FR3054223A1 - Copolymere et son utilisation comme additif detergent pour carburant - Google Patents

Copolymere et son utilisation comme additif detergent pour carburant Download PDF

Info

Publication number
FR3054223A1
FR3054223A1 FR1656972A FR1656972A FR3054223A1 FR 3054223 A1 FR3054223 A1 FR 3054223A1 FR 1656972 A FR1656972 A FR 1656972A FR 1656972 A FR1656972 A FR 1656972A FR 3054223 A1 FR3054223 A1 FR 3054223A1
Authority
FR
France
Prior art keywords
group
copolymer
chosen
fuel
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1656972A
Other languages
English (en)
Inventor
Julie Prevost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Priority to FR1656972A priority Critical patent/FR3054223A1/fr
Priority to PCT/FR2017/051974 priority patent/WO2018015664A1/fr
Priority to EP17748554.7A priority patent/EP3487893A1/fr
Publication of FR3054223A1 publication Critical patent/FR3054223A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/165Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/1955Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/18Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne un copolymère et son utilisation comme additif détergent dans un carburant liquide de moteur à combustion interne. Le copolymère est obtenu par copolymérisation d'au moins : - un monomère apolaire (ma) répondant à la formule (I) : et - un monomère polaire (mb) choisi parmi les monomères dérivés du styrène ou de l'alphaméthylstyrène dont le noyau aromatique est substitué par au moins un groupement R ou par au moins une chaine hydrocarbonée en C1 à C12, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement R, ledit groupement R étant choisi parmi : - le groupement hydroxyle, - un groupement -OR', - un groupement -(OCyH2yO)f-H, - un groupement -(OCyH2yO)f-R', - un groupement -O-(CO)-R', et - un groupement -(CO)-OR', y est un entier allant de 2 à 8, f est un entier allant de 1 à 10 et R' est choisi parmi les chaines alkyles en C1 à C24. L'invention concerne également un procédé de maintien de la propreté et/ou de nettoyage d'au moins une des parties internes d'un moteur à combustion interne.

