GB2180351A - Capacitive mask aligner - Google Patents

Capacitive mask aligner Download PDF

Info

Publication number
GB2180351A
GB2180351A GB08624008A GB8624008A GB2180351A GB 2180351 A GB2180351 A GB 2180351A GB 08624008 A GB08624008 A GB 08624008A GB 8624008 A GB8624008 A GB 8624008A GB 2180351 A GB2180351 A GB 2180351A
Authority
GB
United Kingdom
Prior art keywords
fingers
hand
wafer
array
ridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08624008A
Other versions
GB8624008D0 (en
GB2180351B (en
Inventor
Armand P Neukermans
James H Boyden
Garrett A Garrettson
Steven E Eaton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/541,385 external-priority patent/US4654581A/en
Priority claimed from US06/541,386 external-priority patent/US4607213A/en
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of GB8624008D0 publication Critical patent/GB8624008D0/en
Publication of GB2180351A publication Critical patent/GB2180351A/en
Application granted granted Critical
Publication of GB2180351B publication Critical patent/GB2180351B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • G03F9/7053Non-optical, e.g. mechanical, capacitive, using an electron beam, acoustic or thermal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An aligner for aligning a mask and a wafer 3 during photolithography of a semiconductor chip uses detection of the differential capacitance between two interdigitated set of conductive fingers 21,25 on the mask, and a set of ridges on the wafer. An A.C. signal is coupled between the ridges and fingers and the degree of coupling for the two sets of fingers is detected and compared. A conductive shield overlies the common sideline of each set of fingers, spaced therefrom by an insulating layer, to ensure that coupling occurs only between desired portions of the ridges and the fingers. <IMAGE>

