GB2079810A - Prefabricated elements and rooms for building and building works - Google Patents

Prefabricated elements and rooms for building and building works Download PDF

Info

Publication number
GB2079810A
GB2079810A GB8023145A GB8023145A GB2079810A GB 2079810 A GB2079810 A GB 2079810A GB 8023145 A GB8023145 A GB 8023145A GB 8023145 A GB8023145 A GB 8023145A GB 2079810 A GB2079810 A GB 2079810A
Authority
GB
United Kingdom
Prior art keywords
rooms
prefabricated elements
trunk
realized
elements according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8023145A
Other versions
GB2079810B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to GB8023145A priority Critical patent/GB2079810B/en
Publication of GB2079810A publication Critical patent/GB2079810A/en
Application granted granted Critical
Publication of GB2079810B publication Critical patent/GB2079810B/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/0007Base structures; Cellars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34823Elements not integrated in a skeleton the supporting structure consisting of concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Residential Or Office Buildings (AREA)

Abstract

Prefabricated elements for a quick assembling of buildings and building works. Said elements comprise plinths, beams, rooms, staircases, roofs, floors and panels provided with a base, said elements being provided with interfitting formations to allow the assembling of a building of one or more floors, whereby the stability of said buildings relies on the weight of the elements and/or on concrete cast around the junctions of projecting reinforcing means carried by the elements. <IMAGE>

