GB2446684A - Vibration Measurement System For Gas Turbine Engine and Accelerometer Configured to Transmit Accelerometer Identifying Signal - Google Patents

Vibration Measurement System For Gas Turbine Engine and Accelerometer Configured to Transmit Accelerometer Identifying Signal Download PDF

Info

Publication number
GB2446684A
GB2446684A GB0723094A GB0723094A GB2446684A GB 2446684 A GB2446684 A GB 2446684A GB 0723094 A GB0723094 A GB 0723094A GB 0723094 A GB0723094 A GB 0723094A GB 2446684 A GB2446684 A GB 2446684A
Authority
GB
United Kingdom
Prior art keywords
accelerometer
identifier
connection
coupled
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0723094A
Other versions
GB2446684B (en
GB0723094D0 (en
Inventor
Gert Johannes Van Der Merwe
Daniel Edward Mollmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/565,120 external-priority patent/US20080127734A1/en
Application filed by General Electric Co filed Critical General Electric Co
Priority to GB0723094A priority Critical patent/GB2446684B/en
Publication of GB0723094D0 publication Critical patent/GB0723094D0/en
Publication of GB2446684A publication Critical patent/GB2446684A/en
Application granted granted Critical
Publication of GB2446684B publication Critical patent/GB2446684B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/008Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00 with calibration coefficients stored in memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/024Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation for range change; Arrangements for substituting one sensing member by another
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/10Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for switching-in of additional or auxiliary indicators or recorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/07Indicating devices, e.g. for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/84Measuring functions
    • H04Q2209/845Measuring functions where the measuring is synchronized between sensing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Technology Law (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A vibration measurement system (8) for a gas turbine engine (6) is provided. The vibration measurement system includes a first accelerometer (12) coupled to the gas turbine engine, the first accelerometer configured to transmit a first identifier (34, FIG. 3), a second accelerometer (13) coupled to the gas turbine engine, the second accelerometer configured to transmit a second identifier (46, FIG. 4) that is different than the first identifier, and a signal conditioning computer (18) coupled to the first and second accelerometers for receiving the first and second identifiers, the signal conditioning computer configured to determine which of the first and second accelerometers is connected to the signal conditioning computer. An accelerometer is also claimed comprising an identifier connection configured to transmit an identifier to a computer, said computer configured to identify said accelerometer based on the received signal. The accelerometer further comprises a positive connection and a negative connection connected to an amplifier and a ground connection connected to ground. The identifier connection may be coupled to the ground connection via a resistor. The system allows different accelerometer / engine balance coefficients to be used within the signal conditioning computer for the different accelerometers. The system may allow different accelerometer / engine balance coefficients to be used depending on whether an externally mounted or internally mounted accelerometer is used.