Description

1 1 GB2180351A 1
SPECIFICATION
Capacitive mask aligner During the processing of an electronic chip a semiconductor wafer is exposed to a radiation source in order to develop a photoresist layer on top of the wafer. A mask is used between the source and the wafer to selectively block the radiation and, thereby, to develop a desired design in the photoresist which controls subsequent etching of the chip. At various processing stages different masks may be used to develop different desired designs on the wafer. It is essential that the various masks be correctly aligned with the wafer so that tight tolerances, allowing, for example, the fabrication of micron width lines, may be maintained.
Optical aligners have been used in the prior art to manually align wafers and masks. Prior art optical aligners have been slow and subject to operator error because of the need to visually align reference marks lying in different planes. Other techniques using Fresnel lenses or diffraction gratings have been proposed but have proved to be adversely sensitive to reference mark variations and have not allowed dynamic control during wafter exposure.
According to the invention there is provided an element aligner as set out in Claim 1 of the claims of this specification.
In accordance with the illustrated preferred embodiment of the present invention, alignment is accomplished by detecting a differential capacitance between ridges located on the wafer and sets of interdigitated fingers located on the mask. An electrical signal applied to the wafer is capacitively coupled from the wafer ridges to the overlying mask fingers. The wafer and the mask are aligned when the coupled signals observed on each set of interdigitated fingers are equal in amplitude. Since signal coupling occurs between numerous fingers and ridges, errors due to variations in the fabrication of individual fingers or ridges are averaged if the finger and ridge repetition patterns (constant, chirped or random) are kept substantially identical. Fur- ther, rotational or orthogonal alignment may be achieved with the use of multiple finger/ ridge sets and alignment may be automated by using the measured signals to control posi tioning equipment.
In accordance with another preferred em- 120 bodiment of the present invention, conductive shields are placed between the wafer and in terconnecting side lines of the fingers. The shields ensure that coupling only occurs be- tween the ridges and the fingers and not between the ridges and the side lines so that lateral movement of the wafer does not cause variations in the differential capacitance to occur. This allows independent singledimension alignments to be made.
In accordance with an additional preferred embodiment of the present invention, two sets of fingers are driven by a single driving signal. A phase shifter shifts the driving signal applied to one finger set so that the signal on the finger set is 180 degrees out of phase with the signal on the other finger set. A voltmeter detects a coupled signal on the wafer and a null is observed when alignment is achieved.
In accordance with a further preferred embodiment of the present invention, alignment is achieved with the wafer grounded. A single driving signal is applied to two finger sets through a transformer and a diode bridge and is coupled to ground through the wafer. A recharge path is provided through conductive shields overlaying the finger sets. Alignment is achieved when a D.C. current null is observed.
In accordance with still another preferred embodiment of the present invention, alignment is performed on a mask and a wafer which are separated by a substantial distance as required in some optical lithography or metrology applications. In these applications the distance between the mask and the wafer is too great for meaningful capacitive coupling to occur between the mask and the wafer. Two groups of references, one for the mask and the other for the wafer, are attached to a backbone frame and are initially aligned together. The mask is aligned to one reference and the wafer is aligned to the other reference by measurement of the differential capacitances involved.
Figure 1 is a side view of a wafer and mask which are aligned in accordance with the preferred embodiment of the present invention.
Figure 2 is a detailed view of the wafer array which is used on the wafer shown in Fig. 1.
Figures 3A-B provide detailed views of the interdigitated fingers which are located on the mask shown in Fig. 1.
Figures 4A-B are exploded side views of the mask and wafer shown in Fig. 1.
Figure 5 is a perspective view of the preferred embodiment of the present invention.
Figure 6 is a schematic diagram of the de- tector shown in Fig. 5.
Figure 7 is a perspective view of another preferred embodiment of the present invention in which the mask is driven with a signal.
Figure 8 is a schematic diagram of another preferred embodiment of the present invention in which the wafer is grounded.
Figure 9 shows a rotational aligner which uses four aligners which are constructed in accordance with the preferred embodiment of the present invention shown in Fig. 5.
Figure 10 is a side view of another preferred embodiment of the present invention in which the mask and the wafer are separated by a substantial distance.
Fig. 1 shows a mask 1 aligned with a wafer 2 GB2180351A 2 3 (mounted on a chuck 5) so that the wafer 3 is irradiated by a source 7 and a desired design is developed on a photoresist coating of wafer 3. Source 7 may generate, for example, visible light or X-rays. Alignment is accomplished by measuring a differential capacitance between a finger region 9 and a wafer array 11.