Description

SPECIFICATION Prefabricated elements and rooms for the quick construction of buildings and building works in general The present invention concerns prefabricated elements and rooms for the quick construction of buildings and building works in general.
Prefabricated elements of various and different structure are already known for the construction of buildings, mainly of one floor, or in any case limited in the height thereof, whereby the assembling of those elements allows not only a quick and economic realization of a building, but also eventually, an easy dismounting and transporting for moving the building in another zone. Those elements are requested for different reasons, not for the last, in some cases, for economical reasons, which however rarely bring along an esthetic diversification of the building. In most of the cases, however, said elements are requested in emergency cases, when it is absolutely indispensable to quickly build up the building following to natural catastrophes like earthquakes, floods, landslips, etc.Also in this case the building has a temporary feature, mainly for what concerns the functional and esthetic factor, resenting from the structure of the assembling elements, from the deficiency, or even from the lacking of any esthetic element of the whole as well as, not for the last, from the limit in height of the building, which brings along the necessity of exploiting a greater surface with a consequent dissemination of a greater number of building unities.
It is therefore the aim of the present invention to realize prefabricated elements for the construction of buildings and similar, which allow a much quicker and functional assembí- ing, therefore less expensive, also in consideration of the time needed for the assembling, whereby in this case the possibility is given to develop the building in height with a greater stability than the one obtained with the prefabricated elements of the known kind, but equal to the stability of the buildings of conventional kind, casted in loco, therefore with a saving of the surface and not for the last, full liberty to the designer to move within large limits for what concerns the esthetic aspect, still maintaining the concept of a series modular structure according to the different wishes of the various users.
The aim is reached by the present invention; realizing prefabricated elements in the form of plinths, rooms or fractions of rooms with the function of living or working rooms, or staircases, roofs, pillars and self-supporting panels, all provided with particular shapes and means so as to provide as assembly in one or two floors, whereby the stability of the building is due, according to the cases, to the weight of said elements and/or also to reinforcing elements out of reinforced concrete, realized in the assembling stage.
According to the present invention, the most quick and simple realization is obtained in the case of a building which is limited in the height thereof, there where the stability of the whole may be relied upon the real weight of the single elements. In such a case it will be sufficient to provide such an excavation as to place therein the prefabricated plinths according to the present invention, and then to assemble all the other prefabricated elements according to the present invention, as it will be hereinbelow explained in detail.
The prefabricated plinths according to the present invention, which are to be placed at the ends of the building, show a lower part of conventional shape. Upon said base, a projecting trunk is provided e.g. of quadrangular shape showing, out of one piece, upperly, a part of a trunk of the same shape of the lower trunk, but of a smaller section. This part shows at the centre thereof a dead hole. The plinths which are to be placed between the ends of the building have a greater surface.
From the lower part thereof, being of conventional shape, two trunks are projecting of the same shape than the ones before described, for the coupling of the adjacent rooms. All the plinths thus provided will be hooked by means of beams according to the present invention, which will be described in detail hereinbelow.
The prefabricated beams according to the present invention are out of reinforced concrete or, according to the cases, also out of any other material, as e.g. wood or mixed materials which show, at each end thereof, an offset part, provided with an opening of the same shape and dimension that the ones of that trunk of the plinth with the narrower section. The offset ends of two following beams, placed aligned or at an angle, will be superposed in a symmethric opposition of the relative offsets, and thus coupled on that part of the trunk with the narrower section. Said beams will also find a rest onto the horizontal surface of that trunk of the plinth with the bigger section, serving as a stop. Thus a real framework is realized by the beams which are supported by the plinths.The basement of the building is realized at a determined distance from the ground, thus guaranteeing a good isolation.