Description

VIBRATION MEASUREMENT SYSTEM AND GAS TURBINE ENGINE
INCLUDING THE SAME
This invention relates generally to vibration measurement systems for a gas turbine engine, and more particularly, to a vibration measuring system that is configured to determine whether an accelerometer is functioning as a primary accelerometer or a backup accelerometer.
In at least some known aircraft engines, two accelerometers and an associated signal conditioning system are used to provide an indication of engine vibration to a flight crew. In at least some engines, one accelerometer is internally mounted and one is externally mounted. Specifically, in such embodiments, generally the internally mounted accelerometer is mounted adjacent to a component that is sensitive to vibrations generated within the gas turbine engine, such as a fan bearing, and the externally mounted accelerometer is generally mounted to a structural component that is not as sensitive to engine vibration, such as a fan frame.
Generally, in such embodiments, if the internally mounted accelerometer fails, a third accelerometer is installed externally, and used in place of the internally mounted accelerometer. Although engine balance coefficients are typically different between the internally mounted accelerometer and the new externally mounted accelerometer, the difference is generally accommodated by software that is installed in the signal conditioning computer at the time the accelerometers are installed.
During operation, the accelerometer in use is physically connected to the signal conditioning computer. In order to switch between the internally mounted accelerometer and the externally mounted accelerometer, or vice-versa, one of the accelerometers must be disconnected from the computer prior to the other accelerometer being connected. The signal conditioning computer must also be reconfigured to the correct accelerometer setting, based upon which accelerometer is in use. If the computer is improperly configured, the wrong accelerometer coefficients will be used, and balancing the engine for correct vibration measurement would be extremely difficult. As a result, it is essential to properly configure the signal conditioning computer in the event a failure of the primary accelerometer occurs.
In one aspect according to the present invention, a vibration measurement system for a gas turbine engine is provided. The vibration measurement system includes a first accelerometer coupled to the gas turbine engine assembly, the first accelerometer configured to transmit a first identifier, a second accelerometer coupled to the gas turbine engine assembly, the second accelerometer configured to transmit a second identifier that is different than the first identifier, and a signal conditioning computer coupled to the first and second accelerometers for receiving the first and second identifiers, the signal conditioning computer configured to determine which of the first and second accelerometers is connected to the signal conditioning computer based on the first and second identifiers.
In another aspect, an accelerometer is provided. The accelerometer includes a positive connection that is coupled to an amplifier, a negative connection that is coupled to the amplifier, a ground connection coupled to a ground, and an identifier connection configured to transmit an identifier to a computer, the computer configured to determine which of the first and second accelerometers is connected to the signal conditioning computer based on the identifier.
In a further aspect, a gas turbine engine assembly is provided. The gas turbine engine assembly includes a gas turbine engine and a vibration measurement system coupled to the gas turbine engine. The vibration measurement system includes a first accelerometer coupled to the gas turbine engine, the first accelerometer configured to transmit a first identifier, a second accelerometer coupled to the gas turbine engine, the second accelerometer configured to transmit a second identifier that is different than the first identifier, and a signal conditioning computer coupled to the first and second accelerometers for receiving the first and second identifiers, the signal conditioning computer configured to determine which of the first and second accelerometers is connected to the signal conditioning computer based on the first and second identifiers.
Various aspects and embodiments of the present invention will now be described in connection with the accompanying drawings in which: Fig. 1 is a block diagram illustration showing an internally mounted accelerometer and an externally mounted accelerometer each connected to a signal conditioning computer; Fig. 2 is a block diagram illustration showing a backup accelerometer connected to the signal conditioning computer; Fig. 3 is an illustration of an accelerometer comprising a first identifying connection internally coupled to ground; and Fig. 4 is an illustration of an accelerometer comprising a second identifying connection internally coupled to a resistive element.
Figures 1 is a simplified block diagram of a gas turbine engine assembly 6 that includes an exemplary vibration measurement system 8. Vibration measurement system 8 includes a first accelerometer 12, that in the exemplary embodiment is mounted internally within gas turbine engine assembly 6. For example, first accelerometer 12 is typically mounted at the most sensitive location to detect a fan imbalance, such as the forward most bearing, which is nearest a fan rotor. Vibration measurement system 8 also includes a second accelerometer 13, that in the exemplary embodiment is mounted to an external location on gas turbine engine assembly 6.
During assembly, accelerometer 13 is typically mounted on a casing or frame. For example, accelerometer 13 may be mounted on a turbine center frame, a turbine rear frame, a low-pressure turbine casing, a turbine exhaust case, or a high-pressure compressor case.
During operation, the internal accelerometer 12 and external accelerometer 13 are each connected via a wiring harness 14 and 15 to a signal conditioning computer 18, typically located in the electronics bay of the aircraft, or mounted on the gas turbine engine. The accelerometer signals are typically processed by electronic signal conditioning hardware that is installed in the signal conditioning computer 18 and that performs functions such as determining the synchronous vibration levels, calculating balance weights needed to balance the engine, scaling vibration amplitudes for cockpit display, storing data for later retrieval, generating maintenance messages, and other functions. A Maintenance Access Terminal (MAT) 20 is associated with the signal conditioning computer, to allow a technician or other person to access the data and interface in other ways with the signal conditioning computer 18.