Fig. 2 shows a perspective view of a por- tion of array 11 on wafer 3. Array 11 com- prises a series of ridges 13 and valleys 15 which are formed by etching wafer 3. Ridges 13 have a predetermined repetition pattern which may be constant (as shown in Fig. 2) or random or chirped (as shown in Fig. 413).
The wafer 3 is lightly doped so as to have a resistivity on the order of one ohm-centimeter and the ridges 13 and valleys 15 may be coated with a dielectric or conductive layer as required for othwer processing of the wafer 3 85 without affecting the performance of the pre ferred emobodiment of the presentinvention. If wafer 3 comprises silicon having a (100) ori entation, then etching of pattern 11 may be performed with KOH. If other silicon orienta tions or other materials are used for wafer 3, then fabrication of the ridges 13 and valleys may be performed using any of a number of well known orientation dependent etchants.
If a GaAs wafer 3 is used, ridges 13 may comprise conductive traces which are deposi ted upon the insulating GaAs wafer 3. Valleys then comprise the insulating GaAs and air gaps between individual conductive traces.
Fig. 3A shows a detailed view of hand 21 100 (including side line 31 and fingers 23) and hand 25 (including side line 35 and fingers 27) of finger region 9. Hands 21 and 25 are fabri cated as conductive lines which may be printed or deposited upon mask 1. Side lines 31 and 35 of hands 21 and 25 may extend to the edge of mask 1 to allow for external connections. Fingers 23 and fingers 27 are interdigitated and the repetition patterns of fin- gers 23, fingers 27 and ridges 13 are substantially identical.
The effect of specific locational errors of individual fingers is minimized by the averaging effect over the total number of fingers.
Fig. 313 shows a detailed view of finger region 9 including grounded shields 37, 39. Typically, mask 1 comprises a 3 micron thick boron nitride substrate having a polyimide coating. The hands 21, 25 comprise a gold layer deposited on the polyimide. In order to ensure that capacitive coupling occurs only between ridges 13 and fingers 23, 27 (and not between ridges 13 and side lines 31, 35) grounded shields 37, 39 overlay all side lines 31, 35. Thus, grounded shields 37, 39 are interposed between side lines 31, 35 and wafer 3 to eliminate capacitive coupling between side lines 31, 35 and any portion of wafer 3. Shields 37, 39 may be fabricated by depositing an insulating photoresist layer over 130 hands 21, 25 and then depositing shields 37, 39 as a one micron thick conductive layer (e.g.aluminum) which is then grounded.
Fig. 4A shows an exploded side view of a portion of mask 1 and wafer 3. The repetition patterns of fingers 23, 27 and ridges 13 are constant and substantially identical. Mask 1 and wafer 3 are in sufficiently close proximity, as is typical in X-ray photolithography, for example, that meaningful capacitive coupling between ridges 13 and fingers 23, 27 occurs. A block 29 may be used to cover finger region 9 on mask 3 so that inadvertent processing of array 11 on wafer 3 does not oc- cur during irradiation of wafer 3. Block 29 may comprise a material which absorbs the radiation generated by source 7.
Fig. 413 shows an exploded side view of a portion of mask 1 and wafer 3 in which the repetition patterns of the ridges 13 and fingers 23, 27 are chirped in spatial frequency. If the repetition patterns of fingers 23, 27 and ridges 13 are substantially identical and aperiodic there will be one unique position at which the ridges 13 are centered between pairs of fingers 23, 27. This permits determination of a single unique alignment. It should be noted that a unique alignment may also be obtained by using identical repetition patterns which are random.
Fig. 5 shows a perspective view of the preferred embodiment of the present invention including finger region 9 and array 11 shown in Figs. 1- 4. For the sake of illustrative clarity, mask 1 itself and the remainder of wafer 3 outside of array 11 are not shown in Fig. 5. An oscillator 41 is connected to one side of wafer 3 and an opposite side is grounded. Oscillator 41 impresses a sine wave or other signal across array 11. Side lines 31, 35 of hands 21, 15 are connected to a detector 43 which compares the air coupled capacitance of ridges 13 to fingers 23 and the air coupled capacitance of ridges 13 to fingers 27. Detec- tor 43 may, for example, measure a relative signal amplitude or a relative signal phase.
Fig. 6 is a schematic diagram of the detector 43 shown in Fig. 5 which is operative for measuring a relative signal amplitude. Capaci- tors 53 and 57 represent the capacitive coupling between ridges 13 and fingers 23 and 27, respectively. Bridge 51, comprising matched Schottky barrier diodes, rectifies the signals coupled by capacitors 53, 57 and ap- plies them to amplifier 55 which utilizes a feedback resistor (R) 59. The output of detector 43 is proportional to the difference in capacitance of capacitors 53 and 57 and the output (Vo) is zero when the two capacitances are equal.
An aligner incorporating the preferred embodiment of the present invention shown in Figs. 1-6 has been used in conjunction with X-ray lithography to allow fabrication of one micron wide lines on a silicon wafer. '(100) 3 GB2180351A 3 1 15 orientation silicon was used and KOH was utilized as the orientation dependent etchant to create ridges 13 and valleys 15 on wafer 3. The gap between mask 1 and wafer 3 was 30 microns. Array 11 on wafer 3 was 3 by 3 millimeters in size although the size and location of array 11 may be varied as dictated by the particular geometry of the wafer being fabricated. The valleys 15 were approximately 80 microns deep, the tops of ridges 13 were 40 microns wide and the repetition pattern had a constant period of 150 microns. The fingers 23, 27 were 60 microns wide and the constant period of the repetition pattern yielded a 15 micron spacing between adjacent fingers. The sine wave output of oscillator 41 was 100 volts peak-to-peak at 500 KHz.