Onto said framework, out of crossed beams as before described, the prefrabicated elements in the form of rooms, with the function of living or working rooms, are resting, and onto said prefrabricated elements other elements will be placed with the function of a roof or a roof-mansard. Also these elements can be realized out of reinforced concrete, with a metallic network provided in it or, according to the cases, out of different material. Said elements can be provided, along the apex' of the vertical corners thereof, with pillars provided with a reduced section, out of one piece with the walls.Said incorporated pillars show, at the lower end thereof, a projection in the form of a joint, of a smaller section than the one of the pillar, and with a shape and a dimension corresponding to shape and dimension of the dead holes provided in the trunk of the plinths, so as to be inserted therein. At the other end thereof, said pillars show a dead hole within which the joint of the floor to be superposed will enter.
The function of these pillars with a reduced section, out of one piece with the walls, is only the one to better hook the lower floor to the upper floor. The prefabricated elements in the form of rooms with the function of living or working rooms, or of a roof-mansard, are provided with this kind of pillar only if said elements are used for buildings of a limited height. The weight of the single prefabricated superposed elements and the relative joints and couplings will gaurantee the stability of the whole.
Always according to the present invention, the building hereinbefore described can be raised with the same process, also applying esthetic variants to a second floor like, erg., the addition of one or two balconies, or also of some terraces, always using prefabricated elements.according to the present invention.
In this case, also the rooms which are to be superposed to the first floor can be provided, in correspondence with the apex' of the relative vertical corners, with pillars of the kind before described, showing at the lower end joints to be inserted in the corresponding dead holes of the lower floors and showing, at the upper end, dead holes for receiving the joints of the room which is to be superposed.
It is understood that the disposition of the joints and the dead holes can be inverted, i.e.
the joints can be provided on the lower part and the dead holes on the upper part. The adjacent walls of the single rooms may be connected by means of brackets or cramps for a greater stability. For what concerns the addition of eventual terraces, said terraces can be realized by using plinths according to the present invention, as hereinbefore described, with pillars of the kind of the ones incorporated in the rooms, of the kind before described and a floor which, as hereinbefore said, may show apertures or joints at the apex' thereof the joint onto said pillars. Also said pillars, in the embodiment described, can be realized out of reinforced concrete or out of any different material, according to the different cases.As it has already been said, the stability of the building can be, according to the cases, relied upon the sole resting of superposed rooms, or can be better guaranteed using incorporated pillars as well as the joints relative to the upper and lower rooms.
According to the present invention, the elements in the form of rooms with the function of living or working rooms, or of a staircase, of a roof, may form, according to the different cases, complete rooms or one or more parts of a room. The walls, or parts of-walls, are generally out of concrete provided with a metallic network, but can also be realized, according to-the cases, out of any different material. The floor, out of one piece with the room, is realized out of cross reinforced-concrete rods which, in the case of partsfof a room, are hooked between-one part and the other of the same room, whereby the spaces are filled out with concrete.The stability of the floor naturally remains in greatest part - relied upon the walls, which, forming a single part with said floor, are placed at-the sides thereof. The walls of the rooms or parts: of the rooms, can be provided with apertures like doors, windows, arches, etc.
According to the present invention, in the case of a building of a greater height, i.e. with a greater number of floors, it is necessary to connect with a greater efficiency the elements of the structure; The basements will be equally realized with the prefabricated plinths according to the present invention. The plinths will be hooked between- them' selves by means of the prefabricated beams,-according to the present invention. In this embodiment the prefabricated plinths will show, upperly with respect to the base thereof, a projection of quadrangolar section from which the iron of the reinforcement thereof will project.Also from the ends of the prefabricated beams the iron of the reinforcement of the beam will project, towards the inside of the joint aperture, being of the same shapeand dimension than the prolongation-of the: plinth. The irons of the beam will be hooked with the irons of the plinths.-The room, or-the part of the room, will show,- at the apex of the vertical corners, an aperture in the floor of a shape and dimension equal to the aperture provided at the ends-of the beams pitched onto theunderposed plinth, from which aperture will upwardly project the irons of the reinforcement of the'plinth; The room, orthe part of the room, at the apex of the vertical corners whereof said apertures are performed, is now resting on the underposed framework out of the beams so that the irons of the reinforcement of the plinth pass through said aperture in the floor. The same operation takes place af the same time at the other apex' of the corners of the room; or part of the room, so that from the floor of said room the irons of the reinforcements of the underposed plinths will project. After having leaned in this way the room onto the beam framework, the irons are vertically prolonged until said irons surpass the height of said room so that said irons project beyond said room of a determined section.Around the such-prolonged irons at the apex' of the rooms,- the forms for base of: pillar will be placed and the casting of concrete will be performed so as to realize reinforced-concrete pillars of the conventional kind.
