GB2068801A - Expendable cores for die casting - Google Patents

Expendable cores for die casting Download PDF

Info

Publication number
GB2068801A
GB2068801A GB8003872A GB8003872A GB2068801A GB 2068801 A GB2068801 A GB 2068801A GB 8003872 A GB8003872 A GB 8003872A GB 8003872 A GB8003872 A GB 8003872A GB 2068801 A GB2068801 A GB 2068801A
Authority
GB
United Kingdom
Prior art keywords
core
die casting
sand
binder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB8003872A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NL Industries Inc
Original Assignee
NL Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NL Industries Inc filed Critical NL Industries Inc
Priority to GB8003872A priority Critical patent/GB2068801A/en
Publication of GB2068801A publication Critical patent/GB2068801A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/24Accessories for locating and holding cores or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/185Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents containing phosphates, phosphoric acids or its derivatives

Abstract

Sand cores (15) containing a boronated aluminium phosphate binding agent are used in the production of die castings having undercut regions. <IMAGE>

Description

SPECIFICATION Expendable cores for die casting The invention relates to the art of die casting such metals as aluminum, zinc, magnesium, copper, and their alloys and to a solution to a long standing problem therein; i.e., the lack of a commercially feasible die casting technique to produce castings having undercut regions.
Traditional pressure die casting requires molds or dies which are able to withstand the high temperatures and pressures to which they are subjected. Thus, ferrous material are commonly used for die casting molds. Because these die materials are not easily collapsible, complex undercuts and reliefs are not possible because of the lack of ability to remove the casting from the mold. Other common forms of casting, such as sand and semi-permanent mold, have employed expendable or disposable cores because the pressure requirements are usually under the order of 30 psia as compared with about several thousand psia needed for high pressure die casting. The lower pressure has allowed the development and use of fragile disposable cores for many years in these two casting processes. A typical core is composed of foundry sand mixed with a binder or resin.Through the use of heat, a catalyst or chemical reaction, the sand grains are bonded together into a discrete shape, and can be used in the casting process. The heat given off during the solidification and cooling of the actual cast parts drives off the moisture, or results in the chemical breakdown of the binder in the core. This permits relatively easy removal of the core from the casting.
Prior art attempts to utilize sand cores for die casting have included the use of glass and soluble salt cores. Such techniques are discussed in detail in British Patent Number 1,179,241. These systems are considered to be unsatisfactory from the standpoints of process control economics, handling, and the corrosive characteristics of the salts.
The major problem with producing a satisfactory expendable core for use in high pressure die casting has been the inability of a single core/binder system to simultaneously meet three primary core characteristics. These are good shakeout, good washout resistance and freedom from surface penetration. Good shake-out is necessary to facilitate core removal from the casting. Washout resistance is the ability of the core to withstand erosion from the high metal velocities that occur while producing the die casting. Not only does washout adversely affect the tolerances on the finished part, but the sand physically removed becomes embedded within the casting.Surface penetration is caused by the combination of high heat and pressure which breaks down the core surface and permits the metal to penetrate between the sand grains thus causing a sand/metal mixture interface at the surface of the casting. This condition is extremely detrimental to subsequent machining and tool life. Moreover, should the sand become separated from the surface after component installation, damage to related parts, such as the lubrication system of an automobile engine could result. Expendable cores that have been developed in the past either had good shakeout, with high washout and resistance to surface penetration, or good washout and surface penetration resistance with extremely poor shakeout. This invention is considered to solve such problems through the use of a core system having the requisite balance of all three properties.
The Figure is a sectional view of a mold portion of a die casting machine and is useful for illustrating regions in the casting in which the three problems discussed above occur.
Plunger 11 is used to inject molten metal 1 2 into the die casting mold formed by steel members 13 and 14 and sand core 15. Note that the final die casting shape includes an undercut region. Surface penetration of metal 1 2 into sand core 1 5 occurs along the dark shaded region identified as 1 6 in the Figure.
