GB2388029A - Improved jaws for ultrasonic tool - Google Patents

Improved jaws for ultrasonic tool Download PDF

Info

Publication number
GB2388029A
GB2388029A GB0207314A GB0207314A GB2388029A GB 2388029 A GB2388029 A GB 2388029A GB 0207314 A GB0207314 A GB 0207314A GB 0207314 A GB0207314 A GB 0207314A GB 2388029 A GB2388029 A GB 2388029A
Authority
GB
United Kingdom
Prior art keywords
tool
blade
blade means
waveguide
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0207314A
Other versions
GB0207314D0 (en
GB2388029B (en
Inventor
Michael John Radley Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to GB0207314A priority Critical patent/GB2388029B/en
Publication of GB0207314D0 publication Critical patent/GB0207314D0/en
Priority to AU2003217036A priority patent/AU2003217036A1/en
Priority to PCT/GB2003/001322 priority patent/WO2003082132A1/en
Publication of GB2388029A publication Critical patent/GB2388029A/en
Application granted granted Critical
Publication of GB2388029B publication Critical patent/GB2388029B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320072Working tips with special features, e.g. extending parts
    • A61B2017/320078Tissue manipulating surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320093Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320094Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

The cutting tool is powered by an ultrasonic vibration generator through an elongate waveguide or probe. A blade 1 at the distal end of the waveguide has a face with a series of ribs 4 and grooves 4 directed transversely to the axis of the waveguide. A jaw 3 having a matching corresponding transverse ribbed face is controllably movable into interlocking contact with the ribbed face of the blade. The ribs and grooves have preferably trapezoidal cross sections or rounded teeth and grooves forming a sinusoidal pattern and the axis of the blade and the jaw can be either straight or curved (as shown in Fig. 2).

