GB2047133A - Tool connecting mechanism for machine tools - Google Patents

Tool connecting mechanism for machine tools Download PDF

Info

Publication number
GB2047133A
GB2047133A GB8010726A GB8010726A GB2047133A GB 2047133 A GB2047133 A GB 2047133A GB 8010726 A GB8010726 A GB 8010726A GB 8010726 A GB8010726 A GB 8010726A GB 2047133 A GB2047133 A GB 2047133A
Authority
GB
United Kingdom
Prior art keywords
members
connecting member
elements
support elements
axially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8010726A
Other versions
GB2047133B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renishaw Electrical Ltd
Original Assignee
Renishaw Electrical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renishaw Electrical Ltd filed Critical Renishaw Electrical Ltd
Priority to GB8010726A priority Critical patent/GB2047133B/en
Publication of GB2047133A publication Critical patent/GB2047133A/en
Application granted granted Critical
Publication of GB2047133B publication Critical patent/GB2047133B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • B23Q3/1552Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling parts of devices for automatically inserting or removing tools
    • B23Q3/15553Tensioning devices or tool holders, e.g. grippers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

The mechanism comprises two connecting members (22,23) including respectively, three equiangularly spread radial arms 25 and three pairs of balls 30, each pair adapted to receive a respective arm. The members are connected by passing the arms between spaces defined between adjacent pairs of balls against a spring pressure, causing relative rotation of the members to the align the arms with respective ball pairs, and causing relative axial movement of the members to locate each arm between a respective ball pair. <IMAGE>

Description

SPECIFICATION Tool connecting mechanism for machine tools This invention relates to a tool connecting mechan ism for machine tools. The tool to be connected may be a probe for measuring a workpiece held in the machine tool or it may be a cutter for machining the workpiece.
It is known from United Kingdom Patent No.
1,445,977 to provide a probe for use in measuring workpieces, the probe comprising a first and a second member, one of the members having three first support elements arranged at each of three locations spaced about an axis, the other member having three second support elements engageable with the respective first support elements, means for axially urging the members into engagement at said first and second elements, the first and second elements being constituted a kinematic support means locating the members against relative dis placement transversely to or rotationally about said axis, One of the members is adapted to be secured to the head of a coordinate measuring machine and the other one of the members is a holder for a stylus for sensing a workpiece to be measured.
Such machines may be operated to carry out measuring operations automatically under the con trol of a programmed computer, and the need has arisen to be able also to change the stylus by an automatic operation. Automatic tool change appar atus is known in machine tools for example from United Kingdom Patent No. 1,429,049 but such apparatus is relatively complicated.
According to the present invention the tool sup port mechanism is characterised in that: the first support elements (25) extend radially outwardly and define open spaces (25B) angularly therebetween, the second support elements (30) extend radially inwardly and define open spaces (;3or) angularly therebetween, the connecting members (22,23) are relatively displaceable axially to effect disengagement at said first and second elements and, consequent on said disengagement, the members (22,23) are relatively rotatable about said axis (10A) to axially align one of the first and second elements (25,30) with the spaces (30B,25B) between the other of the first and second elements to enable the members to be separated axially.
An example of connecting mechanism according to this invention will now be described with refer ence to the accompanying drawings wherein: Figure 1 is an elevation of a machine tool including the connecting mechanisms.
Figure 2 is an enlarged sectional detail of Figure 1.
Figure 3 is a section on the line Ill-Ill in Figure 2.
Figure 4 is a view similar to Figure 2 but showing a modification.
Figure 5 is a circuit diagram.
Figure 1 shows a coordinate measuring machine having a probe assembly 10 supported for move ment in the X,Y and Z dimensions of the orthogonal coordinate system. To this end the assembly 10 is connected to the bottom end of a vertically disposed elongate member or quill 11 supported for longitudinal motion in the Z direction in a bearing 12 integral with a carriage 13 supported for motion in the X direction along a beam 14 itself supported for motion in the Y direction on a track 15 mounted on a table 16 on which a workpiece 17 to be measured is supported. The table also supports a storage rack 18 being a support for different stylus units 19 to be used in the probe assembly for different types of measuring operations. The quill 11 is driven to pick up any one of the units 19 and to return the unit 19 to the rack.To this end the quill 11 is driven by motors controlled by a computer in a manner well known per se.
Referring to Figures 2 and 3, the probe assembly 10 has an axis 10A and comprises a said unit 19 and a support unit 20. The unit 19 comprises a stylus 21 and a first connecting member 22. The support unit 20 comprises a second connecting member 23 engageable with the member 22. The member 22 comprises a disc-shaped head 24 and three cylindrical arms 25 extending radially outwardly from the head 24. The arms 25 define open spaces 25B angularly therebetween. The member 23 comprises a generally cylindrical housing 26 concentric with the axis 10A. The lower end of the housing 26 has three radially inward flanges 29, and each flange has secured thereto a pair of spherical supports 30 defining between them a pair of converging surfaces 30A. The pairs of supports 30 define open spaces 30B angularly therebetween.The upper end of the housing 26 has secured thereto one end of a compression spring 31. The arms 25 and supports 30 define first and second support elements respectively.
Figure 2 shows the units 19,20 in the disengaged condition but in alignment on the axis 1 OA. The unit 19 is supported in a socket 32 of the rack 18, the head 24 resting on a support surface 33 of the socket 32.
When it is required for the quill 11 to pick up the unit 19, the quill is lowered so that the elements 25,30 pass through the spaces 30B,25B and the lower end of the spring 31 abuts the top of the head 24. Further lowering of the quill 11 compresses the spring and brings the arms 25 into a position above the level of the spherical supports 30. The unit 20 is then rotated through 60 to bring the arms 25 into axial alignment with the respective pairs of convergent surfaces 30A, and the quill 11 is raised again whereby the spring 31 becomes free to urge the head 24 downward and thereby urge the arms 25 into engagement which the surfaces 30A.The arms 25 and convergent surfaces 30A constitute a kinematic support means ensuring, in cooperation with the spring 31, that the units 19,20 are located against relative displacement transversely to and rotationally about the axis 1 or, this condition being referred as the "first rest position" of the stylus 21.
The rotation of the unit 20 is effected by an electric motor 35 arranged between the quill and the unit 20 substantially as shown, the rotation being limited by stops 36 on the quill cooperating with a lug 37 on the unit 20.
If the stylus 19 is to be returned to the rack 18 the above described operations are reversed.
The unit 20 includes a further housing 40 arranged between the housing 25 and the quill 11 and including a mounting 41 for the second connecting member 23. To this end the housing 26 is secured to the lower end of a shank 42 whose upper end has a third connecting member or head 43 having three radial arms 44 urged by a spring 46 into engagement with spherical supports 45 provided on the housing 40 which constitutes a fourth connecting member.
The arms 44 and supports 45 define third and fourth support elements respectively. The arrangement is substantially the same as that of the arms 25, supports 30 and spring 31 and provides a second rest position for the stylus 21. However, whereas in the case of the member 23 the spring 31 is sufficiently stiff to prevent displacement from said first rest position under any working forces acting on the stylus 21, the spring 46 is sufficiently soft to allow displacement of the stylus from the second rest position. This is required to allow the sensing of the operative forces acting on the stylus, e.g. by sensing a change in electrical resistance between the arms 44 and the supports 45, when carrying out a measuring operation. Also the housing 40 can be fully closed as by rubber bellows 47 to ensure the cleanliness required for accurate seating at low spring pressures.
The housings 40,26 are spaced apart axially at a gap 52 to allow said displacement of the stylus, i.e.
allow tilting of the head 43 on the supports 45 when the stylus engages the workpiece 17 during a measuring operation. When the quill 11 is lowered to pick up the unit 19 the relatively weaker spring 46 compresses before the spring 31. This closes a gap 52 and brings the housings 40,26 into axial engagement at surfaces 48,49 for transmission of the axial force necessary to compress the spring 31. Simultaneously, axial teeth 50,51 on the housings 40,26 engage for transmission of the torque of the motor 35.
Referring to Figure 4, spherical supports 53 are arranged above the arms 44 and a tension spring 54 is arranged between the head 43 and the housing 46 to urge the arms 44 against the supports 53. In all other respects the supports 53 are equivalent to the supports 45. When the quill 11 is lowered to pick up the unit 19 the gap 52 is not closed because the axial force for compression of the spring 31 is reacted directly by the supports 53. The torque for rotation of the housing 26 is also transmitted by the inclined surfaces of the supports 53. The gap 52 is of course still required to accommodate said tilting of the head 43 during a measuring operation. The spring 31 may be made of substantially the same strength as the spring 54 so that both the heads 43, 22 can tilt during a measuring operation, the head 43 tilting downwardly and the head 22 tilting upwardly.If the measuring operation requires axial movement of the stylus, the arrangement allows such movement of the stylus towards or away from the quill 11 as may be required.
The motor 35 may be embodied in a housing 35A detachably secured to the lower end of the quill 11.
In a further modification (not illustrated) the head 43, supports 45 or 53 and spring 46 or 54 are dispensed with and the housings 26,40 are made as a single component. In such a case the spring 31 has ,to be sufficiently weak to allow displacement of the stylus for measuring operations.
However, the invention is not restricted to sup porting a stylus in a measuring machine and may be applied generally to tool holders and automatic tool selector systems in machine tools. If a tool, e.g. a drill or small milling cutter, is used instead of a stylus, then the spring 31 must of course be strong enough to prevent displacement of the tool under the forces acting thereon in operation and the inclined surfaces 30A must be sufficiently steep to ensure firm location of the tool under such forces.
On the other hand, the spring 31 may be sufficiently weak to give way if an excessive operating force acts on the tool and in this way the tool is protected against overload.
It will be clear that the motor 35 may be used to rotate the whole of the assembly 10 for the purpose of rotating a said drill or cutter. In such an arrange ment the stops 36 and lug 37 are of course not used.
Referring to Figure 5 the supports 30 may be connected in an electric circuit 60 which is made when each of the arms 25 is seated on the respective pair of supports 30. The circuit is broken when one of the arms is displaced thereby de-energising a relay 61 to break a second circuit 62. The state of the circuit 62 is therefore an indication of whether or not the members 22,23 are properly connected. The circuit 62 may be connected to act on a system 63 controlling the motor 35 to de-energise this motor in case the members 22,23 become disconnected at one of the elements 25,30 due to overload on the tool.

Claims (6)

1. Tool connecting mechanism for machine tools, comprising a first and a second connecting member, one of the connecting members having three first support elements arranged at each of three locations spaced about an axis, the other member having three second support elements engageable with the respective first support ele ments, means for axially urging the members into engagement at said first and second elements, the first and second elements being constituted a kniematic support means locating the members against relative displacement transversely to and rotationally about said axis, characterised in that:: the first support elements extend radially outward ly and define open spaces angularly therebetween, the second support elements extend radially in wardly and define open spaces angularly therebe tween, the connecting members are relatively displace able axially to effect disengagement at said first and second elements, and, consequent on said disengagement, the members are relatively rotatable about said axis to axially align one of the first and second elements with the spaces between the other of the first and second elements to enable the members to be separated axially.
2. Mechanism according to claim 1 wherein the means for axially urging the connecting members into engagement comprise a spring secured to one of the members and engaging the other member.
3. Mechanism according to claim 1 wherein said second connecting member is secured to a third connecting member supported on a fourth connecting member the third and fourth connecting members being provided respectively with third and fourth support elements arranged about said axis, resilient means for axially urging the third and fourth members into engagement at said third and fourth support elements, and means for supporting the third and fourth members against displacement transversely to and rotationally about said axis.
4. Mechanism according to claim 3 wherein the third connecting member is situated at the side of the second connecting member remote from the first connecting member and the fourth support elements are situated at the side of the third support elements remote from the first connecting member so that an axial force urging the first connecting member toward the second connecting member is reacted by said fourth support elements.
5. Mechanism according to claim 2 wherein the spring is a compression spring secured to one of the connecting members and abutting the other connecting member to act thereon in the sense of separating the members when said elements are aligned with said spaces.
6. Tool connecting mechanism for machine tools substantially as described herein with reference to the accompanying drawings.
GB8010726A 1979-03-30 1980-03-31 Tool connecting mechanism for machine tools Expired GB2047133B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8010726A GB2047133B (en) 1979-03-30 1980-03-31 Tool connecting mechanism for machine tools

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7911328 1979-03-30
GB8010726A GB2047133B (en) 1979-03-30 1980-03-31 Tool connecting mechanism for machine tools

Publications (2)

Publication Number Publication Date
GB2047133A true GB2047133A (en) 1980-11-26
GB2047133B GB2047133B (en) 1982-12-15

Family

ID=26271082

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8010726A Expired GB2047133B (en) 1979-03-30 1980-03-31 Tool connecting mechanism for machine tools

Country Status (1)

Country Link
GB (1) GB2047133B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2502325A1 (en) * 1981-03-18 1982-09-24 Daishowa Seiki PROBE FOR MACHINE TOOL
EP0068899A2 (en) * 1981-06-30 1983-01-05 Renishaw plc Probe for measuring workpieces
EP0128464A2 (en) * 1983-06-03 1984-12-19 Firma Carl Zeiss Chuck for interchangeable feelers
WO1985002138A1 (en) * 1983-11-15 1985-05-23 Renishaw Plc Tool change apparatus
EP0210369A1 (en) * 1985-07-22 1987-02-04 Wild Leitz GmbH Quick-change holder for a probe tip
EP0221266A1 (en) * 1983-06-03 1987-05-13 Firma Carl Zeiss Magazine for a measuring machine with a probe tip exchange device
EP0304881A1 (en) * 1987-08-27 1989-03-01 Firma Carl Zeiss Touch system for coordinate measuring apparatus
WO1989005210A1 (en) * 1987-12-05 1989-06-15 Renishaw Plc Apparatus for changing a sensing device
WO1990012998A1 (en) * 1989-04-25 1990-11-01 Renishaw Plc Position determining apparatus
WO1991013316A1 (en) * 1990-02-23 1991-09-05 Renishaw Plc Contact probes
US5491904A (en) * 1990-02-23 1996-02-20 Mcmurtry; David R. Touch probe
USRE35510E (en) * 1991-07-11 1997-05-20 Renishaw Metrology Limited Probe head with indexing mechanism
CN101893434A (en) * 2009-05-22 2010-11-24 株式会社三丰 Roundness measuring apparatus
US8468672B2 (en) 2008-03-05 2013-06-25 Renishaw Plc Surface sensing device
WO2019123310A1 (en) * 2017-12-20 2019-06-27 Fabrica Machinale S.R.L. Method and apparatus for carrying out the replacement of an abrasive element in a machine for working surfaces

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2502325A1 (en) * 1981-03-18 1982-09-24 Daishowa Seiki PROBE FOR MACHINE TOOL
EP0068899A2 (en) * 1981-06-30 1983-01-05 Renishaw plc Probe for measuring workpieces
EP0068899A3 (en) * 1981-06-30 1983-05-11 Rolls-Royce Limited Probe for measuring workpieces
EP0128464A2 (en) * 1983-06-03 1984-12-19 Firma Carl Zeiss Chuck for interchangeable feelers
EP0128464A3 (en) * 1983-06-03 1986-03-12 Firma Carl Zeiss Chuck for interchangeable feelers
EP0221266A1 (en) * 1983-06-03 1987-05-13 Firma Carl Zeiss Magazine for a measuring machine with a probe tip exchange device
JPH08339B2 (en) * 1983-11-15 1996-01-10 レニショウ パブリック リミテッド カンパニー Measuring tool switching device
WO1985002138A1 (en) * 1983-11-15 1985-05-23 Renishaw Plc Tool change apparatus
EP0142373A3 (en) * 1983-11-15 1985-07-03 Renishaw Plc Tool change apparatus
US4651405A (en) * 1983-11-15 1987-03-24 Renishaw Plc Tool change apparatus
EP0210369A1 (en) * 1985-07-22 1987-02-04 Wild Leitz GmbH Quick-change holder for a probe tip
US4738033A (en) * 1985-07-22 1988-04-19 Ernst Leitz Wetzlar Gmbh Rapid change holder for probe pins
EP0304881A1 (en) * 1987-08-27 1989-03-01 Firma Carl Zeiss Touch system for coordinate measuring apparatus
WO1989005210A1 (en) * 1987-12-05 1989-06-15 Renishaw Plc Apparatus for changing a sensing device
US4979284A (en) * 1987-12-05 1990-12-25 Renishaw Plc Apparatus for changing a sensing device
US5101548A (en) * 1987-12-05 1992-04-07 Renishaw Plc Apparatus for changing a sensing device
WO1990012998A1 (en) * 1989-04-25 1990-11-01 Renishaw Plc Position determining apparatus
US5090131A (en) * 1989-04-25 1992-02-25 Renishaw Plc Position determining apparatus
EP0598709A1 (en) * 1990-02-23 1994-05-25 RENISHAW plc Touch probe
EP0551165A1 (en) * 1990-02-23 1993-07-14 Renishaw plc Touch probe
US5353514A (en) * 1990-02-23 1994-10-11 Renishaw, Plc Touch probe
WO1991013316A1 (en) * 1990-02-23 1991-09-05 Renishaw Plc Contact probes
US5491904A (en) * 1990-02-23 1996-02-20 Mcmurtry; David R. Touch probe
US5669152A (en) * 1990-02-23 1997-09-23 Renishaw, Plc Touch probe
USRE35510E (en) * 1991-07-11 1997-05-20 Renishaw Metrology Limited Probe head with indexing mechanism
US8468672B2 (en) 2008-03-05 2013-06-25 Renishaw Plc Surface sensing device
CN101893434A (en) * 2009-05-22 2010-11-24 株式会社三丰 Roundness measuring apparatus
CN101893434B (en) * 2009-05-22 2015-07-15 株式会社三丰 Roundness measuring apparatus
WO2019123310A1 (en) * 2017-12-20 2019-06-27 Fabrica Machinale S.R.L. Method and apparatus for carrying out the replacement of an abrasive element in a machine for working surfaces
US11565370B2 (en) 2017-12-20 2023-01-31 Fabrica Machinale S.R.L. Method and apparatus for carrying out the replacement of an abrasive element in a machine for working surfaces

Also Published As

Publication number Publication date
GB2047133B (en) 1982-12-15

Similar Documents

Publication Publication Date Title
US4349946A (en) Tool connecting mechanism
GB2047133A (en) Tool connecting mechanism for machine tools
US4557035A (en) Machine tool with tool magazine
CA1084735A (en) Autoadaptive tactile device for working machines
EP0142373B2 (en) Tool change apparatus
US4658494A (en) Apparatus for drilling printed circuit boards
KR102158959B1 (en) Method and system for automatic shaft replacement
JPS6085810A (en) Milling machine
EP1338377B1 (en) Drilling unit for components of wood or similar and associated tool spindle
US5996239A (en) Method of making coordinate measurements of a workpiece on a machine tool
JPS6341700B2 (en)
US4405266A (en) Deep drilling machine
JP4939270B2 (en) Tool changer
GB2025805A (en) A Toolholder Storage Magazine for Machine Tools
EP0231085A2 (en) Machines and housings
US5482495A (en) Apparatus for polishing a spherical surface
JP3196964B2 (en) Tool breakage detection device
US7153073B2 (en) System and method for precision machining with a single point cutter
JPH03504471A (en) Turret head for machine tools
JP4827912B2 (en) Machine tool system
JP2007301674A (en) Machine tool and method of controlling machine tool
US4644700A (en) Tailstock for universal grinding machines
JPH0152139B2 (en)
JP3139120B2 (en) Driven support holder
KR102185144B1 (en) Tool Pre-setter

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19940331