Washout usually occurs at areas such as denoted by 1 7. Shakeout refers to the ability to remove core 1 5 upon solidification of the die casting, its removal from the die casting machine, and subsequent cooling to ambient temperature.
It is thus an objective of the invention to provide an expendable core system that is compatible with the high temperatures and pressures involved in die casting so that die castings having undercut regions may be economically produced. Other objectives and advantages will become apparent to those skilled in the art from the following description of the invention.
It has been discovered that expendable sand cores can be used to produce die castings having undercut regions provided that a binding agent comprising boronated aluminum phosphate containing boron in an amount from about 3 mole % to about 40 mole % based upon the moles of aluminum and containing a mole ratio of phosphorous to total moles of aluminum and boron of about 2:1 to about 4:1 is used. The binder, mixed with foundry sand, and an appropriate hardening agent forms the core. The core can also be coated to provide improved resistance to penetration and washout.
The boronated aluminum phosphate binding agent described above is more fully described in United States Patent Number 3,930,872. Specifically, that patent states that the binder comprises a boronated aluminum phosphate containing boron in an amount from about 3 mole % to about 40 mole % based upon the moles of aluminum and containing a mole ratio of phosphorous to total moles of aluminum and boron of about 2:1 to about 4: 1; an alkaline earth metal material containing alkaline earth metal and an oxide; and water. This agent has proven to be beneficial to shakeout properties in die casting applications when present in amounts from about 0.3% to 3.5% by weight of foundry sand. It is preferred to employ a range of from about 1.0% to 3.5% when using typical silica foundry sand of a fineness of AFS No. 65.The lower limit is required to provide sufficient core strength to withstand consequent handling while the upper limit should not be exceeded due to blowing problems during coremaking caused by a lack of uniform density related to variations in sand flow and unacceptable decreases in shakeout efficiency. Should heavier foundry sand such as zircon be used, less binder is required, e.g., on the order of from about 0.3% to 1.5%. The respective upper and lower limits are chosen for the same reasons as for silica sands. Of course, the use of other commonly used foundry sands having different densities than the above mentioned sands is within the scope of the invention. Such other sands would require the use of binder amounts consistent with density.
The hardening agent should be present in sufficient quantity to cause the binder to harden and thereby impart the necessary strength to the core to permit handling and placement in the die casting machine without damage.
When a hardening agent such as the alkaline earth metal material containing alkaline earth metal and an oxide as discussed in aforementioned United States Patent Number 3,930,872 is utilized in the sand core, an aount ranging between about 10% to 20% of the binder weight will typically be used. As the amount of the hardening agent mentioned in aforesaid United States Patent Number 3,930,872 decreases bench life increases.
However, this beneficial process advantage must be traded off with a loss in shakeout properties and core strength. Other known hardening agents such as ammonia gas are contemplated and would be suitable for use with the sand core of the invention.
Iron oxide in the form of Fe2O3 may be optionally present in the sand core for purposes of further enhancing hardening and shakeout properties in amounts from about 1% to 4%. Fe2O3 in amounts greater than about 4% lead to an undesirable loss of core strength.
As also taught in United States Patent Number 3,930,872, water is included in the sand core formulation for the purposes taught in the patent and in an amount from 15% to 50% by weight based upon the total weight of boronated aluminum phosphate and water.
To prepare the expendable core of the invention, one merely needs to thoroughly incorporate the binder, solid hardening agent, and, optionally, the Fe203 into the foundry sand by mixing. Should a gaseous hardening agent be employed rather than a solid agent, the binder and Fe203 are mixed with the sand and then the gaseous hardening agent is passed through the mixture to initiate hardening or curing of the binder.
Following its preparation, the core may be coated to further improve performance with respect to washout and surface penetration.
Core coatings generally comprise a suspensing agent, a refractory material, a binding agent, and a solvent.
Suspending agents are usually clay or clay derivatives. These materials should be present in amounts sufficient to perform the function of maintaining the refractory material in suspension. Based upon total solids weight, such agents may be present in amounts ranging from about 4% to 30%.
Typical particulate refractory materials that are useful in the coating formulation include but are not limited to graphite, silica, aluminum oxide, magnesium oxide, zircon, and mica. These materials are present in amounts generally ranging from about 60% to 95% based upon total solids weight.
The mass of particles is bound together through use of binding agents such as thermoplastic resins. Binding agents useful in the practice of the invention generally comprise from about 1% to 10% by total solids weight of the coating composition. The binding and suspending agents should be compatible with the particular solvent which may be an organic liquid. The solvent should be included in an amount which is effective to obtain the necessary viscosity to control coating thickness and uniformity.
Core coatings for die castings are more critical than core coatings suitable for other casting methods. The core coating should possess the capability of being able to substantially seal the pores on the surface of the core. Because die casting places molten metal under pressure, any porosity at the surface of the cores will lead to penetration of the molten metal and thus trap sand on the surface of the as-cast part. An application of the proper core coating to the core will provide a die like finish with no resultant penetration of the molten metal into the sand core.
A typical suitable core coating comprises, based upon total solids weight, from 4% to 30% of an amine treated bentonite suspending agent, from 1% to 10% of a thermoplastic resin binding agent, and from 60% to 95% of a refractory such as silica or the like.
The above constituents, in powder form, are mixed with a sufficient quantity of organic liquid vehicle to produce the necessary viscosity that will produce, upon drying, the desired coating thickness and seal the pores on the surface of the core.
An additional core coating that has proven to be satisfactory for use in combination with the binding system of the invention is that described in United States Patent Number 4,096,293. Specifically, a coating material having a viscosity sufficient to substantially seal surface porosity of the core and suitable to obtain a coating thickness and uniformity that leads to good resistance to washout and penetration during die casting and consisting of from about 5% to 90% of an organic liquid solvent, from about 0.1% to 2% of a suspending agent, from about 5% to 80% of calcium aluminate particles having an average particle size of 20 to 25 microns and no particles larger than about 70 microns, and a hard resin which is the reaction product of fumaric acid, gum rosin, and pentaerythritol, said resin is within the ratio by weight between about 0.5 to 5 parts per 100 parts of composition.A wetting agent may optionally be added in amounts ranging from about 0.01% and 2%.
Following manufacture of the core in a core box and its removal, the core is sufficiently strong enough to be handled. A core coating is then applied by brushing, dipping, spraying or an equivalent method. Once the coating is dry, the core is placed into a die located on a casting machine. The steel portion of the die forms the surface shape of the metal part that is not formed by the core. The core is placed in this die and is located by pins, impressions or other methods commonly known to those skilled in the art. The die is then closed thus trapping the core in a fixed location and molten metal is then injected into the die.
During the process of solidification in the die, heat is emitted from the casting. A portion of the heat flows into the core and increases its temperature. This flow breaks down the binder and drives off any resultant moisture. Once the molten metal has solidified in the die, the machine is opened and the resultant casting and expendable core are removed. Upon cooling to ambient temperature the core may be shaken out mechanically.
The following examples illustrate various embodiments of the invention: Example 1 An aluminum alloy was die cast into the shape shown in the Figure with use of a core containing zircon foundry sand (AFS Fineness No. 120), 1.25% by weight of sand of the binder of the invention, 20% of the binder weight of the previously described alkaline earth hardener. The core was coated with two coats of the previously described core coating.
Good shakeout properties were noted, upon mechanical separation of the core from the casting upon cooling to ambient temperature.
The casting exhibited good resistance to surface penetration and washout resistance appeared to have been good.
Example 2 An aluminum alloy was die cast into a pump part having a serpentine core with use of a core containing silica foundry sand (AFS Fineness No. 65), 2.5% by weight of sand of the binder of the invention, 20% of the binder weight of the previously described alkaline earth hardener. The core was coated with two coats of the previously described core coating. Good shakeout properties were noted upon mechanical separation of the core from the casting upon cooling to ambient temperature. The casting exhibited good resistance to surface penetration and washout resistance appeared to have been good.

Claims (9)

1. A method for forming a die casting having an undercut region from molten metal, comprising: injecting molten metal into a die casting mold having a casting surface that includes at least one expendable sand core that forms an undercut region on the die casting, the core consisting essentially of from about 0.3% to 3.5% by weight of foundry sand of a binder consisting essentially of a boronated aluminium phosphate containing boron in an amount from about 3 mole % to about 40 mole % based upon the moles of aluminium and containing a mole ratio of phosphorous to total moles of aluminium and boron of about 2:1 to about 4:1, an effective amount of a hardening agent to react with the aluminium phosphate and to harden the binder to the extent that the core can be handled without damage and; water in an amount from 15% to 50% by weight based upon the total weight of boronated aluminium phosphate and water; balance essentially foundry sand; permitting the injected molten metal to solidify along the casting surface to form a die casting; removing the die casting from the mold; and separating the die casting from the core.
2. A method as claimed in claim 1, wherein: the foundry sand comprises silica sand and the binder is present in an amount from about 1.0% to 3.5%.
3. A method as claimed in claim 1, wherein: the foundry sand comprises zircon sand and the binder is present in an amount from about 0.3% to 1.5%.
4. A method as claimed in any one of claims 1 to 3, wherein: the sand core hardening agent consists essentially of an alkaline earth material containing alkaline earth metal and an oxide in an amount from 10% to 20% of the weight of the binder.
5. A method as claimed in any one of claims 1 to 4, wherein: Fe203 is present in said core in an amount from 1% to 4% by weight of foundry sand.
6. A method as claimed in any one of claims 1 to 5, wherein: the core is coated with a coating material having a viscosity sufficient to substantially seal surface porosity on the core, which coating material consists essentially of from 4% to 30% of a suspending agent, from 60% to 95% of a particulate refractory material, from 1% to 10% of a binding agent, and an effective amount of a vehicle for interacting with the suspending agent and the binding agent to achieve a viscosity suitable to obtain a coating thickness and uniformity that leads to good resistance to washout and penetration during die casting.
7. A method as claimed in any one of claims 1 to 5, wherein: the core is coated with a coating material having a viscosity sufficient to substantially seal surface porosity on the core and suitable to obtain a coating thickness and uniformity that leads to good resistance to washout and penetration during die casting and which coating material consists essentially of from about 5% to 90% of an organic liquid solvent, from about 0.1% to 2% of a suspending agent, from about 5% to 80% of calcium aluminate particles having an average particle size of 20 to 25 microns and no particles larger than about 70 microns, and a hard resin which is the reaction product of fumaric acid, gum rosin, and pentaerythritol, said resin is within the ratio by weight between about 0.5 to 5 parts per 100 parts of composition, all percentages expressed by weight of composition.
8. A method for forming a die casting having an undercut region in a die including a core of foundry sand bound using a boronated aluminium phosphate binder substantially as hereinbefore described.
9. Die castings whenever made by the method claimed in any one of claims 1 to 8.
GB8003872A 1980-02-05 1980-02-05 Expendable cores for die casting Withdrawn GB2068801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8003872A GB2068801A (en) 1980-02-05 1980-02-05 Expendable cores for die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8003872A GB2068801A (en) 1980-02-05 1980-02-05 Expendable cores for die casting

Publications (1)

Publication Number Publication Date
GB2068801A true GB2068801A (en) 1981-08-19

Family

ID=10511144

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8003872A Withdrawn GB2068801A (en) 1980-02-05 1980-02-05 Expendable cores for die casting

Country Status (1)

Country Link
GB (1) GB2068801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2476515A1 (en) * 1980-02-26 1981-08-28 Nl Industries Inc Expendable die casting cores for forming undercut castings - contain boronated aluminium phosphate binder having alkaline earth hardener
GB2183516A (en) * 1985-11-30 1987-06-10 Ford Motor Co Pressure diecasting cores
EP0788855A1 (en) * 1996-02-09 1997-08-13 Ryobi Ltd. Casting device for producing closed deck type cylinder block and sand core used in the device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2476515A1 (en) * 1980-02-26 1981-08-28 Nl Industries Inc Expendable die casting cores for forming undercut castings - contain boronated aluminium phosphate binder having alkaline earth hardener
GB2183516A (en) * 1985-11-30 1987-06-10 Ford Motor Co Pressure diecasting cores
EP0788855A1 (en) * 1996-02-09 1997-08-13 Ryobi Ltd. Casting device for producing closed deck type cylinder block and sand core used in the device
US5720334A (en) * 1996-02-09 1998-02-24 Ryobi Ltd. Casting device for producing closed deck type cylinder block and sand core used in the device

Similar Documents

Publication Publication Date Title
US4298051A (en) Method of die casting utilizing expendable sand cores
EP0399727B1 (en) Ceramic mould material
US4529028A (en) Coating for molds and expendable cores
CA1319490C (en) Method for the preparation of moulds and cores used in the casting of metals
JP2008511447A (en) Molding material mixture for producing molds for metal processing
WO2018132616A1 (en) Compositions and methods for foundry cores in high pressure die casting
US4413666A (en) Expendable die casting sand core
EP0373196B1 (en) Coated expendable cores for die casting dies and dies and castings therefrom
CA1172825A (en) Expendable die casting sand core
US3701379A (en) Process of casting utilizing magnesium oxide cores
US3722574A (en) Process of making magnesium oxide cores
GB2068801A (en) Expendable cores for die casting
US3259948A (en) Making fine grained castings
US4766943A (en) Expendable die casting sand core
US4605057A (en) Process for producing core for casting
AU633077B2 (en) Shape casting in mouldable media
KR100236909B1 (en) Crushed and graded magnetic ore for manufacturing moulds and cores
US4961458A (en) Method of forming a die casting with coated expendable cores
US2851752A (en) High strength investment casting mold
EP0215783B1 (en) Coating for molds and expendable cores
US3157926A (en) Making fine grained castings
RU2753188C2 (en) Method for manufacturing shell mold
JPH0248344B2 (en)
CA1235254A (en) Coating for molds and expendable cores
US2848772A (en) Self-lubricating shell molds

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)