Description

1 2388029
IMPROVED ULTRASONIC CUTTING TOOL
The present invention relates to an ultrasonic cutting tool. More particularly, but not exclusively, it relates to a surgical tool utilising longitudinal mode ultrasonic vibrations, of especial utility in a laparoscopic cutting system, particularly for haemostatic cutting.
It is known to cut tissue by means of ultrasonically vibrated knives or scalpels. A particularly effective form of ultrasonic cutting device, especially in confined spaces, e.g. during laparoscopic procedures, comprises an ultrasonically vibratable blade and a pivotable jaw which is used to clamp the tissue to be cut against the blade. Ultrasonic vibration of the blade then both coagulates and cuts the tissue. It is not necessary for the blade to be particularly sharp, and in many cases a generally cylindrical ultrasonic waveguide can be used as the blade, optionally with a relatively flattened tissue contact surface cooperating with a substantially flat jaw.
The majority of such tools employ longitudinal mode ultrasonic vibrations. A problem experienced with such tools is that the ultrasonic vibrations tend to propagate preferentially
axially, much of the energy emerging from a distal tip of the tool rather than being transmitted into the tissue being cut. This energy can produce absorptive heating, cavitation and consequent tissue damage at sites remote from the tool, and so caution must be exercised when applying high intensities of ultrasound in this manner.
The transmission of energy from an ultrasonic blade to tissue clamped thereto occurs mainly by frictional forces, producing localised heating of the tissue, which is inherently safe.
However, the power transmitted by a longitudinal mode system to tissue pressed against it in a direction normal to the axis of vibration is directly proportional to the frictional force, which is in turn dependent on the pressing force. The pressing force exertable by a conventional jaw mechanism is limited. The frictional force is also dependent on the coefficient of action between the blade and the tissue, which for a polished metal blade will be significantly less than unity. As a result, in existing tools employing longitudinal ultrasonic waves, energy transmission into the selected tissue is inefficient and most of the energy generated is undesirably propagated out of the distal tip of the tool instead.
It is therefore an object of the present invention to provide an ultrasonic cuning/coagulation tool adapted to give improved transmission of longitudinal ultrasonic vibrational energy into the tissue to be treated.
According to the present invention, there is provided a cutting tool comprising a source of ultrasonic vibration, a waveguide connected thereto, elongate blade means at a distal end thereof and having a transversely ribbed face and jaw means having a correspondingly transverse ribbed face and being controllably moveable into interlocking contact with the ribbed face of the blade means.
Each rib of the blade means may have a generally flat summit and each corresponding valley therebetween may have a generally flat floor.
The rib summits and valley floors may then be connected by a plurality of sloped zones.
Alternatively, the ribs and valleys of the blade means may together have a generally sinusoidal profile.
The height of each rib above adjacent valleys is preferably comparable with the thickness of the tissue to be treated.
Advantageously, said height is at least one tenth of a corresponding dimension of the blade means, and optionally at least one fifth thereof.
The jaw member is preferably pivotably mounted to the tool, and is operatively connected to manually operable control means disposed adjacent a proximal end of the tool.
The blade means is preferably linear.
Alternatively, the blade means may be curved.
In this case, said longitudinal axis of the blade means may comprise a curved median line thereof.
( The source of ultrasonic vibration is preferably adapted to produce longitudinal mode vibration. An embodiment of the present invention will now be more particularly described by way of example and with reference to the accompanying drawings, in which: Figure 1 is a side elevation of a distal end of a tool embodying the invention; and Figure 2 is a plan view of a distal end of a waveguide of the tool of Figure 1.
Referring now to the drawings and to Figure I in particular, a blade I forms the distal end of a waveguide to which may be applied longitudinal mode ultrasonic vibrations to cause ultrasonic vibration as indicated by arrow 2. A non-vibrating jaw member 3 is moveable towards and away from the blade I by any one of a range of mechanisms. In the majority of these, the jaw member 3 is so pivotably mounted to the tool that a user of the tool may controllably pivot the jaw member 3 towards the blade 1, catching and clamping tissue to be treated therebetween.
A contact surface of the blade I facing the jaw member 3 is provided with a series of ribs 4 extending transversely to a longitudinal axis of the blade I (and hence to the direction of vibration 2 thereof). The ribs 4 are separated by grooves 5 of generally similar dimensions.
In the embodiment shown, the ribs 4 each have a substantially level summit and the grooves 5 each have a substantially level floor, although a more sinusoidal cross-sectional profile is also envisaged.
contact surface of the jaw member 3 for the blade 1 has a corresponding profile of ribs 6 with grooves 7 therebetween, so that the contact surfaces of the blade I and jaw member 3 interlock as shown when brought together (the gap is shown exaggerated for purpose of clarity). As a result, when the jaw member 3 is brought down to clamp a section of tissue against the blade 1, much of the tissue is held against angled transmission facets 8 of the blade 1.
Longitudinal ultrasonic vibrations are therefore much more readily transmitted into those portions of the tissue. The tissue as a whole is much more firmly held than with conventional jaw profiles and so the frictional transmission of ultrasonic energy into the tissue is significantly more efficient. Overall, a much greater proportion of the ultrasonic energy input into the tool is transmitted into the selected tissue, and far less remains to be dissipated out of a distal end of the blade I, potentially harming tissue remote from the site of treatment.
The blade I of the tool may be substantially straight (not shown), or curved as shown in Figure 2. A curved blade 9 is provided with a series of ribs 4 and grooves 5 therebetween. A jaw member (not shown) is provided, of corresponding curvature and with corresponding ribs and grooves, which may be pivoted towards the blade 9 to clamp tissue for treatment.
For optimum effectiveness, the height of the ribs 4 above the grooves 5 in each case should be comparable with the thickness of the tissue to be treated. Conveniently, this height should be at least a tenth of the corresponding dimension of the blade 1, as shown.

Claims (10)

( CLAIMS
1. A cutting tool comprising a source of ultrasonic vibration, a waveguide connected thereto, elongate blade means at a distal end thereof and having a face provided with outstanding ribs extending transversely to the axis of the waveguide and jaw means having a correspondingly transversely ribbed face and being controllably moveable into interlocking contact with the ribbed face of the blade means.
2. A tool as claimed in claim I, wherein each rib of the blade means has a generally flat summit and each corresponding valley therebetween has a generally flat floor.
3. A tool as claimed in claim 2. wherein the rib summits and valley floors are connected by a plurality of sloped zones.
4. A tool as claimed in claim 1, wherein the ribs and valleys therebetween of the blade means together have a generally sinusoidal profile.
A tool as claimed in any one of the preceding claims, wherein the height of each rib above adjacent valleys is determined according to the thickness of the tissue to be treated.
6. A tool as claimed in any one of the preceding claims, wherein the jaw member is pivotably mounted to the tool, and is operatively connected to manually operable control means disposed adjacent a proximal end of the tool.
7. A tool as claimed in any one of the preceding claims, wherein the blade means is linear.
8. A tool as claimed in any one of claims I to 6, wherein the blade means is curved.
9. A tool as claimed in claim 8' wherein a longitudinal axis of the blade means comprises a curved median line thereof.
10. A tool as claimed in any one of the preceding claims wherein the source of ultrasonic vibration is adapted to produce longitudinal mode vibration.
A cutting tool substantially as described herein with reference to the figures of the accompanying drawings.
GB0207314A 2002-03-28 2002-03-28 Improved ultrasonic cutting tool Expired - Lifetime GB2388029B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0207314A GB2388029B (en) 2002-03-28 2002-03-28 Improved ultrasonic cutting tool
AU2003217036A AU2003217036A1 (en) 2002-03-28 2003-03-27 Ultrasonic cutting tool with transversely ribbed blade and jaw means
PCT/GB2003/001322 WO2003082132A1 (en) 2002-03-28 2003-03-27 Ultrasonic cutting tool with transversely ribbed blade and jaw means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0207314A GB2388029B (en) 2002-03-28 2002-03-28 Improved ultrasonic cutting tool