Description

(57) L'invention concerne un copoiymère et son utilisation comme additif détergent dans un carburant liquide de moteur à combustion interne.
Le copoiymère est obtenu par copolymérisation d'au moins:
- un monomère apolaire (ma) répondant à la formule (I) :
FR 3 054 223 - A1
Figure FR3054223A1_D0001
U l·) et
- un monomère polaire (mb) choisi parmi les monomères dérivés du styrène ou de l'alphaméthylstyrène dont le noyau aromatique est substitué par au moins un groupement R ou par au moins une chaîne hydrocarbonée en C! à
C-^, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement R, ledit groupement R étant choisi parmi:
- le groupement hydroxyle,
- un groupement -OR',
- un groupement -(OCyH2yO)f-H,
- un groupement -(OC; fH2yO)f-R',
- un groupement -O-(CO)-R', et
- un groupement -(CO)-OR', y est un entier allant de 2 à 8, f est un entier allant de 1 à 10 et R' est choisi parmi les chaînes alkyles en C! à C24.
L'invention concerne également un procédé de maintien de la propreté et/ou de nettoyage d'au moins une des parties internes d'un moteur à combustion interne.
Figure FR3054223A1_D0002
ICG70096 FR texte dépôt
COPOLYMERE ET SON UTILISATION COMME ADDITIF DETERGENT POUR
CARBURANT
La présente invention concerne un copolymère et son utilisation comme additif détergent dans un carburant liquide de moteur à combustion interne.
L’invention concerne également un procédé de maintien de la propreté et/ou de nettoyage d’au moins une des parties internes d’un moteur à combustion interne.
ETAT DE L'ART ANTERIEUR
Les carburants liquides de moteurs à combustion interne contiennent des composants pouvant se dégrader au cours du fonctionnement du moteur. La problématique des dépôts dans les parties internes des moteurs à combustion est bien connue des motoristes. Il a été montré que la formation de ces dépôts a des conséquences sur les performances du moteur et notamment a un impact négatif sur la consommation et les émissions de particules. Les progrès de la technologie des additifs de carburant ont permis de faire face à cette problématique. Des additifs dits détergents utilisés dans les carburants ont déjà été proposés pour maintenir la propreté du moteur en limitant les dépôts (effet « Keep-clean » en anglais) ou en réduisant les dépôts déjà présents dans les parties internes du moteur à combustion (effet « clean-up » en anglais). On peut citer à titre d’exemple le document US4171959 qui décrit un additif détergent pour carburant essence contenant un sel d’ammonium quaternaire. Le document W02006135881 décrit un additif détergent contenant un sel d'ammonium quaternaire utilisé pour réduire ou nettoyer les dépôts notamment sur les soupapes d'admission. Néanmoins, la technologie des moteurs évolue sans cesse et les exigences sur les carburants doivent évoluer pour faire face à ces avancées technologiques des moteurs à combustion. En particulier, les nouveaux systèmes d’injection directe essence ou Diesel exposent les injecteurs à des conditions plus sévères en pression et température ce qui favorise la formation de dépôts. En outre, ces nouveaux systèmes d’injection présentent des géométries plus complexes pour optimiser la pulvérisation, notamment, des trous plus nombreux ayant des diamètres plus petits mais qui, en revanche, induisent une plus grande sensibilité aux dépôts. La présence de dépôts peut altérer les performances de la combustion notamment augmenter les émissions polluantes et les émissions de particules. D’autres conséquences de la présence excessive de dépôts ont été rapportées dans la littérature, telles que l’augmentation de la consommation de carburant et les problèmes de maniabilité.
ICG70096 FR texte dépôt
La prévention et la réduction des dépôts dans ces nouveaux moteurs sont essentielles pour un fonctionnement optimal des moteurs d'aujourd'hui. Il existe donc un besoin de proposer des additifs détergents pour carburant favorisant un fonctionnement optimal des moteurs à combustion, notamment, pour les nouvelles technologies moteur.
Il existe également un besoin d’un additif détergent universel capable d’agir sur les dépôts quelque soit la technologie du moteur et/ou la nature du carburant.
OBJET DE L’INVENTION
La demanderesse a découvert que les copolymères selon l’invention ont des propriétés remarquables comme additif détergent dans les carburants liquides de moteur à combustion interne. Les copolymères selon l’invention utilisés dans ces carburants permettent de maintenir la propreté du moteur, en particulier, en limitant ou évitant la formation des dépôts (effet Keep-clean) ou en réduisant les dépôts déjà présents dans les parties internes du moteur à combustion (effet clean-up).
Les avantages associés à l’utilisation de tels copolymères selon l’invention sont :
- un fonctionnement optimal du moteur,
- une réduction de la consommation de carburant,
- une meilleure maniabilité du véhicule,
- des émissions de polluants réduites, et
- une économie due à moins d'entretien du moteur.
L’objet de la présente invention concerne un copolymère obtenu par copolymérisation d’au moins :
- un monomère apolaire (ma) répondant à la formule suivante (I)
Figure FR3054223A1_D0003
(l)
Avec
ICG70096 FR texte dépôt u = 0 ou 1, w = 0 ou 1,
E = -O- ou -NH(Z)-, ou -O-CO-, ou -NH-CO- ou -CO-NH-, avec Z représente H ou un groupement alkyle en C1-C6, étant entendu que lorsque E = -O-CO- E est relié au carbone vinylique par l’atome d’oxygène,
