils the cleanliness of the further flow of the wing along the profile. What is even more important, there are evident difficulties at the start of the paraglider, when the pilot tries to raise the wing by running down the slope, to inflate its interior evenly over the entire wingspan and to achieve the necessary wing shape, which is not always successful due to the wind, for example. If at the start both sides of the wings are not opened and filled equally, the wing escapes to the side, twists and has a tendency to fall, and the start by running down the slope becomes dangerous;

b) Krilo letećeg zmaja rađenog većim dijelom iz jednog sloja tkanine koja je napeta na čvrstu nosivu konstrukciju zmaja. Prednji - napadni rub profila krila čini najčešće cijev na koju je navučena tkanina krila, a izlazni rub profila je slobodan. Neka od boljih rješenja imaju navedenu cijev većeg presjeka ili čak aerodinamički profiliranu, a platnena ploha krila je na cijev navučena i spojena na način da sa cijevi i ostatkom površine čini aerodinamički profil. Upravljanje zmajem se vrši bez promjene krivine profila, samo promjenom težišta i nagiba zmaja. b) The wing of a flying kite made mostly of a single layer of fabric that is stretched over the solid supporting structure of the kite. The leading edge of the wing profile usually consists of a tube on which the wing fabric is pulled, while the trailing edge of the profile is free. Some of the better solutions have a specified pipe with a larger section or even an aerodynamic profile, and the canvas surface of the wing is pulled onto the pipe and connected in such a way that it forms an aerodynamic profile with the pipe and the rest of the surface. The control of the kite is done without changing the curve of the profile, only by changing the center of gravity and the inclination of the kite.

Rješenje iznesenog tehničkog problema primijenjeno na čvrsta krila koja služe kao lopatice rotora vjetrogeneratora nisu išla dalje od promjene tipa profila uzduž lopatice i promjene napadnog kuta lopatice koje se vrši njenim zakretanjem oko ramenjače krila, odn. osovine lopatice učvršćene za glavu rotora vjetrogeneratora. The solution to the stated technical problem applied to solid wings that serve as rotor blades of wind generators did not go further than changing the type of profile along the blade and changing the angle of attack of the blade, which is done by turning it around the shoulder of the wing, or blade shafts fixed to the wind turbine rotor head.

Autoru ovog izuma, temeljem dostupnih tehničkih informacija i drugih saznanja, nije poznato rješenje iznesenog tehničkog problema povećanja i reguliranja uzgona zrakoplovnog krila, koje se po svojoj suštini podudara sa rješenjem koje je predmet ovog izuma. The author of this invention, based on available technical information and other knowledge, is not aware of a solution to the stated technical problem of increasing and regulating the lift of an aircraft wing, which essentially coincides with the solution that is the subject of this invention.

Izlaganje biti izuma Presentation of the essence of the invention

Primarni cilj izuma: "Krilo sa aerodinamičkim profilom s mogućnošću unutarnjeg prostrujavanja i reguliranog povećanja uzgonske sile" je konstrukcija zrakoplovnog krila koje će, u odnosu na krilo sa identičnim profilom ali konvencionalnog tipa - sa zatvorenom vanjskom konturom, imati pri istim aerodinamičkim parametrima, povećanu uzgonsku silu. The primary goal of the invention: "A wing with an aerodynamic profile with the possibility of internal flow and a regulated increase in lift force" is the construction of an aircraft wing which, compared to a wing with an identical profile but of a conventional type - with a closed outer contour, will have, with the same aerodynamic parameters, increased lift force.

Sekundarni cilj izuma je: omogućavanje reguliranja onog dijela povećanja uzgonske sile, što je u odnosu na krilo sa konvencionalnim aerodinamičkim profilom, postiže krilo sa aerodinamičkim profilom prema ovom izumu. The secondary goal of the invention is: enabling the regulation of that part of the lift force increase, which is achieved by the wing with the aerodynamic profile according to this invention, compared to the wing with the conventional aerodynamic profile.

Dalji ciljevi izuma u njegovim pojedinim varijantama su: Further objectives of the invention in its individual variants are:

- Dodatno pojačavanje efekta, što ga na povećanje uzgonske sile daje slobodno unutarnje prostrujavanje, pomoću dopunskog - prinudnog povećanja obima i brzine unutarnjeg prostrujavanja, ubrizgavanjem zraka dovedenog iz turbokompresora pogonskog motora zrakoplova; - Additional enhancement of the effect, which is given by the free internal flow on the increase in lift force, by means of a supplementary - forced increase in the volume and speed of the internal flow, by injecting air supplied from the turbocompressor of the aircraft's propulsion engine;

- Primjena izuma u cilju poboljšanja aerodinamičkih karakteristika već postojećih rješenja povećanja uzgonske sile, kao što su krila sa predkrilcima i zakrilcima; - Application of the invention in order to improve the aerodynamic characteristics of already existing solutions for increasing lift, such as wings with slats and flaps;

- Primjena izuma na krilo sa nosivom površinom rađenom iz tkanine kao što su: krila planera - paraglidera i krila letećih zmajeva; - Application of the invention to a wing with a bearing surface made of fabric, such as: wings of gliders - paragliders and wings of flying kites;

- Primjena izuma na krila - lopatice rotora vjetrogeneratora. - Application of the invention to the wings - blades of the rotor of the wind generator.

Bit izuma je sadržana u konstrukciji krila čiji aerodinamički profil nema zatvorenu vanjsku konturu, već uzduž profila krila ima posebno oblikovan tunel za unutarnje dinamičko prostrujavanje krila zrakom. Oblik tunela i njegov položaj unutar krila je takav, da je njegov vertikalni presjek u smjeru leta pozicioniran duž aerodinamičkog profila krila na način, da se prednji - ulazni otvor tunela nalazi u potpunosti (ili većim dijelom svog presjeka) ispod simetrale profila na napadnom rubu krila, a izlazni otvor tunela se nalazi u potpunosti ispod simetrale profila na zadnjem - izlaznom rubu krila. Na taj način, tunel za unutarnje prostrujavanje, dinamikom leta uzima dio zračne struje koja bi, kod krila sa konvencionalnim profilom opstrujavala donju površinu krila, usmjerava je kroz unutarnju krivinu tunela i ispušta u vanjski tok ispod izlaznog ruba profila krila. Oblik ulaznog dijela tunela, uz dodatak ugrađene lopatice, usmjerava uzeti dio zračne struje usponski u unutrašnjost tunela, a oblik izlaznog otvora tunela uz dodatak ugrađenih usmjeravajućih lopatica, usmjerava istu zračnu struju nisponski, što za posljedicu ima otklon - obaranje zračnog traga izlazne zračne struje iza profila na dole. Kako se kretanjem krila kroz zrak, na ulaznom otvoru tunela stvara aerodinamički tlak, a na izlaznom dijelu tunela bitno niži aerostatički tlak, osiguran je potrebni gradijent tlaka za unutarnje dinamičko prostrujavanje. The essence of the invention is contained in the construction of the wing, whose aerodynamic profile does not have a closed outer contour, but instead has a specially shaped tunnel along the wing profile for dynamic internal air flow of the wing. The shape of the tunnel and its position inside the wing is such that its vertical section in the direction of flight is positioned along the aerodynamic profile of the wing in such a way that the front - entrance opening of the tunnel is located completely (or most of its section) below the bisector of the profile at the leading edge of the wing , and the exit opening of the tunnel is located completely below the bisector of the profile at the rear - exit edge of the wing. In this way, the tunnel for internal flow takes a part of the air flow that, in the case of a wing with a conventional profile, would obstruct the lower surface of the wing, directs it through the inner curve of the tunnel and discharges it into the external flow under the exit edge of the wing profile. The shape of the entrance part of the tunnel, with the addition of a built-in vane, directs a part of the air flow upwards into the interior of the tunnel, and the shape of the exit opening of the tunnel, with the addition of built-in directing vanes, directs the same air flow downwards, which results in deflection - knocking down the air trail of the outgoing air flow behind profile down. As the movement of the wings through the air creates aerodynamic pressure at the entrance of the tunnel, and significantly lower aerostatic pressure at the exit part of the tunnel, the necessary pressure gradient for internal dynamic flow is ensured.

Na ovaj način stvorena slika aerodinamičkog vanjskog opstrujavanja i unutarnjeg prostrujavanja krila prema ovom izumu, uspoređena sa slikom aerodinamičkog opstrujavanog krila sa konvencionalnim profilom - sa zatvorenom vanjskom konturom, ukazuje na sljedeće prednosti krila prema ovom izumu: In this way, the created image of the aerodynamic external flow and internal flow of the wing according to the present invention, compared with the image of the aerodynamic flowed wing with a conventional airfoil - with a closed outer contour, indicates the following advantages of the wing according to the present invention:

- Povećava se ukupna pozitivna cirkulacija oko profila krila što je izazvano usponskim usmjeravanjem dijela zračne struje u ulazni dio tunela i nisponskim usmjeravanjem iste zračne struje na izlazu iz tunela za unutarnje prostrujavanje i obaranje na dole nastalog zračnog traga; - The overall positive circulation around the wing profile increases, which is caused by the upward direction of part of the air flow into the entrance part of the tunnel and the downward direction of the same air flow at the exit from the tunnel for internal flow and knocking down of the resulting air trail;

- Poboljšava se stupanj očuvanja laminarnog ili kvazilaminarnog toka zraka duž gornje površine krila, odn. pomjera se dalje niz struju točka mogućeg odvajanja graničnog sloja od površine krila, kao pozitivna posljedica obaranje na dole zračnog traga iza izlaznog ruba krila; - The degree of preservation of laminar or quasi-laminar air flow along the upper surface of the wing is improved, or the point of possible separation of the boundary layer from the wing surface is moved further down the stream, as a positive consequence of the downstroke of the air trail behind the trailing edge of the wing;

- Povećanje aerostatičkog tlaka na donjoj nosivoj površini krila između ulaznog i izlaznog otvora tunela za unutarnje prostrujavanje, što je rezultat usporavanja zračne struje duž donje nosive plohe krila, a kao posljedica uzimanja dijela zračne struje u tunel i obaranja izlaznog traga na dole u vidu efekta "zračnih zakrilaca". - An increase in aerostatic pressure on the lower bearing surface of the wing between the entrance and exit openings of the tunnel for internal flow, which is the result of slowing down the air flow along the lower bearing surface of the wing, and as a result of taking part of the air flow into the tunnel and knocking the exit trail down in the form of an effect " airfoils".

Uzimajući u obzir gore navedeno, dobiva se osjetno povećana uzgonska sila pri istoj brzini kretanja krila, u odnosu na krilo sa konvencionalnim aerodinamičkim profilom. Ova prednost se postiže uz razmjerno manji stupanj narušavanja optimalnog odnosa uzgona i otpora krila: Fu/Fo, a što posebno može doći do izražaja u fazama polijetanja i slijetanja zrakoplova, kada se i uz nužno smanjenu brzinu zrakoplova može postići potrebna - uvećana uzgonska rila. Taking into account the above, a noticeably increased lift force is obtained at the same speed of wing movement, compared to a wing with a conventional aerodynamic profile. This advantage is achieved with a comparatively smaller degree of disruption of the optimal ratio of wing lift and drag: Fu/Fo, which can be particularly evident in the take-off and landing phases of the aircraft, when even with the necessarily reduced speed of the aircraft, the necessary - increased lift can be achieved.

Nadalje, krilo prema ovom izumu ima mogućnost reguliranja intenziteta uzgonske sile u onom njenom dijelu veličine što ga dodatno stvara efekat unutarnjeg prostrujavanja krila, a na sljedeće načine: Furthermore, the wing according to this invention has the possibility of regulating the intensity of the lift force in that part of its size which is additionally created by the effect of the internal flow of the wing, in the following ways:

- Lopatice (žaluzije) koje služe za usmjeravanje izlazne zračne struje ugrađene u izlaznom otvoru tunela, u varijanti rješenja ovog izuma su zakretne, tako da se njihovim zakretanjem može mijenjati kut istjecanja zraka koji dolazi iz unutrašnjosti tunela, a time i dubina obaranja zračnog traga iza izlaznog ruba profila krila. Na ovaj se način može utjecati na fine promjene uzgonske sile, bez bitnog narušavanja kvalitete opstrujavanja zraka oko profila krila; - Blades (louvers) that serve to direct the outgoing air current installed in the exit opening of the tunnel, in the version of the solution of this invention, are rotatable, so that by turning them, the angle of the outflow of air coming from inside the tunnel can be changed, and thus the depth of the air trail behind of the trailing edge of the wing profile. In this way, fine changes in the lift force can be influenced, without significantly impairing the quality of air flow around the wing profile;

- Pokretni elementi za reguliranje veličine otvora ulaznog dijela tunela za unutarnje prostrujavanje krila, u varijanti rješenja ovog izuma, imaju mogućnost djelomičnog ili potpunog zatvaranja ulaznog otvora tunela, uz sinhronizirano zakretanje izlaznih usmjerivača zračne struje, od kuta stvaranja najvećeg uzgona, do potpunog zatvaranja i poravnavanja sa donjom nosivom plohom krila. Na taj način se može regulirati veličina uzgonske sile od njenog maksimuma pri punom obimu unutarnjeg prostrujavanja krila, do potpunog zatvaranja obje strane tunela i pretvaranja krila u konvencionalno krilo sa zatvorenom konturom aerodinamičkog profila, sa minimalnim aerodinamičkim otporom i uzgonom prema odabranim karakteristikama takovog profila. Ova regulacija je posebno pogodna za potrebe prilagođavanja uzgonskih karakteristika krila svim fazama leta zrakoplova: od polijetanja, preko krstarenja sa promjenom opterećenja gorivom ili teretom, do slijetanja. - Movable elements for regulating the size of the opening of the entrance part of the tunnel for the internal flow of the wing, in a variant of the solution of this invention, have the possibility of partial or complete closing of the entrance opening of the tunnel, with the synchronized rotation of the output air flow guides, from the angle of creation of the greatest lift, to complete closure and alignment with the lower bearing surface of the wing. In this way, the magnitude of the lift force can be regulated from its maximum at the full extent of the internal flow of the wing, to the complete closing of both sides of the tunnel and turning the wing into a conventional wing with a closed contour of the aerodynamic profile, with minimal aerodynamic resistance and lift according to the selected characteristics of such a profile. This regulation is particularly suitable for the needs of adjusting the lift characteristics of the wings to all phases of the aircraft's flight: from take-off, through cruising with changes in fuel or cargo load, to landing.

- Prema varijanti rješenja ovog izuma, u tunel za unutarnje prostrujavanje ubrizgava se zrak pod tlakom izuzet iz turbokompresora pogonskog motora u cilju povećanja obima i brzine prostrujavanja tunela, čime se postiže, da se u fazi polijetanja zrakoplova postigne dopunsko povećanje uzgonske sile i skrati duljina zatrčavanja zrakoplova prilikom polijetanja. U ovu varijantu spada i sustav za raspršivanje vode unutar tunela za unutarnje prostrujavanje krila, kako bi se dobio aerosol koji će povećati masu i inerciju izlazne zračne struje, te povećati dubinu obaranja zračnog traga ispod izlaznog ruba krila, a time povećati "čvrstinu" nastalih "zračnih zakrilaca" i povećanu uzgonsku silu. Ovo je posebno primjenjivo kao kratkotrajno rješenje povećanja uzgonske sile u momentu neposredno pred odljepljivanje i polijetanje zrakoplova sa uzletne staze. - According to a variant of the solution of this invention, pressurized air extracted from the turbocompressor of the drive engine is injected into the tunnel for internal flow in order to increase the volume and speed of the flow of the tunnel, which achieves, in the take-off phase of the aircraft, an additional increase in lift force and a shortening of the run-in length of the aircraft during take-off. This variant also includes a system for dispersing water inside the wing's internal flow tunnel, in order to obtain an aerosol that will increase the mass and inertia of the outgoing air current, and increase the depth of the air trail below the wing's exit edge, thereby increasing the "strength" of the resulting " airfoils" and increased lift force. This is especially applicable as a short-term solution to increase the lift force in the moment immediately before the aircraft is unsticked and takes off from the runway.

U posebnoj varijanti, rješenje ovoga izuma primjenjivo je u cilju poboljšanja pojedinih konvencionalnih rješenja povećanja uzgonske sile na zrakoplovnom krilu promjenom krivine krila pomoću ugrađenih jednodjelnih zakrilca (Flaps) na zrakoplovnim krilima, kao što će niže biti navedeno: In a special variant, the solution of this invention is applicable in order to improve certain conventional solutions for increasing the lift force on an aircraft wing by changing the curvature of the wing using built-in one-piece flaps (Flaps) on the aircraft wings, as will be stated below:

- Zakrilca kao već primjenjivano rješenje za povećanje zakrivljenosti profila krila, odn. povećanje uzgona zrakoplovnog krila u fazama polijetanja i slijetanja, u varijanti primjene ovoga izuma, predstavljaju završni dio profila krila u kojem je ugrađen izlazni otvor tunela za unutarnje prostrujavanje, sa ili bez ugrađenih usmjerivača izlazne zračne struje. Na taj način su zakrilca rađena prema varijanti ovog izuma u uvučenom položaju sastavni dio krila prostrujavan zrakom iz tunela za unutarnje prostrujavanje, a u izvučenom i oborenom položaju su prostrujavana iznutra i nadstrujavana sa gornje strane, zrakom iz tunela za unutarnje prostrujavanje. U odnosu na konvencionalna jednodjelna zakrilca, prednost navedenog rješenja je u efektu otklanjanja turbulencije koja nastaje iza izvučenih zakrilaca. U odnosu na konvencionalna višedjelna zakrilca, prednost se očituje u tome, što se isti efekat nadstrujavanja zaleđa zakrilaca postiže na jednostavniji način, te što ne dolazi do smanjenja efekta pozitivne cirkulacije uslijed propuštanja dijela zračne struje sa donje strane krila na zalede izvučenih zakrilaca. - Flaps as an already applied solution for increasing the curvature of the wing profile, or increasing the lift of the aircraft wing in the take-off and landing phases, in the variant of the application of this invention, represent the final part of the wing profile in which the exit opening of the tunnel for internal circulation is installed, with or without built-in air flow deflectors. In this way, the flaps made according to the variant of this invention, in the retracted position, the integral part of the wing is flowed with air from the tunnel for internal flow, and in the extended and folded position, they are flowed from the inside and superflowed from the top, with air from the tunnel for internal flow. Compared to conventional one-piece flaps, the advantage of the mentioned solution is in the effect of removing the turbulence that occurs behind the extended flaps. Compared to conventional multi-part flaps, the advantage is that the same effect of overflowing the rear of the flaps is achieved in a simpler way, and that there is no reduction in the effect of positive circulation due to the passage of part of the air flow from the underside of the wing to the rear of the extended flaps.

U posebnoj varijanti, rješenje ovog izuma je primjenjivo i na zrakoplovno krilo čija je nosiva površina izrađena iz tkanine*** koja je slobodna ili je napeta između elemenata čvrste nosive konstrukcije, pri čemu ima niz prednosti u odnosu na poznata rješenja takovih letjelica, kao što su planeri - paraglideri i leteći zmajevi, gdje se unutarnjim prostrujavanjem dvoslojnog krila iz tkanine i obaranjem izlaznog zračnog traga na dole, postiže povećana uzgonska sila. In a special variant, the solution of this invention is also applicable to an aircraft wing, the bearing surface of which is made of fabric*** that is free or is stretched between elements of a solid bearing structure, whereby it has a number of advantages compared to known solutions of such aircraft, such as are gliders - paragliders and flying kites, where the internal flow of a two-layered wing made of fabric and knocking the exit air trail down creates an increased buoyancy force.

