FR3114318A1 - Particle powder for a direct manufacturing process of a composite material. - Google Patents

Particle powder for a direct manufacturing process of a composite material. Download PDF

Info

Publication number
FR3114318A1
FR3114318A1 FR2009638A FR2009638A FR3114318A1 FR 3114318 A1 FR3114318 A1 FR 3114318A1 FR 2009638 A FR2009638 A FR 2009638A FR 2009638 A FR2009638 A FR 2009638A FR 3114318 A1 FR3114318 A1 FR 3114318A1
Authority
FR
France
Prior art keywords
particles
powder
layer
direct
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR2009638A
Other languages
French (fr)
Other versions
FR3114318B1 (en
Inventor
Arnaud DELEHOUZE
Eric Bouillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics SA filed Critical Safran Ceramics SA
Priority to FR2009638A priority Critical patent/FR3114318B1/en
Publication of FR3114318A1 publication Critical patent/FR3114318A1/en
Application granted granted Critical
Publication of FR3114318B1 publication Critical patent/FR3114318B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62878Coating fibres with boron or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Poudre de particules pour un procédé de fabrication directe d’un matériau composite L’invention concerne une poudre de particules pour la fabrication directe comprenant des particules de structure cœur-coquille comprenant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal. Figure pour l’abrégé : Fig. 1 Particle powder for a direct manufacturing process of a composite material Disclosed is a particle powder for direct manufacture comprising particles of a core-shell structure comprising a core comprising silicon carbide and a shell layer comprising a metal. Figure for abstract: Fig. 1

Description

Poudre de particules pour un procédé de fabrication directe d’un matériau composite.Particle powder for a direct manufacturing process of a composite material.

L’invention concerne le domaine de la fabrication directe et plus précisément les procédés de préparation d’une pièce en matériau composite par fabrication directe.The invention relates to the field of direct manufacturing and more specifically to the processes for preparing a part made of composite material by direct manufacturing.

Les procédés de fabrication directe connus permettent de réaliser des pièces en carbure de silicium. Néanmoins, ces procédés ont tous l’inconvénient de ne pas permettre d’obtenir directement des pièces ayant la géométrie finale visée, dit en anglais « near net shape ». En outre, ces procédés ont également l’inconvénient de conduire à des pièces avec des taux de porosités trop importants.Known direct manufacturing processes make it possible to produce parts in silicon carbide. Nevertheless, these processes all have the disadvantage of not making it possible to directly obtain parts having the targeted final geometry, known as “near net shape”. In addition, these processes also have the disadvantage of leading to parts with excessively high porosity rates.

Ainsi, la réalisation de pièces en matériau composite nécessite des reprises par usinages coûteuses et longues qui génèrent en outre des chutes de matière importantes.Thus, the production of composite material parts requires costly and time-consuming re-machining which also generates significant material scrap.

Il demeure un besoin pour un procédé de fabrication directe qui permette l’obtention d’une pièce en matériau composite directement à la géométrie et aux dimensions voulues.There remains a need for a direct manufacturing process that allows a composite material part to be obtained directly with the desired geometry and dimensions.

Pour répondre à ce besoin, les inventeurs proposent une poudre de particules pour la fabrication directe comprenant des particules de structure cœur-coquille comprenant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal.To meet this need, the inventors propose a powder of particles for direct manufacture comprising particles of core-shell structure comprising a core comprising silicon carbide and a shell layer comprising a metal.

Dans un mode de réalisation, les particules de la poudre de particules sont sphériques, ce qui permet d’augmenter la coulabilité de la poudre. Des particules seront dites « sphériques » pourvu que leur facteur de forme tel qu’habituellement défini soit compris entre 0,8 et 1,1.In one embodiment, the particles of the particle powder are spherical, which increases the flowability of the powder. Particles will be said to be “spherical” provided that their shape factor as usually defined is between 0.8 and 1.1.

Lors d’une étape de chauffage d’un procédé de fabrication directe utilisant la poudre, la couche coquille des particules de la poudre peut être frittée et permettre aux cœurs des particules de se lier entre eux aisément afin de former des pièces en matériau composite.During a heating step of a direct manufacturing process using powder, the shell layer of the powder particles can be sintered and allow the cores of the particles to bond together easily in order to form parts in composite material.

La mise en œuvre via des procédés de fabrication directe de poudre de particules permet ainsi d’obtenir des pièces en matériau composite avec une géométrie complexe, inaccessible par des procédés de l’art antérieur. De plus, les pièces ainsi obtenues ont une densité plus importante et présentent des teneurs résiduelles en métal encore diminuées comparativement à des pièces obtenues avec des poudres de particules de l’art antérieur.The implementation via direct manufacturing processes of particle powder thus makes it possible to obtain parts in composite material with a complex geometry, inaccessible by processes of the prior art. In addition, the parts thus obtained have a higher density and have further reduced residual metal contents compared to parts obtained with powders of particles of the prior art.

Dans un mode de réalisation, le cœur des particules d’une poudre de l’invention est constitué uniquement de carbure de silicium.In one embodiment, the core of the particles of a powder of the invention consists solely of silicon carbide.

Dans un mode de réalisation, le cœur des particules en carbure de silicium a un diamètre compris entre 0,2 µm et 15 µm. Il peut être composé de carbure de silicium de variété allotropique alpha ou bêta.In one embodiment, the core of the silicon carbide particles has a diameter of between 0.2 μm and 15 μm. It can be composed of silicon carbide of the allotropic alpha or beta variety.