As to realize the upper floor, prefabricated beams according to the present invention will be prepared, whereby the projecting irons will pass through the apertures of the offset ends thereof and will be resting onto the before casted pillars. Now the irons of the beams will be hooked to the irons of the pillars and the upper room will be superposed as has been herein before described. The irons will be prolonged until the immediately upper floor so as to make the same project of a determined section beyond the height of the same, and the relative forms for base of pillars will be prepared performing then the reinforced-concrete casting.
It is thus possible to limit the reinforcements and the castings of concrete in the yard to the sole pillars of the building, while any other part of the same can be mounted in the form of a prefabricated element.
A further prefabricated element provided by the present invention is realized in the form of a self-supporting panel. One of the possible embodiments of the present invention consists in a vertical panel out of one piece with a horizontal base, so that the panel can be supported by the own weight thereof. The vertical part as well as the base of each panel laterally shows offsets which allows to connect between the same the various panels, thus confering stability to the whole. Another embodiment of the self-supporting panel consists in two vertical panels connected by a horizontal plane. Also in this case the panel will be supported by the own weight thereof. Along the sides of the panel offsets are provided for the connection of a plurality of panels.A further embodiment provides a vertical panel inclined at the upper and lower part thereof so as to form, at 90 with the vertical panel, an upper floor and a base. Thus, the panels may all keep the erected position thereof due to the own weight thereof and are therefore particularly suited for being used for the construction of sheds and swimming-pools, partitions or enclosures. Said panels allow to change the position thereof in any moment and to realize in any way and very quickly, e.g. rooms like offices or magazins.
The advantages obtained by means of the present invention therefore consist essentially in the possibility of quickly realizing any building, also of a plurality of floors, using obly prefabricated elements, and thus allosing, consequently, a considerable saving in labour and in occupied surfaces. It is thus furthermore allowed to every designer to choose according to his taste the esthetic of the building still respecting the modular technique of the structures.
The object of the present invention will be described now relating to some possible embodiments shown in the enclosed drawings, for exemplifying and not limitative purpose. In the drawings, the figures show: Figure 1 shows a perspective view of a onefloor building, realized with prefabricated elements according to the present invention in the form of plinths, beams, rooms and roof; Figure 2, shows a vertical section of the building of Fig. 1, the front being cur away; Figures 3, 3a, 3b, 3c, show an axonometric view of the details of the beams, of the plinths and of the incorporated pillars, as well as a disposition of the same as to form the basement of the building; Figure 4, shows a perspective view of an already mounted part of the building of Fig. 1 with some parts in the mounting stage shown in an explosed axonometry;; Figure 5, shows a perspective section vies of a two-floor building realized with prefabricated elements according to the present invention; Figure 6, shows a detail of a prefabricated room according to the present invention, wherein the structure of the floor and of the walls is shown; Figure 7, shows an enlarged view of a detail of the hooking of the prefabricated elements indicated in the circle of Fig. 4; Figures 8, 9, 10, show a top view of some kinds of prefabricated rooms according to the present invention; Figure 11, shows a perspective section view of a building of a plurality of floors out of prefabricated elements according to the present invention;; Figure 12, shows an axonometric view of a detail, in enlarged scale, of the hooking of two prefabricated beams according to the present invention to the vertical pillar, by menas of irons projecting in the apertures of the ends of the beams and out of the pillars; Figure 13, shows a section view, in enlarged scale, of a detail indicated in a circle in Fig. 11, of a hooking of a prefabricated room according to the present invention to the beams and to the pillar: Figures 14, -15, 16, show an axonometric view of some self-supporting prefabricated panels according to the present invention.
Figs. 1 and 2 show in a perspective and a section view, a one-floor building which is completely to be realized out of prefabricated elements according to the present invention, the stability of which is obtained only due to the own weight of the single elements. In Fig.
3a, a prolongation 2 in the form of a quadrangolar trunk of a plinth 1 according to the present invention, can be seen, whereby a part 3 of trunk, of a reduced section is provided, in which part 3 a dead hole 4 is performed. Letter S shows the stop onto which one of the beams is resting. Fig. 3b shows the end of one beam 5 according to the invention, provided with a quadrangolar opening 6, of the same dimension of the part 3 of the trunk, and with irons 7 of the reinforcement thereof. Fig. 3e shows -a pillar 8, of reduced section, incorporated along the apex of the corner of two walls of a room (Fig.
