GB2214430A - Diathermy unit - Google Patents

Diathermy unit Download PDF

Info

Publication number
GB2214430A
GB2214430A GB8808320A GB8808320A GB2214430A GB 2214430 A GB2214430 A GB 2214430A GB 8808320 A GB8808320 A GB 8808320A GB 8808320 A GB8808320 A GB 8808320A GB 2214430 A GB2214430 A GB 2214430A
Authority
GB
United Kingdom
Prior art keywords
output
oscillator
diathermy
unit according
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8808320A
Other versions
GB8808320D0 (en
GB2214430B (en
Inventor
Nigel Mark Goble
Colin Charles Owen Goble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of GB8808320D0 publication Critical patent/GB8808320D0/en
Priority to AT89300503T priority Critical patent/ATE132047T1/en
Priority to EP89300503A priority patent/EP0325456B1/en
Priority to DE68925215T priority patent/DE68925215D1/en
Priority to US07/299,949 priority patent/US5099840A/en
Publication of GB2214430A publication Critical patent/GB2214430A/en
Application granted granted Critical
Publication of GB2214430B publication Critical patent/GB2214430B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1226Generators therefor powered by a battery

Abstract

A diathermy unit has a power oscillator with a resonant circuit (16) arranged to be coupled to the tissue to be treated represented by the load (12). The resonant circuit includes a capacitor (20) for connection in series with the load such that the resonant frequency varies with the load resistance. The resulting self-tuning of the oscillator allows improved matching of the oscillator to the load (12) with consequent improved efficency, a feature especially useful for a battery-powered unit. Regulation of the output power of the unit makes use of a feedback loop including an analogue multiplier for receiving signals representative of the power of the output stage, the resulting product signal being used to control pulse width modulation of the oscillator. <IMAGE>