Publications (3)

Publication Number Publication Date
GB0207314D0 GB0207314D0 (en) 2002-05-08
GB2388029A true GB2388029A (en) 2003-11-05
GB2388029B GB2388029B (en) 2004-05-05

Family

ID=9933881

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0207314A Expired - Lifetime GB2388029B (en) 2002-03-28 2002-03-28 Improved ultrasonic cutting tool

Country Status (3)

Country Link
AU (1) AU2003217036A1 (en)
GB (1) GB2388029B (en)
WO (1) WO2003082132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195403A1 (en) * 2021-03-17 2022-09-22 Covidien Lp Ultrasonic surgical instruments and systems incorporating enhanced grasping functionality

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423931B (en) 2005-03-03 2009-08-26 Michael John Radley Young Ultrasonic cutting tool
GB2438679A (en) 2006-05-31 2007-12-05 Sra Dev Ltd Ultrasonic surgical tool having two modes of vibration
GB0618366D0 (en) 2006-09-19 2006-10-25 Sra Dev Ltd Improved ultrasonic surgical tool
GB0711151D0 (en) 2007-06-11 2007-07-18 Sra Dev Ltd Switch for use with an ultrasonic surgical tool
GB0809243D0 (en) 2008-05-21 2008-06-25 Sra Dev Ltd Improved torsional mode tissue dissector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458598A (en) * 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
JPH08275949A (en) * 1995-04-05 1996-10-22 Olympus Optical Co Ltd Ultrasonic dissecting and coagulating device
WO1997017033A2 (en) * 1995-11-07 1997-05-15 Karl Storz Gmbh & Co. Tongs for the bipolar coagulation of biological tissue
US6340352B1 (en) * 1995-04-06 2002-01-22 Olympus Optical Co., Ltd. Ultrasound treatment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458598A (en) * 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
JPH08275949A (en) * 1995-04-05 1996-10-22 Olympus Optical Co Ltd Ultrasonic dissecting and coagulating device
US6340352B1 (en) * 1995-04-06 2002-01-22 Olympus Optical Co., Ltd. Ultrasound treatment system
WO1997017033A2 (en) * 1995-11-07 1997-05-15 Karl Storz Gmbh & Co. Tongs for the bipolar coagulation of biological tissue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195403A1 (en) * 2021-03-17 2022-09-22 Covidien Lp Ultrasonic surgical instruments and systems incorporating enhanced grasping functionality

Also Published As

Publication number Publication date
WO2003082132A1 (en) 2003-10-09
GB0207314D0 (en) 2002-05-08
GB2388029B (en) 2004-05-05
AU2003217036A1 (en) 2003-10-13

Similar Documents

Publication Publication Date Title
JP3310288B2 (en) Ultrasound surgical blade
EP1049411B1 (en) Ultrasonic cutting tool
EP2032043B1 (en) Hook shaped ultrasonic cutting blade
US20030212422A1 (en) Ultrasonic soft tissue cutting and coagulation systems with movable vibrating probe and fixed receiving clamp
US9173672B2 (en) Ultrasonic surgical tool
JP6995395B2 (en) Ultrasonic bone mesbit and robot-assisted ultrasonic bone power system using it
WO2013052635A2 (en) Ultrasonic osteotome
GB2388029A (en) Improved jaws for ultrasonic tool
JP2500213B2 (en) Surgical tools
US20220387049A1 (en) Medical devices and related methods for transforming bone, other tissue, or material
JPH10502276A (en) Inner blade of dry shaving equipment
JPH11128247A (en) Hand piece
KR101712482B1 (en) Ultrasonic Wave Surgery Apparatus Having Slanting Tissue Pad
CN113796929B (en) Ultrasonic surgery execution device
CN113598890B (en) Ultrasonic osteotome head
JPH0321232A (en) Ultrasonic medical instrument
JP4338260B2 (en) Ultrasonic surgical device
KR20230084427A (en) A Ultra Sonic Applier Having a Non-Sticking Coating Layer
GB2348810A (en) Composite blade for ultrasonic tool
KR101067286B1 (en) Three blade cast cutter for orthopaedic

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PE20 Patent expired after termination of 20 years

Expiry date: 20220327