Au sens de la présente invention, la couche coquille comprenant un métal peut comprendre indépendamment un métal pur, un alliage métallique ou une association de plusieurs métaux et/ou alliages.Within the meaning of the present invention, the shell layer comprising a metal may independently comprise a pure metal, a metal alloy or a combination of several metals and/or alloys.

Dans un mode de réalisation, le métal de la couche coquille de particules d’une poudres décrite ci-dessus est choisi parmi le silicium, l’aluminium, le titane ou un alliage AlSi.In one embodiment, the metal of the shell layer of particles of a powder described above is chosen from among silicon, aluminum, titanium or an AlSi alloy.

Dans un mode de réalisation, les particules d’une poudre telle que décrite ci-dessus ont un diamètre compris entre 0,2 µm et 75 µm. Pour une poudre de particules, on considérera que l’expression « les particules ont un diamètre compris entre » comme devant s’entendre par au moins 95 % des particules de la poudre ont un diamètre compris entre ces bornes.In one embodiment, the particles of a powder as described above have a diameter between 0.2 µm and 75 µm. For a powder of particles, the expression “the particles have a diameter between” will be considered to mean that at least 95% of the particles of the powder have a diameter between these limits.

Dans un mode de réalisation, l’épaisseur de la couche coquille des particules d’une poudre telle que décrite ci-dessus est comprise entre 0,1 µm et 5,0 µm, voire entre 0,5 µm et 5,0 µm.In one embodiment, the thickness of the shell layer of the particles of a powder as described above is between 0.1 μm and 5.0 μm, or even between 0.5 μm and 5.0 μm.

Dans un mode de réalisation, la poudre de particules pour la fabrication directe peut comprendre en outre des deuxièmes particules différentes des particules de structure cœur-coquille comprenant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal.In one embodiment, the powder of particles for direct manufacture may further comprise second particles different from the particles of core-shell structure comprising a core comprising silicon carbide and a shell layer comprising a metal.

Dans un mode de réalisation, les deuxièmes particules peuvent comprendre un cœur de fibres courtes revêtues. Par exemple, les deuxièmes particules peuvent comprendre un cœur de fibres courtes revêtues par un revêtement comprenant une couche de nitrure de bore, une couche de pyrocarbone et une couche de silicium.In one embodiment, the second particles may comprise a core of coated short fibers. For example, the second particles can comprise a core of short fibers coated with a coating comprising a layer of boron nitride, a layer of pyrocarbon and a layer of silicon.

En d’autres termes, la poudre de particules peut comprendre au moins deux types de particules différentes : des particules de structure cœur-coquille ayant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal, dites premières particules, mélangées avec des secondes particules, ayant une taille et/ou une composition différentes de celles des premières particules.In other words, the powder of particles can comprise at least two different types of particles: particles of core-shell structure having a core comprising silicon carbide and a shell layer comprising a metal, called first particles, mixed with second particles, having a different size and/or composition than the first particles.

Dans un mode de réalisation, et en particulier lorsque le métal de la couche coquille des premières particules comprend du silicium, les deuxièmes particules peuvent comprendre un cœur de fibres courtes revêtu par une couche de nitrure de bore et une couche de pyrocarbone, ou un cœur de fibres courtes revêtu par une couche carbure de silicium et une couche de pyrocarbone ou un cœur de fibres courtes revêtu par une couche de carbure de silicium, une couche de pyrocarbone, et une couche de silicium.In one embodiment, and in particular when the metal of the shell layer of the first particles comprises silicon, the second particles can comprise a core of short fibers coated with a layer of boron nitride and a layer of pyrocarbon, or a core of short fibers coated with a layer of silicon carbide and a layer of pyrocarbon or a core of short fibers coated with a layer of silicon carbide, a layer of pyrocarbon, and a layer of silicon.

Le choix de la composition et des épaisseurs de chacune des couches des secondes particules, permet d’affiner au mieux la composition finale de la pièce composite.The choice of the composition and the thicknesses of each of the layers of the second particles makes it possible to best refine the final composition of the composite part.

La présence des secondes particules de taille différente permet notamment d’améliorer la coulabilité du lit de poudre et de concéder au composite final une tenue thermomécanique accrue.The presence of the second particles of different size makes it possible in particular to improve the flowability of the powder bed and to give the final composite an increased thermomechanical resistance.

Par exemple, les secondes particules peuvent être des particules présentant également une structure cœur-coquille, conformes à ce qui a été décrit précédemment, mais ayant une composition différente. Dans un autre mode de réalisation, les secondes particules peuvent avoir une structure différente d’une structure cœur-coquille.For example, the second particles can be particles also having a core-shell structure, in accordance with what has been described previously, but having a different composition. In another embodiment, the second particles may have a structure other than a core-shell structure.

Dans un mode de réalisation, la poudre peut comprendre entre 10 % et 30 % volumique de deuxièmes particules, le reste étant des premières particules.In one embodiment, the powder may comprise between 10% and 30% by volume of second particles, the remainder being first particles.

Bien entendu, l’invention n’est pas limitée à un mélange de deux poudres, et peut en comprendre plus de deux, sous réserve qu’au moins 50 % en volume de la poudre de particules soit des premières particules, de structure cœur-coquille comprenant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal.Of course, the invention is not limited to a mixture of two powders, and may comprise more than two, provided that at least 50% by volume of the powder of particles is first particles, of core-structure shell comprising a core comprising silicon carbide and a shell layer comprising a metal.

Une poudre composée d’un mélange de particules permet, par un procédé de fabrication directe, de constituer après traitement thermique un matériau composite ayant une composition dont le comportement mécanique est optimisé pour une pièce aéronautique particulière.A powder composed of a mixture of particles makes it possible, by a direct manufacturing process, to constitute after heat treatment a composite material having a composition whose mechanical behavior is optimized for a particular aeronautical part.

L’association de deux poudres permet également de diminuer encore davantage la teneur en métal résiduel par exemple en permettant la réaction entre le métal de la couche externe des premières particules avec le carbone des deuxièmes particules.The combination of two powders also makes it possible to further reduce the residual metal content, for example by allowing the reaction between the metal of the outer layer of the first particles with the carbon of the second particles.

Dans ce mode de réalisation, le carbone de surface permet de convertir le métal des premières particules et ainsi de diminuer la quantité de métal résiduel présent dans la pièce finale par rapport à une pièce obtenue par une poudre de particules de l’art antérieur.In this embodiment, the surface carbon makes it possible to convert the metal of the first particles and thus to reduce the quantity of residual metal present in the final part compared to a part obtained by a powder of particles of the prior art.

Par exemple, les secondes particules peuvent être des particules de fibres courtes, revêtues. Par exemple, le revêtement peut être une interphase, revêtu d’une couche protectrice, elle-même revêtue d’une couche métallique. De manière alternative, les secondes particules peuvent être des particules de fibres courtes revêtues d’une interphase, et d’une couche de carbone pouvant réagir avec le silicium des premières particules.For example, the second particles can be short, coated fiber particles. For example, the coating may be an interphase, coated with a protective layer, itself coated with a metallic layer. Alternatively, the second particles can be particles of short fibers coated with an interphase, and with a layer of carbon that can react with the silicon of the first particles.

Dans un mode de réalisation, les premières particules d’une poudre telle que décrite ci-dessus, peuvent comprendre, entre le cœur et la couche coquille, une couche réactive, la couche réactive permettant de convertir au moins une partie de la couche métallique en céramique lors du chauffage de la particule.In one embodiment, the first particles of a powder as described above may comprise, between the core and the shell layer, a reactive layer, the reactive layer making it possible to convert at least part of the metallic layer into ceramic upon heating the particle.

Dans un mode de réalisation où elles sont présentes, les deuxièmes particules d’une poudre telle que décrite ci-dessus peuvent comprendre une couche réactive, la couche réactive permettant de convertir au moins une partie de la couche métallique en céramique lors du chauffage de la particule.In an embodiment where they are present, the second particles of a powder as described above may comprise a reactive layer, the reactive layer making it possible to convert at least part of the metallic layer into ceramic during the heating of the particle.

Dans un mode de réalisation, les premières particules et/ou les deuxièmes particules d’une poudre telle que décrite ci-dessus peuvent comprendre en outre, entre le cœur et la couche coquille, une couche réactive, la couche réactive permettant de convertir au moins une partie de la couche métallique en céramique lors du chauffage de la particule. Dans ce mode de réalisation, la couche réactive des particules se décompose préférentiellement au cours d’une étape de chauffage final réalisée après le procédé de fabrication directe, et sa décomposition permet de convertir le reste de couche métallique en céramique. La couche réactive permet ainsi d’éliminer le métal de la pièce finale. Cela permet d’une part d’éviter qu’un résidu métallique ne nuise aux propriétés thermomécaniques de la pièce finale, et d’autre part de densifier encore davantage la pièce obtenue.In one embodiment, the first particles and/or the second particles of a powder as described above may further comprise, between the core and the shell layer, a reactive layer, the reactive layer making it possible to convert at least part of the ceramic metal layer when heating the particle. In this embodiment, the reactive layer of the particles preferentially decomposes during a final heating step carried out after the direct manufacturing process, and its decomposition makes it possible to convert the rest of the metallic layer into ceramic. The reactive layer thus makes it possible to eliminate the metal from the final part. This makes it possible on the one hand to prevent a metallic residue from harming the thermomechanical properties of the final part, and on the other hand to further densify the part obtained.

Il est possible de déterminer avant le procédé de fabrication directe, en connaissant les propriétés initiales des particules, l’épaisseur nécessaire de la couche réactive, afin de permettre la consommation de la totalité du métal. Par exemple, cette détermination peut être réalisée par des calculs thermodynamiques.It is possible to determine before the direct manufacturing process, by knowing the initial properties of the particles, the necessary thickness of the reactive layer, in order to allow the consumption of all the metal. For example, this determination can be made by thermodynamic calculations.

Dans un mode de réalisation, la couche réactive des particules d’une poudre pour la fabrication directe telle que décrites ci-dessus peut être composée de carbone pyrolytique ou de carbure de bore B4C.In one embodiment, the reactive layer of the particles of a powder for direct manufacture as described above may be composed of pyrolytic carbon or boron carbide B 4 C.

Selon un autre de ses aspects, l’invention concerne également un procédé de fabrication directe d’une pièce en matériau composite comprenant au moins une étape de chauffage d’une poudre telle que décrite ci-dessus, la poudre chauffée étant dans la configuration d’au moins une partie de la pièce en matériau composite.According to another of its aspects, the invention also relates to a process for the direct manufacture of a composite material part comprising at least one step of heating a powder as described above, the heated powder being in the configuration of at least a part of the composite material part.

Dans un mode de réalisation, le procédé de fabrication directe peut comprendre une étape de chauffage, réalisée par estampage à chaud d’une poudre de particules telle que décrit ci-dessus, placée dans un moule aux formes de la pièce en matériau composite avant l’étape de chauffage.In one embodiment, the direct manufacturing process may comprise a heating step, carried out by hot stamping a powder of particles as described above, placed in a mold with the shapes of the composite material part before the heating step.

Un tel procédé permet en une étape de chauffage de former la pièce composite directement aux dimensions souhaitées.Such a method makes it possible, in a heating step, to form the composite part directly to the desired dimensions.

Dans un autre mode de réalisation d’un procédé de l’invention, la pièce est formée par plusieurs étapes de chauffage successives.In another embodiment of a method of the invention, the part is formed by several successive heating steps.

Par exemple, un tel procédé peut comprendre une pluralité d’étapes de chauffage, chaque étape de chauffage comprenant l’exposition d’un lit d’une poudre décrite ci-dessus à un LASER, le LASER chauffant sélectivement certaines régions du lit de poudre afin de former à chaque étape une partie de la pièce.For example, such a method may include a plurality of heating steps, each heating step comprising exposing a bed of a powder described above to a LASER, the LASER selectively heating certain regions of the powder bed in order to form at each stage a part of the piece.

Dans un tel mode de réalisation, la température de l’étape de chauffage peut être comprise entre 1250°C et 1400°C, voire entre 1300 et 1350°C pendant une durée comprise entre au moins 1 microseconde et 10 minutes.In such an embodiment, the temperature of the heating step can be between 1250° C. and 1400° C., or even between 1300 and 1350° C. for a duration of between at least 1 microsecond and 10 minutes.

Ce procédé présente l’avantage de pouvoir réaliser aisément des pièces aux géométries particulièrement complexes, la poudre du lit n’ayant pas réagi permettant de supporter la structure en formation.This process has the advantage of being able to easily produce parts with particularly complex geometries, the powder of the bed having not reacted making it possible to support the structure being formed.

Dans un mode de réalisation, un procédé décrit ci-dessus peut comprendre, après la ou les étapes de chauffage décrites ci-dessus, une étape de chauffage final réalisée à une température supérieure à la ou les étapes de chauffage de la poudre. Par exemple, une telle étape de chauffage final peut être réalisée à une température supérieure ou égale à 1450°C et pendant une durée de 15 à 25 minutes.In one embodiment, a method described above may comprise, after the heating step or steps described above, a final heating step carried out at a temperature higher than the step or steps of heating the powder. For example, such a final heating step can be carried out at a temperature greater than or equal to 1450° C. and for a duration of 15 to 25 minutes.

Une telle étape de chauffage final est particulièrement utile lorsque les particules de la poudre de particules comprennent une couche réactive entre le cœur de carbure de silicium et la couche métallique. L’étape de chauffage final permet alors de convertir intégralement le métal des couches externes des particules et améliore ainsi les propriétés thermomécaniques de la pièce en matériau composite obtenue en diminuant le métal résiduel dans les pièces finalement obtenues.Such a final heating step is particularly useful when the particles of the particle powder comprise a reactive layer between the core of silicon carbide and the metal layer. The final heating step then makes it possible to completely convert the metal of the outer layers of the particles and thus improves the thermomechanical properties of the part in composite material obtained by reducing the residual metal in the parts finally obtained.

Toutefois, une telle étape de chauffage final n’est pas nécessaire à la réalisation d’un procédé de l’invention, et peut être mise en œuvre pour parfaire la consommation de métal résiduel lorsque cela est nécessaire, en particulier lorsque l’étape de chauffage permettant la mise en forme de la pièce n’a pas permis la consommation totale du métal composant la couche coquille des particules de la poudre.However, such a final heating step is not necessary for carrying out a process of the invention, and can be implemented to perfect the consumption of residual metal when necessary, in particular when the step of heating allowing the shaping of the part did not allow the total consumption of the metal composing the shell layer of the particles of the powder.

Dans un mode de réalisation l’invention concerne une pièce de turboréacteur en matériau composite obtenue par un procédé de fabrication directe tel que décrit ci-dessus.In one embodiment, the invention relates to a composite material turbojet part obtained by a direct manufacturing process as described above.

Selon encore un autre de ses aspects, l’invention concerne une pièce de turboréacteur en matériau composite obtenue par un procédé de fabrication directe appliqué à une poudre telle que décrite ci-dessus. Par exemple une telle pièce peut être une pièce interne d’une turbomachine aéronautique comme un support d’aube, une aube, ou encore un distributeur ou une portion de distributeur.According to yet another of its aspects, the invention relates to a composite material turbojet part obtained by a direct manufacturing process applied to a powder as described above. For example, such a part can be an internal part of an aeronautical turbine engine such as a blade support, a blade, or else a distributor or a portion of a distributor.

La est une représentation schématique d’une particule d’une poudre selon un mode de réalisation de l’invention. There is a schematic representation of a particle of a powder according to one embodiment of the invention.

La représente, de manière schématique et partielle, une portion d’un distributeur de turbomachine selon un mode de réalisation de l’invention. There schematically and partially represents a portion of a turbomachine distributor according to one embodiment of the invention.

L’invention est à présent décrite à l’aide de figures qui ne doivent pas être interprétées de manière limitative.The invention is now described using figures which should not be interpreted in a limiting manner.

La illustre, en coupe, l’architecture cœur-coquille d’une particule 10 d’une poudre dans un mode de réalisation. La particule 10 comprend un cœur en carbure de silicium 11 et une enveloppe métallique ou couche coquille 12.There illustrates, in section, the core-shell architecture of a particle 10 of a powder in one embodiment. Particle 10 comprises a silicon carbide core 11 and a metallic envelope or shell layer 12.

Dans le mode de réalisation représenté, la particule comprend en outre une couche intermédiaire facultative 13.In the embodiment shown, the particle further comprises an optional intermediate layer 13.

Une poudre au sens de l’invention comprend une pluralité de particules.A powder within the meaning of the invention comprises a plurality of particles.

Dans un mode de réalisation, des particules telles que décrites ci-dessus peuvent être obtenue par dépôt chimique en phase vapeur en lit fluidisé. Le dépôt chimique en phase vapeur en lit fluidisé permet d’obtenir les particules cœur-coquille par dépôt successif des couches autour de particules initiales de carbure de silicium, qui formeront le cœur des particules finales.In one embodiment, particles as described above can be obtained by chemical vapor deposition in a fluidized bed. Chemical vapor deposition in a fluidized bed makes it possible to obtain core-shell particles by successive deposition of layers around initial particles of silicon carbide, which will form the core of the final particles.

De manière alternative, pour l’obtention de particules telles que décrites ci-dessus, il est possible d’utiliser des particules de SiC recouvertes d’un composé organométallique, ensuite soumis à un traitement de densification en phase vapeur, ou de déposition chimique en phase vapeur, qui permet la décomposition de l’organométallique et l’obtention d’une particule de structure cœur-coquille voulue.Alternatively, to obtain particles as described above, it is possible to use SiC particles coated with an organometallic compound, then subjected to a densification treatment in the vapor phase, or chemical deposition in vapor phase, which allows the decomposition of the organometallic and the obtaining of a particle with the desired core-shell structure.

Dans ce mode de réalisation, la couche coquille de carbure de silicium peut être obtenue par une étape de pyrolyse du composé organométallique.In this embodiment, the shell layer of silicon carbide can be obtained by a step of pyrolysis of the organometallic compound.

Dans un mode de réalisation, le carbone peut être déposé avant la couche métallique par un procédé de dépôt chimique en solution (CVD), par exemple en lit fluidisé d’hydrocarbure, d’alcool ou d’un composé hydrocarbure.In one embodiment, the carbon can be deposited before the metal layer by a chemical solution deposition (CVD) process, for example in a fluidized bed of hydrocarbon, alcohol or a hydrocarbon compound.

Dans une poudre de particules de l’invention, le choix du diamètre des particules peut être spécifiquement adapté au procédé de fabrication directe mis en œuvre et en particulier de la nature de l’étape de chauffage. Par exemple, pour une fabrication directe par fusion sélective par laser (ou SLM pour l’acronyme anglais « Selective Laser Melting »), les particules de la poudre ont de préférence un diamètre compris entre 1,0 µm et 50 µm et de préférence compris entre 5,0 µm et 15 µm. Pour une fabrication directe réalisée par frittage flash (ou SPS pour l’acronyme anglais « Spark plasma sintering ») les particules de la poudre ont de préférence un diamètre compris entre 10 µm et 50 µm. Pour une fabrication directe par coulée de barbotine par exemple avec une résine photopolymérisable, les particules de la poudre ont de préférence un diamètre compris entre 0,2 µm et 10 µm.In a powder of particles of the invention, the choice of the diameter of the particles can be specifically adapted to the direct manufacturing process implemented and in particular to the nature of the heating step. For example, for direct manufacture by selective laser melting (or SLM for the English acronym "Selective Laser Melting"), the particles of the powder preferably have a diameter of between 1.0 μm and 50 μm and preferably comprised between 5.0 µm and 15 µm. For direct manufacture carried out by flash sintering (or SPS for the English acronym “Spark plasma sintering”), the particles of the powder preferably have a diameter of between 10 μm and 50 μm. For direct manufacture by casting slip, for example with a photopolymerizable resin, the particles of the powder preferably have a diameter of between 0.2 μm and 10 μm.

Dans un mode de réalisation de l’invention où les particules ont un cœur en carbure de silicium et une couche coquille de silicium, sans couche réactive, la couche coquille de silicium peut avoir une épaisseur comprise entre 0,5 µm et 5,0 µm, et de préférence comprise entre 1,0 et 2,5 µm. Cela permet d’obtenir un excellent pontage entre les particules lors de l’étape de chauffage et par conséquent d’obtenir en fin du procédé une pièce de meilleure qualité tout en réduisant la quantité de métal résiduel.In one embodiment of the invention where the particles have a core of silicon carbide and a shell layer of silicon, without a reactive layer, the shell layer of silicon can have a thickness between 0.5 μm and 5.0 μm , and preferably between 1.0 and 2.5 μm. This makes it possible to obtain an excellent bridging between the particles during the heating step and consequently to obtain at the end of the process a part of better quality while reducing the quantity of residual metal.

Dans un mode de réalisation où il y a une couche réactive, permettant de convertir au moins une partie de la couche métallique en céramique lors d’une étape de chauffage final, il est préférable que l’épaisseur de la couche réactive soit déterminée de sorte à ce que la réaction avec métal de la couche coquille de la particule soit totale.In an embodiment where there is a reactive layer, making it possible to convert at least part of the metal layer into ceramic during a final heating step, it is preferable that the thickness of the reactive layer be determined so until the reaction with metal of the shell layer of the particle is complete.

De manière analogue, dans un mode où une pluralité de particules compose la poudre de l’invention, il est possible de déterminer la quantité de deuxième particules à introduire de sorte à ce que la réaction avec le métal de la couche coquille des premières particules soit totale. Cette réaction du carbone avec le métal peut avoir lieu au moment de l’étape de chauffage pour la mise en forme de la pièce, et un procédé selon ce mode de réalisation permet donc de consommer tout métal résiduel sans nécessité d’étape de traitement thermique final.Similarly, in a mode where a plurality of particles make up the powder of the invention, it is possible to determine the quantity of second particles to be introduced so that the reaction with the metal of the shell layer of the first particles is total. This reaction of the carbon with the metal can take place during the heating step for shaping the part, and a method according to this embodiment therefore makes it possible to consume any residual metal without the need for a heat treatment step. final.

Par exemple, l’épaisseur d’une couche réactive en pyrocarbone peut être comprise entre 0,2 µm et 2,0 µm. De préférence, la couche réactive est la plus fine possible, ce qui permet d’éviter une éventuelle obturation des pores de la pièce obtenue après la liaison des particules entre elles. En effet, une telle obturation qui causerait une conversion non-totale de la couche réactive et donc pourrait occasionner un résidu métallique dans la pièce finale qui nuirait à ses propriétés thermomécaniques. Dans ce mode de réalisation, la couche coquille peut avoir une épaisseur comprise entre 0,1 µm et 0,2 µm.For example, the thickness of a pyrocarbon reactive layer can be between 0.2 µm and 2.0 µm. Preferably, the reactive layer is as thin as possible, which makes it possible to avoid any clogging of the pores of the part obtained after the bonding of the particles together. Indeed, such a blockage which would cause a non-total conversion of the reactive layer and therefore could cause a metallic residue in the final part which would harm its thermomechanical properties. In this embodiment, the shell layer may have a thickness of between 0.1 μm and 0.2 μm.

La représente, de manière schématique et partielle, une portion d’un distributeur de turbomachine réalisé à partir d’une poudre selon l’invention.There schematically and partially represents a portion of a turbomachine distributor made from a powder according to the invention.

Un distributeur de turbomachine 20 peut comprendre une plate-forme extérieure 2 et une plate-forme intérieure 4, entre lesquelles s’étendent des aubes fixes 6, destinées à orienter le flux d’air dans une direction favorable à l’entraînement de la roue mobile adjacente, non représentée.A turbomachine distributor 20 may comprise an outer platform 2 and an inner platform 4, between which extend stationary vanes 6, intended to orient the flow of air in a direction favorable to driving the wheel adjacent mobile, not shown.

L’invention est à présent décrite au moyen de deux exemples illustrant deux modes de réalisation de l’invention.The invention is now described by means of two examples illustrating two embodiments of the invention.

Dans un premier exemple, une poudre de particules comprenant une architecture cœur-coquille avec un cœur de carbure de silicium SiC d’un rayon de 10 µm, une couche réactive de pyrocarbone d’une épaisseur d’environ 1,5 µm et une coquille de silicium d’une épaisseur d’environ 3,0 µm a été préparée.In a first example, a particle powder comprising a core-shell architecture with a core of silicon carbide SiC with a radius of 10 μm, a reactive layer of pyrocarbon with a thickness of approximately 1.5 μm and a shell of silicon with a thickness of about 3.0 µm was prepared.

Dans un second exemple, une poudre de particules comprenant une architecture cœur-coquille avec un cœur de carbure de silicium SiC d’un rayon d’environ 10 µm, une couche de nitrure de bore d’environ 0,5 µm, une couche de pyrocarbone d’environ 1,0 µm et une couche de silicium d’environ 1,5 µm a été préparée.In a second example, a powder of particles comprising a core-shell architecture with a core of silicon carbide SiC with a radius of approximately 10 μm, a layer of boron nitride of approximately 0.5 μm, a layer of pyrocarbon of about 1.0 μm and a layer of silicon of about 1.5 μm was prepared.

Dans chacun des deux exemples, l’épaisseur des couches est choisie de sorte que l’étape ultérieure de mise en forme des particules permette la conversion totale du silicium. Dans le cas de ces exemples, l’épaisseur des couches est choisie par des calculs numériques visant à obtenir une quantité de matière réactive équivalente entre le carbone de la couche réactive et le silicium de l’enveloppe.In each of the two examples, the thickness of the layers is chosen so that the subsequent step of shaping the particles allows the total conversion of the silicon. In the case of these examples, the thickness of the layers is chosen by numerical calculations aimed at obtaining an equivalent quantity of reactive material between the carbon of the reactive layer and the silicon of the envelope.

Dans chacun de ces deux exemples, la poudre de particules est ensuite mise en forme par frittage flash avec un LASER à 1300°C pendant 5 minutes. Un traitement thermique est ensuite réalisé à 1450°C pendant 20 minutes pour obtenir une pièce en matériau composite.In each of these two examples, the particle powder is then shaped by flash sintering with a LASER at 1300° C. for 5 minutes. A heat treatment is then carried out at 1450° C. for 20 minutes to obtain a part made of composite material.

Deux pièces sont ainsi obtenues et il est observé que dans les deux cas, elles présentent une porosité plus faible que celle accessible par les procédés de l’art antérieur. De plus, la pièce obtenue présente un taux volumique de silicium réduit comparativement aux pièces de l’art antérieur.Two parts are thus obtained and it is observed that in both cases, they have a lower porosity than that accessible by the methods of the prior art. In addition, the part obtained has a reduced volume content of silicon compared to parts of the prior art.

Claims (12)

Poudre de particules pour la fabrication directe comprenant des particules de structure cœur-coquille comprenant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal.A powder of particles for direct manufacture comprising particles of a core-shell structure comprising a core comprising silicon carbide and a shell layer comprising a metal. Poudre de particules pour la fabrication directe selon la revendication 1, dans laquelle le métal de la couche coquille des particules de la poudre est choisi parmi le silicium, l’aluminium, le titane ou un alliage AlSi.Particle powder for direct manufacture according to claim 1, wherein the metal of the shell layer of the particles of the powder is selected from silicon, aluminum, titanium or an AlSi alloy. Poudre de particules pour la fabrication directe selon la revendication 1 ou 2, dans laquelle l’épaisseur de la couche coquille des particules de la poudre est comprise entre 0,5 µm et 5,0 µm.Particle powder for direct manufacture according to claim 1 or 2, wherein the thickness of the shell layer of the particles of the powder is between 0.5 µm and 5.0 µm. Poudre de particules pour la fabrication directe selon l’une quelconque des revendications 1 à 3, dans laquelle la poudre comprend en outre des deuxièmes particules différentes des particules de structure cœur-coquille comprenant un cœur comprenant du carbure de silicium et une couche coquille comprenant un métal.A direct-to-manufacture particle powder according to any of claims 1 to 3, wherein the powder further comprises second particles other than the particles of core-shell structure comprising a core comprising silicon carbide and a shell layer comprising a metal. Poudre de particules pour la fabrication directe selon la revendication 4, dans laquelle les deuxièmes particules comprennent des fibres courtes revêtues.A direct manufacture particulate powder according to claim 4, wherein the second particles comprise coated short fibers. Poudre de particules pour la fabrication directe selon l'une quelconque des revendications 1 à 5, dans laquelle les premières particules et/ou les deuxièmes particules comprennent en outre, entre le cœur et la couche coquille, une couche réactive, la couche réactive permettant de convertir au moins une partie de la couche métallique en céramique lors du chauffage de la particule.Particle powder for direct manufacture according to any one of claims 1 to 5, in which the first particles and/or the second particles further comprise, between the core and the shell layer, a reactive layer, the reactive layer making it possible to converting at least a portion of the metal layer to ceramic upon heating the particle. Poudre de particules pour la fabrication directe selon la revendication 6, dans laquelle ladite couche réactive est composée de carbone pyrolytique ou de carbure de bore.A direct-to-manufacture particle powder according to claim 6, wherein said reactive layer is composed of pyrolytic carbon or boron carbide. Procédé de fabrication directe d’une pièce en matériau composite comprenant au moins une étape de chauffage d’une poudre selon l’une des revendications 1 à 7, la poudre chauffée étant dans la configuration d’au moins une partie de la pièce en matériau composite.Process for the direct manufacture of a part made of composite material comprising at least one step of heating a powder according to one of Claims 1 to 7, the heated powder being in the configuration of at least a part of the part made of composite. Procédé de fabrication directe selon la revendication 8, comprenant une étape de chauffage, réalisée par un estampage à chaud d’une poudre de particules selon l'une quelconque des revendications 1 à 7, placée dans un moule aux formes de la pièce en matériau composite avant l’étape de chauffage.Direct manufacturing process according to claim 8, comprising a heating step, carried out by hot stamping a powder of particles according to any one of claims 1 to 7, placed in a mold with the shapes of the part made of composite material before the heating step. Procédé de fabrication directe selon la revendication 8, comprenant une pluralité d’étapes de chauffage, chaque étape de chauffage comprenant l’exposition d’un lit d’une poudre selon l'une quelconque des revendications 1 à 7 à un LASER, le LASER chauffant sélectivement certaines régions du lit de poudre pour former à chaque étape de chauffage une partie de la pièce.A direct manufacturing method according to claim 8, comprising a plurality of heating steps, each heating step comprising exposing a bed of a powder according to any one of claims 1 to 7 to a LASER, the LASER selectively heating certain regions of the powder bed to form at each heating step a part of the part. Procédé de fabrication selon l’une quelconque des revendications 8 à 10, comprenant une étape finale de chauffage à une température supérieure à l’au moins une étape de chauffage de la poudre selon l’une des revendications 1 à 7.Manufacturing process according to any one of Claims 8 to 10, comprising a final step of heating to a temperature higher than the at least one step of heating the powder according to one of Claims 1 to 7. Pièce de turboréacteur en matériau composite obtenue par un procédé de fabrication directe selon l’une quelconque des revendications 8 à 11.Turbojet part made of composite material obtained by a direct manufacturing process according to any one of Claims 8 to 11.
FR2009638A 2020-09-23 2020-09-23 Particle powder for a direct manufacturing process of a composite material. Active FR3114318B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR2009638A FR3114318B1 (en) 2020-09-23 2020-09-23 Particle powder for a direct manufacturing process of a composite material.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009638 2020-09-23
FR2009638A FR3114318B1 (en) 2020-09-23 2020-09-23 Particle powder for a direct manufacturing process of a composite material.