Description

DIATHERMY UNIT This invention relates to a diathermy unit, Conventional mains-powered diathermy units commonly apply radio frequency (r.f.) energy to the tissue to be treated at a power level determined by a power control circuit for controlling the amplitude of the r.f. signal generated by an r.f. oscillator. However, in practice, human tissue presents a widely variable electrical load, resulting in poor impedance matching of the r.f. output of the unit to the load in most circumstances so that, of the power generated, often only 20 per cent is dissipated in the load.Bipolar diathermy typically requires an applied r.f. power level of 10 watts, but in view of the inefficiency resulting from poor matching, a unit capable of generating much higher power levels than 10 watts is necessary, and for this reason a diathermy unit designed for hand held use would be large and unwieldy, especially if battery-powered.
In order to improve power efficiency, the present invention provides in accordance with one of its aspects, a diathermy unit operable to generate an output signal the frequency of which is variable and is dependent on a characteristic of the electrical load.
Preferably the unit contains a self-tuning oscillator having a frequency-determining resonant circuit arranged to be coupled to the load represented by the tissue of the patient when the unit is in use and such that a variation in the resistance of the load causes a variation in the resonant frequency of the circuit.
Such a resonant circuit may comprise parallel combination of a first capacitance and an inductance, which combination is coupled in series with a second capacitance across a pair of output terminals of the unit. With this arrangement, a decreased load resistance results in a decreased signal frequency and typi#cally the values of the circuit are chosen to yield output frequencies differing by a factor of the square root of 2 between zero and infinite load resistances.
Thus, with an infinite load resistance, the output frequency may be 500 kHz whereas at zero load impedance the frequency may be 353 kHz.
The inductor of the resonant circuit may constitute or form part of a step-up transformer or autotransformer coupled between, for example, the supply and the output terminal of an amplifying device.
Preferably, self-oscillation is achieved by feeding a proportion of the energy produced in the resonant circuit back to the input of the amplifying device, which may be a metal oxide semiconductor field effect transistor (MOSFET). Devices of this type can be obtained with sufficient power handling capability for the required output power of the unit, and have a high input impedance coupled with a sufficiently fast switching speed respectively to minimise the effect of the feedback circuit on the Q of the resonant circuit and to allow operation at frequencies in the order of 500 akHz.
By allowing the frequency to vary with the load resistance, the energy loss in the output circuitry of the unit can be reduced over a wide range of load values compared with conventional diathermy units, with consequent benefits in efficiency and increased practicability of a hand-held battery-powered unit.
Control of the average power delivered to the load may be brought about by pulse width modulation of the oscillator. Known diathermy units have used pulse width modulation to adjust measured output power, but the actual power dissipated in the load varies depending on the load resistance for any given mark-to-space ratio.
According to a second aspect of this invention, a diathermy unit includes means for controlling the level of its output in response to a feedback signal, preferably a signal representative of the current drawn by the output stage. This allows the power to be adjusted in response to changes in load resistance. In particular, the feedback signal may be made representative of estimated power values by multiplication of a signal representative of the current drawn by the output stage and a signal representative of the supply voltage, allowing compensation for changes in the supply voltage which will occur if that voltage is unregulated, especially if the unit is battery-powered.
In this connection, it will be understood that supply voltage regulation may be undesirable as it may involve significant power loss.
The applicants have found that one advantageous technique for obtaining a feedback signal representative of the actual output power of the unit is to monitor the voltage across a low resistance shunt in the supply to the output stage as a measure of the output stage current consumption and to apply this voltage, or one derived from it, to an input of an amplifier, the gain of which is variable in response to the level of a voltage, such as the supply voltage, governing the output power. The feedback signal obtained from the amplifier output is thus a function of the product of the current and, for example, the supply voltage.
An advantageous variable gain arrangement comprises an amplifier the gain of which is governed by the ratio of a feedback resistance and a series input resistance, one of these resistances being dynamically variable in response to the supply voltage level. Such variation may be achieved using a field effect transistor (FET) as one of the resistances, biased such that the source-todrain resistance is substantially linearly related to the gate voltage. This near linear relationship may be achieved by biasing the FET so that the gate/channel junction is forwardly biased over at least the majority of the operating range of the gate voltage, for instance by using a depletion mode FET in the enhancement region of its characteristic. In such circumstances the gate is no longer voltage controlled, but current controlled.
It has been found that this biasing technique produces a response characteristic of sufficient linearity while minimising offset inaccuracies when driving a differential gain-controlled amplifier.
Having thereby obtained a voltage representative of the output power, this voltage may be used to control pulse width modulation of the r.f. oscillator of the unit so as to complete a feedback loop for regulating power.
The invention is primarily applicable to a batterypowered bipolar diathermy unit but may also be used in mains-powered units, including unipolar units to improve their efficiency and power output characteristics. In a mains-powered unit, isolation of the output terminals of the unit may be provided by including a transformer with isolated windings in the resonant circuit.
The invention will now be described by way of example with reference to the drawings in which: Figure 1 is a simplified circuit diagram of an r.f.
oscillator of a diathermy unit in accordance with the invention; Figure 2 is a block diagram of a diathermy unit in accordance with the invention; Figure 3 is a circuit diagram of a preferred diathermy unit; Figure 4 is a graph illustrating the characteristics of an analogue multiplier arrangement; and Figure 5 is a graph similar to that of Figure 4 illustrating the characteristics of a modified analogue multiplier arrangement.
Referring to Figure 1 of the drawings, a radio frequency oscillator suitable as a power oscillator for a diathermy unit has an amplifying device constituted by a power MOSFET 10 connectible to a load 12 in the form of human tissue via a step-up auto transformer 14 forming part of a resonant circuit 16. A d.c. supply line is coupled to the drain of the amplifying device via the primary winding 14a of the transformer 14, and the source is shown here connected to ground. The resonant circuit comprises the parallel combination of the series connected primary and secondary windings 14a and 14b of the transformer and a first capacitor 18, and a second capacitor 20 coupled in series with the parallel combination across a pair of output terminals 22 of the unit. Self-oscillation of the oscillator occurs due to positive feedback through a feedback capacitor 24 coupling one end of the parallel combination to the gate 26 of the device 10. In the preferred embodiment of the invention the gate 26 also acts as a control electrode for switching the oscillator on and off via terminal 28.
It will be appreciated that the resonant frequency of the resonant circuit 16 is dependent not only on the inductance value of the transformer 14 and its parallel capacitor 18, but also by the values of the second capacitor 20 and the load resistance. As a result, the oscillation frequency is governed by the load resistance which can vary widely depending on a number of factors related to the nature of the patient's tissue and tte connection to it. Thus by making the oscillator the output stage of a diathermy unit, and allowing it to "self-tune" in response to the load, the unit may be matched to the load over a comparatively wide range of load resistances. Typically the capacitors have values within an order of magnitude of each other, i.e. the ratio of the values is less than 10 to 1, and in the present example are each 4.7 nanofarads.
By way of explanation, the Q (quality factor) of a resonant circuit is inversely proportional to the energy loss of that circuit. Energy losses within the inductance formed by the transformer 14 and the capacitor 18 are minimal in comparison to the dissipation in the load 12. When the resistance of the load approaches infinity, the applied voltage is proportional to Q x V5 (V5 being the supply voltage) so that as the load resistance increases both the Q and the applied voltage become greater. Conversely, when the load resistance approaches zero, the current in the resonant circuit is relatively high and is proportional to Q x Is where Is is the supply current. Reducing the load resistance in these circumstances minimises the energy loss and consequently both the Q and the applied current are increased.This relationship holds provided the oscillator operates at the prevailing resonant frequency.
Use of a power MOSFET (such as type no. IRFZ 20) allows a power output of 10 Watts to be achieved while requiring only a small feedback current due to the high impedance of the gate of the device.
