FR3098295B1 - Improved inertial sensor - Google Patents

Improved inertial sensor Download PDF

Info

Publication number
FR3098295B1
FR3098295B1 FR1873534A FR1873534A FR3098295B1 FR 3098295 B1 FR3098295 B1 FR 3098295B1 FR 1873534 A FR1873534 A FR 1873534A FR 1873534 A FR1873534 A FR 1873534A FR 3098295 B1 FR3098295 B1 FR 3098295B1
Authority
FR
France
Prior art keywords
values
quadrature
command
ctq
ctf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR1873534A
Other languages
French (fr)
Other versions
FR3098295A1 (en
Inventor
Nicolas Vercier
Nicolas Martin
Jacques Coatantiec
Bernard Chaumet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR1873534A priority Critical patent/FR3098295B1/en
Priority to GB1916195.9A priority patent/GB2597041B/en
Priority to DE102019008491.8A priority patent/DE102019008491A1/en
Publication of FR3098295A1 publication Critical patent/FR3098295A1/en
Application granted granted Critical
Publication of FR3098295B1 publication Critical patent/FR3098295B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5614Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

Procédé (100) de détermination d’une commande de quadrature (CTq) et d’une commande de fréquence (CTf) d’une onde de vibration générée par un résonateur (Res) d’un capteur angulaire inertiel (10), le procédé comprenant les étapes consistant à : -A déterminer l’angle électrique (θ), -B estimer des premières valeurs (Kq’, ΔK’) des raideurs de quadrature et d’égalisation à partir respectivement d’un premier (TrimQ) et d’un deuxième (TrimF) asservissement, lesdites premières valeurs étant estimées dans le repère onde X’Y’, -C déterminer des deuxièmes valeurs (Kq, ΔK) des raideurs de quadrature et d’égalisation dans le repère capteur XY, à partir des premières valeurs desdites raideurs (Kq’,ΔK’) estimées à l’étape B, -D déterminer la commande de quadrature (CTq) et la commande de fréquence (CTf) correspondant respectivement auxdites deuxièmes valeurs (Kq, ΔK) déterminées à l’étape C, -E appliquer la commande de fréquence (CTf) et la commande de quadrature(CTq) déterminées à l’étape D. Figure pour l’abrégé : Fig. 5Method (100) for determining a quadrature command (CTq) and a frequency command (CTf) of a vibration wave generated by a resonator (Res) of an inertial angular sensor (10), the method comprising the steps consisting in: -A determining the electrical angle (θ), -B estimating first values (Kq', ΔK') of the quadrature and equalization stiffnesses from respectively a first (TrimQ) and d 'a second (TrimF) servo-control, said first values being estimated in the wave frame X'Y', -C determine second values (Kq, ΔK) of the quadrature and equalization stiffnesses in the sensor frame XY, from the first values of said stiffnesses (Kq', ΔK') estimated in step B, -D determining the quadrature command (CTq) and the frequency command (CTf) corresponding respectively to said second values (Kq, ΔK) determined in step C, -E apply frequency command (CTf) and quadrature command (CTq) determined ed in step D. Figure for abstract: Fig. 5

FR1873534A 2018-12-20 2018-12-20 Improved inertial sensor Active FR3098295B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1873534A FR3098295B1 (en) 2018-12-20 2018-12-20 Improved inertial sensor
GB1916195.9A GB2597041B (en) 2018-12-20 2019-11-05 Improved inertial sensor
DE102019008491.8A DE102019008491A1 (en) 2018-12-20 2019-12-06 Capteur inertiel amélioré

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873534A FR3098295B1 (en) 2018-12-20 2018-12-20 Improved inertial sensor
FR1873534 2018-12-20

Publications (2)

Publication Number Publication Date
FR3098295A1 FR3098295A1 (en) 2021-01-08
FR3098295B1 true FR3098295B1 (en) 2021-11-19

Family

ID=73642915

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1873534A Active FR3098295B1 (en) 2018-12-20 2018-12-20 Improved inertial sensor

Country Status (3)

Country Link
DE (1) DE102019008491A1 (en)
FR (1) FR3098295B1 (en)
GB (1) GB2597041B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879906B2 (en) 2021-11-18 2024-01-23 Invensense, Inc. Inertial sensor sensing of vibration frequency

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8448513B2 (en) * 2011-10-05 2013-05-28 Freescale Semiconductor, Inc. Rotary disk gyroscope
FR3022996B1 (en) * 2014-06-27 2017-12-01 Thales Sa ANGULAR INERTIAL MEMS SENSOR OPERATING IN DIAPASON MODE
JP6689227B2 (en) * 2017-03-15 2020-04-28 株式会社日立製作所 Gyroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879906B2 (en) 2021-11-18 2024-01-23 Invensense, Inc. Inertial sensor sensing of vibration frequency

Also Published As

Publication number Publication date
DE102019008491A1 (en) 2021-07-08
GB2597041A (en) 2022-01-19
FR3098295A1 (en) 2021-01-08
DE102019008491A8 (en) 2021-07-22
GB2597041B (en) 2022-09-14

Similar Documents

Publication Publication Date Title
CN108732584B (en) Method and device for updating map
WO2015154676A1 (en) Method and apparatus for temperature compensation for video camera
KR102315535B1 (en) Method and apparatus for determining rotation angle of engineering mechanical device
CN102694979A (en) Camera and control method of the same
JP2000270600A (en) Drive of induction motor, and estimating method of its parameters
CN111047634B (en) Scene depth determination method, device, equipment and storage medium
KR20120065067A (en) Device and method for 3-dimension world modeling using multi-sensor fusion
CN107209028A (en) Analyser device
FR3098295B1 (en) Improved inertial sensor
KR20130070340A (en) Optical flow accelerator for the motion recognition and method thereof
FR3057606B1 (en) SYSTEMS AND METHODS FOR USING A SENSOR TO PROVIDE SPATIAL RESOLUTION IN DETECTION OF WELLBORE LEAKS
WO2024066472A1 (en) Error compensation method for sine-cosine signal, and storage medium
CN107883889A (en) Vibration test 3 D deformation measurement apparatus and method based on laser speckle interferometry
Liu et al. Research of under-sampling technique for digital image correlation in vibration measurement
WO2014153727A1 (en) Signal processing to extract a pedestrian's moving direction
JP2021528648A (en) Methods, devices and systems for measuring the thickness of conductive layers
CN105043667B (en) Rotor unbalance vibration signal amplitude, phase real-time computing technique
KR101335162B1 (en) Position aberration correction device and method for resolver
TWI481183B (en) Method and system for measuring motor parameter
CN108801226A (en) Plane inclining test method and apparatus
CN106779091B (en) A kind of periodic vibration signal localization method based on transfinite learning machine and arrival distance
RU2584577C1 (en) Method of calibrating magnetostrictive converters of linear displacements and device for therefor
CN110161484B (en) Distance compensation lookup table establishing method and device and distance compensation method and device
JP2022534700A (en) METHOD AND APPARATUS FOR OPEN-LOOP/CLOSED-LOOP CONTROL OF ROTATING DRIVE OF WORKING UNIT OF TRACK WORKING MACHINE
CN105096383A (en) Single carrier interference fringe detection surface shape phase recovery method

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLSC Publication of the preliminary search report

Effective date: 20210430

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6