Publications (2)

Publication Number Publication Date
FR3114318A1 true FR3114318A1 (en) 2022-03-25
FR3114318B1 FR3114318B1 (en) 2023-02-24

Family

ID=74859966

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2009638A Active FR3114318B1 (en) 2020-09-23 2020-09-23 Particle powder for a direct manufacturing process of a composite material.

Country Status (1)

Country Link
FR (1) FR3114318B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2228009A1 (en) * 1995-07-27 1997-02-13 Alan F. Beane Manufacturing particles and articles having engineered properties
US6024909A (en) * 1993-08-12 2000-02-15 Agency Of Industrial Science & Technology Coated ceramic particles, a ceramic-base sinter and a process for producing the same
US20080008894A1 (en) * 2006-07-06 2008-01-10 Siemens Power Generation, Inc. Rapid prototyping of ceramic articles
WO2017109373A1 (en) * 2015-12-21 2017-06-29 Safran Ceramics Method for producing a ceramic from a chemical reaction
EP3354632A1 (en) * 2017-01-25 2018-08-01 Siemens Aktiengesellschaft Method to additively manufacture a fiber-reinforced ceramic matrix composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024909A (en) * 1993-08-12 2000-02-15 Agency Of Industrial Science & Technology Coated ceramic particles, a ceramic-base sinter and a process for producing the same
CA2228009A1 (en) * 1995-07-27 1997-02-13 Alan F. Beane Manufacturing particles and articles having engineered properties
US20080008894A1 (en) * 2006-07-06 2008-01-10 Siemens Power Generation, Inc. Rapid prototyping of ceramic articles
WO2017109373A1 (en) * 2015-12-21 2017-06-29 Safran Ceramics Method for producing a ceramic from a chemical reaction
EP3354632A1 (en) * 2017-01-25 2018-08-01 Siemens Aktiengesellschaft Method to additively manufacture a fiber-reinforced ceramic matrix composite

Also Published As

Publication number Publication date
FR3114318B1 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
EP2632877B1 (en) Process for coating a part with an oxidation-protective coating
EP3860785B1 (en) Method for manufacturing a part of complex shape by pressure sintering starting from a preform
FR2598644A1 (en) THERMOSTABLE DIAMOND ABRASIVE PRODUCT AND PROCESS FOR PRODUCING SUCH A PRODUCT
FR2712218A1 (en) Metal or ceramic part with dense outer shell and porous core, as well as its manufacturing process.
WO2010063946A1 (en) Method for smoothing the surface of a part made from a cmc material
FR2850741A1 (en) Manufacturing e.g. fuel-cooled panel for rocket motor wall, assembles sections by joining their internal faces under hot pressure
EP3223981B1 (en) Process for manufacturing three-dimensional parts made of aluminium-titanium alloy
CA2734083A1 (en) Method for making a part made of a composite material with a metal matrix
EP3860783B1 (en) Method for producing a counter-form and method for manufacturing a part having a complex shape using such a counter-form
FR2768357A1 (en) METHOD OF ASSEMBLING OR RECHARGING BY BRAZING-DIFFUSING PARTS IN TITANIUM ALUMINIURE
WO2022090655A1 (en) Method for manufacturing a part made from a ceramic matrix composite material
CA2921534A1 (en) Composite reinforcement insert and manufacturing method
EP3592716B1 (en) Method for producing a consolidated fibrous preform
FR3036409B1 (en) NICKEL-BASED METALLIC MATRIX COMPOSITE MATERIAL AND PROCESS FOR PRODUCING SUCH A COMPOSITE MATERIAL
FR3114318A1 (en) Particle powder for a direct manufacturing process of a composite material.
EP3331657B1 (en) Method for producing a part consisting of a composite material
EP2903763B1 (en) Method of manufacturing a component covered with an abradable coating
EP4076794A1 (en) Method for manufacturing a composite turbomachine bladed disk (blisk) with ceramic reinforcement
FR3098747A1 (en) METHOD OF MANUFACTURING A METAL PART
EP3368244B1 (en) Method for producing a sealing component with a body made of boron-containing superalloy and coated
FR3098542A1 (en) Set of turbomachine parts
EP4370262A1 (en) Improved counter-form for the manufacture of a metal aeronautical part
FR3130274A1 (en) Process for manufacturing a composite material part with reduced residual porosity
FR3098740A1 (en) METHOD OF MANUFACTURING A METAL PART
FR3114812A1 (en) Composite material part having improved thermomechanical compatibility with a metallic element

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20220325

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4