The ratio of the inductances of the primary and the secondary is dependent on the power required, the supply voltage (V+) and the matched load resistance, which is the resistance at which Q approaches 1. The secondary voltage is dependent on Q, thus the feedback energy to the gate of the amplifying device 10 will also change with load resistance.
The preferred embodiment of the invention is a diathermy unit which uses the above described power oscillator as the source of r.f. energy and as the output stage of the unit, as shown in Figure 2, where the oscillator is indicated by the reference numeral 30.
To control the overall power output of the unit, the oscillator 30 is pulse-width modulated via the oscillator control input 28, the mark-to space ratio of the pulses applied to the control input being governed by a feedback control loop as shown. The loop is characterised by the generation of a signal representing an estimate of the actual power applied to he load via the terminals 22. In this embodiment, the estimate is based upon the assumption that the power ouput is approximately proportional to the product of the d.c.
current drain of the oscillator 30 and the supply voltage level. This technique has the advantage that the mark-to-space ratio of the oscillator output can be varied in response to changes in load impedance as well as supply voltage level, allowing a selected power level to be maintained and yielding an improvement in performance into differing loads.
The supply voltage level is easily monitored. The current drain is measured by monitoring the voltage drop across a shunt resistance 32 connected in the oscillator supply. The unit has an analogue multiplier 34 for generating the required signal representative of the product of these two quantities, the product being formed preferably by feeding the signal from the shunt to an input of an amplifier the gain of which is variable in proportion to the supply voltage level, as will be described below.
Having derived a signal representative of the output power, this signal is filtered by a low-pass filter 36 and then compared with a reference voltage VREF in a comparator 38. Feeding the "power error switching signal obtained at the output of the comparator 38 to the control terminal 28 of the oscillator 30 has the effect of pulse modulating the oscillator, the frequency of modulation being dependent on time constants and switching threshold levels in the feedback loop. Power adjustment may be performed by varying the reference voltage VREF, preferably in a series of steps. At the maximum power setting the arrangement of the circuitry is such that the mark-to-space ratio of the oscillator control signal is equal to or approaching 1 when the supply voltage is at a minimum operating level and the load impedance is at the extremes of the allowed range.
At all other times the mark-to-space ratio is less.
The process of measuring the output power and controlling the oscillator will now be described in more detail with reference to the circuit diagram of Figure 3 and the graph of Figure 4.
Referring to Figure 3, the voltage from the current sensing shunt resistance 32, here a resistor of 20 milliohms, is fed to the non-inverting input of an operational amplifier 40, the gain of which is determined by the ratio of the feedback resistance 42 and the series input resistance of a field-effect transistor (FET) 44. In order for the gain of the amplifier 40 to be varied linearly with the supply voltage level, the gate of the FET 44 is coupled to a potential divider 46 connected across the voltage supply so as to bias the FET which is a depletion type into the enhancement region, i.e. with the gate forward biased. In this way a substantially linear channel resistance characteristic is combined with the current driven characteristic of a bipolar transistor, which minimises inaccuracies due to the offset at the input of the operational amplifier 40.
The graph of Figure 4 illustrates the variation of the voltage obtained from the output of amplifier 40 with varying gate voltage at two different oscillator current levels. The shaded region indicates the operating region of the graph if the gate voltage is coupled directly to the voltage supply and the supply is considered to vary between 7.5v and 12v, as it might if battery supplied. In this region the characteristic is approximately linear for any given current within the range shown, but the tangents of the curves do not intersect the supply voltage axis at zero, leading to an offset power error.
By connecting the gate instead to the tap of a potential divider, as shown in Figure 3, the origin of the graph can effectively be moved to the left as shown in Figure 5, although the biasing is still such that over the permitted range of the supply, the device is operated in the enhancement mode. It will be seen that the output voltage of the amplifier 40 is now proportional to both oscillator current and supply voltage. In the circuit of Figure 3, a variable resistor 48 in the potential divider 46 allows the offset to be set if required. The feedback resistance is also presettable to allow adjustment of the gain/ supply voltage ratio.
In practice, the characteristic of Figure 5 does exhibit a slight curve which can be used to advantage in tailoring the multiplier response to the actual, as opposed to estimated or predicted, output power of the unit thereby largely compensating for any inaccuracy arising from the assumption that the power dissipated in the load is proportional to the product of the supply voltage and the oscillator current (due to variations in efficiency of the oscillator over the supply voltage range).
The FET 44 is selected for low gate current, i.e.
high transconductance, and type no. BF 256 C has been found suitable.
Referring again to Figure 3, the signal from the multiplier 34 is low-pass filtered by the resistor 50 and the capacitor 52 and fed to another operational amplifier 54, this amplifer being connected as a comparator, having one input coupled to an adjustable voltage reference generated by variable resistance 56 connected across a 1.225 v zener diode 58.
The output of the comparator can be seen to be equivalent to the oscillator requirement in that its output is high when the oscillator is required to be "on" to increase power.
Yet a further operational amplifier 58, connected as another comparator, in normal operation inverts the "power error" signal from the first comparator 54 and drives a switching transistor 60 coupled via resistor 62 and capacitor 63 to the gate of the MOSFET 10.
The rate of change of the power error" signal is determined by the slew rate of the amplifier 54 (typically 0.5 v per microsecond) and the time constant for the low pass filter formed by capacitor 52 and resistor 50 (typcially 10 nanofarads and 180 kilohm respectively). A combination of the rate of change of the power error signal and the threshold voltages, dictated by the hysteresis loop of amplifier 58, determine the modulation frequency.
Switching the oscillator off is merely accomplished by stealing the MOSFET gate drive by making switching transistor 60 conductive. Starting the oscillator again, however, requires a transient "kick", which is generated by the inductor 64 in the collector circuit of the transistor 60.
When the unit drives a high resistance load, the alternating voltage generated across the resonant circuit 14 can be sufficient that the feedback voltage applied via capacitor 24 to the gate of the MOSFET 10 can exceed the maximum permitted gate voltage of the device.
This possibility is avoided by clamping the gate to a maximum voltage (+20v) determined by a zener diode 65 coupled to the positive supply. To maintain an average gate voltage of one half of the supply voltage(for 50% mark-space switching) a second zener diode 66 clamps the gate to a minimum voltage of -5v (The gate switching threshold is approximetely 8v). The clamping arrangement has the advantage that excess feedback energy is fed back to the supply, reducing energy loss.
The unit incorporates means for shutting down the oscillator when the supply voltage decreases beyond a set lower level, in this case 7.5v. Comparator 58 uses as its reference voltage the output of the 1.225V zener diode 58 which is applied to the non-inverting input. The other input, in the absence of a low "power error" signal from comparator 54, is at a voltage determined by the supply voltage and the potentiometer 68, and the latter is arranged to generate a d.c. level of 1.225v when the supply voltage is 7.5 v. Thus, when the voltage decreases below 7.5 v, the oscillator is turned off via switching transistor 60. The resistor 70 provides the hysteresis referred to earlier. This has the effect of allowing the oscillator to be restarted when a battery supply recovers after a prolonged period of operation causing the supply voltage to fall below 7.5v.
A circuit for warning of a power output below that selected is provided by another operational amplifier 72. A continuous high output from comparator 54 indicates that, as a result of reduced battery output, the oscillator is being required to run continuously.
Under such circumstances the selected power output cannot be guaranteed. This condition causes a light emitting diode 74 to be energised by the amplifier 72, which acts as a monostable.
The output of amplifier 58 may remain high under two possible conditions; load mismatch and low battery power. This allows an indication of battery condition to be provided. Under particular mismatch loads the output will fail to reach the selected power level, particularly at the maximum power setting of the potentiometer 56.
The maximum power available will, in these conditions, be particularly dependent on supply voltage. A convenient load mismatch is infinite impedance on an open circuit output. The power setting control may also be graduated with battery condition bands so that, with the unit activated under zero load, the control may be adjusted to find the point at which the battery condition light emitting diode 74 operates. Battery condition is then read from the scale.