Using the above-described X-ray lithography aligner, it was found that a 0.07 micron misal- ignment of mask 1 and wafer 3 created a measurable capacitance differential of approximately 0.28 ferntofarad. The relationship between misalignment and capacitance differential was linear since capacitance is inversely proportional to distance. In Fig. 5, the output of detector 43 was zero when each of ridges 13 was centered between a finger 23 and a finger 27. When centering occured the distances between each of ridges 13 and the nearest fingers 23, 27 were equal and, hence, the capacitances were equal. Since multiple fingers on each of hands 21, 25 were used, individual errors were averaged. When relative movement of mask 1 and wafer 3 occured, as shown by the arrow in Fig. 5, one capacitance increased while the other decreased and the output of detector 43 deviated from zero. It should be noted that shields 37, 39 shown in Fig. 313 ensured that relative movement in a direction orthogonal to the arrow shown in Fig. 5 did not produce a change in the differential capacitances or a deviation in the output of detector 43. For optimal alignment sensitivity it was found that the period of the repeti- tion pattern should be roughly 5 to 6 times the size of the gap.
Fig. 7 shows an aligner which is constructed in accordance with another preferred embodiment of the present invention with which alignment may be performed without applying a high voltage to wafer 3. An oscillator 101 provides a sine wave signal to side line 31 and to a non-attenuating phase shifter 103. The phase shifter 103 provides a sine wave signal to side line 35 which is of the same amplitude and frequency as the signal applied to side line 31 but which is phase shifted by 180 degrees. In order that the two signals have identical amplitudes and opposite phases, a Blumlein transformer may be used in place of the phase shifter 103. The Blumlein transformer, which is well known to persons of ordinary skill in the art, provides two outputs having identical amplitudes and oppo- site phases. The two outputs may be coupled to side lines 31 and 35, respectively. A voltmeter 105 detects a summation of the two signals which are coupled to wafer 3. When alignment is achieved the shifted and unshifted signals are coupled equally to wafer 3. the two signals cancel and a null is detected by voltmeter 105. Time or frequency multiplexing may be used if more than one aligner is utilized on a single wafer 3.
Fig. 8 shows an aligner which is constructed in accordance with another preferred embodiment of the present invention with which alignment may be performed with wafer 3 grounded. A transformer 113 having matched windings provides a sine wave from driver 111 to fingers 23, 27 and to shields 37, 39 (shown in Fig. 313) at the same amplitude. The aligner shown in Fig. 8 may be viewed as having an air gap capacitor (Cl) between ridges 13 and fingers 27, and another air gap capacitor (C2) bet between ridges 13 and fingers 23. Charge is delivered to capacitor Cl from storage capacitor 131 during the positive portions of the sine wave and is returned to storage capacitor 131 from capacitor C2 during the negative portions. Any difference in capacitance between capacitors Cl and C2 (caused by misalignment) causes a net D.C. voltage across storage capacitor 131 which is detected by amplifier 123 and voltmeter 125. A null occurs when alignment is achieved.
Fig. 9 shows a rotational aligner which is constructed in accordance with another pre- ferred embodiment of the present invention. Since the aligner shown in Fig. 5 does not provide alignment sensitivity in a direction which is orthogonal to the arrow depicted in Fig. 5 it is necessary to use two mutually orthogonal sets of ridges and fingers to provide simultaneous alignment in both an "x" and a -y- direction. Further, if four sets of ridge/fingers 81, 83, 85, 87 are used as shown in Fig. 9, rotational misalignment of 10 to 20 microradians can be detected and corrected. For the sake of illustrative clarity, only twelve ridges 89 and twenty-four fingers 91, 93 are shown while in reality the number will be dependent upon the space available and ridges 89 and fingers 91, 93 will be similar to ridges 13 and fingers 23, 27 shown in Figs. 2-5. Shields as discussed above with reference to Fig. 313 should be used to avoid misalignment caused by unwanted capacitive cou pling.
Fig. 10 shows another preferred embodiment of the present invention in which a mask 1 and a wafer 3 are spaced a substantial distance apart as is required by various optical lithography methods. Thus, the capacitance between mask 1 and wafer 3 can not easily be measured. Instead, a rigid backbone 71 is equipped with two upper reference ledges 61, 63 and two lower references ledges 65, 67 which are initially aligned together to provide a 4 GB2180351A 4 benchmark. Ledges 61, 63 include conductive ridges 73 which perform the same functions as do ridges 13 in Fig. 2. Thus, mask 1 can easily be aligned to [edges 61, 63 in the manner discussed above with reference to Figs. 1-6 by driving ridges 73 with oscillator 41 and connecting detector 43 to finger region 9. In a like manner, ledges 65, 67 include fingers 75 and mask 3 can be aligned to ledges 65, 67 by driving wafer 3 with oscillator 41 and connecting detector 43 to fingers 75. Thus, alignment can be achieved without requiring that mask 1 be in close proximity with wafer 3.
This application is divided from co-pending ap- 80 plication 8425831 (Serial number 2148515) which describes and claims similar subject matter.

Claims (6)

1. A system for use in aligning a primary element with a secondary element across a gap, the aligner comprising:
an array located on the primary element; a first hand located on the secondary element, said first hand comprising a plurality of substantially parallel conductive fingers capacitively coupled to the array; a second hand located on the secondary element, said second hand comprising a plurality of substantially parallel conductive fingers interdigitiated with the fingers of the first hand and capacatively coupled to the array; a first side line located on the secondary element and interconnecting the fingers of.the first hand; a second side line located on the secondary element and interconnecting the fingers of the second hand; first and second insulating layers covering the first and second lines; first and second conductive shields covering the first and second insulating layers; an oscillator, connected across the array, for driving the array with an electrical signal; and a detector, connected to the first and second hands, the detector being operative for measuring a first component of the signal at the first hand for measuring a second compo- nent of the signal at the second hand.
2. A system as claimed in Claim 1, comprising a first side line located on the secondary element and interconnecting the fingers of the first hand and a second side line lo- cated on the secondary element and interconnecting the fingers of the second hand, first and second insulating layers covering respectively the first and second side lines and first and second conductive shields covering re- spectively the first and second insulating layers. -
3. A system as claimed in Claim 2, wherein the first and second conductive shields are grounded.
4. A system as claimed in Claim 2 or Claim 3, wherein said first insulating layer and said frist conductive shield cover a portion of the second hand fingers and said second insulating layer and said second conductive shield cover a portion of the first hand fingers.
5. A system as claimed in any one of the preceding claims, comprising circuit means connected to a said detector for sensing a first capacitance between one hand and the array and for sensing a second capacitance between another hand fingers and the array, the relative values thereof providing an indication of the alignment between the primary element and the secondary element.
6. A system as claimed in any one of the preceding claims, wherein said primary element comprises a substrate and said array comprises a plurality of substantially parallel ridges which are an integral part of the substrate such that electrical connection can be made to the ridges by a single connection to the substrate.
Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon) Ltd, Dd 8817356, 1987. Published at The Patent Office, 25 Southampton Buildings, London, WC2A l AY, from which copies may be obtained.
GB08624008A 1983-10-12 1986-10-07 Capacitive mask aligner Expired GB2180351B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US54138783A 1983-10-12 1983-10-12
US06/541,385 US4654581A (en) 1983-10-12 1983-10-12 Capacitive mask aligner
US06/541,386 US4607213A (en) 1983-10-12 1983-10-12 Shielded capacitive mask aligner

Publications (3)

Publication Number Publication Date
GB8624008D0 GB8624008D0 (en) 1986-11-12
GB2180351A true GB2180351A (en) 1987-03-25
GB2180351B GB2180351B (en) 1987-12-23

Family

ID=27415359

Family Applications (2)

Application Number Title Priority Date Filing Date
GB08425831A Expired GB2148515B (en) 1983-10-12 1984-10-12 Capacitive mask aligner
GB08624008A Expired GB2180351B (en) 1983-10-12 1986-10-07 Capacitive mask aligner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB08425831A Expired GB2148515B (en) 1983-10-12 1984-10-12 Capacitive mask aligner

Country Status (4)

Country Link
DE (1) DE3437502A1 (en)
FR (1) FR2553532A1 (en)
GB (2) GB2148515B (en)
NL (1) NL8403128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369393A2 (en) * 1988-11-18 1990-05-23 Advanced Interconnection Technology, Inc. Precision work positioning by electrical measurement
EP0538184A1 (en) * 1991-10-15 1993-04-21 Hans Ulrich Meyer Capacitive position detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130660A (en) * 1991-04-02 1992-07-14 International Business Machines Corporation Miniature electronic device aligner using capacitance techniques
US6647311B1 (en) * 1999-11-18 2003-11-11 Raytheon Company Coupler array to measure conductor layer misalignment
US7193423B1 (en) * 2005-12-12 2007-03-20 International Business Machines Corporation Wafer-to-wafer alignments

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB953449A (en) * 1961-06-09 1964-03-25 Ass Elect Ind Improvements relating to apparatus for producing signals indicative of relative position
FR90733E (en) * 1966-08-19 1968-02-02 Ass Elect Ind Apparatus for generating electrical signals which indicate the relative position of two parts movable with respect to each other
NL7100212A (en) * 1971-01-08 1972-07-11
DD93037B1 (en) * 1971-06-23 1981-01-28 Peter Bauer CAPACITIVE WAY AND ANGLE MEASURING SYSTEM
US3938113A (en) * 1974-06-17 1976-02-10 International Business Machines Corporation Differential capacitive position encoder
US3961318A (en) * 1975-01-17 1976-06-01 Inductosyn Corporation Electrostatic position-measuring transducer
GB1484271A (en) * 1975-10-23 1977-09-01 Churchill & Co Ltd V Vehicle wheel alignment gauge
US4200395A (en) * 1977-05-03 1980-04-29 Massachusetts Institute Of Technology Alignment of diffraction gratings
SE411392B (en) * 1977-12-09 1979-12-17 Inst Mikrovagsteknik Vid Tekni METHOD DEVICE FOR CAPACITIVE DETERMINATION OF THE INSIDE DOCTOR AT TWO RELATIVELY ONE MOVING PARTS
US4374383A (en) * 1980-12-22 1983-02-15 International Business Machines Corporation Capacitive transducer for sensing a home position
GB2133889A (en) * 1983-01-19 1984-08-01 Lucas Ind Plc Capacitance displacement transducers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369393A2 (en) * 1988-11-18 1990-05-23 Advanced Interconnection Technology, Inc. Precision work positioning by electrical measurement
EP0369393A3 (en) * 1988-11-18 1993-10-20 Advanced Interconnection Technology, Inc. Precision work positioning by electrical measurement
EP0538184A1 (en) * 1991-10-15 1993-04-21 Hans Ulrich Meyer Capacitive position detector
US5304937A (en) * 1991-10-15 1994-04-19 Meyer Hans Ulrich Capacitive position sensor with an electrode array cursor and topographically featured scale

Also Published As

Publication number Publication date
DE3437502A1 (en) 1985-04-25
GB8624008D0 (en) 1986-11-12
FR2553532A1 (en) 1985-04-19
GB2148515B (en) 1987-12-23
GB2180351B (en) 1987-12-23
NL8403128A (en) 1985-05-01
GB2148515A (en) 1985-05-30
GB8425831D0 (en) 1984-11-21

Similar Documents

Publication Publication Date Title
US4654581A (en) Capacitive mask aligner
CA1093297A (en) Plate aligning
US4613981A (en) Method and apparatus for lithographic rotate and repeat processing
US3928094A (en) Method of aligning a wafer beneath a mask and system therefor and wafer having a unique alignment pattern
EP0358512B1 (en) Position detecting method and apparatus
EP3333884A1 (en) Lateral shift measurement using an optical technique
JPH0559364B2 (en)
US5868560A (en) Reticle, pattern transferred thereby, and correction method
JPS61501656A (en) A device that accurately aligns different grids stacked on top of each other and measures gaps.
JPH0442815B2 (en)
US4607213A (en) Shielded capacitive mask aligner
EP0871072B1 (en) Detector with multiple openings for photolithography
GB2180351A (en) Capacitive mask aligner
US5130660A (en) Miniature electronic device aligner using capacitance techniques
US5400386A (en) Angle detecting device and optical apparatus, such as exposure apparatus, employing the same
JPH0613991B2 (en) Photo detector
JP3814384B2 (en) Surface position detection method and surface position detection apparatus
US5650629A (en) Field-symmetric beam detector for semiconductors
EP0300590B1 (en) Semiconductor device package structure
JP2518301B2 (en) Interval measuring device
KR0172557B1 (en) Semiconductor apparatus having overlay mark
JPS60137020A (en) Perpendicular capacitive mask regulator
JPH0582729B2 (en)
JPH01285802A (en) Measuring device of gap between x-ray mask and substrate to be exposed and gap measuring method
NOORLAG Lateral-photoeffect position-sensitive detectors(Thesis)

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19931012