Figure 2 is a simplified block diagram of an exemplary vibration measurement system that may be used with gas turbine engine assembly 6. In the exemplary embodiment, vibration measurement system 10 is utilized as a backup system for vibration measurement system 8 shown in Figure 1. More specifically, in the event that accelerometer 12 experiences a failure, internal accelerometer 12 may be disconnected from the signal conditioning computer 18, and a backup accelerometer 16 may be coupled to signal conditioning computer 18 to function as a replacement for accelerometer 12. In the exemplary embodiment, accelerometer 16 is mounted externally on gas turbine engine 6 and connected, via a backup wiring harness 22, to the signal conditioning computer 18. The preferred embodiment includes wiring 14 and backup wiring harness 22 as two distinct components, however, those skilled in the art will recognize that wiring harness 14 and wiring harness 22 may be the same component or may be connected to both accelerometers 12 and 16 simultaneously by use of a switch.
The backup vibration measurement system 10 is used as a backup accelerometer system to the primary vibration measurement system 8. Specifically, external accelerometer 16 is used as a backup accelerometer in the event of some failure or error of internal accelerometer 12. The sensor location for the external accelerometer 16 typically is not as sensitive as the internal location, but has an acceptable sensitivity to fan imbalance for use in the event the internal accelerometer 12 fails.
Figure 3 is a simplified block diagram of an exemplary accelerometer 24 that may be used to replace either accelerometer 12 or 16 shown in Figure 2. That is, accelerometer 24 may be mounted either internally or externally on gas turbine engine assembly 6. As such, accelerometer 24 includes four connecting points or wires that are utilized to connect accelerometer 24 to the signal conditioning computer 18 shown in Figure 2. Specifically, accelerometer 24 includes a positive connection 28, a negative connection 30, and a ground connection 32.
More specifically, the positive and negative connections 28 and 30 are coupled to the respective positive and negative terminals of an amplifier, such as signal conditioning computer 18, to amplify the output of accelerometer 24. Moreover, ground connection 32 is coupled to a grounding terminal on signal conditioning computer 18 or other suitable ground.
Accelerometer configuration 24 also includes a first identifying connection 34. In the preferred embodiment, the first identifying connection 34 is internally connected to the grounding connection 32, and externally connected to the signal conditioning computer 18 via wiring harness 14. However, those skilled in the art will recognize that the first identifying connection 34 may be connected to a variety of grounding locations. Specifically, during operation, signal conditioning computer 18 receives a first indication signal from accelerometer 24 that indicates accelerometer 24 is grounded.
Figure 4 is a simplified block diagram of an exemplary accelerometer 38 that may be used to replace either accelerometer 12 or 16 shown in Figures 1 and 2. That is, accelerometer 38 may be mounted either internally or externally on gas turbine engine assembly 6. As such, accelerometer 38 includes four connecting points or wires that are utilized to connect accelerometer 38 to the signal conditioning computer 18 shown in Figure 2. Specifically, accelerometer 38 includes a positive connection 40, a negative connection 42, and a ground connection 44.
More specifically, the positive and negative connections 40 and 42 are coupled to the respective positive and negative terminals of an amplifier, such as signal conditioning computer 18, to provide power to accelerometer 38. Moreover, ground connection 44 is coupled to a grounding terminal on signal conditioning computer 18 or other
suitable ground.
Accelerometer configuration 38 also includes an identifying connection 46. In the preferred embodiment, identifying connection 46 is different than identifying connection 34. More specifically, each of accelerometers 24 and 38 is configured to transmit a different signal to the signal conditioning unit 18 such that signal conditioning unit 18 can distinguish between accelerometers 24 and 38. In the exemplary embodiment, second identifying connection 46 is internally connected to a resistor 48 having a relatively high resistance. For example, as shown in Figure 4, resistor 48 is coupled between the ground connection 44 and the second identifying connection such that during operation, signal conditioning computer 18 receives a second indication signal from accelerometer 38 that indicates that the second identifying connector is floating, i.e. the signal condition computer 18 measures high resistance between ground and the second identifying connection 46.
Described herein are two exemplary accelerometers that may be utilized to replace the accelerometers 12 or 16 shown in Figures 1 and 2. Specifically, accelerometers 24 and 38 may be mounted either internally or externally to gas turbine engine assembly 6. Specifically, during installation, accelerometer 34 may be installed in the gas turbine engine to function as either the internal accelerometer 12 or the external backup accelerometer 16, with the remaining of the internal accelerometer 12 or the external accelerometer 16 being configured as the second accelerometer configuration 38. The first identifying connection 34 and the second identifying connection 46 are connected to the signal conditioning computer 18, by either wiring harness 14 or backup wiring harness 22, depending on which accelerometer 12 or 16 has which configuration 24 or 38. By including either the first identifying connection 34 or the second identifying connection 46, the signal conditioning computer 18 can assign a discrete value, identifying which accelerometer 12 or 16 is connected to the signal conditioning computer 18, based on whether the accelerometer 12 or 16 is grounded (accelerometer configuration 24) or floating high resistance (accelerometer configuration 38). By identifying which accelerometer 12 or 16 is connected, the present invention eliminates the need of a technician to configure the signal conditioning computer 18 as to which accelerometer 12 or 16 is in use.
A system and method are proposed for eliminating the need for a technician to configure the signal conditioning computer as to which accelerometer is in use. The improved accelerometer configuration uses accelerometers that include connections coupled to differing wiring configurations, such that the computer can automatically identify which accelerometer is in use. Specifically, each accelerometer is configured to transmit an identifier that is unique to that specific accelerometer such that the signal condition computer 18 can determine which accelerometer is connected to the signal conditioning computer 18.
While this invention has been described with reference to a preferred embodiment, it will understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (12)