Claims (25)

CLAIMS:
1. A diathermy unit operable to generate an output signal the frequency of which is variable and load dependent.
2. A diathermy unit according to claim 1, including a self-tuning oscillator having a frequency-determining resonant circuit arranged to be coupled to the load represented by living tissue to be treated when the unit is in use and such that a variation in the electrical resistance of the load causes a variation in the resonant frequency of the resonant circuit.
3. A diathermy unit according to claim 2, wherein the resonant circuit comprises the parallel combination of a first capacitance and an inductance, which combination is coupled to a second capacitance such that the combination and the second capacitance are coupled together in series between a pair of output terminals of the unit, whereby a decrease in load resistance brings about a decrease in resonant frequency.
4. A diathermy unit according to claim 2 or claim 3, wherein the oscillator is a power oscillator forming the output stage of the unit.
5. A diathermy unit according to claim 4, wherein the oscillator includes a power MOSFET coupled to the resonant circuit.
6. A diathermy unit according to any of claims 2 to 5, wherein the inductance constitutes or forms part of a transformer.
7. A diathermy unit according to claim 1, including an oscillator device, a step-up transformer arranged such that the oscillator device develops an output across a primary winding of the transformer, and a pair of output terminals for coupling to a load in the form of living tissue, the step-up transformer forming part of a resonant circuit having a resonant frequency which is load dependent, and having a secondary winding coupled to the output terminals.
8. A diathermy unit according to claim 7, wherein the transformer is an auto-transformer.
9. A diathermy unit according to claim 7 or claim 8, wherein the resonant circuit further includes a first capacitance coupled in parallel with an inductance formed by the transformer and a second capacitance in series between the resulting parallel combination and one of the output terminals.
10. A diathermy unit according to claim 4, claim 5, or any of claims 7 to 9, including diode clamping means for limiting feedback to the oscillator device.
11. A diathermy unit according to claim 10, wherein the clamping means comprises a zener diode coupled between an input connection of the oscillator device and a power supply for the oscillator.
12. A diathermy unit according to any preceding claim, arranged such that the output signal is pulse width modulated.
13. A diathermy unit according to any preceding claim, including an analogue multiplier arranged to receive signals representative of the voltage and current respectively of the said output signal, comparison means coupled to receive a product signal from the analogue multiplier for comparing the product signal with a reference signal, and means for varying the power of the said output signal in response to the product signal thereby to regulate the output power of the unit to a predetermined level.
14. An analogue multiplier comprising an amplifier having a resistance governing the gain of the amplifier, wherein the resistance comprises a fieldeffect transistor arranged to have its gate forward biased, the multiplier having a first input coupled to the gate of the field-effect transistor and a second input formed by or coupled to an input of the amplifier.
15. An analogue multiplier according to claim 14, wherein the amplifier is a differential amplifier having an inverting input and a non-inverting input, a first resistance coupled betwean the inverting input and a ground or a.c. ground point, and a second resistance coupled between the inverting input and an output of the amplifier, wherein the field-effect transistor forms at least part of either the first or the second resistance, and wherein the non-inverting input forms or is coupled to the second input of the amplifier.
16. An analogue multiplier according to claim 14 or 15, wherein the field-effect transistor is a depletion type field-effect transistor arranged to be biased into the enhancement region of its characteristic.
17. An electrical circuit arrangement for generating a signal representative of the output power of a device comprising an analogue multiplier according to any of claims 14 to 16, and a shunt resistance coupled to pass < current representative of the current consumed by the said device, the first input of the multiplier being connected to receive a voltage related to the output voltage of the said device and the second input of the multiplier being connected to one end of the shunt resistance.
18. A diathermy unit operable to generate an output signal of regulated output power, wherein the unit comprises means for receiving signals representative of the voltage and current respectively of the output signal and for generating a product signal representative of the output power of the unit, comparison means arranged to receive the product signal and the compare it with a reference signal, and means for varying the power of the output signal in response to the output of the comparison means.
19. A diathermy unit according to claim 18 arranged such that the output signal is pulse width modulated, the markto-space ratio of the modulation being variable in response to the output of the comparison means.
20. A diathermy unit according to claim 19, wherein the frequency of the modulation is a function of the characteristics of a feedback loop formed by the product signal generating means and the comparison means.
21. A diathermy unit according to any of claims 18 to 20, having an output stage for generating the output signal, wherein the signal representative of the current of the output signal is a voltage developed across a shunt resistance in a power supply connection to the output stage and the signal representative of the voltage of the output signal is the voltage of the output stage power supply.
22. A diathermy unit according to any of claims 18 to 21, wherein the means for generating a product signal comprises an analo-gue multiplier according to any of claims 14 to 16.
23. A battery-powered diathermy unit according to any of claims 1 to 13 and 18 to 22.
24. A diathermy unit constructed and arranged substantially as herein described and shown in the drawings.
25. An analogue multiplier constructed and arranged substantially as herein described and shown in Figure 3 of the drawings.
GB8808320A 1988-01-20 1988-04-08 Diathermy unit Expired - Lifetime GB2214430B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT89300503T ATE132047T1 (en) 1988-01-20 1989-01-19 DIATHERMY DEVICE
EP89300503A EP0325456B1 (en) 1988-01-20 1989-01-19 Diathermy unit
DE68925215T DE68925215D1 (en) 1988-01-20 1989-01-19 Diathermy unit
US07/299,949 US5099840A (en) 1988-01-20 1989-01-23 Diathermy unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB888801177A GB8801177D0 (en) 1988-01-20 1988-01-20 Diathermy unit

Publications (3)

Publication Number Publication Date
GB8808320D0 GB8808320D0 (en) 1988-05-11
GB2214430A true GB2214430A (en) 1989-09-06
GB2214430B GB2214430B (en) 1992-06-17

Family

ID=10630224

Family Applications (2)

Application Number Title Priority Date Filing Date
GB888801177A Pending GB8801177D0 (en) 1988-01-20 1988-01-20 Diathermy unit
GB8808320A Expired - Lifetime GB2214430B (en) 1988-01-20 1988-04-08 Diathermy unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB888801177A Pending GB8801177D0 (en) 1988-01-20 1988-01-20 Diathermy unit

Country Status (1)

Country Link
GB (2) GB8801177D0 (en)