Bit rješenja u varijanti primjene izuma na krila rađena iz tkanine sastoji se u sljedećem: The essence of the solution in the variant of application of the invention to wings made of fabric consists in the following:

- Krilo planera - paraglidera je slobodno krilo rađeno iz tkanine koje je vezano nizom prednjih i zadnjih konopa za glavne veze pilota - letača, a koje se sastoji iz dvije, gornje i donje nosive plohe rađene iz tkanine, međusobno povezane u smjeru strujanja zraka postavljenim rebrima, također rađenim iz tkanine, sa međusobnim razmakom rebara koji diktiraju konstruktivni zahtjevi, tako da kroj, odn. oblik rebara zajedno sa gornjom i donjom nosivom plohom daje krilo sa nizom tunela za unutarnje dinamičko prostrujavanje zrakom, čiji vertikalni presjek u smjeru strujanja zraka daje odabrani aerodinamički profil krila. Nadalje, kako je gornja nosiva ploha krila na izlaznom rubu dulja od donje nosive plohe, povlačenjem konopa vezanih za izlazni rub ploha postiže se promjena zakrivljenosti profila i regulira obaranje izlazne zračne struje iz tunela za unutarnje prostrujavanje, a time regulira uzgon i upravljanje krilom planera. Napetost oblika krila i njegovog profila održava se opterećenjem krila masom letača s jedne strane i dinamičkim opstrujavanjem, te unutarnjim prostrujavanjem krila s druge strane. - The wing of a glider - paraglider is a free wing made of fabric, which is tied by a series of front and rear ropes to the main connections of the pilot - flyer, and which consists of two upper and lower load-bearing surfaces made of fabric, interconnected in the direction of air flow by ribs , also made of fabric, with the distance between the ribs dictated by the constructive requirements, so that the cut, or the shape of the ribs together with the upper and lower bearing surfaces gives a wing with a series of tunnels for internal dynamic air flow, whose vertical section in the direction of the air flow gives the chosen aerodynamic profile of the wing. Furthermore, as the upper load-bearing surface of the wing at the exit edge is longer than the lower load-bearing surface, by pulling the ropes attached to the exit edge of the surface, a change in the curvature of the profile is achieved and it regulates the fall of the outgoing air stream from the internal flow tunnel, thereby regulating the lift and control of the glider wing. The tension of the shape of the wing and its profile is maintained by loading the wing with the weight of the flyer on one side and by dynamic flow, and by the internal flow of the wing on the other.

Posebno rješenje u varijanti ove konstrukcije su prednji - napadni rubovi obje nosive plohe krila i prednjeg dijela rebara, koji su rađeni kao aerodinamički oblikovane cijevi čija se forma, a time i forma ulaznih otvora tunela postiže i održava prethodnim napuhivanjem zrakom preko posebnog ventila za napuhivanje. Time se prije leta osigurava čvrsta forma prednjeg - napadnog ruba krila, lakše punjenje tunela zrakom, te znatno lakši i za letača sigurniji start zatrčavanjem niz padinu, što je bitno povoljnije rješenje od do sada poznatih. A special solution in the variant of this construction are the front - leading edges of both the bearing surface of the wing and the front part of the ribs, which are made as aerodynamically shaped tubes whose shape, and thus the shape of the entrance openings of the tunnel, is achieved and maintained by prior inflation with air via a special inflation valve. This ensures a solid form of the front - leading edge of the wing before the flight, easier filling of the tunnel with air, and a significantly easier and safer start for the pilot by running down the slope, which is a significantly more favorable solution than the ones known so far.

- Krilo letećeg zmaja rađeno iz tkanine napete na čvrstu konstrukciju zmaja, čija je bit primjene izuma u konstrukciji napadnog ruba krila koji se sastoji od dvije specifično aerodinamički oblikovane letve (tipa lake cijevi ili lakog ispunjenog profila) koje su međusobno povezane rebrima, sa međusobnim razmakom rebara koji diktiraju konstruktivni zahtjevi, tako da međusobni položaj, razmak i profil ove dvije letve čini prednji dio aerodinamički oblikovanog profila sa otvorom tunela za unutarnje prostrujavanje. Na navedene letve se nastavljaju gornja i donja nosiva ploha krila iz tkanine, koje su međusobno povezane nizom u smjeru leta postavljenih rebara, rađenih također iz tkanine, na način da sve zajedno čini profilirano krilo sa nizom paralelnih tunela za unutarnje prostrujavanje zrakom. - The wing of a flying kite is made of fabric stretched over a solid kite structure, the essence of which is the application of the invention in the construction of the leading edge of the wing, which consists of two specifically aerodynamically shaped slats (light tube type or light filled profile) that are connected to each other by ribs, with a mutual distance ribs dictated by constructive requirements, so that the mutual position, spacing and profile of these two battens form the front part of an aerodynamically shaped profile with a tunnel opening for internal flow. The upper and lower load-bearing surfaces of the wings made of fabric continue to the mentioned slats, which are connected to each other by a series of ribs placed in the direction of flight, also made of fabric, in such a way that everything together forms a profiled wing with a series of parallel tunnels for internal air circulation.

Na ovaj način se uz pomoć aerodinamički oblikovanih letava napadnog ruba nastavljenih tkaninom, uz odgovarajući način krojenja rebara iz tkanine i pri napetom stanju gornje i donje nosive površine krila iz tkanine, te uz popunjenost tunela zrakom, dobiva krilo sa odabranim aerodinamičkim profilom koje uz to ima u sebi tunele za unutarnje prostrujavanje. Kako je na izlaznom rubu krila gornja površina od tkanine duža od donje, to se uz pomoć jednostavnih mehanizama i konopa vezanih za izlazni rub tkanine gornje površine, može povlačenjem konopa povećavati krivina profila krila i više ili manje obarati mlaz zraka koji istječe iz tunela za unutarnje prostrujavanje. In this way, with the help of aerodynamically shaped battens of the leading edge continued with fabric, with the appropriate way of tailoring the fabric ribs and in the tense state of the upper and lower bearing surfaces of the fabric wing, and with the filling of the tunnel with air, a wing with a selected aerodynamic profile is obtained, which in addition has inside tunnels for internal circulation. Since at the exit edge of the wing, the upper fabric surface is longer than the lower one, with the help of simple mechanisms and ropes tied to the exit edge of the fabric of the upper surface, by pulling the rope, the curve of the wing profile can be increased and more or less deflected by the jet of air flowing out of the inner tunnel current flow.

Krilo rađeno iz tkanine prema varijanti ovog izuma, u odnosu na poznata rješenja sličnih letjelica rađenih sa krilom bez unutarnjeg prestrojavanja, ima veću uzgonsku silu koja se može djelomično regulirati, te je pogodno za konstrukciju letećih zmajeva, lakih letećih krila i sličnih lakih letjelica, koje mogu nositi povećan teret, npr. dvije osobe, lako plovilo i si. U odnosu na konvencionalno rješenje krila rađenog iz tkanine, krilo rađeno prema varijanti ovog izuma će imati veću nosivost i manju brzinu, što je kod letjelica za rekreaciju, razonodu ili obučavanje, stanovita prednost. A wing made of fabric according to the variant of this invention, compared to known solutions of similar aircraft made with a wing without internal adjustment, has a higher lift force that can be partially regulated, and is suitable for the construction of flying kites, light flying wings and similar light aircraft, which can carry an increased load, eg two people, a light vessel and si. In relation to a conventional solution of a wing made of fabric, a wing made according to the variant of this invention will have a higher load capacity and a lower speed, which is a certain advantage in aircraft for recreation, leisure or training.

Kratak opis crteža Brief description of the drawing

Grupa crteža koja je uključena u opis izuma i čini njegov dio, ujedno ilustrira i pomaže razumijevanju principa funkcioniranja izuma u osnovnoj verziji i njegovim varijantama, te ilustrira prijedlog najboljeg načina za izvedbu i primjenu izuma. The group of drawings that is included in the description of the invention and forms part of it, at the same time illustrates and helps to understand the principle of functioning of the invention in the basic version and its variants, and illustrates the proposal of the best way to perform and apply the invention.

Sl. 1. Prikaz osnovnog tehničkog rješenja prema ovom izumu, na zrakoplovnom krilu (pogled odozdo - u donju nosivu plohu krila) sa prikazom poprečnog presjeka krila. Sl. 1. Illustration of the basic technical solution according to this invention, on an aircraft wing (view from below - in the lower bearing surface of the wing) with an illustration of the cross section of the wing.

Sl. 2. Prikaz aerodinamičkog profila krila s mogućnošću slobodnog unutarnjeg prostrujavanja. Sl. 2. Presentation of the aerodynamic wing profile with the possibility of free internal flow.

Sl. 3. Prikaz varijante rješenja izuma na profilu krila s unutarnjim prostrujavanjem, mogućnošću zatvaranja tunela za unutarnje prostrujavanje i mogućnošću dodatnog - prinudnog prostrujavanja. Sl. 3. Presentation of the variant solution of the invention on the wing profile with internal flow, the possibility of closing the tunnel for internal flow and the possibility of additional - forced flow.

Sl. 4. i Sl. 5. Prikaz varijante izuma krila sa mogućnošću djelomičnog i potpunog zatvaranja ulaznog otvora tunela za unutarnje prostrujavanje. Sl. 4 and Fig. 5. Presentation of a variant of the wing invention with the possibility of partially and completely closing the entrance opening of the tunnel for internal circulation.

Sl. 6. i Sl.7. Prikaz primjene izuma na krilo sa ugrađenim jednodjelnim zakrilcem. Sl. 6 and Fig. 7. Illustration of the application of the invention to a wing with a built-in one-piece flap.

Sl. 8. i Sl.9. Prikaz primjene izuma na krilu planera - paraglidera. Sl. 8 and Fig. 9. Presentation of the application of the invention on the wing of a glider - paraglider.

Sl. 10 i Sl. 11. Prikaz primjene izuma na krilu letećeg zmaja Sl. 10 and Fig. 11. Presentation of the application of the invention on the wing of a flying kite

Detaljan opis načina ostvarivanja izuma Detailed description of the method of realizing the invention

Ostvarenje izuma u njegovoj osnovnoj verziji, koja konstruktivno realizira bit izuma zrakoplovnog krila sa aerodinamičkim profilom s mogućnošću unutarnjeg prostrujavanja i reguliranog povećanja uzgonske sile, može se prikazati, s pozivom na Sl. 1 i Sl. 2 na elementima vertikalnog poprečnog presjeka zrakoplovnog krila rađenog prema ovom izuma. The realization of the invention in its basic version, which constructively realizes the essence of the invention of an aircraft wing with an aerodynamic profile with the possibility of internal flow and a regulated increase in lift force, can be shown, with reference to FIG. 1 and Fig. 2 on the elements of the vertical cross-section of the aircraft wing made according to the present invention.

Konstruktivno, krilo se sastoji iz: gornje aerodinamički oblikovane nosive plohe 1 i donje aerodinamički oblikovane nosive plohe 2, koje su međusobno povezane spojnim rebrima 3, cijelom dužinom profila ploha l i 2, gdje je međusobni razmak spojnih rebara određen konstruktivnim zahtjevima. Nosive aerodinamički oblikovane plohe l i 2, sa spojnim rebrima 3, zajedno čine jedinstvenu konstrukciju krila, čiji vertikalni poprečni presjek u smjeru leta, po zatvorenoj liniji koja obuhvata konturu što je čine vanjske površine ploha 1 i 2, daje odabrani aerodinamički profil krila. Unutarnje površine aerodinamički oblikovanih ploha 1 i 2, svojim međusobnim razmakom, kao i međusobnim razmakom spojnih rebara 3, obrazuju tunel 4 za unutarnje prostrujavanje krila koji se proteže od prednjeg - napadnog ruba krila 5, do zadnjeg - izlaznog ruba krila 6, čiji je otvor 7 za ulaz zračne struje postavljen većim dijelom ili u potpunosti ispod simetrale 9 aerodinamičkog profila. Otvor izlazne zračne struje 8, postavljen je u potpunosti ispod simetrale aerodinamičkog profila 9, uz izlazni rub krila 6. Tunel 4 za unutarnje prostrujavanje krila je aerodinamički oblikovan i postavljen unutar profila krila na način da se ulazna zračne struja 12, izdvaja iz onog dijela uniformnog toka zraka ispred krila, koji se na napadnom rubu krila dijeli i teče prema donjoj nosivoj površini krila, te tako izdvojena usmjerava usponski u tunel 4, dok se u izlaznom dijelu tunela, zračna struja usmjerava nisponski kako bi se dobio oboreni trag izlazne zračne struje 13. U varijanti tehničkog rješenja izuma, u tunel za unutarnje prostrujavanje 4 su postavljene odgovarajuće prednje usmjeravajuće lopatice 10, za usmjeravanje ulazne zračne struje 12, te zadnje usmjeravajuće lopatice 11, za usmjeravanje izlazne zračne struje 13. Structurally, the wing consists of: the upper aerodynamically shaped bearing surface 1 and the lower aerodynamically shaped bearing surface 2, which are connected to each other by connecting ribs 3, along the entire length of the profile of surfaces l and 2, where the mutual spacing of the connecting ribs is determined by structural requirements. The load-bearing aerodynamically shaped surfaces l and 2, with connecting ribs 3, together form a unique wing construction, whose vertical cross-section in the direction of flight, along a closed line that encompasses the contour formed by the outer surfaces of surfaces 1 and 2, gives the chosen aerodynamic profile of the wing. The internal surfaces of the aerodynamically shaped surfaces 1 and 2, with their mutual distance, as well as the mutual distance of the connecting ribs 3, form a tunnel 4 for the internal flow of the wing, which extends from the front - leading edge of the wing 5, to the rear - exiting edge of the wing 6, the opening of which is 7 for the air flow inlet placed mostly or completely below the bisector 9 of the aerodynamic profile. The exit air flow opening 8 is placed completely below the bisector of the aerodynamic profile 9, next to the exit edge of the wing 6. The tunnel 4 for internal flow of the wing is aerodynamically shaped and placed inside the wing profile in such a way that the incoming air flow 12 is separated from that part of the uniform of the air flow in front of the wing, which divides at the leading edge of the wing and flows towards the lower bearing surface of the wing, and thus separates it and directs it upwards into the tunnel 4, while in the exit part of the tunnel, the air flow is directed downwards in order to obtain a downdraft of the outgoing air flow 13 In a variant of the technical solution of the invention, appropriate front directing vanes 10, for directing the incoming air flow 12, and rear directing vanes 11, for directing the outgoing air flow 13, are placed in the internal flow tunnel 4.

Ostvarenje izuma u njegovim varijantama koje omogućavaju promjenu veličine uzgonske sile prikazano je na Sl. 3, sa detaljima funkcioniranja mehanizma 15 i 16 za zatvaranje ulaznog otvora 7 tunela za unutarnje prostrujavanje krila, prikazanim na Sl. 4 i Sl. 5. The realization of the invention in its variants that enable the change in the magnitude of the buoyant force is shown in Fig. 3, with details of the functioning of the mechanism 15 and 16 for closing the inlet opening 7 of the tunnel for the internal flow of the wing, shown in FIG. 4 and Fig. 5.

U varijanti primjene izuma, usmjeravajuće lopatice (žaluzije) 11 za usmjeravanje izlazne zračne struje 13, aerodinamički su profilirane i ugrađene u izlazni otvor 8 tunela 4, pri čemu se protežu između dva susjedna spojna rebra 3 koja bočno ograničavaju širinu tunela 4. Usmjeravajuće lopatice 11 u svojoj nepokretnoj varijanti, su postavljene u odnosu na zračnu struju opstrujavanja i prostrujavanja pod kutom koji za odabrane aerodinamičke parametre postiže željeni otklon zračnog traga izlazne struje 13 i njegov utjecaj na veličinu uzgonske sile. In a variant of the application of the invention, the directional vanes (louvers) 11 for directing the outgoing air flow 13 are aerodynamically profiled and installed in the exit opening 8 of the tunnel 4, where they extend between two adjacent connecting ribs 3 that laterally limit the width of the tunnel 4. The directional vanes 11 in its stationary version, they are placed in relation to the inflow and outflow air current at an angle which, for the selected aerodynamic parameters, achieves the desired deflection of the air trail of the output current 13 and its influence on the magnitude of the lift force.

U svojoj pokretnoj varijanti, usmjeravajuće lopatice 11 imaju mogućnost zakretanja u vertikalnoj ravni oko svoje uzdužne ose 14 koja se proteže između spojnih rebara 3, a zakretanje lopatica se vrši odgovarajućim mehanizmom smještenim unutar konstrukcije spojnih rebara 3. Ova funkcionalna varijanta lopatica 11 omogućava finu regulaciju veličine uzgonske sile od kuta lopatica koji obaranjem zračnog traga izlazne zračne struje daje najpovoljniji rezultat za povećanje uzgonske sile, do potpunog zatvaranja izlaznog otvora 8 tunela za unutarnje prostrujavanje 4 i poravnavanje plohe lopatica 11 sa linijom vanjske strane donje plohe 2 zrakoplovnog krila. In its movable version, the guiding vanes 11 have the ability to rotate in the vertical plane around their longitudinal axis 14, which extends between the connecting ribs 3, and the rotation of the vanes is done by a suitable mechanism located inside the construction of the connecting ribs 3. This functional variant of the vanes 11 enables fine regulation of the size lift force from the angle of the blades, which, by collapsing the air trail of the outgoing air current, gives the most favorable result for increasing the lift force, until the exit opening 8 of the internal flow tunnel 4 is completely closed and the blade surface 11 is aligned with the line of the outer side of the lower surface 2 of the aircraft wing.

U istoj varijanti primjene izuma, omogućava se sinhronizirano zakretanje izlaznih usmjeravajućih lopatica 11, sa kretanjem zasuna 15 za djelomično ili potpuno zatvaranje ulaznog otvora 7 tunela 4 za unutarnje prostrujavanje. Mehanizam za zatvaranje ulaznog otvora 7, tunela 4, sastoji se iz: zasuna 15 oblikovanog prema profilu prednjeg dijela krila, vodilica zasuna i pokretačkog mehanizma 16 smještenog unutar konstrukcije krila i spojnih rebara 3, te pokretne otklone ploče 18 koja se pri djelomičnom zatvaranju ulaznog otvora 7 oslanja na usmjeravajuću lopaticu 10 u cilju prilagođivanja ulaznog oblika tunela potrebama smanjenog prostrujavanja. In the same variant of the application of the invention, the synchronized rotation of the output guiding vanes 11 is enabled, with the movement of the latch 15 for partially or completely closing the entrance opening 7 of the tunnel 4 for internal flow. The mechanism for closing the entrance opening 7, tunnel 4, consists of: a latch 15 shaped according to the profile of the front part of the wing, latch guides and a drive mechanism 16 located inside the wing structure and connecting ribs 3, and a movable plate 18 that deflects when the entrance opening is partially closed 7 rests on the guiding vane 10 in order to adapt the entrance shape of the tunnel to the needs of reduced flow.

U varijanti primjene izuma koja omogućava dopunsko povećanje uzgonske sile, također prikazano na Sl. 3, u jednu od aerodinamički zakrivljenih nosivih ploha krila (na prikazu u Sl. 3 to je donja nosiva ploha 2) ugrađena je cijev 19 kojom se iz turbokompresora pogonskog turbomlaznog motora zrakoplova dovodi zrak pod povišenim tlakom, koji se pomoću brizgalica 20 ubacuje u tunel za unutarnje prostrujavanje krila, u smjeru slobodnog prostrujavanja, pojačavajući obim i brzinu prostrujavanja i efekt što ga na uzgon krila ima unutarnje prostrujavanje. In a variant of the application of the invention that enables an additional increase in buoyancy force, also shown in Fig. 3, in one of the aerodynamically curved supporting surfaces of the wing (in the view in Fig. 3 it is the lower supporting surface 2) a pipe 19 is installed, which supplies air under increased pressure from the turbocompressor of the propulsion turbojet engine of the aircraft, which is injected into the tunnel by means of injectors 20 for the internal flow of the wing, in the direction of free flow, increasing the volume and speed of the flow and the effect that the internal flow has on the lift of the wing.

Na identičan način se u varijanti izuma, u tunel može ubrizgavati vodeni aerosol čiji efekt je izražen u inerciji i dubini obaranja traga izlaznog mlaza zraka 13, koji istječe iz izlaznog otvora 8 tunela 4 za unutarnje prostrujavanje. In an identical way, in a variant of the invention, a water aerosol can be injected into the tunnel, the effect of which is expressed in the inertia and depth of the trail of the exit jet of air 13, which flows out of the exit opening 8 of the tunnel 4 for internal circulation.

U posebnoj varijanti primjene izuma u cilju poboljšanja konvencionalnih rješenja povećanja uzgonske sile, kao što su rješenja sa promjenom krivine profila krila pomoću zakretnih zakrilaca (Flaps), rješenje je tehnički i funkcionalno prikazano na Sl .6 i Sl. 7. In a special variant of the application of the invention in order to improve conventional solutions for increasing the lift force, such as solutions with changing the curvature of the wing profile using flaps, the solution is technically and functionally shown in Fig. 6 and Fig. 7.

Pokretno zakrilce 21 predstavlja nastavak izlaznog dijela krila građenog prema tehničkom rješenju ovoga izuma, te u sebi isto zakrilce 21 sadrži završni dio tunela za unutarnje prostrujavanje 4, sa u izlazni otvor 8 ugrađenim usmjeravajućim lopaticama 11 za usmjeravanje izlazne struje zraka 13. Zakrilce 21 je učvršćeno za pokretni dio gondole 23, a ista preko zgloba 26 i mehanizma za pokretanje 25, za nepokretni dio gondole 24, koji je opet učvršćen za konstrukciju krila zrakoplova u predjelu spojnih rebara 3 koje povezuju obje nosive plohe l i 2 zrakoplovnog krila. U osnovnom, uvučenom položaju zakrilca 21, kako je to prikazano na Sl. 6, zakrilce 21 je prostrujavano zrakom koji dolazi iz tunela 4, nakon čega isti zrak preko lopatica 11 za usmjeravanje izlazne zračne struje ističe kroz izlazni otvor 8, obrazujući ispod krila manje ili više oborem zračni trag 13. Efekat što ga na uzgonsku silu proizvodi prostrujavanje krila i zračni trag, može se po potrebi umanjivati podizanjem spojlera 27 koji je zglobno učvršćen na gornjoj nosivoj plohi krila l i premošćuje procjep između krila i zakrilca. Podizanjem spojlera, koji je već poznato tehničko rješenje, ispušta se iznad zakrilca dio zraka iz tunela 4, te ujedno podiže i odbacuje zračna struja koja nadstrujava gornju nosivu plohu l krila, djelujući pri tome kao zračna kočnica (Lift damper). U svom izvučenom i na dole oborenom položaju, kako je to prikazano na Sl. 7, zakrilce 21 je istovremeno prostrujavano kroz svoj unutarnji tunel, te nadstrujavano po svojoj gornjoj površini, zrakom koji dolazi iz tunela 4. Time je omogućeno odstranjivanje turbulencija koje bi nastale iza zakrilca, pomoću struje zraka 28 koja se usmjerava pokretnim spojlerom 27. U cilju boljeg usmjeravanja zračne struje kroz zakrilce u izvučenom i na dole oborenom položaju, u prednjem dijelu zakrilca 21 je ugrađeno predkrilce 22, dok je zatvaranje procjepa koji nastaje između zakrilca 21 i donje nosive plohe 2 krila, omogućeno ugrađenim elastičnim spojlerima 29 i 30. The movable flap 21 is a continuation of the exit part of the wing built according to the technical solution of this invention, and the same flap 21 contains the final part of the tunnel for internal flow 4, with directing vanes 11 installed in the outlet opening 8 for directing the outgoing air flow 13. The flap 21 is fixed for the movable part of the nacelle 23, and the same through the joint 26 and the starting mechanism 25, for the stationary part of the nacelle 24, which is again fixed to the structure of the aircraft wing in the area of the connecting ribs 3 that connect both bearing surfaces l and 2 of the aircraft wing. In the basic, retracted position of the flap 21, as shown in Fig. 6, the flaps 21 are flowed with the air coming from the tunnel 4, after which the same air flows through the blades 11 for directing the output air flow through the outlet opening 8, forming a more or less steep air track 13 under the wing. The effect of the flow on the lift force wings and air trail, can be reduced if necessary by raising the spoiler 27, which is hingedly fixed on the upper bearing surface of the wing l and bridges the gap between the wing and the flap. By raising the spoiler, which is already a known technical solution, a part of the air from the tunnel 4 is released above the flap, and at the same time it lifts and rejects the air stream that overflows the upper bearing surface l of the wing, acting as an air brake (Lift damper). In its extended and down-turned position, as shown in Fig. 7, the flap 21 was simultaneously flowed through its inner tunnel, and superflowed on its upper surface, with the air coming from tunnel 4. This enabled the removal of turbulence that would occur behind the flap, using the air stream 28 which is directed by the movable spoiler 27. In order to better directing the air current through the flaps in the extended and lowered position, a pre-flap 22 is installed in the front part of the flap 21, while the closing of the gap that occurs between the flap 21 and the lower bearing surface 2 of the wing is made possible by the built-in elastic spoilers 29 and 30.

Rješenje primjene izuma na krilo čija je nosiva površina izrađena iz tkanine, kao što je slobodno leteće krilo planera - paraglidera koje je nizom prednjih i zadnjih konopa vezano za glavne veze pilota - letača, prikazano je na Sl. 8. i Sl. 9. The solution of applying the invention to a wing whose bearing surface is made of fabric, such as the free-flying wing of a glider - paraglider, which is connected to the main connections of the pilot - flyer by a series of front and rear ropes, is shown in Fig. 8 and Fig. 9.

U ovoj varijanti primjene izuma, aerodinamički profil krila sa mogućnošću unutarnjeg prostrujavanja čine: gornja 1 i donja 2 nosiva ploha krila rađene iz tkanine, međusobno povezane uzduž profila nizom u smjeru leta postavljenih rebara 33, također rađenih iz tkanine, sa međusobnim razmakom rebara 33 koje diktiraju konstruktivni zahtjevi, čiji oblik - kroj zajedno sa nosivim plohama 1 i 2 daje krilo sa odabranim aerodinamičkim profilom, sa nizom paralelnih tunela 4 za unutarnje prostrujavanje krila zrakom. Odabrani profil i odabrano smanjenje presjeka tunela duž profila, osigurava dobro punjenje zrakom i održavanje oblika krila i profila napetim. Prednji -napadni rubovi ploha 1 i 2 su ojačani porubom tkanine, kao i napadni rubovi prednjeg dijela 3 rebara 33. Gornja nosiva ploha 1 je na izlaznom rubu krila 6 duža od donje nosive plohe 2 krila. Nizom prednjih konopa 35 učvršćenih za donju nosivu plohu 2 u predjelu veze sa rebrima 33 i njihovog prednjeg dijela 3, te nizom zadnjih konopa 34 učvršćenih za donju 2 i gornju 1 nosivu plohu, također u predjelu veze sa rebrima 33, krilo je povezano za glavnim vezama pilota - letača. Time pilot ima mogućnost da povlačenjem odabranih konopa mijenja zakrivljenost profila krila i kut obaranja zračne struje 13 koja izlazi iz tunela 4 za unutarnje prostrujavanje krila čime povećava uzgon odabranog kraja krila i regulira upravljanje krilom planera. In this variant of the application of the invention, the aerodynamic profile of the wing with the possibility of internal flow consists of: upper 1 and lower 2 bearing surfaces of the wing made of fabric, interconnected along the profile by a series of ribs 33 placed in the direction of flight, also made of fabric, with a mutual distance between the ribs 33 which dictated by the constructive requirements, the shape of which - the cut together with the load-bearing surfaces 1 and 2 gives a wing with a selected aerodynamic profile, with a series of parallel tunnels 4 for the internal flow of the wing with air. The selected profile and the selected reduction of the tunnel section along the profile ensures good air filling and keeping the shape of the wing and profile taut. The front leading edges of surfaces 1 and 2 are reinforced with a fabric hem, as well as the leading edges of the front part 3 of the ribs 33. The upper load-bearing surface 1 is longer at the exit edge of the wing 6 than the lower load-bearing surface 2 of the wing. By a series of front ropes 35 fixed to the lower bearing surface 2 in the area of connection with the ribs 33 and their front part 3, and by a series of rear ropes 34 fixed to the lower 2 and upper 1 bearing surface, also in the area of connection with the ribs 33, the wing is connected to the main connections between pilots and flyers. By pulling the selected ropes, the pilot has the possibility to change the curvature of the wing profile and the angle of attack of the air current 13 that comes out of the tunnel 4 for the internal flow of the wing, which increases the lift of the selected end of the wing and regulates the control of the glider wing.

Posebno rješenje u ovoj varijanti primjene izuma je rješenje profiliranja prednjeg - napadnog ruba 31 gornje nosive plohe 1 i prednjeg - napadnog ruba 32 donje nosive plohe 2, te prednjeg dijela 3 rebara 33, prikazanih na presjeku krila na Sl. 8 i Sl. 9. Navedeni prednji rubovi 31, 32 i 3 su rađeni kao aerodinamički oblikovane cijevi od tkanine koja je u tom dijelu gumiranjem ili na drugi tehnološki način učinjena trajno zrakonepropusnom, tako da se aerodinamička forma prednjih rubova 31 i 32 obje nosive plohe, te prednjeg ruba 3 rebara 33 postiže napuhivanjem preko zajedničkog ventila za napuhivanje 38. Time se postiže napeta forma prednjeg dijela krila i dobra otvorenost prednjeg dijela tunela za unutarnje prostrujavanje krila zrakom. A special solution in this variant of application of the invention is the solution of profiling the front - leading edge 31 of the upper bearing surface 1 and the front - leading edge 32 of the lower bearing surface 2, and the front part 3 of the ribs 33, shown in the section of the wing in Fig. 8 and Fig. 9. The mentioned front edges 31, 32 and 3 are made as aerodynamically shaped tubes of fabric, which in that part is made permanently air-tight by rubbering or by other technological means, so that the aerodynamic shape of the front edges 31 and 32 of both the bearing surface and the front edge 3 ribs 33 are achieved by inflating through the common inflation valve 38. This achieves a tense form of the front part of the wing and a good openness of the front part of the tunnel for the internal air circulation of the wing.

Rješenje primjene izuma na krilo čija je nosiva površina izrađena iz tkanine koja je napeta između elemenata čvrste nosive konstrukcije, kao kod letećih zmajeva, prikazano je na Sl. 10. i Sl. 11. The solution for applying the invention to a wing whose bearing surface is made of fabric that is stretched between elements of a solid bearing structure, as in flying kites, is shown in Fig. 10 and Fig. 11.

U ovoj varijanti primjene izuma, aerodinamički profil krila sa mogućnošću unutarnjeg prostrujavanja čine: dvije aerodinamički oblikovane nosive letve napadnog ruba krila, gornja aerodinamički oblikovana letva 31 i donja aerodinamički oblikovana letva 32, međusobno povezane čvrstim spojnim rebrima 3 u jedinstvenu konstruktivnu cjelinu. Navedene letve i spojna rebra mogu biti izrađene iz npr. aluminijske legure, stakloplastičnog kompozita, ili kombinirano. Na iste letve 31 i 32 su cijelom dužinom vezane gornja nosiva ploha krila 1 i donja nosiva ploha krila 2, rađene iz tkanine, međusobno povezane cijelom dužinom profila nizom u smjeru leta postavljenih rebara 33, također rađenih iz tkanine. Gornja 1 i donja 2 nosiva ploha krila, zajedno sa spojnim rebrima 33 čine niz paralelnih tunela 4 za unutarnje prostrujavanje krila. Izlazni dio gornje nosive plohe 1 krila je duži od izlaznog dijela donje nosive plohe 2 krila. In this variant of the application of the invention, the aerodynamic profile of the wing with the possibility of internal flow consists of: two aerodynamically shaped bearing slats of the leading edge of the wing, the upper aerodynamically shaped slat 31 and the lower aerodynamically shaped slat 32, interconnected by solid connecting ribs 3 into a unique structural unit. Said slats and connecting ribs can be made of, for example, aluminum alloy, fiberglass composite, or combined. The upper load-bearing surface of the wing 1 and the lower load-bearing surface of the wing 2, made of fabric, are connected to the same slats 31 and 32 along their entire length, connected to each other along the entire length of the profile by a series of ribs 33 placed in the direction of flight, also made of fabric. The upper 1 and lower 2 load-bearing surfaces of the wing, together with the connecting ribs 33, form a series of parallel tunnels 4 for the internal flow of the wing. The exit part of the upper bearing surface 1 of the wing is longer than the exit part of the lower bearing surface 2 of the wing.