  1. CLAIMS: 1. A vibration measurement system for a gas turbine engine,
    said vibration measurement system comprising: a first accelerometer coupled to said gas turbine engine, said first accelerometer configured to transmit a first identifier; a second accelerometer coupled to said gas turbine engine, said second accelerometer configured to transmit a second identifier that is different than said first identifier; and a signal conditioning computer coupled to said first and second accelerometers for receiving the first and second identifiers, said signal conditioning computer configured to determine which of said first and second accelerometers is connected to said signal conditioning computer.
  2. 2. A vibration measurement system in accordance with Claim I, wherein first and second accelerometers each comprise a positive connection, a negative connection, a ground connection and an identifier connection.
  3. 3. A vibration measurement system in accordance with any preceding Claim, wherein said first accelerometer ground connection is coupled directly to said first accelerometer identifier connection.
  4. 4. A vibration measurement system in accordance with any preceding Claim, wherein said second accelerometer comprises a resistor that is coupled between said second accelerometer ground connection and said second accelerometer identifier connection.
  5. 5. A vibration measurement system in accordance with any preceding Claim, wherein at least one of said first and second accelerometers is mounted internally within the gas turbine engine, said remaining accelerometer is mounted to an external surface of said gas turbine engine.
  6. 6. A vibration measurement system in accordance with any preceding Claim, wherein said signal conditioning computer comprises software for assigning a discrete value to said first and second accelerometers based on said first identifier and second identifiers.
  7. 7. A vibration measurement system in accordance with any preceding Claim, wherein said second external accelerometer is configured to detect vibrations caused by imbalances in the gas turbine engine.
  8. 8. An accelerometer comprising: a positive connection that is coupled to an amplifier; a negative connection that is coupled to said amplifier; a ground connection coupled to a ground; and an identifier connection configured to transmit an identifier to a computer, said computer configured to identify said accelerometer based on the received signal
  9. 9. An accelerometer in accordance with Claim 8, wherein said accelerometer ground connection is coupled directly to said first accelerometer identifier connection.
  10. 10. An accelerometer in accordance with Claim 8 or Claim 9, further comprising a resistor that is coupled between said accelerometer ground connection and said accelerometer identifier connection.
  11. I I. A vibration measurement system substantially as hereinbefore described with reference to the accompanying drawings.
  12. 12. An accelerometer substantially as hereinbefore described with reference to the accompanying drawings.
GB0723094A 2006-11-30 2007-11-23 Vibration measurement system and gas turbine engine including the same Expired - Fee Related GB2446684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0723094A GB2446684B (en) 2006-11-30 2007-11-23 Vibration measurement system and gas turbine engine including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/565,120 US20080127734A1 (en) 2006-11-30 2006-11-30 Vibration measurement system and gas turbine engine including the same
GB0723094A GB2446684B (en) 2006-11-30 2007-11-23 Vibration measurement system and gas turbine engine including the same

Publications (3)

Publication Number Publication Date
GB0723094D0 GB0723094D0 (en) 2008-01-02
GB2446684A true GB2446684A (en) 2008-08-20
GB2446684B GB2446684B (en) 2011-11-16

Family

ID=38926135

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0723094A Expired - Fee Related GB2446684B (en) 2006-11-30 2007-11-23 Vibration measurement system and gas turbine engine including the same

Country Status (1)

Country Link
GB (1) GB2446684B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451922C1 (en) * 2011-03-01 2012-05-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Diagnostic technique for aeroelastic oscillation mode of rotor blades of axial flow turbomachine
RU2511773C1 (en) * 2013-02-26 2014-04-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Method of diagnostics of oscillations of turbomachine impeller
RU2525061C1 (en) * 2013-07-10 2014-08-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Method for diagnostics of flutter of runner blades in axial turbomachine
RU2558170C2 (en) * 2013-12-12 2015-07-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им П.И. Баранова" Method for determining frequency of forced oscillations of impeller as part of turbo-machine stage
RU2573331C2 (en) * 2014-05-19 2016-01-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им П.И. Баранова" Method of characteristics determination of non-synchronous oscillations of impeller of turbine machine
RU2614458C1 (en) * 2016-02-11 2017-03-28 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Method of diagnosing forms of resonance vibrations of turbomachinery impeller blades
RU2649171C1 (en) * 2017-06-08 2018-03-30 Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") Testing method of the aero engine when checking for the absence of self-oscillations of the working blades of a low pressure compressor
RU2681550C1 (en) * 2018-05-07 2019-03-11 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Method of stand tests of turbo-reactive two-circuit motor
RU2681548C1 (en) * 2018-05-07 2019-03-11 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Method of stand tests of turbo-reactive two-circuit motor
FR3102806A1 (en) * 2019-10-30 2021-05-07 Safran Aircraft Engines Non-destructive testing process of a part
RU2797897C1 (en) * 2022-11-07 2023-06-09 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Bench for automated testing of the gas generator of a by-pass turbojet engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634511C1 (en) * 2016-11-23 2017-10-31 Публичное Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Пао "Умпо") Method for determining dynamic stresses in blades of turbomachine working wheel
RU2659428C1 (en) * 2017-02-13 2018-07-02 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Device for analysis of dynamic processes in impellers of turbine machines

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008843A (en) * 1987-12-23 1991-04-16 Dr. Ing. H.C.F. Porsche Ag Sensor having an answerback device
WO1993010346A1 (en) * 1991-11-16 1993-05-27 BODENSEEWERK GERäTETECHNIK GMBH Device for regulating the auxiliary gas turbine of an aircraft
US5355129A (en) * 1990-08-01 1994-10-11 Dr. Ing. H.C.F. Porsche Ag Measuring sensor device
DE4409543A1 (en) * 1993-04-07 1994-10-13 Volkswagen Ag Open-loop or closed-loop control device, in particular for an internal combustion engine of a motor vehicle
DE29720688U1 (en) * 1997-11-21 1999-03-25 Busch Dieter & Co Prueftech Vibration or noise measurement and identification system
US20040103723A1 (en) * 2002-10-04 2004-06-03 Paul Kirschbaum Sensor with identification unit
EP1473555A2 (en) * 2003-04-30 2004-11-03 General Electric Company Engine vibration monitoring using accelerometers
EP1659374A1 (en) * 2004-11-12 2006-05-24 Societe de Technologie Michelin Centralized calibration coefficients for sensor based measurements.
US20070118253A1 (en) * 2005-11-21 2007-05-24 General Electric Company Distributed and adaptive data acquisition system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913084A (en) * 1973-03-26 1975-10-14 Wisconsin Alumni Res Found Noise quality detector for electric motors or other machines
DE102006039295A1 (en) * 2006-08-22 2008-03-13 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Arrangement for operating a sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008843A (en) * 1987-12-23 1991-04-16 Dr. Ing. H.C.F. Porsche Ag Sensor having an answerback device
US5355129A (en) * 1990-08-01 1994-10-11 Dr. Ing. H.C.F. Porsche Ag Measuring sensor device
WO1993010346A1 (en) * 1991-11-16 1993-05-27 BODENSEEWERK GERäTETECHNIK GMBH Device for regulating the auxiliary gas turbine of an aircraft
DE4409543A1 (en) * 1993-04-07 1994-10-13 Volkswagen Ag Open-loop or closed-loop control device, in particular for an internal combustion engine of a motor vehicle
DE29720688U1 (en) * 1997-11-21 1999-03-25 Busch Dieter & Co Prueftech Vibration or noise measurement and identification system
US20040103723A1 (en) * 2002-10-04 2004-06-03 Paul Kirschbaum Sensor with identification unit
EP1473555A2 (en) * 2003-04-30 2004-11-03 General Electric Company Engine vibration monitoring using accelerometers
EP1659374A1 (en) * 2004-11-12 2006-05-24 Societe de Technologie Michelin Centralized calibration coefficients for sensor based measurements.
US20070118253A1 (en) * 2005-11-21 2007-05-24 General Electric Company Distributed and adaptive data acquisition system and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451922C1 (en) * 2011-03-01 2012-05-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Diagnostic technique for aeroelastic oscillation mode of rotor blades of axial flow turbomachine
RU2511773C1 (en) * 2013-02-26 2014-04-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Method of diagnostics of oscillations of turbomachine impeller
RU2525061C1 (en) * 2013-07-10 2014-08-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Method for diagnostics of flutter of runner blades in axial turbomachine
RU2558170C2 (en) * 2013-12-12 2015-07-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им П.И. Баранова" Method for determining frequency of forced oscillations of impeller as part of turbo-machine stage
RU2573331C2 (en) * 2014-05-19 2016-01-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им П.И. Баранова" Method of characteristics determination of non-synchronous oscillations of impeller of turbine machine
RU2614458C1 (en) * 2016-02-11 2017-03-28 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Method of diagnosing forms of resonance vibrations of turbomachinery impeller blades
RU2649171C1 (en) * 2017-06-08 2018-03-30 Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") Testing method of the aero engine when checking for the absence of self-oscillations of the working blades of a low pressure compressor
RU2681550C1 (en) * 2018-05-07 2019-03-11 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Method of stand tests of turbo-reactive two-circuit motor
RU2681548C1 (en) * 2018-05-07 2019-03-11 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Method of stand tests of turbo-reactive two-circuit motor
FR3102806A1 (en) * 2019-10-30 2021-05-07 Safran Aircraft Engines Non-destructive testing process of a part
RU2797897C1 (en) * 2022-11-07 2023-06-09 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Bench for automated testing of the gas generator of a by-pass turbojet engine

Also Published As

Publication number Publication date
GB2446684B (en) 2011-11-16
GB0723094D0 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
GB2446684A (en) Vibration Measurement System For Gas Turbine Engine and Accelerometer Configured to Transmit Accelerometer Identifying Signal
US6909948B2 (en) Accelerometer configuration
US8666568B2 (en) Method and a device for performing a health check of a turbine engine of an aircraft having at least one such engine
EP1452936B1 (en) Method for detecting an impending sensor failure
US7167785B2 (en) System and device for detecting yaw displacements using stand-by measuring channels
US7730782B2 (en) Sensor device
US20070013365A1 (en) Turbo machinery speed monitor
US20080127734A1 (en) Vibration measurement system and gas turbine engine including the same
US5934610A (en) Vibration monitoring system for multiple aircraft engines
CN111027426B (en) Method for calculating fundamental frequency amplitude of vibration signal of aero-engine
US20110255198A1 (en) Motor drive ground fault detection
JP2017142248A (en) Measuring circuit
CN104781508A (en) Device and method for protecting aircraft turbomachine computer against speed measurement errors
US9340188B2 (en) Occupant protective apparatus and pedestrian protective apparatus
US8150566B2 (en) System for selecting data representing an air parameter, process and computer program relating to the same
JP6975679B2 (en) Rotating machine diagnostic system, information processing device and rotating machine diagnostic method
WO2006105176A1 (en) Acoustic signature testing for electronic, electromechanical, and mechanical equipment
EP1401076B1 (en) System and method for detecting loss of phase in a compressor system
US7453675B2 (en) Turbo machinery speed monitor
US7580802B2 (en) Method of determining condition of a turbine blade, and utilizing the collected information for estimation of the lifetime of the blade
KR102442346B1 (en) method for field-verifying normal operation of seismic acceleration sensor and the seismic acceleration sensor using thereby
EP0577159A1 (en) Onboard aircraft engine balancing data gathering and analysis system
JP3440019B2 (en) Vibration detection device and earthquake detection system using the same
RU2628674C1 (en) Vibration control device
US8583391B2 (en) Monitoring the low cycle fatigue of ruggedized avionics electronics

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20121123