6), with a joint prolongation 9 of the same section than the one of the dead hole 4 of part 3 of trunk of plinth 1. Fig. 3 shows the assembling of said elements as to form the basement framework of the building. Part 5a in dotted lines shows that the beam resting between two plinths may also be longer than the rooms is. In this case the beam will show apertures 6 distanced in such a way as to receive the joints of the rooms also between one plinth and the other.
As can be seen in Fig. 4 the building to be realized consists, beyond the prefabricated walls forming the basement already described, also in room elements A, B, C, D, E, F, G; H.
It can be seen how some of these elements have already been provided, in the cogstruc- tion stage thereof, with openings for doors, windows and the passage for the chimney and the access to the mansard; the joint projections and the dead holes of the pillars of reduced section incorporated in said elements can also be seen.
Fig. 5 shows a perspective view of a twofloor building which is to be realized by means of the prefabricated elements according to the present invention in the already described way. In this Fig. it can be seen how one of the prefabricated plinths 1 supports in a joint one of the prefabricated pillars M, in turn supporting a prefabricated floor of the terrace. The mounting of the terrace takes place like the mounting of the building. Fig. 6 shows a detail of the realization of the room or part of the room. Floor 10 can be seen realized with crossed irons 11 and walls 1 2 realized with a metallic network 1 2a and concrete. Incorporated pillar 8 provided with dead hole 4 for the joint of the room or roof to be superposed can also be seen.
In Fig. 7 the resting system of rooms 15, 1 6 superposed onto lower rooms 17, 1 8 in an intermediate area of the building, where the incorporated pillars are not needed, i.e.
where the stability is realied upon the resting of the superposed rooms, can be seen. The rooms can be simply resting one onto the other, but also a thin intermediate layer 1 9 of concrete can be provided. The walls can be hooked between each other by means of cramps 20, as can be seen in the drawing. It should be noted that, generally, all prefabri cated elements can be realized also out of different materials, like e.g., wood, or mixed materials. The choice will take place case by case, still remaining within the concept of modular prefabrication of the elements.
Figs. 8, 9, 10 show different kinds of rooms, whereby in the drawing the incorporated pillars as well as the openings for the hooking- of the beams at the pillars, which is to be realized in loco so as to perform the casting. The room can also be realized, as shown in Fig. 9, with its own ceiling 21. The openings like doors, windowns, arches etc., also provided in the designing stage, are realized in the prefabrication stage. The rooms can be whole or fractional roomes.
Fig. 11 in a perspective section view the design of a building with a plurality of floors.
The trunks 2, 2' of the-plinths and the beams 5 forming the- basement framework,- as well as beams 5' connecting the pillars at every floor.
The plinth carrying trunk 2' is greater than the plinth carrying trunk 2; as this plinth must support the weight of two adjacent rooms 22, 22' (as well as the weight of the-superposed rooms), while between said rooms a free inter- - space 23 is provided which will serve for the reciprocal isolation. It can be seen how floor 10 of each room rests on beam 5, respectively 5'.Numeral 24 shows the irons which inirially are projecting from trunk 2 of the plinth, and which irons will be prolonged inheight, after the hooking with irons 7 projecting out of beams 5, respectively 5', inside the relative apertures provided at the ends - (Fig. 1 2); Around irons 24 forms for base of pillars 24' will be placed, and then-concrete will be casted inside the same, after said.irons 24 have been hooked-to said irons 7 of the relative beams As can be seen in an enlarged detail of Fig.
13, the rooms show apposite apertures 26 in the floor and in the ceiling in correspondence of the joints of the beams as to allow the irons 24 to project of a determined section beyond the same and to allow, further, the hooking of the successive irons 24, as well as the concrete casting. Still in Fig. 13, numeral 6 shows the apertures provided at the ends of the beams for the hooking to the reinforced concrete pillar which- is time by time casted.
Numeral 11 shows the irons of the floor having the function of floor of the room.
Figs. 14, 1 5; 1 6 show differeint embodi- ments of self-supporting panels 27, 28, 29 according to the-present invention. On the vertical part 30, 30' of panels 27 and 28, and on base 31, respectively on plane 32 of panel 28, offsets 33, 33', respectively 34 for the reciprocal joint of the panels are provided.
The panel 29 of Fig. 1 6 is provided without offsets.
The prefabricated elements according to the present invention have been hereinbefore de- scribed relating to some preferred embodi ments of the invention. Obviously, said ele ment can also be used for the realization of other works, separately or in combination, with different proportions, dimensions and dispositions, without therefore going out of the limits of the present invention.