U varijanti primjene ovoga rješenja, izlazni rub 6, gornje nosive plohe 1, na više je mjesta povezan konopima 34, te se preko jednostavnog mehanizma može povlačiti na dole, kako bi se povlačenjem konopa 34 mogla povećavati zakrivljenost izlaznog dijela krila, kao i kut obaranja zračnog traga izlazne zračne struje iz tunela 4 za unutarnje prostrujavanje krila. In a variant of the application of this solution, the exit edge 6 of the upper bearing surface 1 is connected in several places with ropes 34, and can be pulled down via a simple mechanism, so that by pulling the rope 34, the curvature of the exit part of the wing, as well as the angle of attack, can be increased of the air track of the outgoing air stream from tunnel 4 for the internal flow of the wings.

Rješenje primjene izuma na krilo koje služi kao lopatica rotora vjetrogeneratora ne razlikuje se od rješenje izuma primijenjenog u osnovnoj varijanti zrakoplovnog krila prikazanog na Sl. 2. i Sl. 3, s tim što je krilo preko svoje ramenjače postavljene duž krila približno u predjelu težišta profila, vezano za glavu i osovinu rotora vjetrogeneratora. Kroz istu ramenjaču krila prolaze veze mehanizama za promjenu napadnog kuta krila i eventualno reguliranje protoka zraka kroz tunele za unutarnje prostrujavanje krila. The solution of applying the invention to the wing that serves as a wind generator rotor blade does not differ from the solution of the invention applied in the basic variant of the aircraft wing shown in Fig. 2 and Fig. 3, with the fact that the wing is connected to the head and shaft of the rotor of the wind generator via its shoulder blade placed along the wing approximately in the area of the center of gravity of the profile. The links of the mechanisms for changing the angle of attack of the wings and possibly regulating the air flow through the tunnels for the internal flow of the wings pass through the same wing shoulder.

Način primjene izuma Method of application of the invention

U prethodnom izlaganju u dijelu Opisa o načinu ostvarenja izuma, u najvećoj mjeri je dat i okvirni način primjene izuma, kao što je: In the previous presentation in the part of the Description about the method of realization of the invention, to the greatest extent, an outline method of application of the invention was given, such as:

- Izrada krila za zrakoplove, naročito za transportne zrakoplove, letjelice posebnih namjena, sa poboljšanim poletno - sletnim karakteristikama i poboljšanim mogućnostima reguliranja nosivosti u toku leta; - Production of wings for aircraft, especially for transport aircraft, special purpose aircraft, with improved take-off and landing characteristics and improved possibilities of regulating the payload during flight;

- Izrada letećih aeromodela sa krilom sa unutarnjim prostrujavanjem; - Making flying aeromodels with a wing with internal flow;

- Izrada krila letećih planera - paraglidera i krila letećih zmajeva sa većom nosivošću i poboljšanim karakteristikama i sigurnošću pri startu i letenju; - Creation of wings of flying gliders - paragliders and wings of flying kites with greater load capacity and improved characteristics and safety during take-off and flight;

- Izrada lopatica vjetrogeneratora sa većom iskoristivošću laganih vjetrova i dr. - Making wind generator blades with greater utilization of light winds, etc.

Kako je zrakoplovstvo i aerodinamika složena tehnička oblast, detalji primjene mogu se definirati tek nakon ispitivanja i razvoja prototipova na koja su primijenjena rješenja ovoga izuma. As aviation and aerodynamics is a complex technical field, application details can only be defined after testing and developing prototypes to which the solutions of this invention are applied.

Claims (15)

1. Krilo sa aerodinamičkim profilom s mogućnošću unutarnjeg prostrujavanja i reguliranog povećanja uzgonske sile, koje se sastoji od konstruktivno čvrste gornje aerodinamički oblikovane nosive plohe i donje aerodinamički oblikovane nosive plohe, koje su međusobno razmaknute i čvrsto povezane spojnim rebrima po cijeloj dužini profila unutarnjih strana gornje i donje nosive plohe, tako da gornja i donja nosiva ploha zajedno sa spojnim rebrima čine jedinstvenu konstrukciju krila čiji poprečni presjek u vertikalnoj ravni u smjeru leta, po liniji koja obuhvaća vanjsku konturu obje nosive plohe, daje konstruktivno odabrani najpovoljniji aerodinamički profil krila, naznačeno time, što međusobno nasuprot postavljene površine gornje i donje aerodinamički oblikovane nosive plohe krila, međusobnim razmakom i međusobnim razmakom spojnih rebara, obrazuju najmanje jedan aerodinamički oblikovan tunel za unutarnje aerodinamičko prostrujavanje krila zrakom, na način daje prednji otvor tunela za ulaz zračne struje postavljen na prednjem - napadnom rubu profila krila, većim dijelom ili u cijelosti svoga vertikalnog presjeka ulaznog otvora ispod simetrale profila krila, a zadnji otvor tunela za izlaz zračne struje postavljen uz izlazni rub profila krila, u cijelosti svog vertikalnog presjeka izlaznog otvora, ispod simetrale profila krila, dok je unutarnji oblik tunela u svom presjeku u vertikalnoj ravni u smjeru leta takav, da se ulazeća zračna struja, gledano u odnosu na tetivu profila, u tunel uvodi usponski, a izlazeća zračna struja iz tunela ispušta nisponski.1. A wing with an aerodynamic profile with the possibility of internal flow and a regulated increase in lift force, which consists of a structurally solid upper aerodynamically shaped bearing surface and a lower aerodynamically shaped bearing surface, which are mutually spaced and firmly connected by connecting ribs along the entire length of the profile of the inner sides of the upper and lower bearing surfaces, so that the upper and lower bearing surfaces, together with the connecting ribs, form a unique wing structure whose cross-section in the vertical plane in the direction of flight, along the line that encompasses the outer contour of both bearing surfaces, gives the constructively selected most favorable aerodynamic profile of the wing, indicated by , which are placed opposite each other on the surface of the upper and lower aerodynamically shaped bearing surfaces of the wing, with the mutual distance and the mutual distance of the connecting ribs, form at least one aerodynamically shaped tunnel for the internal aerodynamic flow of the wing with air, in such a way that the front opening of the tunnel for the entrance zr air current placed on the front - leading edge of the wing profile, for the most part or entirely of its vertical cross-section of the inlet opening below the bisector of the wing profile, and the last opening of the air stream exit tunnel placed along the exit edge of the wing profile, in its entire vertical cross-section of the outlet opening, below bisector of the wing profile, while the internal shape of the tunnel in its section in the vertical plane in the direction of flight is such that the incoming air stream, seen in relation to the chord of the profile, is introduced into the tunnel ascending, and the exiting air stream is discharged from the tunnel descending. 2. Krilo prema zahtjevu pod 1, naznačeno time, što je u prednji - ulazni otvor tunela za unutarnje aerodinamičko prostrujavanje krila, na nepokretan način ugrađena najmanje jedna usmjeravajuća lopatica, čiji je vertikalni poprečni presjek u smjeru leta aerodinamički oblikovan i postavljen tako da usmjerava ulaznu zračnu struju u tunel usponski, približno paralelno sa gornjom i donjom plohom što oblikuju ulazni dio tunela.2. The wing according to claim 1, indicated by the fact that in the front - entrance opening of the tunnel for the internal aerodynamic flow of the wing, at least one guiding vane is immovably installed, the vertical cross-section of which is aerodynamically shaped in the direction of flight and positioned so as to direct the incoming the air flow into the tunnel ascending, approximately parallel to the upper and lower surfaces that form the entrance part of the tunnel. 3. Krilo prema zahtjevu pod 1, naznačeno time, što je u zadnji - izlani otvor tunela za unutarnje prostrujavanje krila, na nepokretan način ugrađena najmanje jedna usmjeravajuća lopatica, čiji je vertikalni poprečni presjek u smjeru leta aerodinamički oblikovan i postavljen tako da izlaznu zračnu struju iz tunela usmjerava nisponski, pod kutem koji je jednak ili veći od kuta što ga u odnosu na pravac linije izlaznog dijela donje nosive plohe krila, zaklapa pravac zračne struje koja opstrujava niz gornju izlaznu liniju profila.3. The wing according to claim 1, indicated by the fact that in the last - exiting opening of the tunnel for the internal flow of the wing, at least one guiding vane is immovably installed, the vertical cross-section of which in the direction of flight is aerodynamically shaped and positioned so that the outgoing air stream from the tunnel it directs downwards, at an angle that is equal to or greater than the angle that, in relation to the direction of the line of the exit part of the lower bearing surface of the wing, overlaps the direction of the air stream that flows down the upper exit line of the profile. 4. Krilo prema zahtjevu pod 3, naznačeno time, što su usmjeravajuće lopatice ugrađene tako da se mogu zakretati oko svoje uzdužne ose, na način da svojim položajem usmjeravaju pravac izlazne zračne struje prema zahtjevima sustava za reguliranje veličine uzgonske sile krila, s time da mogu zauzeti i položaj kojim zatvaraju izlazni otvor tunela za unutarnje prostrujavanje krila, pri tome se približno poravnavajući sa linijom izlaznog dijela donje nosive plohe krila4. The wing according to claim 3, indicated by the fact that the guiding vanes are installed so that they can rotate around their longitudinal axis, in such a way that their position directs the direction of the outgoing air flow according to the requirements of the system for regulating the amount of wing lift force, with the fact that they can also occupy the position in which they close the exit opening of the tunnel for the internal airflow of the wing, thereby approximately aligning with the line of the exit part of the lower bearing surface of the wing 5. Krilo prema zahtjevu pod 2, naznačeno time, što je u prednjem dijelu zrakoplovnog krila ugrađen pokretni zasun, oblikovan prema profilu i dimenzijama prednjeg ulaznog otvora tunela za unutarnje prostrujavanje krila, koji je pri potpuno otvorenom ulazu tunela uvučen u ležište unutar konstrukcije prednjeg dijela donje nosive plohe krila, a po potrebi djelomičnog ili potpunog zatvaranja ulaznog otvora tunela, isti zasun se pomoću pokretačkog mehanizma, usmjeravan u konstrukciji krila ugrađenim vodilicama, izvlači iz svog ležišta, zatvarajući djelomično ili u potpunosti ulazni otvor tunela za unutarnje prostrujavanje krila i čineći u tom potpuno zatvorenom položaju otvora tunela, prednji dio krila oblikovanim u skladu sa linijom odabranog aerodinamičkog profila krila sa zatvorenom vanjskom konturom. i5. Wing according to claim 2, indicated by the fact that in the front part of the aircraft wing a movable latch is installed, shaped according to the profile and dimensions of the front entrance opening of the tunnel for the internal flow of the wing, which, when the entrance of the tunnel is fully open, is pulled into the bed inside the structure of the front part the lower bearing surface of the wing, and if it is necessary to partially or completely close the entrance opening of the tunnel, the same bolt is pulled out of its seat by means of a drive mechanism, guided in the wing construction by built-in guides, partially or completely closing the entrance opening of the tunnel for the internal circulation of the wing and making in that completely closed position of the tunnel opening, the front part of the wing shaped in accordance with the line of the chosen aerodynamic profile of the wing with a closed outer contour. and 6. Krilo prema zahtjevima pod 4 i pod 5, naznačeno time, što se pokretanje usmjeravajućih lopatica ugrađenih u izlazni otvor tunela za unutarnje prostrujavanje zrakom krila i pokretanje zasuna za zatvaranje ulaznog otvora tunela za aerodinamičko prostrujavanje krila, odvija međusobno sinhronizirano.6. A wing according to requirements under 4 and under 5, characterized by the fact that the actuation of the guiding vanes installed in the exit opening of the wing's internal air flow tunnel and the actuation of the latch for closing the entrance opening of the wing's aerodynamic air flow tunnel are synchronized with each other. 7. Krilo prema zahtjevu pod 1, naznačeno time, što je unutar konstrukcije aerodinamički oblikovanih nosivih ploha krila ugrađen uređaj za dodatno - prinudno prostrujavanje tunela za aerodinamičko prostrujavanje krila zrakom, koji uređaj se sastoji iz cijevi za dovod zraka pod povišenim tlakom, čiji su ispušni izvodi za zrak uvedeni unutar tunela za unutarnje prostrujavanje krila i usmjereni niz smjer strujanja unutarnje zračne struje, te dimenzionirani i oblikovani na način da je brzina isticanja zraka pod tlakom veća od brzine slobodnog aerodinamičkog prostrujavanja tunela.7. Wing according to claim 1, indicated by the fact that inside the structure of the aerodynamically shaped bearing surfaces of the wing there is a device for additional - forced jetting of the tunnel for aerodynamic jetting of the wing with air, which device consists of air supply pipes under elevated pressure, whose exhaust air ducts introduced inside the wing's internal flow tunnel and directed down the direction of the flow of the internal air current, and dimensioned and shaped in such a way that the velocity of pressurized air discharge is greater than the speed of the free aerodynamic flow of the tunnel. 8. Krilo prema zahtjevu pod 7, naznačeno time, što raspolaže paralelnim uređajem za ubrizgavanje u tunel za unutarnje prostrujavanje krila vodenih mlazeva, koji sa zrakom u tunelu stvaraju mješavinu - aerosol, ili se za istu svrhu koristi kao univerzalan uređaj za ubrizgavanje u tunel za unutarnje prostrujavanje krila, zraka pod povišenim tlakom.8. Wing according to claim 7, indicated by the fact that it has a parallel device for injection into the tunnel for the internal flow of water jets, which with the air in the tunnel create a mixture - aerosol, or is used for the same purpose as a universal device for injection into the tunnel for internal flow of wings, air under increased pressure. 9. Krilo prema zahtjevu pod 4, naznačeno time, što je zadnji - izlazni dio krila, zajedno sa izlaznim otvorom tunela za unutarnje prostrujavanje krila građen kao posebna cjelina, po svojoj poprečnoj dužini ograničena međusobnim razmakom spojnih rebara gornje i donje aerodinamički oblikovane nosive plohe krila, koje ima ulogu zakrilca, na način daje taj pokretni dio krila u ulozi zakrilca, na prednjoj strani aerodinamički zaobljen i uklopljen u istovjetno oblikovan završni dio nepokretnog dijela krila, pri čemu sa gornje strane ovog dodirnog spoja ostavljen procjep koji se prekriva odgovarajuće oblikovanim spojlerom koji je zglobno učvršćen za nepokretni dio krila i ima mogućnost pokretanja i otvaranja navedenog procjepa između nepokretnog dijela krila i zakrilca, te je nadalje zakrilce sa svojom donjom stranom učvršćen za konstrukciju i zakretne uređaje koji svojim pokretanjem dovode ovo zakrilce u izvučem i na dole zakrenuti - oboreni položaj u kojem položaju je omogućeno da zrak iz tunela za unutarnje prostrujavanje nepokretnog dijela krila nesmetano prolazi i jednim dijelom svog protoka prostrujava unutrašnjost zakrilca i izlazi između usmjeravajućih lopatica kroz izlazni otvor tunela, a drugim dijelom svog protoka prolazi ispod zglobno učvršćenog spojlera koji svojim položajem regulira veličinu gornjeg otvora i omogućava da isti dio zračne struje na najpovoljniji način nadstrujava vanjsku gornju površinu izvučenog zakrilca.9. The wing according to claim 4, indicated by the fact that the rear - exit part of the wing, together with the exit opening of the tunnel for the internal flow of the wing, is built as a separate unit, its transverse length is limited by the mutual spacing of the connecting ribs of the upper and lower aerodynamically shaped bearing surfaces of the wing , which has the role of a flap, in such a way that the moving part of the wing acts as a flap, aerodynamically rounded on the front side and integrated into the identically shaped final part of the immovable part of the wing, with a gap left on the upper side of this contact joint which is covered by a suitably shaped spoiler that is hingedly fixed to the immovable part of the wing and has the possibility of moving and opening the said gap between the immovable part of the wing and the flap, and furthermore the flap with its lower side is fixed to the structure and the pivoting devices which, by moving it, bring this flap to extend and rotate downwards - knocked down the position in which the air from t inlet for the internal flow of the immovable part of the wing passes unobstructed and part of its flow flows through the inside of the flap and exits between the guiding vanes through the tunnel exit opening, and with the other part of its flow it passes under the hinged fixed spoiler which regulates the size of the upper opening by its position and allows the same part of the air current supercharges the outer upper surface of the extended flap in the most favorable way. 10. Krilo prema zahtjevu pod 9, naznačeno time, što je unutar tunela za prostrujavanje pokretnog zakrilca, u njegovom prednjem dijelu postavljeno aerodinamički oblikovane predkrilce koje u izvučenom i oborenom položaju zakrilca regulira podjelu zračne struje na dio koji prostrujava zakrilce i dio koji nadstrujava njegovu vanjsku gornju površinu.10. A wing according to claim 9, indicated by the fact that inside the tunnel for the flow of the movable flap, in its front part, aerodynamically shaped front flaps are placed, which, in the extended and folded position of the flap, regulate the division of the air stream into the part that flows through the flap and the part that overflows its outer the upper surface. 11. Krilo prema zahtjevima pod 9 i pod 10, naznačeno time, što su na prijelazu između nepokretnog dijela krila i zakrilca, na donjoj nosivoj plohi krila ugrađena dva elastična spojlera koja su pri uvučenom položaju zakrilca uvučena u odgovarajuće procjepe u tijelima krila i zakrilca, a u izvučenom i oborenom položaju zakrilca se isti spojleri elastično izvijaju i premošćuju nastali razmak između donje nosive plohe nepokretnog dijela krila i donjeg dijela zakrilca, osiguravajući mirno strujanje zraka iznad i ispod navedenih elastičnih spojlera.11. A wing according to the requirements under 9 and under 10, characterized by the fact that at the transition between the immovable part of the wing and the flap, two elastic spoilers are installed on the lower bearing surface of the wing, which, when the flap is retracted, are inserted into the corresponding gaps in the body of the wing and the flap, and in the extended and folded position of the flaps, the same spoilers bend elastically and bridge the resulting gap between the lower bearing surface of the immovable part of the wing and the lower part of the flap, ensuring a smooth flow of air above and below the aforementioned elastic spoilers. 12. Slobodno leteće krilo klizača - paraglidera koje je nizom prednjih i zadnjih konopa vezano za glavne veze pilota - letača, prema zahtjevu pod l, naznačeno time, što su gornja i donja aerodinamički oblikovana nosiva ploha, kao i spojna rebra, rađeni iz jednostrukog sloja tkanine, na napadnom rubu krila ojačanog poruba, sa oblikom rebara koji osigurava odabrani aerodinamički profil krila, kod kojeg je gornja nosiva ploha na izlaznom rubu krila duža i nadkriljuje izlazni rub donje nosive plohe krila, a visina rebara, odn. međusobni razmak gornje i donje nosive plohe tako odabran, da smanjenje presjeka tunela za unutarnje prostrujavanje zrakom uzduž profila osigurava dobro punjenje tunela zrakom i održavanje napetim oblik profila i krila, dok posebno odabrani konopi koji ostvaruju vezu krila i pilota - letača, pružaju mogućnost da se njihovim povlačenjem mijenja zakrivljenost profila na odabranom dijelu krila i mijenja kut istjecanja izlazne zračne struje iz tunela za unutarnje prostrujavanje krila, čime se regulira promjena uzgona i upravljanje krilom.12. The free-flying wing of the glider - paraglider, which is connected by a series of front and rear ropes to the main connections of the pilot - flyer, according to the requirement under l, indicated by the fact that the upper and lower aerodynamically shaped bearing surface, as well as the connecting ribs, are made of a single layer fabric, on the leading edge of the wing with a reinforced hem, with the shape of the ribs that ensures the chosen aerodynamic profile of the wing, where the upper bearing surface on the wing's trailing edge is longer and exceeds the trailing edge of the lower wing's bearing surface, and the height of the ribs, or the distance between the upper and lower bearing surfaces is selected in such a way that the reduction of the cross-section of the tunnel for internal air flow along the profile ensures a good filling of the tunnel with air and keeping the shape of the profile and wing taut, while specially selected ropes that realize the connection between the wing and the pilot - the flyer, provide the possibility to by pulling them, it changes the curvature of the profile on the selected part of the wing and changes the angle of outflow of the air flow from the tunnel for the internal flow of the wing, which regulates the change in lift and the control of the wing. 13. Krilo prema zahtjevu pod 12, naznačeno time, što su prednji - napadni rubovi obje nosive plohe krila, kao i prednji rubovi spojnih rebara, rađeni iz dva sloja za zrak nepropusne tkanine, te oblikovani u vidu profilirane cijevi, međusobno povezani otvorima na način da se unutrašnjost navedenih dvoslojnih prednjih rubova može napuhati preko najmanje jednog zajedničkog ventila, pri čemu isti prednji rubovi poprimaju i zadržavaju aerodinamički oblik sukladan smjeru strujanja zraka i obliku prednjeg dijela odabranog aerodinamičkog profila krila, ujedno ukrućujući prednji - napadni rub krila i ulaznog otvora tunela za unutarnje prostrujavanje krila zrakom.13. A wing according to claim 12, indicated by the fact that the front - leading edges of both bearing surfaces of the wing, as well as the front edges of the connecting ribs, are made of two layers of air-tight fabric, and shaped in the form of a profiled tube, interconnected by openings in the manner that the inside of the mentioned two-layer front edges can be inflated via at least one common valve, whereby the same front edges take on and retain an aerodynamic shape in accordance with the direction of the air flow and the shape of the front part of the selected aerodynamic profile of the wing, at the same time stiffening the front - leading edge of the wing and the entrance opening of the tunnel for internal air flow of the wings. 14. Krilo letećeg zmaja rađeno većim dijelom iz tkanine koja je napeta na čvrstu nosivu konstrukciju zmaja, prema zahtjevu pod 12, naznačeno time, što su prednji - napadni rubovi obje nosive plohe krila rađeni kao dio čvrste konstrukcije zmaja u obliku dvije, u svom vertikalnom presjeku u smjeru strujanja zraka aerodinamički oblikovane letve rađene iz čvrstog materijala, međusobno povezane čvrstim spojnim rebrima postavljenim u smjeru strujanja zraka, sa međusobnim razmakom rebara određenim konstruktivnim zahtjevima i međusobnim razmakom gornje i donje letve određenim veličinom otvora tunela za unutarnje prostrujavanje i oblikom odabranog aerodinamičkog profila, na koje letve i njihova rebra se u posebno načinjene proreze uvlači i učvršćuje prednji rub gornje i donje nosive plohe krila i njihovih spojnih rebara rađenih iz tkanine, tako da zajedno sa prednjim letvama oblikuju profil krila sa tunelom za unutarnje prostrujavanje zrakom u toku leta.14. The wing of a flying kite made mostly of fabric that is stretched on a solid supporting structure of the kite, according to claim 12, characterized by the fact that the front - leading edges of both supporting surfaces of the wing are made as part of the solid structure of the kite in the form of two, in its vertical section in the direction of the air flow of aerodynamically shaped slats made of solid material, interconnected by solid connecting ribs placed in the direction of the air flow, with the mutual spacing of the ribs determined by the constructive requirements and the mutual spacing of the upper and lower slats determined by the size of the tunnel opening for internal circulation and the shape of the selected aerodynamic profile , on which slats and their ribs, the front edge of the upper and lower bearing surface of the wing and their connecting ribs made of fabric is inserted into specially made slots and fixed, so that together with the front slats they form the profile of the wing with a tunnel for internal air flow during flight. 15. Krilo - lopatica rotora vjetrogeneratora, prema zahtjevima pod 1 do 6, naznačeno time, što je krilo posebnom nosivom konstruktivnom vezom svoje ramenjače, postavljenom uzduž krila, upravno na profil i približno u težištu profila, vezano za glavu rotora vjetrogeneratora, na način da je preko navedene konstruktivne veze ramenjače omogućena promjena napadnog kuta profila krila u odnosu na pravac strujanja vjetra, te omogućeno upravljanje mehanizmima naznačenim u zahtjevima pod 4 i 5.15. Wing - rotor blade of a wind generator, according to requirements under 1 to 6, characterized by the fact that the wing is connected to the head of the rotor of the wind generator by a special load-bearing structural connection of its shoulder, placed along the wing, perpendicular to the profile and approximately in the center of gravity of the profile, in such a way that through the mentioned structural connection of the shoulder blade, it is possible to change the angle of attack of the wing profile in relation to the direction of the wind flow, and it is possible to control the mechanisms indicated in requirements under 4 and 5.
HR20010755A 2001-10-18 2001-10-18 Wing able to enhance lift by internal air flow HRPK20010755B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HR20010755A HRPK20010755B1 (en) 2001-10-18 2001-10-18 Wing able to enhance lift by internal air flow
PCT/HR2002/000049 WO2003039949A2 (en) 2001-10-18 2002-10-17 Wing with lift enhancement by internal air flow
AU2002349164A AU2002349164A1 (en) 2001-10-18 2002-10-17 Wing with lift enhancement by internal air flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20010755A HRPK20010755B1 (en) 2001-10-18 2001-10-18 Wing able to enhance lift by internal air flow

Publications (2)

Publication Number Publication Date
HRP20010755A2 true HRP20010755A2 (en) 2003-04-30
HRPK20010755B1 HRPK20010755B1 (en) 2004-10-31

Family

ID=10947375

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20010755A HRPK20010755B1 (en) 2001-10-18 2001-10-18 Wing able to enhance lift by internal air flow

Country Status (3)

Country Link
AU (1) AU2002349164A1 (en)
HR (1) HRPK20010755B1 (en)
WO (1) WO2003039949A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896489B (en) * 2021-02-19 2021-08-31 西北工业大学 Slotted guide vane type high lift device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0613243D0 (en) * 2005-09-22 2006-08-09 Pattinson 5 Ltd Kitepower generator
US7354247B2 (en) * 2005-10-27 2008-04-08 General Electric Company Blade for a rotor of a wind energy turbine
DE102009009305B4 (en) * 2009-02-12 2018-06-28 Peter Achilles Tubekite with lower sail
DE102010032424A1 (en) 2010-07-27 2012-02-02 Steffen Born Arc-shaped buoyant hang glider i.e. tube kite type buoyant hang glider, has canvas covering with air-filled leading edges which are cascaded, and flattened and flexible leading edge and diverting edges which are provided in flow direction
US8783624B2 (en) 2010-08-15 2014-07-22 The Boeing Company Laminar flow panel
DE102011112555B4 (en) * 2011-09-08 2019-10-31 Airbus Operations Gmbh A method of drawing and blowing fluid through a plurality of openings into a flow surface portion of a flow body
US9464532B2 (en) * 2013-03-05 2016-10-11 Bell Helicopter Textron Inc. System and method for reducing rotor blade noise
CA2938871A1 (en) * 2014-02-07 2015-08-13 Albert S. Richardson, Jr. Gust alleviator
CN104097765B (en) * 2014-08-03 2016-12-07 佛山市神风航空科技有限公司 A kind of double-layer plate wing
CN107264777A (en) * 2017-06-16 2017-10-20 青岛华创风能有限公司 Two-way active control downstream fluid exciting bank
CN107344612A (en) * 2017-06-16 2017-11-14 青岛华创风能有限公司 A kind of gas control equipment for wings/blades
CN107264776A (en) * 2017-06-16 2017-10-20 青岛华创风能有限公司 A kind of fluid exciting bank for wings/blades
CN108412687A (en) * 2017-09-13 2018-08-17 东莞理工学院 A kind of adaptive liter resistance regulation method, sail and the wind turbine of airfoil wind sail
CN111158387B (en) * 2020-01-17 2021-05-25 南京航空航天大学 Aircraft three-axis attitude control system and method based on active flow control
CN112504607B (en) * 2020-12-09 2021-06-29 周蕾 Wind deflection angle continuously adjustable torsion wind profile wind tunnel test passive simulation method
CN116822173B (en) * 2023-06-14 2024-01-02 西安交通大学 Design device, method and application of low-resistance pneumatic shape

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957054A (en) * 1950-02-14
US1782210A (en) * 1928-10-24 1930-11-18 Nose Toichi Aeroplane
US2136403A (en) * 1935-11-27 1938-11-15 Charles E Vance Means for developing reactive forces
FR1435994A (en) * 1965-03-08 1966-04-22 New wing and lift profile for better air penetration
US4844382A (en) * 1983-10-19 1989-07-04 Raisbeck Engineering, Inc. Dual turning vane air inlet assembly
FR2554081A1 (en) * 1983-11-02 1985-05-03 Sirretta Raymond Device for improving the aerodynamic conditions of penetration and lift of the aerofoils of aircraft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896489B (en) * 2021-02-19 2021-08-31 西北工业大学 Slotted guide vane type high lift device

Also Published As

Publication number Publication date
WO2003039949A3 (en) 2004-08-12
HRPK20010755B1 (en) 2004-10-31
WO2003039949A2 (en) 2003-05-15
AU2002349164A1 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
HRP20010755A2 (en) Wing able to enhance lift by internal air flow
AU2003216050B2 (en) An aircraft internal wing and design
US5348256A (en) Supersonic aircraft and method
US8752788B2 (en) Wing and a multiple propeller aircraft
CN105035306B (en) Jet-propelled wing flap lift-rising connection wing system and its aircraft
US6264136B1 (en) High efficiency combination wing aircraft
US5474257A (en) Deployable wing
US6113028A (en) Amphibious aircraft
US20200055595A1 (en) Cruise efficient vertical and short take-off and landing aircraft
ES2256481T3 (en) AIRCRAFT CONFIGURATION WITH IMPROVED AERODYNAMIC PERFORMANCES.
EP0409911A4 (en) Vtol aircraft
EA028045B1 (en) Fuselage and method for reducing drag
US8590831B2 (en) Flying vehicle
US4301980A (en) Propulsion system for a V/STOL airplane
US3508726A (en) Members subjected to an airflow
WO2015150470A1 (en) Controlling a tethered, roll-limited aircraft
US2479487A (en) Jet propelled airplane with wing discharge slot
EP0596131A1 (en) Flying vehicle
RU2007132757A (en) AIRCRAFT
GB2318558A (en) Vehicle with lift producing arrangement
US20020109043A1 (en) Flight vehicle having internal lift surfaces
RU2703324C1 (en) Transport aircraft
WO1997030894A1 (en) Amphibious aircraft
EP2504228A1 (en) Flying apparatus
CN117622467A (en) Aircraft wing

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
PKB1 Consensual patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20071018

Year of fee payment: 7

PBKO Lapse due to non-payment of renewal fee for consensual patent

Effective date: 20081019