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558317A2 (en) * 1992-02-27 1993-09-01 G2 Design Limited Cauterising apparatus
EP0558318A2 (en) * 1992-02-27 1993-09-01 G2 Design Limited Apparatus for radio frequency bipolar electrosurgery
US5438302A (en) * 1993-07-12 1995-08-01 Gyrus Medical Limited Electrosurgical radiofrequency generator having regulated voltage across switching device
EP0694290A2 (en) 1994-06-29 1996-01-31 Gyrus Medical Limited Electrosurgical apparatus
EP1080694A1 (en) 1999-06-11 2001-03-07 Gyrus Medical Limited An electrosurgical generator.
GB2362518A (en) * 2000-05-19 2001-11-21 Ericsson Telefon Ab L M DC/DC converter
US6534961B2 (en) 2000-05-19 2003-03-18 Per-Olof Brandt Compact DC/DC converter circuit
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
WO2008102154A2 (en) * 2007-02-22 2008-08-28 Ecshmann Holdings Limited Electrosurgical systems
US7655007B2 (en) 2003-05-01 2010-02-02 Covidien Ag Method of fusing biomaterials with radiofrequency energy
WO2010025818A1 (en) * 2008-08-27 2010-03-11 Erbe Elektromedizin Gmbh Electrosurgical hf generator
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7708735B2 (en) 2003-05-01 2010-05-04 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7799028B2 (en) 2004-09-21 2010-09-21 Covidien Ag Articulating bipolar electrosurgical instrument
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7819872B2 (en) 2005-09-30 2010-10-26 Covidien Ag Flexible endoscopic catheter with ligasure
US7828798B2 (en) 1997-11-14 2010-11-09 Covidien Ag Laparoscopic bipolar electrosurgical instrument
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US7887536B2 (en) 1998-10-23 2011-02-15 Covidien Ag Vessel sealing instrument
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7922718B2 (en) 2003-11-19 2011-04-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7935052B2 (en) 2004-09-09 2011-05-03 Covidien Ag Forceps with spring loaded end effector assembly
US7947041B2 (en) 1998-10-23 2011-05-24 Covidien Ag Vessel sealing instrument
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7963965B2 (en) 1997-11-12 2011-06-21 Covidien Ag Bipolar electrosurgical instrument for sealing vessels
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8152802B2 (en) 2009-01-12 2012-04-10 Tyco Healthcare Group Lp Energy delivery algorithm filter pre-loading
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
US8162932B2 (en) 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8167875B2 (en) 2009-01-12 2012-05-01 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices
US8192444B2 (en) 2008-01-16 2012-06-05 Tyco Healthcare Group Lp Uterine sealer
US8192433B2 (en) 2002-10-04 2012-06-05 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8211100B2 (en) 2009-01-12 2012-07-03 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8211105B2 (en) 1997-11-12 2012-07-03 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8226650B2 (en) 2009-03-26 2012-07-24 Tyco Healthcare Group Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8231553B2 (en) 2009-01-13 2012-07-31 Tyco Healthcare Group Lp Method for wireless control of electrosurgery
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8235917B2 (en) 2009-01-13 2012-08-07 Tyco Healthcare Group Lp Wireless electrosurgical controller
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8241284B2 (en) 2001-04-06 2012-08-14 Covidien Ag Vessel sealer and divider with non-conductive stop members
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8251994B2 (en) 2009-04-07 2012-08-28 Tyco Healthcare Group Lp Vessel sealer and divider with blade deployment alarm
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8257349B2 (en) 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
US8257352B2 (en) 2003-11-17 2012-09-04 Covidien Ag Bipolar forceps having monopolar extension
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US8266783B2 (en) 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8282634B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8287536B2 (en) 2009-08-26 2012-10-16 Tyco Healthcare Group Lp Cutting assembly for surgical instruments
US8287529B2 (en) 2008-09-05 2012-10-16 Tyco Healthcare Group Lp Electrosurgical apparatus with high speed energy recovery
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8298228B2 (en) 1997-11-12 2012-10-30 Coviden Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8298231B2 (en) 2008-01-31 2012-10-30 Tyco Healthcare Group Lp Bipolar scissors for adenoid and tonsil removal
US8303586B2 (en) 2003-11-19 2012-11-06 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8323310B2 (en) 2009-09-29 2012-12-04 Covidien Lp Vessel sealing jaw with offset sealing surface
US8333759B2 (en) 2009-01-12 2012-12-18 Covidien Lp Energy delivery algorithm for medical devices
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
US8348948B2 (en) 2004-03-02 2013-01-08 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US8361071B2 (en) 1999-10-22 2013-01-29 Covidien Ag Vessel sealing forceps with disposable electrodes
US8377053B2 (en) 2008-09-05 2013-02-19 Covidien Lp Electrosurgical apparatus with high speed energy recovery
US8382754B2 (en) 2005-03-31 2013-02-26 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8382792B2 (en) 2008-02-14 2013-02-26 Covidien Lp End effector assembly for electrosurgical device
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US8409186B2 (en) 2008-03-13 2013-04-02 Covidien Lp Crest factor enhancement in electrosurgical generators
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8496656B2 (en) 2003-05-15 2013-07-30 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8540711B2 (en) 2001-04-06 2013-09-24 Covidien Ag Vessel sealer and divider
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8632564B2 (en) 2009-01-14 2014-01-21 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632539B2 (en) 2009-01-14 2014-01-21 Covidien Lp Vessel sealer and divider
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8647341B2 (en) 2003-06-13 2014-02-11 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US8679115B2 (en) 2009-08-19 2014-03-25 Covidien Lp Electrical cutting and vessel sealing jaw members
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8734444B2 (en) 2008-10-10 2014-05-27 Covidien Lp System and method for delivering high current to electrosurgical device
US8740901B2 (en) 2002-10-04 2014-06-03 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9095347B2 (en) 2003-11-20 2015-08-04 Covidien Ag Electrically conductive/insulative over shoe for tissue fusion
US9107672B2 (en) 1998-10-23 2015-08-18 Covidien Ag Vessel sealing forceps with disposable electrodes
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9119624B2 (en) 2006-04-24 2015-09-01 Covidien Ag ARC based adaptive control system for an electrosurgical unit
US9192427B2 (en) 2008-03-11 2015-11-24 Covidien Lp Bipolar cutting end effector
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
US9271790B2 (en) 2007-09-21 2016-03-01 Coviden Lp Real-time arc control in electrosurgical generators
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US9522032B2 (en) 2005-10-21 2016-12-20 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US9522039B2 (en) 2009-03-11 2016-12-20 Covidien Lp Crest factor enhancement in electrosurgical generators
US9526576B2 (en) 2008-09-30 2016-12-27 Covidien Lp Microwave ablation generator control system
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9642665B2 (en) 2006-01-24 2017-05-09 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US9700366B2 (en) 2008-08-01 2017-07-11 Covidien Lp Polyphase electrosurgical system and method
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US10154848B2 (en) 2011-07-11 2018-12-18 Covidien Lp Stand alone energy-based tissue clips
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10303641B2 (en) 2014-05-07 2019-05-28 Covidien Lp Authentication and information system for reusable surgical instruments
US10646267B2 (en) 2013-08-07 2020-05-12 Covidien LLP Surgical forceps
US10835309B1 (en) 2002-06-25 2020-11-17 Covidien Ag Vessel sealer and divider
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11013548B2 (en) 2005-03-31 2021-05-25 Covidien Ag Method and system for compensating for external impedance of energy carrying component when controlling electrosurgical generator
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US11497540B2 (en) 2019-01-09 2022-11-15 Covidien Lp Electrosurgical fallopian tube sealing devices with suction and methods of use thereof
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
WO1997000646A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
BR9609421A (en) 1995-06-23 1999-05-18 Gyrus Medical Ltd Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
GB9612993D0 (en) 1996-06-20 1996-08-21 Gyrus Medical Ltd Electrosurgical instrument
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
WO2000024331A1 (en) 1998-10-23 2000-05-04 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
ATE371413T1 (en) 2002-05-06 2007-09-15 Covidien Ag BLOOD DETECTOR FOR CHECKING AN ELECTROSURGICAL UNIT
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
EP1675499B1 (en) 2003-10-23 2011-10-19 Covidien AG Redundant temperature monitoring in electrosurgical systems for safety mitigation
EP1676108B1 (en) 2003-10-23 2017-05-24 Covidien AG Thermocouple measurement circuit
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
AU2007200299B2 (en) 2006-01-24 2012-11-15 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8346370B2 (en) 2008-09-30 2013-01-01 Vivant Medical, Inc. Delivered energy generator for microwave ablation
US8174267B2 (en) 2008-09-30 2012-05-08 Vivant Medical, Inc. Intermittent microwave energy delivery system
US8180433B2 (en) 2008-09-30 2012-05-15 Vivant Medical, Inc. Microwave system calibration apparatus, system and method of use
US8248075B2 (en) 2008-09-30 2012-08-21 Vivant Medical, Inc. System, apparatus and method for dissipating standing wave in a microwave delivery system
US8287527B2 (en) 2008-09-30 2012-10-16 Vivant Medical, Inc. Microwave system calibration apparatus and method of use
US8852179B2 (en) 2008-10-10 2014-10-07 Covidien Lp Apparatus, system and method for monitoring tissue during an electrosurgical procedure
US8932282B2 (en) 2009-08-03 2015-01-13 Covidien Lp Power level transitioning in a surgical instrument
US7956620B2 (en) 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing

Cited By (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558317A2 (en) * 1992-02-27 1993-09-01 G2 Design Limited Cauterising apparatus
EP0558318A2 (en) * 1992-02-27 1993-09-01 G2 Design Limited Apparatus for radio frequency bipolar electrosurgery
EP0558318A3 (en) * 1992-02-27 1993-12-08 G2 Design Ltd Apparatus for radio frequency bipolar electrosurgery
EP0558317A3 (en) * 1992-02-27 1993-12-22 G2 Design Ltd Cauterising apparatus
US5423810A (en) * 1992-02-27 1995-06-13 G2 Design Limited Cauterising apparatus
US5451224A (en) * 1992-02-27 1995-09-19 G2 Design Limited Apparatus for radio frequency bipolar electrosurgery
US5438302A (en) * 1993-07-12 1995-08-01 Gyrus Medical Limited Electrosurgical radiofrequency generator having regulated voltage across switching device
EP1693015A3 (en) * 1994-06-29 2009-08-05 Gyrus Medical Limited Electrosurgical apparatus
EP0694290A3 (en) * 1994-06-29 1996-03-13 Gyrus Medical Ltd
EP1034746A3 (en) * 1994-06-29 2000-10-18 Gyrus Medical Limited Electrosurgical apparatus
EP0694290A2 (en) 1994-06-29 1996-01-31 Gyrus Medical Limited Electrosurgical apparatus
EP1693015A2 (en) * 1994-06-29 2006-08-23 Gyrus Medical Limited Electrosurgical apparatus
US7963965B2 (en) 1997-11-12 2011-06-21 Covidien Ag Bipolar electrosurgical instrument for sealing vessels
US8298228B2 (en) 1997-11-12 2012-10-30 Coviden Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8211105B2 (en) 1997-11-12 2012-07-03 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7828798B2 (en) 1997-11-14 2010-11-09 Covidien Ag Laparoscopic bipolar electrosurgical instrument
US7896878B2 (en) 1998-10-23 2011-03-01 Coviden Ag Vessel sealing instrument
US7947041B2 (en) 1998-10-23 2011-05-24 Covidien Ag Vessel sealing instrument
US7887536B2 (en) 1998-10-23 2011-02-15 Covidien Ag Vessel sealing instrument
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US9107672B2 (en) 1998-10-23 2015-08-18 Covidien Ag Vessel sealing forceps with disposable electrodes
EP1080694A1 (en) 1999-06-11 2001-03-07 Gyrus Medical Limited An electrosurgical generator.
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US8361071B2 (en) 1999-10-22 2013-01-29 Covidien Ag Vessel sealing forceps with disposable electrodes
US6534961B2 (en) 2000-05-19 2003-03-18 Per-Olof Brandt Compact DC/DC converter circuit
GB2362518B (en) * 2000-05-19 2004-11-10 Ericsson Telefon Ab L M DC/DC Converters
GB2362518A (en) * 2000-05-19 2001-11-21 Ericsson Telefon Ab L M DC/DC converter
US10251696B2 (en) 2001-04-06 2019-04-09 Covidien Ag Vessel sealer and divider with stop members
US8540711B2 (en) 2001-04-06 2013-09-24 Covidien Ag Vessel sealer and divider
US9861430B2 (en) 2001-04-06 2018-01-09 Covidien Ag Vessel sealer and divider
US10568682B2 (en) 2001-04-06 2020-02-25 Covidien Ag Vessel sealer and divider
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
US10881453B1 (en) 2001-04-06 2021-01-05 Covidien Ag Vessel sealer and divider
US8241284B2 (en) 2001-04-06 2012-08-14 Covidien Ag Vessel sealer and divider with non-conductive stop members
US10265121B2 (en) 2001-04-06 2019-04-23 Covidien Ag Vessel sealer and divider
US10687887B2 (en) 2001-04-06 2020-06-23 Covidien Ag Vessel sealer and divider
US9737357B2 (en) 2001-04-06 2017-08-22 Covidien Ag Vessel sealer and divider
US10835309B1 (en) 2002-06-25 2020-11-17 Covidien Ag Vessel sealer and divider
US10918436B2 (en) 2002-06-25 2021-02-16 Covidien Ag Vessel sealer and divider
US10537384B2 (en) 2002-10-04 2020-01-21 Covidien Lp Vessel sealing instrument with electrical cutting mechanism
US9585716B2 (en) 2002-10-04 2017-03-07 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8551091B2 (en) 2002-10-04 2013-10-08 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8740901B2 (en) 2002-10-04 2014-06-03 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US8192433B2 (en) 2002-10-04 2012-06-05 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US10987160B2 (en) 2002-10-04 2021-04-27 Covidien Ag Vessel sealing instrument with cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US8945125B2 (en) 2002-11-14 2015-02-03 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US8679114B2 (en) 2003-05-01 2014-03-25 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7655007B2 (en) 2003-05-01 2010-02-02 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US7708735B2 (en) 2003-05-01 2010-05-04 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7753909B2 (en) 2003-05-01 2010-07-13 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US9149323B2 (en) 2003-05-01 2015-10-06 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US8496656B2 (en) 2003-05-15 2013-07-30 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USRE47375E1 (en) 2003-05-15 2019-05-07 Coviden Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US10918435B2 (en) 2003-06-13 2021-02-16 Covidien Ag Vessel sealer and divider
US10278772B2 (en) 2003-06-13 2019-05-07 Covidien Ag Vessel sealer and divider
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US8647341B2 (en) 2003-06-13 2014-02-11 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US10842553B2 (en) 2003-06-13 2020-11-24 Covidien Ag Vessel sealer and divider
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US9492225B2 (en) 2003-06-13 2016-11-15 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US10441350B2 (en) 2003-11-17 2019-10-15 Covidien Ag Bipolar forceps having monopolar extension
US8597296B2 (en) 2003-11-17 2013-12-03 Covidien Ag Bipolar forceps having monopolar extension
US8257352B2 (en) 2003-11-17 2012-09-04 Covidien Ag Bipolar forceps having monopolar extension
US8394096B2 (en) 2003-11-19 2013-03-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US8303586B2 (en) 2003-11-19 2012-11-06 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7922718B2 (en) 2003-11-19 2011-04-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US8623017B2 (en) 2003-11-19 2014-01-07 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US9980770B2 (en) 2003-11-20 2018-05-29 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US9095347B2 (en) 2003-11-20 2015-08-04 Covidien Ag Electrically conductive/insulative over shoe for tissue fusion
US8348948B2 (en) 2004-03-02 2013-01-08 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7935052B2 (en) 2004-09-09 2011-05-03 Covidien Ag Forceps with spring loaded end effector assembly
US7799028B2 (en) 2004-09-21 2010-09-21 Covidien Ag Articulating bipolar electrosurgical instrument
US8123743B2 (en) 2004-10-08 2012-02-28 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7951150B2 (en) 2005-01-14 2011-05-31 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US8147489B2 (en) 2005-01-14 2012-04-03 Covidien Ag Open vessel sealing instrument
US8382754B2 (en) 2005-03-31 2013-02-26 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US11013548B2 (en) 2005-03-31 2021-05-25 Covidien Ag Method and system for compensating for external impedance of energy carrying component when controlling electrosurgical generator
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
US10188452B2 (en) 2005-08-19 2019-01-29 Covidien Ag Single action tissue sealer
US8641713B2 (en) 2005-09-30 2014-02-04 Covidien Ag Flexible endoscopic catheter with ligasure
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US8394095B2 (en) 2005-09-30 2013-03-12 Covidien Ag Insulating boot for electrosurgical forceps
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US8197633B2 (en) 2005-09-30 2012-06-12 Covidien Ag Method for manufacturing an end effector assembly
USRE44834E1 (en) 2005-09-30 2014-04-08 Covidien Ag Insulating boot for electrosurgical forceps
US7819872B2 (en) 2005-09-30 2010-10-26 Covidien Ag Flexible endoscopic catheter with ligasure
US9549775B2 (en) 2005-09-30 2017-01-24 Covidien Ag In-line vessel sealer and divider
US8361072B2 (en) 2005-09-30 2013-01-29 Covidien Ag Insulating boot for electrosurgical forceps
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US8668689B2 (en) 2005-09-30 2014-03-11 Covidien Ag In-line vessel sealer and divider
US9522032B2 (en) 2005-10-21 2016-12-20 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US9113903B2 (en) 2006-01-24 2015-08-25 Covidien Lp Endoscopic vessel sealer and divider for large tissue structures
US9918782B2 (en) 2006-01-24 2018-03-20 Covidien Lp Endoscopic vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US9642665B2 (en) 2006-01-24 2017-05-09 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US9539053B2 (en) 2006-01-24 2017-01-10 Covidien Lp Vessel sealer and divider for large tissue structures
US10582964B2 (en) 2006-01-24 2020-03-10 Covidien Lp Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US9119624B2 (en) 2006-04-24 2015-09-01 Covidien Ag ARC based adaptive control system for an electrosurgical unit
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US8034052B2 (en) 2006-05-05 2011-10-11 Covidien Ag Apparatus and method for electrode thermosurgery
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
WO2008102154A3 (en) * 2007-02-22 2008-10-23 Ecshmann Holdings Ltd Electrosurgical systems
WO2008102154A2 (en) * 2007-02-22 2008-08-28 Ecshmann Holdings Limited Electrosurgical systems
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US9271790B2 (en) 2007-09-21 2016-03-01 Coviden Lp Real-time arc control in electrosurgical generators
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8696667B2 (en) 2007-09-28 2014-04-15 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US9554841B2 (en) 2007-09-28 2017-01-31 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8192444B2 (en) 2008-01-16 2012-06-05 Tyco Healthcare Group Lp Uterine sealer
US8747413B2 (en) 2008-01-16 2014-06-10 Covidien Lp Uterine sealer
US8298231B2 (en) 2008-01-31 2012-10-30 Tyco Healthcare Group Lp Bipolar scissors for adenoid and tonsil removal
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8382792B2 (en) 2008-02-14 2013-02-26 Covidien Lp End effector assembly for electrosurgical device
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US9192427B2 (en) 2008-03-11 2015-11-24 Covidien Lp Bipolar cutting end effector
US8409186B2 (en) 2008-03-13 2013-04-02 Covidien Lp Crest factor enhancement in electrosurgical generators
US9522038B2 (en) 2008-03-13 2016-12-20 Covidien Lp Crest factor enhancement in electrosurgical generators
US8608733B2 (en) 2008-03-28 2013-12-17 Covidien Lp Electrosurgical apparatus with predictive RF source control
US8257349B2 (en) 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
US9247988B2 (en) 2008-07-21 2016-02-02 Covidien Lp Variable resistor jaw
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US9113905B2 (en) 2008-07-21 2015-08-25 Covidien Lp Variable resistor jaw
US9700366B2 (en) 2008-08-01 2017-07-11 Covidien Lp Polyphase electrosurgical system and method
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8911436B2 (en) 2008-08-27 2014-12-16 Erbe Elek Tromedizin GmbH Electrosurgical HF generator
WO2010025818A1 (en) * 2008-08-27 2010-03-11 Erbe Elektromedizin Gmbh Electrosurgical hf generator
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
US9254172B2 (en) 2008-09-03 2016-02-09 Covidien Lp Shielding for an isolation apparatus used in a microwave generator
US8968295B2 (en) 2008-09-05 2015-03-03 Covidien Lp Electrosurgical apparatus with high speed energy recovery
US8377053B2 (en) 2008-09-05 2013-02-19 Covidien Lp Electrosurgical apparatus with high speed energy recovery
US8287529B2 (en) 2008-09-05 2012-10-16 Tyco Healthcare Group Lp Electrosurgical apparatus with high speed energy recovery
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US10743935B2 (en) 2008-09-30 2020-08-18 Covidien Lp Microwave ablation generator control system
US10070922B2 (en) 2008-09-30 2018-09-11 Covidien Lp Microwave ablation generator control system
US9526576B2 (en) 2008-09-30 2016-12-27 Covidien Lp Microwave ablation generator control system
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8568444B2 (en) 2008-10-03 2013-10-29 Covidien Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US9113898B2 (en) 2008-10-09 2015-08-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9770287B2 (en) 2008-10-10 2017-09-26 Covidien Lp System and method for delivering high current to electrosurgical device
US10278771B2 (en) 2008-10-10 2019-05-07 Covidien Lp System and method for delivering 5 high current to electrosurgical device
US8734444B2 (en) 2008-10-10 2014-05-27 Covidien Lp System and method for delivering high current to electrosurgical device
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8167875B2 (en) 2009-01-12 2012-05-01 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices
US8162932B2 (en) 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US8333759B2 (en) 2009-01-12 2012-12-18 Covidien Lp Energy delivery algorithm for medical devices
US8211100B2 (en) 2009-01-12 2012-07-03 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8152802B2 (en) 2009-01-12 2012-04-10 Tyco Healthcare Group Lp Energy delivery algorithm filter pre-loading
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8231553B2 (en) 2009-01-13 2012-07-31 Tyco Healthcare Group Lp Method for wireless control of electrosurgery
US8235917B2 (en) 2009-01-13 2012-08-07 Tyco Healthcare Group Lp Wireless electrosurgical controller
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9655674B2 (en) 2009-01-13 2017-05-23 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8282634B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632539B2 (en) 2009-01-14 2014-01-21 Covidien Lp Vessel sealer and divider
US8632564B2 (en) 2009-01-14 2014-01-21 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9522039B2 (en) 2009-03-11 2016-12-20 Covidien Lp Crest factor enhancement in electrosurgical generators
US8226650B2 (en) 2009-03-26 2012-07-24 Tyco Healthcare Group Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8251994B2 (en) 2009-04-07 2012-08-28 Tyco Healthcare Group Lp Vessel sealer and divider with blade deployment alarm
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US10085794B2 (en) 2009-05-07 2018-10-02 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9345535B2 (en) 2009-05-07 2016-05-24 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
US9113889B2 (en) 2009-08-19 2015-08-25 Covidien Lp Method of manufacturing an end effector assembly
US8679115B2 (en) 2009-08-19 2014-03-25 Covidien Lp Electrical cutting and vessel sealing jaw members
US8287536B2 (en) 2009-08-26 2012-10-16 Tyco Healthcare Group Lp Cutting assembly for surgical instruments
US8491617B2 (en) 2009-09-09 2013-07-23 Covidien Lp Low profile cutting assembly with a return spring
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9931131B2 (en) 2009-09-18 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8266783B2 (en) 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8323310B2 (en) 2009-09-29 2012-12-04 Covidien Lp Vessel sealing jaw with offset sealing surface
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US10383649B2 (en) 2011-01-14 2019-08-20 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US11660108B2 (en) 2011-01-14 2023-05-30 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US10154848B2 (en) 2011-07-11 2018-12-18 Covidien Lp Stand alone energy-based tissue clips
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10338115B2 (en) 2012-06-29 2019-07-02 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10073125B2 (en) 2012-06-29 2018-09-11 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10603098B2 (en) 2013-05-31 2020-03-31 Covidien Lp Gain compensation for a full bridge inverter
US9504516B2 (en) 2013-05-31 2016-11-29 Covidien LLP Gain compensation for a full bridge inverter
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10646267B2 (en) 2013-08-07 2020-05-12 Covidien LLP Surgical forceps
US10585839B2 (en) 2014-05-07 2020-03-10 Covidien Lp Authentication and information system for reusable surgical instruments
US11144495B2 (en) 2014-05-07 2021-10-12 Covidien Lp Authentication and information system for reusable surgical instruments
US10303641B2 (en) 2014-05-07 2019-05-28 Covidien Lp Authentication and information system for reusable surgical instruments
US11886373B2 (en) 2014-05-07 2024-01-30 Covidien Lp Authentication and information system for reusable surgical instruments
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
US11497540B2 (en) 2019-01-09 2022-11-15 Covidien Lp Electrosurgical fallopian tube sealing devices with suction and methods of use thereof
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue

Also Published As

Publication number Publication date
GB8808320D0 (en) 1988-05-11
GB8801177D0 (en) 1988-02-17
GB2214430B (en) 1992-06-17

Similar Documents

Publication Publication Date Title
US5099840A (en) Diathermy unit
GB2214430A (en) Diathermy unit
US4156157A (en) Alternate constant current or voltage generator for an ultrasonic generator
US4881023A (en) Hybrid high speed voltage regulator with reduction of miller effect
US4667279A (en) Transformer coupled pard bucker for DC power supplies
US4669036A (en) d.c. to d.c. converter power supply with dual regulated outputs
US5121023A (en) Ultrasonic generator with a piezoelectric converter
US4168454A (en) Circuit arrangement for controlling the speed of a D.C. motor
GB2239995A (en) High frequency heating apparatus having an output controlling function
DE3932776A1 (en) POWER SUPPLY DEVICE WITH VOLTAGE CONTROL AND CURRENT LIMITATION
US3551777A (en) Inverter-converter with regulation of ac and dc outputs
US3573595A (en) Constant current feedback regulator with adjustable impedance for maintaining constant current
JPH0785651B2 (en) Regulated power supply
WO1993002407A1 (en) Improved power supply regulator
US4833393A (en) Circuit arrangement for capacitance or admittance measurement
US3391330A (en) Direct current power supplies with overload protection
CN110764564A (en) Voltage regulating circuit and ultrasonic equipment
US5164679A (en) AC power amplifier having current limit control
JPH084384B2 (en) Resonance regulator type power supply
US4460955A (en) Stabilizing power supply apparatus
US4484256A (en) Constant current density high voltage power supply
US4038594A (en) Distortionless sine wave amplification
US4012685A (en) Regulated power supply for very high current with voltage and current programmable to zero
CA1276976C (en) Dc-dc converter
US3187269A (en) Static inverter system

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PE20 Patent expired after termination of 20 years

Expiry date: 20080407