Claims (14)

1. Prefabricated elements and rooms for the quick construction of buildings and building works in general, wherein said elements are realized in the form of plinths, beams, rooms or fractions of rooms with the function of living or working rooms, of staircases, of a roof, of pillars, floors and self-supporting panels, all of them provided with particular shapes and means so as to realize an assembling in one or more floors, whereby the stability of the building is due, according to the cases, to the own weight of said elements and/or also to reinforcing elements out of reinforced concrete, realized in the assembling stage.
2. Prefabricated elements according to claim 1, wherein the plinths are realized with a base of the conventional kind and show, upperly of said base but out of one piece with the same, a prolongation in the form of a trunk with a quadrangolar section, in turn extended upwardly in the form of a trunk, of a lower height and section, provided at the inner part thereof with a dead hole.
3. Prefabricated elements according to claims 1 and 2, wherein said plinths are realized with a base of the conventional kind and show, upperly with respect of said base but out of one piece with the same, a prolongation of a wider surface than the prolongation according to claim 2, but also in the form of a trunk with a quadrangolar section, extended upwardly with two prolongations, slightly distanced between each other, in'the form of trunks and of lower height and section, whereby each one is showing a dead hole at the inner part thereof.
4. Prefabricated elements according to claim 1, wherein said plinths are realized with a base of the conventional kind and show, upperly with respect of said base but out of one piece with the same, a prolongation in the form of a trunk of quadrangolar section out of which are projecting irons.
5. Prefabricated elements according to claims 1 and 4, wherein said plinths are realized with a base of the conventional kind and show, upperly with respect of said base but out of one piece with the same, another prolongation in the form of a trunk of a wider surface than the one of the trunk of claim 4, provided with projecting irons bundled in two groups slightly distanced between each other.
6. Prefabricated elements according to claim 1, wherein the beams are out of reinforcec concrete and show at each end offsets of the same dimensions provided with quadrangolar apertures of the same dimensions than the ones of the trunk, as well as irons which are not projecting at the inside of said apertures.
7. Prefabricated elements according to claim 6, wherein said beams are out of any material which can be used for said purposed, as wood or mixed material.
8. Prefabricated elements according to claim 6, wherein said irons of said beams are projecting inside said apertures.
9. Prefabricated elements according to claim 1, wherein those rooms with the function of living or working rooms,- of staircases and of roof are realized as whole or fractional rooms provided with a ceiling out of reinforced concrete and with walls out of a metallic network covered with reinforced concrete, whereby pillars of a reduced section are incorporated in the apex' of the vertical corners, whereby said pillars are showing downwardly (or upwardly) a prolongations in the form of a joint and upwardly (or downwradly) dead holes of section and dimension corresponding between each other and to the trunk, respectively with the dead hole of the same.
10. Prefabricated elements according to claim 9, wherein those rooms with the function of living rooms, staircases and of roof are realized without the incorporated pillars.
11. Prefabricated elements according to clamis 9 and 10, wherein those rooms with the function of living rooms, staircases and roof are realized out of wood or any other mixed material which suits the purpose.
1 2. Prefabricated elements according to claim 1, wherein said pillars are out of reinforced concrete or out of any suitable material, with a quadrangolar section or a section of any other, predetermined shape, showing at one end a prolongation of a lower section for the joint in said dead hole of said trunk of a plinth or pillar incorporated in any of said rooms, or of said ceiling, and showing at the other end a dead hole for receiving the corresponding joint of any of said elements.
1 3. Prefabricated elements according to clami 1, wherein said ceiling are out of reinforced concrete or out of any other suitable material, and whereby said ceilings show at the apex' thereof apertures or joints of dimensions and sections suitable for any one of said pillars, or of said rooms, of of said trunk.
14. Prefabricated elements according to claim 1, wherein the seif-supporting panels are provided with offsets, said offsets being suited for the reciprocal joint of the panels between each other, and said panels being out of reinforced concrete or out of any other material which in any case guarantees an independent, stable position of the same.
GB8023145A 1980-07-16 1980-07-16 Prefabricated elements and rooms for buildings and building works Expired GB2079810B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8023145A GB2079810B (en) 1980-07-16 1980-07-16 Prefabricated elements and rooms for buildings and building works

