GB2353457A - Electric heaters - Google Patents

Electric heaters Download PDF

Info

Publication number
GB2353457A
GB2353457A GB9919205A GB9919205A GB2353457A GB 2353457 A GB2353457 A GB 2353457A GB 9919205 A GB9919205 A GB 9919205A GB 9919205 A GB9919205 A GB 9919205A GB 2353457 A GB2353457 A GB 2353457A
Authority
GB
United Kingdom
Prior art keywords
track
heater
bridge
resistance
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9919205A
Other versions
GB2353457B (en
GB9919205D0 (en
Inventor
Martin Charles Critchley
Colin Peter Moughton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Strix Ltd
Original Assignee
Strix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10859151&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=GB2353457(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Strix Ltd filed Critical Strix Ltd
Priority to GB9919205A priority Critical patent/GB2353457B/en
Publication of GB9919205D0 publication Critical patent/GB9919205D0/en
Priority to CN00255073U priority patent/CN2461236Y/en
Priority to EP06013593A priority patent/EP1713307B1/en
Priority to EP00953316A priority patent/EP1121835B1/en
Priority to AT06013593T priority patent/ATE492139T1/en
Priority to DE60045400T priority patent/DE60045400D1/en
Priority to PCT/GB2000/003136 priority patent/WO2001013680A1/en
Priority to AU65830/00A priority patent/AU6583000A/en
Priority to DE60034019T priority patent/DE60034019T2/en
Priority to RU2001111004/09A priority patent/RU2001111004A/en
Priority to ES00953316T priority patent/ES2284516T3/en
Priority to CNB00801678XA priority patent/CN1180661C/en
Priority to CNB031786944A priority patent/CN100396163C/en
Priority to AT00953316T priority patent/ATE357832T1/en
Publication of GB2353457A publication Critical patent/GB2353457A/en
Priority to HK02101032.6A priority patent/HK1040590A1/en
Publication of GB2353457B publication Critical patent/GB2353457B/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0269For heating of fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Measuring Volume Flow (AREA)
  • Saccharide Compounds (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Non-Adjustable Resistors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

An electrical resistance or heater of the type comprising a thick film resistive track provided on an insulating substrate has two predetermined sections of said track 8d, 8e with a predetermined current carrying capacity. These sections are bridged by a discrete bridge 22 of an insulating material, e.g. glass, which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through one or both of said sections 8d, 8e. The resistive track 8 is protected from oxidation by a separate overglaze layer. Also disclosed is such an electrical resistance or heater wherein the track section 8d passing the failure current is provided with means, such as an aperture 24 in the track, for concentrating locally the current flowing therethrough.

Description

2353457 705-72.348 Electric Heaters The present invention relates to
electric heaters and in particular to electric heaters of the type comprising a resistive track provided on an insulating substrate.
Such heaters are used or have been proposed for use in a variety of applications, for example in domestic appliances such as water heating vessels, water heaters and irons. Typically an insulating layer eg of glass, ceramic, or glass ceramic (hereinafter collectively referred to as "glass") is provided on a metallic base such as a plate (which may for example f orm a part of the base of a liquid heating vessel) and the resistive track laid down on the insulating layer, usually by a printing technique. As an alternative to a coated metallic base, the base may be a solid ceramic body. A further electrical insulating layer may be applied over the track to protect it and prevent corrosion and oxidation. Such heaters are termed "thick film" heaters in the art.
It is clearly important that the heater should not be allowed to seriously overheat in a fault condition since this may cause substantial damage not only to the device or appliance in which it is being used, but also, potentially, to users thereof.
A number of proposals have been made to provide such severe overheat protection. In liquid heating vessels, it is common to provide a resettable overheat protector which operates in the event that the heater of the vessel overheats, for example if it is switched on without liquid in it or if it boils dry. Typically, this comprises a bimetallic actuator arranged in thermal contact with the heater and which operates at a given temperature, above the normal operating temperature of the vessel to open a set of contacts in the supply to the heater. However in the event that this protector should f ail to operate it is also known to provide a back-up protector, f or example a thermal f use which will operate in the event that the temperature of the heater rises above a predetermined value. Such an arrangement is described in Applicant's WO-A-94/18807.
In the Applicant's U27 and U28 controls, two bimetallic actuators are provided which effectively back each other up, obviating the need to provide further severe overheat protection.
However, it is preferable to provide a heater or resistance with built-in protection. The Applicant has proposed such an arrangement in W097/39603. According to this proposal, a bridge of a selected glass material is provided between adjacent heating tracks, the configuration of the track and the position and material of the track being chosen such that at a predetermined temperature the glass between the track sections becomes sufficiently conductive such that the track sections short circuit, thereby resulting in a controlled failure of the heater. The heater could therefore be said to "self protect", without the need for an external control.
This proposal for a "self protecting" heater was taken further in Applicant's W099/02080 in which it was specified that the location of the bridge between adjacent tracks was displaced from the end of the track so as to limit the current in the tracks when short circuiting occurred. This was intended to prevent the failure current blowing fuses in the domestic power supply.
The present invention in its various aspects builds further on the above proposals.
In W097/39603, it was suggested that the self protecting glass bridge was by preference applied as a layer over the whole heater track. However, it is now found preferable to provide the bridge as a discrete bridge and, if the track needs protection against oxidation and corrosion, to provide a separate overglaze layer.
From a first aspect, therefore, the invention provides an electrical resistance or heater of the type comprising a thick film resistive track provided on an insulating substrate, two predetermined sections of said track having a predetermined current carrying capacity being bridged by a discrete bridge of an insulating material which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through one or both of said sections, the resistive track being protected from oxidation by a separate overglaze layer.
In this way conventional overglazes can be used to provide normal corrosion protection for the track and an appropriate insulating material, eg an appropriate glass material chosen for the severe overheat protection of the heater.
In a preferred embodiment, the severe overheat protection bridge is also applied as an overglaze bridging the appropriate track sections. Preferably also the bridge is positioned over abutting track section ends.
The time in which a "self protecting" heater will self protect in a severe overheat condition depends on the temperature of the heater in the region of the bridge of material. The hotter the heater becomes, the hotter the bridge becomes and the more quickly it will reach the temperature at which it will pass a failure current. In the context of say a water heating vessel such as a kettle, it is quite clearly important to prevent premature failure of the heater, particularly in a time before any primary overheat protection such as a bimetallic actuator has operated.
This problem is alleviated in accordance with a further aspect of the present invention by placing the bridge of material in a region of the heater which has a lower power density than an adjacent region. From a second aspect, therefore, the invention provides an electrical resistance or heater of the type comprising a thick film resistive track provided on an insulating substrate, two predetermined sections of said track having a predetermined current carrying capacity being bridged locally by a bridge of an electrically insulating material which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through one or both of said sections, said resistive heating track having a variable power density, the said bridge of material being provided in a region of the heater track having a relatively low power density.
By placing the eg glass bridge in a lower power density area of the heater, the temperature rise of that region in an overheat situation will lag behind the temperature rise in adjacent higher power density areas, thereby providing a longer time to failure. Of course, the position of the bridge should still be such that the heater will fail in that location rather than elsewhere. Accordingly, if a separate overglaze is provided over the heater track, it should be chosen such that breakdown does not occur elsewhere on the track first.
In the preferred embodiment, the lower power density region is flanked by higher power density areas. In a particularly preferred embodiment, the lower power density area is provided in a radially intermediate section of the heater track, with at least the radially outer regions of the track having a higher power density. This arrangement has the advantage of counteracting the tendency of the insulating substrate to form microcracks in an severe overheat situation, which could result in failure of the heater on testing. This effect is described more fully in Applicant's copending application filed on the same day as this application under agent's reference 74.46.70570 and also entitled Electric Heaters. The inventions described herein can be applied to the arrangements described in that application.
In "self protecting" heaters as described above and in Applicant's earlier referenced published International patent applications, the track fails due to a current in excess of the track's current carrying capability passing through a section of track when the bridge becomes sufficiently conductive at elevated temperatures. It has been found that in such a situation, the track section may fuse at any point along its length depending, for example on how accurately the track has been laid down and so on. Furthermore, when the track fails, an arc is generated. This arc is highly conductive and is mobile in a magnetic field and may, therefore, be drawn to other components such as control components. The arc may even damage the insulating layer on which the track is provided, leading potentially to the heater being live after failure.
This is potentially dangerous and such a system would not meet present day safety standards.
It is therefore highly desirable to make the failure occur in a predetermined position on the track so that this could, for example be arranged in a position away from other components such as control components. The invention achieves this goal by providing means which concentrates locally the current flowing through the section of track which will fail.
From a further aspect, therefore, the invention provides an electrical resistance or heater of the type comprising a thick film resistive track provided on an insulating substrate, two predetermined sections of said track having a predetermined current carrying capacity being bridged by an electrically insulating material, eg a glass, which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through at least one of said sections, wherein the said track section is provided with means for concentrating locally the current flowing therethrough.
This aspect of the invention allows therefore allows a more controlled failure of the track. The current concentrator is preferably arranged away from any current carrying or earthed parts eg of a control associated with the heater.
The current concentration can be achieved in a number of ways. Preferably, however, it is achieved by reducing locally the width of the track. In one embodiment the track may be waisted in to achieved the desired concentration, but preferably the effect is achieved by providing a hole, for example a circular hole, through the track. This hole will then act as a focus for the failure of the track.
As in the embodiments described above, the bridge may be applied locally between adjacent track sections or over the whole track.
It should be noted that the various aspects of the invention are essentially independent of each other.
Accordingly, the lower power density and current concentration features described can be applied to the arrangements described in W097/39603, for example where the fusing glass bridge is applied as an overglaze to the whole track.
A preferred embodiment of the invention will now be described by way of example with reference to the accompanying drawings in which:
Fig. 1 is a plan view of a heater in accordance with the invention; Fig. 1A is a section along line A-A of Figure 1; Fig. 2 is a table giving relevant data for the heater shown in Figure 1; and Fig. 3 shows a further heater embodying the invention.
Turning to Fig. 1, there is shown a thick film planar heater 2 embodying the present invention. The heater comprises a 0.5 mm thick stainless steel substrate 4 on which is deposited in a conventional manner an insulating layer 6 and heating track 8. In this particular embodiment, the insulating layer 6 is made from of Dupont 3500 ink and is about 85 microns thick (+/10 microns). The resistive heating track 8 laid down on the insulating layer 6 is made f rom a blend of Dupont F/612/F629 resistive inks and is about 13 microns W- 2 microns) thick.
As will be seen, the resistive heating track 8 is made up of a series of eight concentric arcuate track sections 8a, 8b.... 8h whose ends are joined by silver links 10. Such a track configuration is disclosed in general terms in Applicant's W098/366182. Track sections 8a, 8b, 8c and 8h extend substantially completely around the heater while the other track portions are subdivided into generally semi- circular portions. One end of track 8e is connected by a silver track 14 to a silver pad 16 for receiving a silver is contact (not shown), and one end of track 8d is connected to a further contact receiving pad 18 by a silver link 20. In use the contacts mounted on the pads, eg by soldering, receive a 230V (or other voltage) supply. A serpentine region 12 of the track 8 is intended to receive the bimetallic actuator of a thermally sensitive control unit for the heater. The outer diameter of the outermost track 8a is about 6Omm, the gap between adjacent tracks being about 0.5 mm.
The total power of this element is 100OW at 230V AC, the power contribution of each track portion being given in Figure 2.
It will be apparent from Figs. 1 and 2 that the width of the track portions 8a to 8h varies from the edge of the element to its centre. In particular the outermost track portion 8a is the narrowest, the track width increasing towards the track portions 8e and 8f in the radially central region, before decreasing again towards the innermost track portion 8h. Since power density is inversely proportional to the track width, the power density decreases from a maximum at track 8a to a minimum at tracks 8e - 8f and then increases to a second, local maximum in track 8h. The effect of this width distribution is to reduce the tendency of the insulating layer 6 to microcrack in an severe overheat situation.
Returning to Fig. 1, it will be seen that opposed opposed end portions of tracks 8d and 8e bridged by silver links 10 a and 10b are over printed with a "self protecting" glaze bridge 22 about 7mm wide and 4 mm long. This bridge 22 is printed from ESL 4771G material and is about 13 microns (+/- 2 microns)thick. It will be seen that the bridge 22 is arranged over the track portions connected to the respective ends of the track 8 so that a relatively large voltage drop occurs over the bridge 22. In fact, the bridge is arranged at about 61 mm from the end of track 8e and about 30mm from the end of track. This produces a voltage difference of about 208 V across the bridge.
It will be seen from Fig 1 that a hole 24 approximately imm in diameter is provided in the section of the track 8d between the bridge 22 and the end of the track 8d linked to the contact pad 18.
The whole element is overprinted with protective glaze eg of Dupont 3500 to a thickness of eg 13 microns 2 microns.
In use, the heater shown is mounted for example in the base of a liquid heating vessel such as a kettle.
Should the kettle boil dry or be switched on without any water in the kettle, then the temperature of the heater will rise very quickly due to the high power rating of the heater and its low thermal mass. Should any primary overheat protection such as a bimetallic actuator fail to operate then the temperature of the heater will continue to rise. However at a certain predetermined temperature, the conductivity of the self protecting overglaze bridge 22 will rise to the point where it effectively short circuits the majority of the track resulting in a very high current passing through the track sections 8d and 8e bridged by the track. In the particular embodiment, the resistance of these track sections is about 50, leading to a current flowing through the sections of about 46 amps, which is well above the normal operating current of about 4.35 amps and well in excess of the current carrying capability of the track sections. Accordingly, one or both of these track sections will fail. The current is, however, sufficiently low to prevent domestic fuses from blowing or earth leakage trips from operating. In general it has been found that a current at failure of between 10 and 15 A/mm produces a satisfactory failure.
In the described embodiment, the track section 8d will in fact fail due to the presence of the hole 24. This acts to concentrate locally the current flowing through the track so that the region around the hole 24 will be much greater than elsewhere in the section 8d causing failure to occur in that region.
It will also be noted that the bridge 22 is provided between relatively wide track sections. This acts to reduce the power density in the region of the bridge which means that the bridge will not get as hot as surrounding regions. This has the effect of increasing the time taken to reach the breakdown temperature of the bridge 22, thereby prolonging the time before the heater fails. This is advantageous in that it reduces the likelihood of the heater failing before a primary overheat protector operates.
In the described embodiment, it has been found that the time in which the heater self protects is about 8 seconds. This is well above the 4 seconds as would be expected for the operating time of a primary overheat protection bimetal so that the heater will not prematurely fail in the event of overheating say in a dry boil or dry switch on situation in a kettle or the like. It is, however below the time at which the insulating substrate of the heater will break down, leading to a safe failure mode.
It will be appreciated that various modifications may be made to the above embodiment without departing from the scope of the invention. For example, more than one current concentrator could be provided, for example one in each of the tracks 8d and 8e. Also, although preferred, it is not essential to provide the bridge 22 in a low power density area, so that the tracks 8a- 8h may all be of the same width. Furthermore, the bridge 22 could be applied as an overglaze over the entire track 8 instead of being applied as a discrete bridge. The invention is not limited to the particular track sizes disclosed, and in some embodiments, depending on the size of heater and the required power of the heater the tracks may be wider or narrower than those widths disclosed.
It will be seen from the above that the invention in its various aspects allows a controlled failure of the heater in a severe overheat situation in a manner which reduces the likelihood of the heater breaking down to neutral or earth.

Claims (12)

  1. Claims
    An electrical resistance or heater of the type comprising a thick f ilm resistive track provided on an insulating substrate, two predetermined sections of said track having a predetermined current carrying capacity being bridged by a discrete bridge of a glass material which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through one or both of said sections, the resistive track being protected f rom oxidation by a separate overglaze layer.
  2. 2. A resistance or heater as claimed in claim 1 wherein the bridge is applied as an overglaze bridging the track sections.
  3. 3. A resistance or heater as claimed in claim 1 or 2 wherein the bridge is positioned over abutting track section ends.
  4. 4. A resistance or heater as claimed in any preceding claim wherein the bridge of material is arranged in a region of the heater which has a relatively low power density.
  5. 5. An electrical resistance or heater of the type comprising a thick film resistive track provided on an insulating substrate, two predetermined sections of said track having a predetermined current carrying capacity being bridged locally by a bridge of a glass material which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through one or both of said sections, said resistive heating track having a variable power density, the said bridge of material being provided in a region of the heater track having a relatively low power density.
  6. 6. A resistance or heater as claimed in claim 4 or 5 wherein region of relatively low power density is flanked by higher power density areas.
  7. 7. A resistance or heater as claimed in claim 4, 5 or 6 wherein the lower power density area is provided in a radially intermediate section of the heater.
  8. 8. A resistance or heater as claimed in claim 7 wherein at least the radially outer regions of the heater track has a higher power density.
  9. 9. A resistance or heater as claimed in any preceding claim wherein means are provided in a said track section which will fail which concentrates locally the current flowing through the section of track.
  10. 10. An electrical resistance or heater of the type comprising a thick film resistive track provided on an insulating substrate, two predetermined sections of said track having a predetermined current carrying capacity being bridged locally by a bridge of a glass material which at a predetermined temperature becomes sufficiently conductive to cause a failure current to flow through at least one of said sections, wherein the said track section is provided with means for concentrating locally the current flowing therethrough.
  11. 11. A resistance or heater as claimed in claim 9 or 10 wherein the current concentration is achieved by reducing locally the width of the track section.
  12. 12. A resistance or heater as claimed in claim 11 35 wherein a hole is provided through the track section.
GB9919205A 1999-08-13 1999-08-13 Electric heaters Expired - Fee Related GB2353457B (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
GB9919205A GB2353457B (en) 1999-08-13 1999-08-13 Electric heaters
CN00255073U CN2461236Y (en) 1999-08-13 2000-08-12 Electric heater
AT00953316T ATE357832T1 (en) 1999-08-13 2000-08-14 THICK LAYER HEATING ELEMENT
AU65830/00A AU6583000A (en) 1999-08-13 2000-08-14 Thick film heater
CNB00801678XA CN1180661C (en) 1999-08-13 2000-08-14 Thick film heater
AT06013593T ATE492139T1 (en) 1999-08-13 2000-08-14 THICK LAYER HEATING ELEMENT
DE60045400T DE60045400D1 (en) 1999-08-13 2000-08-14 Thick film heating element
PCT/GB2000/003136 WO2001013680A1 (en) 1999-08-13 2000-08-14 Thick film heater
EP06013593A EP1713307B1 (en) 1999-08-13 2000-08-14 Thick film heater
DE60034019T DE60034019T2 (en) 1999-08-13 2000-08-14 THICKNESS HEATING ELEMENT
RU2001111004/09A RU2001111004A (en) 1999-08-13 2000-08-14 ELECTRIC RESISTANCE COMPONENT
ES00953316T ES2284516T3 (en) 1999-08-13 2000-08-14 THICK FILM HEATER.
EP00953316A EP1121835B1 (en) 1999-08-13 2000-08-14 Thick film heater
CNB031786944A CN100396163C (en) 1999-08-13 2000-08-14 Electric heater
HK02101032.6A HK1040590A1 (en) 1999-08-13 2002-02-08 Thick film heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9919205A GB2353457B (en) 1999-08-13 1999-08-13 Electric heaters

Publications (3)

Publication Number Publication Date
GB9919205D0 GB9919205D0 (en) 1999-10-20
GB2353457A true GB2353457A (en) 2001-02-21
GB2353457B GB2353457B (en) 2004-08-25

Family

ID=10859151

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9919205A Expired - Fee Related GB2353457B (en) 1999-08-13 1999-08-13 Electric heaters

Country Status (10)

Country Link
EP (2) EP1713307B1 (en)
CN (3) CN2461236Y (en)
AT (2) ATE492139T1 (en)
AU (1) AU6583000A (en)
DE (2) DE60034019T2 (en)
ES (1) ES2284516T3 (en)
GB (1) GB2353457B (en)
HK (1) HK1040590A1 (en)
RU (1) RU2001111004A (en)
WO (1) WO2001013680A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2373157B (en) * 2001-03-05 2004-12-15 Strix Ltd Thick film heaters and resistances
DE202007011746U1 (en) 2007-08-22 2007-10-31 Günther Heisskanaltechnik Gmbh Electric heating for heating substantially cylindrical objects
NL2001690C2 (en) * 2008-06-16 2009-12-17 Otter Controls Ltd Device and method for generating steam, and heating element for use in such a device.
CN111698799A (en) * 2020-05-14 2020-09-22 佛山市也牛科技有限公司 Non-metal heating plate for cooking and preparation method and heating device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2296847A (en) * 1994-11-30 1996-07-10 Strix Ltd Plate type electrical heater with printed resistance track arranged to suppress localised overheating
GB2322274A (en) * 1997-02-17 1998-08-19 Strix Ltd Association of a thermal control with a thick film heater
GB2330291A (en) * 1996-04-18 1999-04-14 Strix Ltd Electric heaters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9302965D0 (en) 1993-02-15 1993-03-31 Strix Ltd Immersion heaters
WO1999002080A1 (en) 1997-07-11 1999-01-21 Strix Limited Liquid heating vessels and controls therefor
GB2353456B (en) 1999-08-13 2004-08-25 Strix Ltd Electric heaters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2296847A (en) * 1994-11-30 1996-07-10 Strix Ltd Plate type electrical heater with printed resistance track arranged to suppress localised overheating
GB2330291A (en) * 1996-04-18 1999-04-14 Strix Ltd Electric heaters
GB2322274A (en) * 1997-02-17 1998-08-19 Strix Ltd Association of a thermal control with a thick film heater

Also Published As

Publication number Publication date
DE60045400D1 (en) 2011-01-27
WO2001013680A1 (en) 2001-02-22
HK1040590A1 (en) 2002-06-14
DE60034019T2 (en) 2007-12-13
EP1121835B1 (en) 2007-03-21
EP1121835A1 (en) 2001-08-08
ATE357832T1 (en) 2007-04-15
ES2284516T3 (en) 2007-11-16
EP1713307A3 (en) 2006-12-06
DE60034019D1 (en) 2007-05-03
GB2353457B (en) 2004-08-25
AU6583000A (en) 2001-03-13
GB9919205D0 (en) 1999-10-20
RU2001111004A (en) 2003-03-10
CN1180661C (en) 2004-12-15
ATE492139T1 (en) 2011-01-15
CN1320355A (en) 2001-10-31
EP1713307B1 (en) 2010-12-15
EP1713307A2 (en) 2006-10-18
CN1523931A (en) 2004-08-25
CN100396163C (en) 2008-06-18
CN2461236Y (en) 2001-11-21

Similar Documents

Publication Publication Date Title
EP0787417B1 (en) Improvements to thick film elements
US6207938B1 (en) Resistive heating track with bridge fuse
EP0715483A2 (en) Electric heaters
EP1145598B1 (en) Improvements relating to electric heating elements
EP1121835B1 (en) Thick film heater
EP0956737B1 (en) Heating element for a liquid heating vessel
CN108449814A (en) A kind of heater
EP1145597B1 (en) Improvements relating to electrically heated water boiling vessels
EP1366640B1 (en) Thick film heaters and resistances
WO2001093638A1 (en) Improvements relating to electric heating elements
RU2226750C2 (en) Heater incorporating element produced by screen printing method and method for manufacturing this heater
GB2347058A (en) Resistive track heater having intermediate electrical connection locations

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20080813

S73 Revocation on comptroller's initiative (section 73/patents act 1977)

Free format text: PATENT REVOKED; PATENT REVOKED UNDER SECTION 73(2)ON 12 APRIL 2012