GB2292455A - Sorting particles according to stimulated raman response - Google Patents

Sorting particles according to stimulated raman response Download PDF

Info

Publication number
GB2292455A
GB2292455A GB9516356A GB9516356A GB2292455A GB 2292455 A GB2292455 A GB 2292455A GB 9516356 A GB9516356 A GB 9516356A GB 9516356 A GB9516356 A GB 9516356A GB 2292455 A GB2292455 A GB 2292455A
Authority
GB
United Kingdom
Prior art keywords
particles
diamond
laser radiation
emit
stimulated raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9516356A
Other versions
GB2292455B (en
GB9516356D0 (en
Inventor
Con-Vivier Venter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Beers Industrial Diamond Division Pty Ltd
Original Assignee
De Beers Industrial Diamond Division Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Beers Industrial Diamond Division Pty Ltd filed Critical De Beers Industrial Diamond Division Pty Ltd
Publication of GB9516356D0 publication Critical patent/GB9516356D0/en
Publication of GB2292455A publication Critical patent/GB2292455A/en
Application granted granted Critical
Publication of GB2292455B publication Critical patent/GB2292455B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/87Investigating jewels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • B07C5/3427Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain by changing or intensifying the optical properties prior to scanning, e.g. by inducing fluorescence under UV or x-radiation, subjecting the material to a chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • B07C5/367Sorting apparatus characterised by the means used for distribution by means of air using a plurality of separation means
    • B07C5/368Sorting apparatus characterised by the means used for distribution by means of air using a plurality of separation means actuated independently
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A method for sorting particles in which the particles are irradiated with pulsed laser radiation at an intensity and wavelength chosen to cause selected particles to emit a stimulated Raman signal. The particles are sorted into those that emit a stimulated Raman response characteristic of the selected particles and those that do not. In an embodiment, a conveyor belt 10 transports diamond 14 and non-diamond 16 particles to an irradiation zone 22. Radiation scattered from the particles is focused on a detector 26 by a lens system 28 and a monochromatic filter 30 which has a pass band centred at a characteristic Raman wavelength for diamond. An electronic processor 32 controls an ejector apparatus 34 which directs puffs of compressed air at diamond particles which have been detected diverting them into a concentrate collection bin 36. <IMAGE>

Description

"CLASSIFICATION OF PARTICLES ACCORDING TO RAMAN RESPONSE" THIS invention relates to the classification of particles according to their Raman response to incident laser radiation. In one application the method of the invention may be used to classify diamondiferous material into diamond and non-diamond fractions.
The sorting of particles, in particular diamonds, by Raman spectroscopy has already been proposed. See, for instance, US patent 5,143,224. The application of Raman spectroscopy to diamond sorting has however proved to have a number of disadvantages, including the following: - normal Raman scattering of incident laser radiation takes place at very low intensity levels which can be difficult to detect; - many types of other particles normally associated with diamonds also fluoresce under the incident laser excitation, making it difficult to isolate the diamond response; - the fluorescence which takes place is a broad band phenomenon which may swamp the weak Raman signal; and - the use of the conventional Raman scattering phenomenon in an industrial environment calls for very specific requirements including very low light levels in the measuring zone, the absence of optical dispersants such as dust or smoke and expensive detection equipment to detect the weak Raman signal.
According to one aspect of the invention there is provided a method of classifying particles which comprises irradiating the particles with pulsed incident laser radiation at an intensity chosen to cause selected particles to emit a stimulated Raman signal, and classifying the particles according to whether they emit a stimulated Raman response characteristic of the selected particles.
In one preferred application, where the particles which are to be classified comprise diamond particles and non-diamond particles, the pulsed incident laser radiation is at an intensity chosen to cause diamond particles to emit a stimulated Raman response, and the particles are classified according to whether or not they emit a stimulated Raman response characteristic of diamond.
In this application the incident laser radiation is preferably pulsed with a pulse duration shorter than the luminescence response time of diamond. The pulse duration may, for instance, be of the order of 8ns and the incident laser radiation at an intensity of about 1MW/cm2.
Typically, the incident laser radiation is produced by an Nd:YAG laser operating at a wavelength of 355nm. The signals emitted by the particles in response to the incident laser radiation may be passed to a detector by a filter having a pass band centred at a characteristic Raman wavelength for diamond.
According to a second aspect of the invention there is provided a method of sorting particles which comprises moving the particles through an irradiation zone, irradiating the particles, in the irradiation zone, with pulsed incident laser radiation at an intensity chosen to cause selected particles to emit a stimulated Raman signal, and sorting the particles into a first fraction rich in the selected particles and a second fraction rich in other particles, according to whether they emit a stimulated Raman response characteristic of the selected particles.
To ensure a high throughput rate, the particles may be moved through the irradiation zone in a broad stream and irradiated by a laser beam which is pulsed sequentially across the width of the stream. Conveniently, the particles are transported on a belt which projects them in a broad stream through the irradiation zone.
The stream of particles can be moved, after the irradiation zone, past an ejector apparatus comprising a bank of spaced apart ejectors located adjacent the stream, appropriate ejectors being activated at appropriate times to eject selected particles from the stream for collection as the first fraction.
The sorting method summarised above may be used to sort diamond particles from non-diamond particles.
According to a further aspect of the invention there is provided an apparatus for sorting particles, the apparatus comprising: - an irradiation zone, - means for moving particles which are to be sorted through the irradiation zone, - a pulsed laser tube for irradiating the particles in the irradiation zone with pulsed, incident laser radiation at an intensity chosen to cause selected particles to emit a stimulated Raman signal, - a detector, - a filter having a pass band centred on a characteristic Raman wavelength for the selected particles, the filter being arranged to pass appropriate signals which are emitted by the particles in response to the incident pulsed laser radiation to the detector - analysing means responsive to the detector for determining, from signals detected by the detector, which of the particles have a stimulated Raman response characteristic of the selected particles, and - sorting means responsive to the analysing means for sorting the particles into a first fraction rich in the selected particles and a second fraction rich in other particles.
The invention will now be described in more detail, by way of example only, with reference to the accompanying diagrammatic drawings.
In the drawings: Figure 1 shows a side view of an apparatus which employs the method of the invention; and Figure 2 shows a plan view of the apparatus seen in Figure 1.
In the following description, specific mention is made of the classification and sorting of diamonds, although it will be appreciated that the principles of the invention are also applicable to the classification and sorting of other particle types.
The Figures show a broad conveyor belt 10 which conveys diamondiferous feed material 12. The feed material is derived from mining operations and subsequent processing and contains diamond particles 14 and associated rock, i.e. non-diamond, particles 16. The feed material is discharged over a discharge pulley 18 and follows a falling trajectory 20. At an irradiation zone 22, the particles are irradiated with a pulsed laser beam generated by a laser tube 24.
The laser beam is pulsed sequentially across the width of the belt so that, at times T1, T2, T3 ... Tns different portions of the width of the falling stream of particles are irradiated, the lateral spacing of the train of pulses being selected to accommodate the smallest expected particles. For a given wavelength, the laser beam is at an intensity chosen to activate a characteristic, stimulated Raman signal in the diamond particles 14, but not at an intensity high enough to have the potential to damage the crystal structure of the diamonds.
The radiation scattered by the particles at each pulse of incident radiation is collected and focused on a detector 26 by a lens system 28 and a monochromator filter 30 which has a pass band centred at a characteristic Raman wavelength for diamond. An electronic processor 32 analyses the output signal of the detector and determines whether the detected spectrum contains a stimulated Raman signal characteristic of diamond. The lateral position of a detected diamond can be determined by the processor from knowledge of the laser pulse train timing, and the longitudinal position thereof from knowledge of the belt speed.
After the irradiation zone 22, the stream of particles moves past an ejector apparatus 34 composed of a series of laterally spaced ejector valves 34.1, 34.2, 34.3 In response to the detection of a diamond, the processor activates the appropriate valve 34.1, 34.2, 34.3 ...., which opens to direct a puff of compressed air at the falling particle stream. The diamond particle is diverted from the normal trajectory 20 and into a concentrate collection bin 36 while non-diamond particles continue falling along the normal trajectory which directs them to waste.
Conveniently a single detector 26, rather than a number of detectors is used, but it will be appreciated in this case that the response time of the detector must be fast enough to detect the characteristic Raman signal within the excitation pulse window. The laser pulse is advantageously shorter than the luminescence response time of diamond. With this combination of features, interference in the scattered spectrum by background luminescence emitted by the particles as a result of non-Raman phenomena can be eliminated.
As indicated previously, the intensity of the incident laser beam is selected to activate a stimulated Raman response in diamonds. The exact intensity level in a particular application and for particular particles is carefully chosen so that the intensity level is not sufficiently high to cause damage to the diamonds. When a diamond is present and irradiated with laser radiation at an intensity above an appropriate threshold level, the stimulated Raman signal which it emits is orders of magnitude more intense than background luminescence attributable to other phenomena and than a normal Raman signal. The stimulated Raman signal characteristic of diamond is accordingly very much easier to detect than the normal Raman signal.
The coherence of the incident laser beam makes it possible to focus the laser tube 24 so that that part of the beam which has sufficient intensity to activate the desired stimulated Raman response narrowly covers the particle trajectory and expected lateral variations thereof, thereby ensuring that the stimulated response is activated if a diamond is present.
In one experiment conducted in the laboratory to test the activation of the desired stimulated response, a diamond particle was irradiated with 8ns pulses of laser radiation at a wavelength of 355nm and at an intensity of 1MW/cm2. This was achieved using an Nd:YAG laser tube and a pulse repetition frequency of 8Hz. The detector, in the experiment a Hamamatsu IP28 photomultiplier tube with associated focusing lens and monochromator, detected a stimulated Raman response from the diamond. An analysis of the relevant parameters indicated that diamond damage occurred at a threshold intensity level in excess of lGW/cm2, very much higher than the incident intensity level of 1MW/cm2 The experiment indicated that the detected stimulated Raman response was substantially more intense than the background luminescence and the normal Raman response.
It is believed that the intensity of the stimulated signal will overcome or at least reduce the problems associated with detection of low intensity normal Raman signals and swamping of the Raman signal in background luminescence or fluorescence. In addition it is believed that the stimulated response will be sufficiently intense to make it possible to conduct particle classification and sorting operations in daylight conditions as opposed to very low level light conditions.

Claims (26)

1.
A method of classifying particles which comprises irradiating the particles with pulsed incident laser radiation at an intensity chosen to cause selected particles to emit a stimulated Raman signal, and classifying the particles according to whether they emit a stimulated Raman response characteristic of the selected particles.
2.
A method according to claim 1 wherein the particles which are to be classified comprise diamond particles and non-diamond particles, wherein the pulsed incident laser radiation is at an intensity chosen to cause diamond particles to emit a stimulated Raman response, and wherein the particles are classified according to whether or not they emit a stimulated Raman response characteristic of diamond.
3.
A method according to claim 2 wherein the incident laser radiation is pulsed with a pulse duration shorter than the luminescence response time of diamond.
4.
A method according to claim 3 wherein the pulse duration is of the order of 8ns.
5.
A method according to claim 3 or claim 4 wherein the incident laser radiation is at an intensity of about IMW/cm2.
6.
A method according to any one of claims 2 to 5 wherein the incident laser radiation is produced by an Nd:YAG laser operating at a wavelength of 355nm.
7.
A method according to any one of claims 2 to 6 wherein signals emitted by the particles in response to the incident laser radiation are passed to a detector by a filter having a pass band centred at a characteristic Raman wavelength for diamond.
8.
A method of sorting particles which comprises moving the particles through an irradiation zone, irradiating the particles, in the irradiation zone, with pulsed incident laser radiation at an intensity chosen to cause selected particles to emit a stimulated Raman signal, and sorting the particles into a first fraction rich in the selected particles and a second fraction rich in other particles, according to whether they emit a stimulated Raman response characteristic of the selected particles.
9.
A method according to claim 8 wherein the particles are moved through the irradiation zone in a broad stream and wherein the particles are irradiated by a laser beam which is pulsed sequentially across the width of the stream.
10.
A method according to claim 9 wherein the particles are transported on a belt which projects them in a broad stream through the irradiation zone.
11.
A method according to claim 10 wherein the stream of particles is moved, after the irradiation zone, past an ejector apparatus comprising a bank of spaced apart ejectors located adjacent the stream, and wherein appropriate ejectors are activated at appropriate times to eject selected particles from the stream for collection as the first fraction.
12.
A method according to any one of claims 8 to 11 wherein the particles which are to be classified comprise diamond particles and non-diamond particles, wherein the pulsed incident laser radiation is at an intensity chosen to cause diamond particles to emit a stimulated Raman response, and wherein the particles are sorted into a first fraction rich in diamond particles and a second fraction rich in non-diamond particles according to whether or not they emit a stimulated Raman response characteristic of diamond.
13.
A method according to claim 12 wherein the incident laser radiation is pulsed with a pulse duration shorter than the luminescence response time of diamond.
14.
A method according to claim 13 wherein the pulse duration is of the order of 8ns.
15.
A method according to claim 13 or claim 14 wherein the incident laser radiation is at an intensity of about 1MW/cm2.
16.
A method according to any one of claims 12 to 15 wherein the incident laser radiation is produced by an Nd:YAG laser operating at a wavelength of 355nm.
17.
A method according to any one of claims 12 to 16 wherein signals emitted by the particles in response to the incident laser radiation are passed to a detector by a filter having a pass band centred at a characteristic Raman wavelength for diamond
18.
An apparatus for sorting particles, the apparatus comprising: -an irradiation zone, a - means for moving particles which are to be sorted through the irradiation zone, a pulsed laser tube for irradiating the particles in the irradiation zone with pulsed, incident laser radiation at an intensity chosen to cause selected particles to emit a stimulated Raman signal, a detector, a filter having a pass band centred on a characteristic Raman wavelength for the selected particles, the filter being arranged to pass appropriate signals which are emitted by the particles in response to the incident pulsed laser radiation to the detector analysing means responsive to the detector for determining, from signals detected by the detector, which of the particles have a stimulated Raman response characteristic of the selected particles, and - sorting means responsive to the analysing means for sorting the particles into a first fraction rich in the selected particles and a second fraction rich in other particles.
19.
An apparatus according to claim 18 wherein the means for moving the particles comprises a belt for transpotting the particles and for projecting the particles in a broad stream through the irradiation zone.
20.
An apparatus according to claim 19 wherein the sorting means comprises an ejector apparatus past which the particles move after the irradiation zone, the ejector apparatus comprising a bank of ejectors located adjacent the stream and spaced apart from one another across the width of the stream, and the ejector apparatus being arranged to operate in response to the analysing means such that appropriate ejectors are activated at appropriate times to eject selected particles from the stream for collection as the first fraction.
21.
An apparatus according to any one of claims 18 to 20 which is adapted to sort diamond particles from non-diamond particles.
22.
An apparatus according to claim 21 wherein the laser tube is arranged to irradiate the particles, in the irradiation zone, with a pulsed laser beam at an intensity chosen to cause diamond particles to emit a stimulated Raman response, the pulse duration of the laser beam being shorter than the luminescence response time of diamond.
23.
An apparatus according to claim 22 wherein the laser tube is arranged to irradiate the particles with laser pulses having a duration of the order of 8ns and an intensity of about 1MW/cm2.
24.
An apparatus according to claim 23 wherein the laser tube is an Nd:YAG laser tube operating at a wavelength of 355nm.
25.
A sorting method substantially as herein described with reference to the accompanying drawings.
26.
A sorting apparatus substantially as herein described with reference to the accompanying drawings.
GB9516356A 1994-08-19 1995-08-09 Classification of particles according to raman response Expired - Fee Related GB2292455B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ZA946317 1994-08-19

Publications (3)

Publication Number Publication Date
GB9516356D0 GB9516356D0 (en) 1995-10-11
GB2292455A true GB2292455A (en) 1996-02-21
GB2292455B GB2292455B (en) 1998-09-30

Family

ID=25584259

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9516356A Expired - Fee Related GB2292455B (en) 1994-08-19 1995-08-09 Classification of particles according to raman response

Country Status (4)

Country Link
AU (1) AU697587B2 (en)
CA (1) CA2155922A1 (en)
GB (1) GB2292455B (en)
ZA (1) ZA955745B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000333A1 (en) 1999-06-28 2001-01-04 Barco Elbicon, Naamloze Vennootschap Method and device for sorting products
AU732189B2 (en) * 1997-06-26 2001-04-12 De Beers Consolidated Mines Limited Diamond detection using coherent anti-Stokes Raman spectroscopy
US7608794B2 (en) 2006-04-20 2009-10-27 Sunsweet Growers, Inc. Process and system for sorting and pitting fruit
WO2012074552A2 (en) 2010-12-01 2012-06-07 Key Technology, Inc. Sorting appartus
RU2524000C2 (en) * 2009-03-26 2014-07-27 Бест 2, Н.В. Method of sorting potato products and device for sorting potato products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243881A (en) * 1979-10-12 1981-01-06 International Business Machines Corporation Time-resolved infrared spectral photography
US4545679A (en) * 1984-02-21 1985-10-08 The United States Of America As Represented By The United States Department Of Energy Frequency shift measurement in shock-compressed materials
EP0341095A2 (en) * 1988-05-06 1989-11-08 Gersan Establishment Identifying the position of objects or zones

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219080B (en) * 1988-05-06 1992-11-04 Gersan Ets Identifying gemstones
ZA9410191B (en) * 1993-12-30 1995-08-25 De Beers Ind Diamond Particle classification method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243881A (en) * 1979-10-12 1981-01-06 International Business Machines Corporation Time-resolved infrared spectral photography
US4545679A (en) * 1984-02-21 1985-10-08 The United States Of America As Represented By The United States Department Of Energy Frequency shift measurement in shock-compressed materials
EP0341095A2 (en) * 1988-05-06 1989-11-08 Gersan Establishment Identifying the position of objects or zones

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU732189B2 (en) * 1997-06-26 2001-04-12 De Beers Consolidated Mines Limited Diamond detection using coherent anti-Stokes Raman spectroscopy
WO2001000333A1 (en) 1999-06-28 2001-01-04 Barco Elbicon, Naamloze Vennootschap Method and device for sorting products
BE1013056A3 (en) * 1999-06-28 2001-08-07 Barco Elbicon Nv Method and device for sorting products.
US6734383B1 (en) * 1999-06-28 2004-05-11 Barco Elbicon, Naamloze Vennootschap Method and device for sorting products according to emitted light
US7608794B2 (en) 2006-04-20 2009-10-27 Sunsweet Growers, Inc. Process and system for sorting and pitting fruit
RU2524000C2 (en) * 2009-03-26 2014-07-27 Бест 2, Н.В. Method of sorting potato products and device for sorting potato products
WO2012074552A2 (en) 2010-12-01 2012-06-07 Key Technology, Inc. Sorting appartus
EP2646174A2 (en) * 2010-12-01 2013-10-09 Key Technology, Inc. Sorting appartus
EP2646174A4 (en) * 2010-12-01 2014-11-12 Key Technology Inc Sorting appartus

Also Published As

Publication number Publication date
GB2292455B (en) 1998-09-30
ZA955745B (en) 1996-02-20
AU2843395A (en) 1996-02-29
GB9516356D0 (en) 1995-10-11
AU697587B2 (en) 1998-10-08
CA2155922A1 (en) 1996-02-20

Similar Documents

Publication Publication Date Title
US5505313A (en) Method and apparatus for detecting diamonds in a plurality of objects
US5206699A (en) Sensing a narrow frequency band of radiation and gemstones
CA1334895C (en) Sensing a narrow frequency band of radiation and gemstones
US5042947A (en) Scrap detector
US5143224A (en) Method and apparatus for separating diamonds from associated gangue
US5256880A (en) Process for the qualitative analysis of plastic particles
JP6013631B2 (en) Method for X-ray emission separation of minerals and X-ray emission sorter for carrying out this method
US8436268B1 (en) Method of and apparatus for type and color sorting of cullet
US4693377A (en) Diamond separation using raman scattering
EP0341096A2 (en) A method of identifying individual objects or zones
AU697587B2 (en) Classification of particles according to raman response
AU641273B2 (en) Process of analyzing metal particles
WO1988001379A1 (en) Laser ablation inspection
JPH0271144A (en) Discrimination of gem
EP0341093A2 (en) Identifying gemstones
GB2199657A (en) Diamond sorting
GB2280956A (en) Detecting diamonds in a plurality of objects
CA2139178C (en) Particle classification method and apparatus
EP0341092A2 (en) A method of identifying specific objects or zones
CA2245141C (en) On-line diamond detection
AU608247B2 (en) Laser ablation inspection and sorting
RU2670677C9 (en) Device for diamond separation
AU2004100065A4 (en) Optical Ore Sorter

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20040809