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8023145A GB2079810B (en) 1980-07-16 1980-07-16 Prefabricated elements and rooms for buildings and building works

Publications (2)

Publication Number Publication Date
GB2079810A true GB2079810A (en) 1982-01-27
GB2079810B GB2079810B (en) 1984-08-22

Family

ID=10514790

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8023145A Expired GB2079810B (en) 1980-07-16 1980-07-16 Prefabricated elements and rooms for buildings and building works

Country Status (1)

Country Link
GB (1) GB2079810B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2166768A (en) * 1984-11-13 1986-05-14 Bela Nemes Prefabricated building elements with assembly joints
GB2182689A (en) * 1985-07-23 1987-05-20 Al Reedy Al Sayed Sami Mohamma Modular construction system for pre-fabricated houses
GB2189826A (en) * 1986-04-28 1987-11-04 Stratatowers Corp High-rise buildings comprising main structure of reinforced concrete walls and corner piers
WO1994009218A1 (en) * 1992-10-17 1994-04-28 Karl Construction Limited Buildings
GB2286412A (en) * 1992-10-17 1995-08-16 Karl Const Ltd Buildings
US5987827A (en) * 1996-05-29 1999-11-23 Lord; Ray Concrete building construction and method
GB2373003A (en) * 2001-03-09 2002-09-11 John Joseph Owens Precast panel building system
GB2456574A (en) * 2008-01-21 2009-07-22 Liam Campion A house constructed from reinforced concrete
GB2456573A (en) * 2008-01-21 2009-07-22 Liam Campion A house constructed from reinforced concrete
DE102008045394A1 (en) 2008-09-02 2010-03-04 Veit Dennert Kg Baustoffbetriebe Industrial prefabricated module, particularly cover element for building in modular construction, has three walls connected with each other and base element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2166768A (en) * 1984-11-13 1986-05-14 Bela Nemes Prefabricated building elements with assembly joints
GB2182689A (en) * 1985-07-23 1987-05-20 Al Reedy Al Sayed Sami Mohamma Modular construction system for pre-fabricated houses
GB2189826A (en) * 1986-04-28 1987-11-04 Stratatowers Corp High-rise buildings comprising main structure of reinforced concrete walls and corner piers
US4736557A (en) * 1986-04-28 1988-04-12 Stratatowers Corporation Super high-rise buildings
GB2189826B (en) * 1986-04-28 1990-06-13 Stratatowers Corp Super high-rise buildings
WO1994009218A1 (en) * 1992-10-17 1994-04-28 Karl Construction Limited Buildings
GB2286412A (en) * 1992-10-17 1995-08-16 Karl Const Ltd Buildings
GB2286412B (en) * 1992-10-17 1996-06-19 Karl Const Ltd Buildings
US5987827A (en) * 1996-05-29 1999-11-23 Lord; Ray Concrete building construction and method
GB2373003A (en) * 2001-03-09 2002-09-11 John Joseph Owens Precast panel building system
GB2373003B (en) * 2001-03-09 2004-06-09 John Joseph Owens A building system
GB2456574A (en) * 2008-01-21 2009-07-22 Liam Campion A house constructed from reinforced concrete
GB2456573A (en) * 2008-01-21 2009-07-22 Liam Campion A house constructed from reinforced concrete
DE102008045394A1 (en) 2008-09-02 2010-03-04 Veit Dennert Kg Baustoffbetriebe Industrial prefabricated module, particularly cover element for building in modular construction, has three walls connected with each other and base element

Also Published As

Publication number Publication date
GB2079810B (en) 1984-08-22

Similar Documents

Publication Publication Date Title
US4485598A (en) Prefabricated elements and rooms for the quick construction of buildings and building works in general
US5359816A (en) Buildings and methods of constructing buildings
US3724141A (en) Modular units, buildings and systems
US7028440B2 (en) Modular homes
US3256652A (en) Building of assembled box-shaped elements
US4461130A (en) Building construction using hollow core wall slabs
US1796048A (en) Building construction
US4656797A (en) Prefabricated home foundation skirt system
US3678638A (en) Building construction of modular units with settable material therebetween
HUT58843A (en) Space-limiting structure
US20030145543A1 (en) Prefab brickwork
US3562991A (en) Building wall construction and module therefor
US5634315A (en) Buildings method of construction
GB2079810A (en) Prefabricated elements and rooms for building and building works
US3844083A (en) Wall made of a plurality of interconnected collapsible modules and method of assembly
US2690072A (en) Building structure
US6105326A (en) Building, comprising prefabricated components
US3466818A (en) Prefabricated buildings
NL8120014A (en) METHOD FOR ESTABLISHING A BUILDING AND APPARATUS FOR PERFORMING THE METHOD
US4955174A (en) Expandable building with modular roof system
US4455793A (en) Prefabricated building block and civil building composed of a plurality of such blocks assembled together
US3470665A (en) Wall construction for a building
GB2200383A (en) Engineered housing
JP2537257B2 (en) How to assemble a prefabricated toilet
JPS627808Y2 (en)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee