GB2316711A - Electromagnetically operated valve driving system for driving intake or exhaust valves of i.c. engines - Google Patents

Electromagnetically operated valve driving system for driving intake or exhaust valves of i.c. engines Download PDF

Info

Publication number
GB2316711A
GB2316711A GB9718148A GB9718148A GB2316711A GB 2316711 A GB2316711 A GB 2316711A GB 9718148 A GB9718148 A GB 9718148A GB 9718148 A GB9718148 A GB 9718148A GB 2316711 A GB2316711 A GB 2316711A
Authority
GB
United Kingdom
Prior art keywords
valve
valve body
closing
solenoid
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9718148A
Other versions
GB9718148D0 (en
GB2316711B (en
Inventor
Shinji Kamimaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Fuji Jukogyo KK
Publication of GB9718148D0 publication Critical patent/GB9718148D0/en
Publication of GB2316711A publication Critical patent/GB2316711A/en
Application granted granted Critical
Publication of GB2316711B publication Critical patent/GB2316711B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The system comprises a valve 7a with an armature 10a, an opening solenoid 9a, a closing solenoid 7a, and a control apparatus for energizing or de-energizing these opening and closing solenoids. Springs 11a, 12a are provided in order to balance a valve body 7a on a specified position between the fully open and fully closed positions. Further, when the intake or exhaust valve is closed, the closing solenoid is de-energized for a very short time immediately before the intake or exhaust valve is fully closed so as to reduce a travelling speed of the valve body when said valve body is seated. Similarly, when the intake or exhaust valve is opened, the opening solenoid is de-energized for a very short time immediately before the intake or exhaust valve is fully opened so as to reduce a travelling speed of the valve body when the valve body is fully opened. Noise is reduced and durability increased.

Description

1 2316711 ELECTROMAGNETICALLY OPERATED VALVE DRIVING SYSTEM The present
invention relates to an electromagnetically operated valve driving system for an internal combustion engine, particularly to an electromagnetically operated valve driving system capable of absorbing impacts when a valve is seated on a valve seat or fully open.
An electromagnetically operated valve driving system is a valve driving mechanism for opeping and closing intake and exhaust valves by means of electromagnetic force. The greatest advantage of the valve driving apparatus over the conventional camshaft driving valve mechanism is to be able to set opening and closing timing of valves arbitrarily and therefore the valve driving apparatus enables to operate an engine with an optimal valve timing according to engine operating conditions.
However, one of disadvantages of the valve driving apparatus is impacts caused when valves are seated on the valve seats or fully open. The impacts are caused by the valve motion accelerated by the magnetic force of solenoids or the rebound force of springs. Generally, impacts generate noises and an adverse effect on durability of valves as well.
As an example of techniques to solve the problem, there is Japanese Patent Application Laid-open Toku-Kai-Sho No. 61-76713 whose electromagnetically operated valve driving system comprises an electromagnetic solenoid for opening a valve (valve opening solenoid), an electromagnetic solenoid for closing a valve (valve closing solenoid) and an armature, disclosing a technique in which the impact at seating is alleviated by reducing the seating velocity of the valve by means of energising the valve opening solenoid immediately before seating.
However, immediately before the valve is seated, since the armature is at the closest position to the valve closing solenoid and is at the remotest position from the valve opening solenoid, it is difficult to control the seating velocity of the valve due to a weak magnetic field of the valve opening solenoid.
It is an object of the present invention to provide an electromagnetically operated valve driving system capable of controlling the velocity of the valve immediately before the valve is fully opened or seated so as to alleviate the impact at seating or fully opening.
In accordance with a first aspect of the present invention, there is provided an electromagnetically operated valve driving system of an engine having a combustion chamber, an intake or exhaust valve including a valve body for opening and closing said combustion chamber, a valve stem for supporting said valve body, an armature connected with said valve stem, a valve opening solenoid for attracting said armature and for driving said valve body so as to open said combustion chamber and a valve closing solenoid for attracting said armature and for driving said valve body so as to close said combustion chamber, and a control apparatus for energising or deenergizing said first and valve closing solenoids, comprising:
at least one spring for balancing said valve body on a specified position between the fully open and fully closed positions of said valve body and for exerting a restoring force of said valve body; and valve closing control means for at least once deenergizing said valve closing solenoid immediately before said intake or exhaust valve is fully closed, so as to reduce a travelling speed of said valve body when said valve body is seated, when said intake or exhaust valve is closed.
In accordance with a second aspect of the present invention, there is provided an electromagnetically operated valve driving system of an engine having a combustion chamber, an intake or exhaust valve including a valve body for opening and closing said combustion chamber, a valve stem for supporting said valve body, an armature connected with said valve stem, a valve opening solenoid for attracting said armature and for driving said valve body so as to open said combustion chamber and a valve closing solenoid for attracting said armature and for driving said valve body so as to close said combustion chamber, and a control apparatus for energizing or deenergizing said first and valve closing solenoids, comprising:
at least one spring for balancing said valve body on a specified position between the fully open and fully closed positions of said valve body and for exerting a restoring force of said valve body; and valve opening control means for at least once deenergizing said valve opening solenoid immediately before said intake or exhaust valve is fully opened, so as to reduce a travelling speed of said valve body when said valve body is fully opened, when said intake or exhaust valve is opened.
Fig. 1 is a flowchart showing a main control routine according to an embodiment of the present invention; Fig. 2 is a flowchart showing a control routine for controlling a current supplied to a valve opening solenoid; Fig. 3 is a flowchart showing a control routine for controlling a deenergizing pulse; Fig. 4 is a flowchart showing a control routine for controlling a current supplied to a valve closing solenoid; Fig. 5 is a schematic view showing an engine incorporating an electromagnetically operated valve driving system; Fig. 6 is a circuit diagram of an electromagnetically operated valve driving system; Fig. 7 is a schematic drawing of an electromagnetically operated valve driving system; and Fig. 8 is a time chart showing energizing and deenergizing timing of a current supplied to a valve opening and closing solenoids and a time chart showing a movement of a valve lift versus time.
Referring now to Fig. 5, numeral 1 denotes a four cylinder internal combustion engine incorporating an electromagnetically operated valve driving system. An intake passage 5 is connected with each of cylinders #1, #2, #3 and #4 of the engine 1 respectively and electromagnetically operated intake valves 3a, 3b, 3d and 3d are disposed respectively at the connecting portion of the intake passage 5 and the cylinder.
Further, an exhaust passage 6 is connected with respective cylinders #1, #2, #3 and #4 and electromagnetically operated exhaust valves 3e, 3f, 3g and 3h are disposed respectively at the connecting portion of the exhaust passage 6 and the cylinder.
These electromagnetically operated intake and exhaust valves 3a through 3h are connected with a control apparatus 4, thus constituting an electromagnetically operated valve driving system 2. These intake and exhaust valves are operated by the driving signal from the control apparatus 4 so as to open and close at an individual timing.
Referring to Figs. 5, 6 and 7, the electromagnetically operated intake valve 3a is composed of an electromagnetic solenoid 9a for opening valve (hereinafter referred to as valve opening solenoid), an electromagnetic solenoid 8a for closing valve (hereinafter referred to as valve closing solenoid) and a valve 7a operated by the magnetic field energised with these
6 solenoids.
Similarly, the electromagnetically operated intake valve 3b comprises a valve opening solenoid 9b, a valve closing solenoid 8b and a valve 7b. Further, similarly, the intake and exhaust valves 3c through 3h are composed of corresponding solenoids and valves.
The control apparatus 4, as shown in Fig. 6, is composed of an input interface 15, a CPU 16 and a high voltage drive circuit 17.
Miscellaneous sensors (not shown) are connected with the input interface 15 to which miscellaneous data such as an engine speed, an accelerator opening angle, a crank angle, a coolant temperature and the like are inputted therefrom.
Based on these inputted data, the CPU 16 calculates opening and closing timing of the electromagnetically operated intake valves 3a through 3d and the electromagnetically operated exhaust valves 3e through 3h and then the high voltage drive circuit 17 outputs a drive signal at the calculated timing to the valve opening solenoids 9a through 9h and the valve closing solenoids 8a through 8h, respective Miscellaneous sensors (not shown) are connected with the input interface 15 to which miscellaneous data such as an engine speed, an accelerator opening angle, a crank angle, a coolant temperature and the like are inputted therefrom.
Based on these inputted data, the CPU 16 calculates opening and closing timing of the electromagnetically operated intake valves 3a through 3d and the electromagnetically operated respectively.
Fig. 7 shows a construction of the electromagnetically operated intake valve 3a, which comprises a valve 7a, a valve closing solenoid 8a for closing the valve 7a, a valve opening solenoid 9a for opening the valve 7a, a valve opening spring 11a and a valve closing spring 12a.
The valve 7a has a valve head 7a at the one end thereof and a spring retainer 78 is mounted at the other end of the valve stem 7y. An armature 10a is integrally formed with the spring retainer 78 in order to open and close the valve 7a by energizing the valve opening solenoid 8a and the valve closing solenoid 9a.
The valve 7a is disposed in the engine 1 so that its valve head 7a seals a valve seat 14a provided at the connecting portion of the #1 cylinder and the intake passage 5 when the valve 7a comes to a closing position.
Further, there are provided with the cylindrical valve opening and closing solenoids 9a and 8a on the common axis with the valve stem 7y at a specified interval, respectively and the armature loa is disposed so as to reciprocate between both solenoids 9a and 8a in the direction of the axis of the valve stem 7y.
The interval between both solenoids is established such that the valve 7a is fully closed when the armature 10a comes into contact with the valve closing solenoid 8a and it is fully opened when the armature 10a comes into contact with the valve opening solenoid 9a.
The spring retainer 78 is inserted between the valve opening spring 11a disposed in the cylindrical space provided above the valve closing solenoid 8a and the valve closing spring 12a disposed in the cylindrical inner space of the valve opening solenoid 9a on the same axis as the valve stem 7y so as to balance on an intermediate position of the valve closing solenoid 8a and the valve opening solenoid 9a.
Fig. 7 shows an example of the electromagnetically operated valve using an intake valve 3a, however other intake valves 3b through 3d and the exhaust valves 3e through 3h are constituted similarly to the intake valve 3a.
Next, an operation of the electromagnetically operated valve driving system 2 will be described referring to flowcharts in Figs. 1, 2, 3 and 4 and a time chart in Fig. 8.
The control routines shown in these flowcharts are carried out every specified crank angle 9. Referring to a flowchart in Fig. 1, when the main routine starts, first at a step S1 an engine operating condition is detected, i.e., an engine speed, an accelerator opening angle, a crank angle signal, a coolant temperature and the like are detected. These detected data are sent to the CPU 16 of the control apparatus 4 where miscellaneous operating timings are calculated according to the following procedure.
First, at S2 opening and closing timings of the electromagnetically operated intake valves 3a through 3d and exhaust valves 3e through 3h are calculated. Next, at S3 an energizing timing of the valve opening solenoids 8a through 8h and the valve closing solenoids 9a through 9h are calculated, respectively and then at S4 a deenergizing pulse timing is calculated. The deenergizing pulse (hereinafter referred to as "off pulse") is a pulse for turning current to the solenoids off temporarily. Then, at S5 an energizing control routine is carried out and the program returns to START.
The energizing control routine is divided into a first energizing control routine for energizing or deenergizing respective valve opening solenoids 9a through 9h and a second energizing control routine for energizing or deenergizing respective valve closing solenoids 8a through Sh.
Referring to Fig. 2, the first energizing control routine will be described. When the routine starts, at Sil it is judged whether or not the crank timing coincides with a timing for outputting an off-pulse. If it is judged that the crank timing has coincided with a timing for outputting an off-pulse, the program goes to S12 where an off-pulse establishing routine is executed and then the program leaves the first energizing control routine. If it is judged that the crank timing is not a timing for outputting the off- pulse, the program goes to S13.
At S13, it is judged whether or not the valve opening solenoid is deenergised and if it is deenergized the program goes to S14. On the other hand, if the valve opening solenoid is energised, the program goes to S16.
At S14, it is judged whether or not the crank timing coincides with a timing for energizing the valve opening solenoid. If it is judged that the crank timing has coincided with a timing for energizing the valve opening solenoid, the program goes to S15 where the valve opening solenoid is energised and then the program leaves the routine. on the other hand, if it is judged that the crank timing is not a timing for energizing the valve opening solenoid, the program leaves the routine.
At S16, if it is judged whether or not the crank timing coincides with a timing for energizing the valve closing solenoid. If it is judged that the crank timing has coincided with a timing for energizing the valve closing solenoid, the program goes to S17 where the valve opening solenoid which has been energised is deenergized and the program leaves the routine. On the other hand, if it is judged that the crank timing is not a timing for energizing the valve closing solenoid, the program leaves the routine.
Next, the off-pulse establishing routine at S12 will be described with reference to Fig. 3. At S21, it is judged whether or not the crank timing coincides with a timing for cutting off the voltage applied to the valve opening (or closing) solenoid. If it is judged that the crank timing has coincided with a timing for cutting off that voltage, the program goes to S22 where the valve opening (or closing) solenoid is deenergized and the program steps to S23. On the other hand, if it is judged that the crank timing is not a timing for cutting off that voltage, or if the valve opening (closing) solenoid is not energised, the program skips to S23.
At S23, it is judged whether or not the crank timing coincides with a timing for applying voltage to the valve opening (closing) solenoid. If it is judged that the crank timing has coincided with a timing for applying voltage to the valve opening (or closing) solenoid, the program goes to S24 where the valve opening (or closing) solenoid is energised and then the program leaves the off-pulse establishing routine. On the other hand, if it is judged at S23 that the crank timing is not a timing for applying voltage to the valve (or closing) solenoid, or if the solenoid is energised, the program leaves the routine.
Referring to Fig. 4, the second energizing control routine will be described. When the routine starts, at S31 it is judged whether or not the crank timing coincides with a timing for outputting an off-pulse. If it is judged that the crank timing has coincided with a timing for outputting the off-pulse, the program goes to S32 where the off-pulse establishing routine is executed and then the program leaves the second energizing control routine. Here, the off-pulse establishing routine is executed in the same manner as in the case of the first energizing control routine. If it is judged that the crank timing is not a timing for outputting the off-pulse, the program goes to S33.
At S33, it is judged whether or not the valve closing solenoid is deenergized and if it is deenergized the program goes to S34. On the other hand, if the valve closing solenoid is energised, the program goes to S36.
At S34, it is judged whether or not the crank timing coincides with a timing for energizing the valve closing solenoid. If it is judged that the crank timing has coincided with a timing for energizing the valve closing solenoid, the program goes to S35 where the valve opening solenoid is energised and then the program leaves the routine. on the other hand, if the crank timing is not a timing for energizing the valve closing solenoid, the program leaves the routine.
At S36, it is judged whether or not the crank timing coincides with a timing for energising the valve opening solenoid. If it is judged that the crank timing has coincided with a timing for energizing the valve the program goes to S37 where the valve opening solenoid which has been energized is deenergized and the program leaves the routine. on the other hand, if it is judged that the crank timing is not a timing for energizing the valve opening solenoid, the program leaves the routine.
Next, the relationship between the control voltage 1 of the electromagnetically operated intake valve 3a and an operation of the valve 7a will be described with reference to Fig. 8.
In Fig. 8, a time chart (a) shows a control voltage applied to the valve opening solenoid 9a and a time chart (b) shows a control voltage applied to the valve closing solenoid 8a. Further, a time chart (c) indicates a valve lift corresponding to (a) and (b).
The main routine shown in Fig. 1 is executed every specified crank angle e, that is, calculations at S2 through S4 are repeated every crank angle e based on the detected engine operating conditions and further the energizing control routine is carried out at S5 based on results of these calculations. The energizing control routine is executed according to the control routines shown in Figs. 2, 3 and 4.
For example, when the electromagnetically operated intake valve 3a is open, the first energizing control routine shown in Fig. 2 is repeated every specified crank angle e, taking such steps as START-S11-13-SI6-RTS. In this state, the control voltage of the valve opening solenoid 9a (hereinafter referred to as "valve opening control voltage',) is continued to be applied. on the other hand, the second energizing control routine as shown in Fig. 4 is repeated every specified crank angle e, taking such steps as START-S31-33-S34-RTS and the control voltage of the valve closing solenoid 8a (hereinafter referred to as "valve closing control voltage") is continued to be turned off.
The valve opening solenoid 9a is energised by the valve opening control voltage and the armature loa is attracted by the magnetic field of the valve opening solenoid towards the valve opening solenoid 9a so as to open the valve 7a.
When the crank angle reaches el (corresponding to an event t, in Fig. 8), as shown in Fig.2, the first energizing routine is repeated every specified crank angle, taking steps like START-S11-S13-S16-S17-RTS, then taking such steps as START-S11-S13-S14-RTS after the valve opening control voltage is turned off. As a result, the valve opening control voltage is continued to be turned off.
When the valve opening control voltage is turned off at the event tl, by the restoring force directing to the balancing position of the valve opening spring 11 and the valve closing spring 12 the valve 7a directs towards the closing direction and it would indicate a movement as shown by a one-dot broken line, unless a voltage control is applied to the valve closing solenoid 8a. However, an actual movement of the valve 7a is as follows.
When the crank angle reaches e2 (corresponding to an event t2 in Fig. 8), the second energizing control routine shown in Fig. 4 takes such steps as START-S31-S33-S34-S35-RTS and the valve closing control voltage is turned on. After that, steps like START-S31-33-S36-RTS are repeated every specified crank angle and the valve closing control voltage is continued to be turned on.
When the valve closing control voltage is applied to the valve closing solenoid 8a at an event t2, the valve closing solenoid 8a is energised to generate a magnetic field and the armature 10a is accelerated again towards the valve closing solenoid 8a against the restoring force directing to the balancing position of the valve opening spring 11a and the valve closing spring 12a.
When the crank angle reaches e3 (corresponding to an event t3 in Fig. 8), the routine shown in Fig. 4 takes steps like START-S31-S32-RTS and the same steps are repeated until the crank angle reaches e4 (corresponding to an event t4 in Fig. 8).
At the step S32 of the routine in Fig. 4, the offpulse establishing routine as shown in Fig. 3 is executed. This off-pulse establishing routine takes such steps as START-S21-S22-S23-RTS at the crank angle e3 and the valve closing control voltage is temporarily cut off. After that, steps START-S21-S23-RTS are repeated and the valve closing control voltage is continued to be turned off.
When the valve closing control voltage is turned off at t31 the valve 7a and the armature 10a continues to move in the closing direction of the valve 7a but the speed thereof is reduced by the restoring force directing to the balancing position of the valve opening spring 11a and the valve closing spring 12a. As a result, the valve 7a is seated on the valve seat while it is decelerated and the lift curve is made round as shown in Fig. 8.
When the crank angle reaches e4 (corresponding to an event t4 in Fig. 8 and a timing immediately before the valve seating), the off-pulse establishing routine as shown in Fig. 3 takes steps like START-S21-S23S24-RTS to turn the valve closing control voltage on. After that, the second energizing control routine as shown in Fig. 4 repeats steps STARTS31-S33-S36-RTS to continue to turn the valve closing control voltage on.
Therefore, at t4 the valve closing control voltage is applied again to the valve closing solenoid 8a and the armature loa is attracted towards the valve closing solenoid 8a. As a result, the valve 7a is fully closed (seated on the valve seat).
When the valve is made open, the valve opening operation is performed at respective timings t5, t61 t7 and t. and the valve reaches a fully open position while it is decelerated.
That is to say, when the valve closing control voltage is turned off at t5, the valve 7a starts to move towards the valve opening solenoid 9a. At an event t6, the valve opening control voltage is turned on and the valve 7a is accelerated in the valve opening direction.
Then, the valve opening control voltage is temporarily turned off between events t7 and t. by an off- pulse and is turned on again at t.. When the valve opening control voltage is turned off between t7 and t., the travelling speed of the valve 7a is reduced by the restoring force directing to the balancing position of the valve opening spring lla and the valve closing spring 12a. Further, when the valve opening control voltage is turned on at the event t8 and the valve opening coil 9a is energised, the armature 10a is attracted towards the valve opening solenoid 9a and the valve 7a is made fully open.
Thus, according to the embodiment of the present invention, the travelling speed of the valve 7a can be controlled immediately before the valve 7a is seated or fully open by means of temporarily energizing the valve closing solenoid 8a or the valve opening solenoid 9a. The control of the travelling speed of the valve 7a enables to alleviate the impact of the valve 7a when it is seated or fully open, whereby not only noises due to the valve opening and closing operations can be reduced but also the durability of the valve 7a itself can be greatly improved.
Further, since the travelling speed of the valve 7a is controlled by the electromagnetic solenoid close to the armature 10a, more excellent controllability of the valve 7a can be obtained.
With respect to other intake valves 3b through 3d and exhaust valves 3e through 3h, the same operation as the intake valve 3a is performed according to the same control of the valve opening and closing solenoids.
In this embodiment, the off-pulse is outputted once per one opening or closing operation of the valve, however the off-pulse may be outputted more than once within one opening or closing operation of the valve according to the valve speed, the output timing of pulse, the magnitude of magnetic field of the electromagnetic solenoids and the like.
In summary, according to the present invention, since when the valve is opened power to the valve opening solenoid is disconnected temporarily and when the valve is closed power to the valve closing solenoid is disconnected, the travelling speed of the valve immediately before it is seated or fully open can be alleviated, this reduces the impact of the valve when it is seated or fully open. The reduction of the impact leads to reduced noise and improved durability.

Claims (2)

Claims
1. An electromagnetically operated valve driving system of an engine having a combustion chamber, an intake or exhaust valve including a valve body for opening and closing said combustion chamber, a valve stem for supporting said valve body, an armature connected with said valve stem, a valve opening solenoid for attracting said armature and for driving said valve body so as to open said combustion chamber and a valve closing solenoid for attracting said armature and for driving said valve body so as to close said combustion chamber, and a control apparatus for energizing or deenergizing said first and valve closing solenoids, comprising: at least one spring for balancing said valve body on a specified position between the fully open and fully closed positions of said valve body and for exerting a restoring force of said valve body; and valve closing control means for at least once deenergizing said valve closing solenoid immediately before said intake or exhaust valve is fully closed, so as to reduce a traveling speed of said valve body when said valve body is seated, when said intake or exhaust valve is closed.
2. An electromagnetically operated valve driving system of an engine having a combustion chamber, an intake or exhaust valve including a valve body for opening and closing I said combustion chamber, a valve stem for supporting said valve body, an armature connected with said valve stem, a valve opening solenoid for attracting said armature and for driving said valve body so as to open said combustion chamber and a valve closing solenoid for attracting said armature and for driving said valve body so as to close said combustion chamber, and a control apparatus for energizing or deenergizing said first and valve closing solenoids, comprising: at least one spring for balancing said valve body on a specified position between the fully open and fully closed positions of said valve body and for exerting a restoring force of said valve body; and valve opening control means for at least once deenergizing said valve opening solenoid immediately before said intake or exhaust valve is fully opened, so as to reduce a traveling speed of said valve body when said valve body is fully opened, when said intake or exhaust valve is opened.
1
GB9718148A 1996-08-30 1997-08-27 Electromagnetically Operated Valve Driving System Expired - Fee Related GB2316711B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8230094A JPH1073011A (en) 1996-08-30 1996-08-30 Solenoid valve system driving control device

Publications (3)

Publication Number Publication Date
GB9718148D0 GB9718148D0 (en) 1997-10-29
GB2316711A true GB2316711A (en) 1998-03-04
GB2316711B GB2316711B (en) 1999-04-07

Family

ID=16902465

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9718148A Expired - Fee Related GB2316711B (en) 1996-08-30 1997-08-27 Electromagnetically Operated Valve Driving System

Country Status (4)

Country Link
US (1) US5782211A (en)
JP (1) JPH1073011A (en)
DE (1) DE19736647B4 (en)
GB (1) GB2316711B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176208B1 (en) * 1997-07-03 2001-01-23 Nippon Soken, Inc. Electromagnetic valve driving apparatus
US20030125278A1 (en) * 1997-08-13 2003-07-03 Tang De-Chu C. Immunization of animals by topical applications of a salmonella-based vector
JPH11148326A (en) * 1997-11-12 1999-06-02 Fuji Heavy Ind Ltd Controller for solenoid valve
JP3465568B2 (en) * 1998-01-19 2003-11-10 トヨタ自動車株式会社 Electromagnetic drive valve control device for internal combustion engine
JP3629362B2 (en) * 1998-03-04 2005-03-16 愛三工業株式会社 Driving method of electromagnetic valve for driving engine valve
DE19832198A1 (en) * 1998-07-17 2000-01-20 Bayerische Motoren Werke Ag Controlling armature motion in electromagnetic actuator used to operate internal combustion engine valve
DE19832196A1 (en) * 1998-07-17 2000-01-20 Bayerische Motoren Werke Ag Controlling armature motion in electromagnetically operated valve of internal combustion engine
JP3846070B2 (en) * 1998-10-29 2006-11-15 トヨタ自動車株式会社 Control device for electromagnetically driven valve
DE19907850C2 (en) * 1999-02-24 2002-08-01 Siemens Ag Multi-cylinder internal combustion engine with gas exchange lift valves actuated by electromagnetic actuators
JP2003500600A (en) * 1999-05-27 2003-01-07 エフ・エー・フアウ・モトーレンテヒニック・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Method of controlling an electromagnetic actuator for operating a gas exchange valve of a piston type internal combustion engine
DE19927669A1 (en) * 1999-06-17 2000-12-21 Fev Motorentech Gmbh Process for monitoring the operation of a piston internal combustion engine with fully variable gas exchange valves
FR2796752B1 (en) 1999-07-23 2001-10-19 Peugeot Citroen Automobiles Sa IMPACT CONTROL AND LIMITATION DEVICE FOR AN ELECTROMECHANICAL ACTUATOR
JP3800896B2 (en) * 1999-12-03 2006-07-26 日産自動車株式会社 Control device for electromagnetic actuator
IT1321161B1 (en) * 2000-03-24 2003-12-30 Magneti Marelli Spa METHOD FOR THE ADJUSTMENT OF CURRENTS DURING STATIONING PHASES ELECTROMAGNETIC INACTORS FOR THE ACTIVATION OF VALVES OF
US6269784B1 (en) * 2000-04-26 2001-08-07 Visteon Global Technologies, Inc. Electrically actuable engine valve providing position output
US6390049B1 (en) * 2000-06-08 2002-05-21 Seyd Mehdi Sobhani Air cooled oil free engine
US6418003B1 (en) 2000-07-05 2002-07-09 Ford Global Technologies, Inc. Control methods for electromagnetic valve actuators
US6840200B2 (en) * 2000-12-07 2005-01-11 Ford Global Technologies, Inc. Electromechanical valve assembly for an internal combustion engine
DE10140432B4 (en) * 2001-08-17 2010-02-11 GM Global Technology Operations, Inc., Detroit Method and device for noise and vibration reduction on a solenoid valve
JP2003120848A (en) * 2001-10-18 2003-04-23 Bosch Automotive Systems Corp Solenoid valve driving control method and device
US7225770B2 (en) * 2003-12-10 2007-06-05 Borgwarner Inc. Electromagnetic actuator having inherently decelerating actuation between limits
DE102015201619B3 (en) * 2015-01-30 2016-07-14 Ford Global Technologies, Llc Intercooler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727566A2 (en) * 1995-02-15 1996-08-21 Toyota Jidosha Kabushiki Kaisha A valve driving apparatus using an electromagnetic coil to move a valve body with reduced noise

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176713A (en) * 1984-09-21 1986-04-19 Mazda Motor Corp Valve controller for engine
JPH02112606A (en) * 1988-10-20 1990-04-25 Isuzu Ceramics Kenkyusho:Kk Electromagnetic power-driven valve control device
JPH0621531B2 (en) * 1988-12-28 1994-03-23 いすゞ自動車株式会社 Control device for electromagnetically driven valve
JP3315275B2 (en) * 1994-11-04 2002-08-19 本田技研工業株式会社 Control device for opposed two solenoid type solenoid valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727566A2 (en) * 1995-02-15 1996-08-21 Toyota Jidosha Kabushiki Kaisha A valve driving apparatus using an electromagnetic coil to move a valve body with reduced noise

Also Published As

Publication number Publication date
DE19736647A1 (en) 1998-03-05
US5782211A (en) 1998-07-21
GB9718148D0 (en) 1997-10-29
GB2316711B (en) 1999-04-07
JPH1073011A (en) 1998-03-17
DE19736647B4 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US5782211A (en) Electromagnetically operated valve driving system
US5868108A (en) Method for controlling an electromagnetic actuator operating an engine valve
US6925975B2 (en) Controller for controlling an electromagnetic actuator
US5124598A (en) Intake/exhaust valve actuator
US4455543A (en) Electromagnetically operating actuator
US6196172B1 (en) Method for controlling the movement of an armature of an electromagnetic actuator
US5671705A (en) Control system for two opposed solenoid-type electromagnetic valve
US6198370B1 (en) Method and apparatus for operating a cylinder valve with an electromagnetic actuator without pole face contacting
US6729277B2 (en) Electromagnetic valve controller
EP0406443B1 (en) Electromagnetic valve actuator
JP2001023818A (en) Regulating method for collision speed of movable piece in electromagnetic actuator by regulating based on energization characteristic curve
US6279524B1 (en) Electromagnetic actuator having a pneumatic dampening element
EP0406444B1 (en) Electromagnetic valve actuator
US4938179A (en) Valve control system for internal combustion engine
US6247432B1 (en) Engine valve assembly for an internal-combustion engine, including an electromagnetic actuator
US6274954B1 (en) Electromagnetic actuator for actuating a gas-exchanging valve
US6725816B2 (en) Apparatus for and method of controlling solenoid-operated valve device, and recording medium storing control program for solenoid-operated valve device
EP1312775A2 (en) Electromagnetic valve actuators
EP0401390B1 (en) Electromagnetic valve actuator
US5009202A (en) Electromagnetically operated valve assembly for use in internal combustion engine
US7182051B2 (en) Electromechanical valve actuator for internal combustion engines and internal combustion engine equipped with such an actuator
JP2002061768A (en) Valve clearance estimating device and control device for solenoid valve
JP2005201231A (en) Electromechanical actuator for valve for internal combustion engine and internal combustion engine provided with such actuator
US6230673B1 (en) Solenoid-operated valve for internal combustion engine
JP3671793B2 (en) Control device for electromagnetically driven valve

Legal Events

Date Code Title Description
746 Register noted 'licences of right' (sect. 46/1977)

Effective date: 19991130

PCNP Patent ceased through non-payment of renewal fee

Effective date: 20050827