G représente un groupement choisi parmi un alkyle en C1-C34, un noyau aromatique, un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C1-C34, et
- un monomère polaire (mb) choisi parmi les monomères dérivés du styrène ou de l’alphaméthylstyrène dont le noyau aromatique est substitué par au moins un groupement R ou par au moins une chaîne hydrocarbonée en Ci à C12, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement R, ledit groupement R étant choisi parmi :
- le groupement hydroxyle,
- un groupement -OR’,
- un groupement -(OCyH2yO)f-H,
- un groupement -(OCyH2yO)rR’,
- un groupement-O-(CO)-R’, et
- un groupement-(CO)-OR’, y est un entier allant de 2 à 8, f est un entier allant de 1 à 10 et R’ est choisi parmi les chaînes alkyles en Ci à C24.
Selon un mode de réalisation avantageux, le groupement E du monomère apolaire (ma) est -O-.
Selon un autre mode de réalisation avantageux, le groupement E du monomère apolaire (ma) est -NH(Z)- avec Z représente H ou un groupement alkyle en C1-C6.
Selon encore un autre mode de réalisation avantageux, le groupement E du monomère apolaire (ma) est et -O-CO- où E est relié au carbone vinylique par l’atome d’oxygène.
Avantageusement, le monomère apolaire (ma) est tel que w est égal à 0.
Selon une première variante préférée, le groupement G du monomère apolaire (ma) est un alkyle en C4-C30.
Selon une autre variante préférée, le groupement G du monomère apolaire (ma) est un
ICG70096 FR texte dépôt aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C4-30.
Selon un mode de réalisation préféré, le copolymère est choisi parmi les copolymères à blocs et les copolymères statistiques.
Selon un mode de réalisation particulièrement préféré, le copolymère est un copolymère à blocs.
En particulier, le copolymère à blocs comprend au moins :
- un bloc A consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères apolaires choisis parmi les monomères apolaires (ma) de formule (I) et,
- un bloc B consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères polaires choisis parmi les monomères polaires (mb).
Avantageusement, le copolymère comprend au moins une séquence de blocs AB, ABA ou BAB où lesdits blocs A et B s’enchaînent sans présence de bloc intermédiaire de nature chimique différente.
Selon un développement particulier, le copolymère à blocs est obtenu par polymérisation séquencée, éventuellement, suivie d’une ou plusieurs post-fonctionnalisations.
Avantageusement, le groupement R du monomère polaire (mb) est choisi parmi :
- le groupement hydroxyle et,
- un groupement -O-(CO)-R’, R’ étant choisi parmi les chaînes hydrocarbonées en Ci à C24·
Selon un mode de réalisation préféré, le monomère polaire (mb) est choisi parmi les monomères dérivés du styrène ou de l’alpha-méthylstyrène dont le noyau aromatique est substitué par au moins un groupement -O-(CO)-R’, R’ étant choisi parmi les alkyles en Ci à C24·
Selon un autre mode de réalisation préféré, le monomère polaire (mb) est choisi parmi les monomères dérivés du styrène ou de l’alpha-méthylstyrène dont le noyau aromatique est substitué par au moins un groupement hydroxyle ou par une chaîne hydrocarbonée en Ci à C12, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement hydroxyle.
ICG70096 FR texte dépôt
L’objet de la présente invention concerne également un concentré pour carburant qui comprend un ou plusieurs copolymères tels que définis ci-dessus, en mélange avec un liquide organique, ledit liquide organique étant inerte vis-à-vis du ou des copolymères et miscible audit carburant, ledit carburant étant issu d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques.
L’objet de la présente invention concerne en outre une composition de carburant qui comprend :
(1) un carburant issu d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques, et (2) un ou plusieurs copolymères tels que définis ci-dessus.
De préférence, la composition de carburant comprend au moins 5 ppm de copolymère(s) tels que définis ci-dessus.
Selon un mode de réalisation, la composition de carburant comprend le ou les copolymères tels que définis ci-dessus sous forme d’un concentré.
Le copolymère de l’invention est, de préférence, utilisé comme additif détergent dans un carburant liquide de moteur à combustion interne.
Avantageusement, le copolymère de l’invention est utilisé dans un carburant liquide de moteur à combustion interne, pour maintenir la propreté et/ou nettoyer au moins une des parties internes du moteur à combustion interne.
Le copolymère est, de préférence, utilisé dans le carburant liquide de moteur à combustion interne, pour limiter ou éviter la formation de dépôts dans au moins une des parties internes du moteur à combustion interne et/ou réduire les dépôts existant dans au moins une des parties internes dudit moteur.
Le copolymère est, de préférence, utilisé pour réduire la consommation de carburant du moteur à combustion interne.
Le copolymère est, de préférence, utilisé pour réduire les émissions de polluants, en particulier, les émissions de particules du moteur à combustion interne.
ICG70096 FR texte dépôt
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé.
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à injection directe. Le copolymère peut, dans ce cas, être utilisé pour limiter ou éviter et/ou réduire les dépôts de type savon et/ou vernis.
En particulier, le copolymère peut, dans ce cas, être utilisé pour réduire et/ou éviter la perte de puissance due à la formation de dépôts dans les parties internes d’un moteur Diesel à injection directe, ladite perte de puissance étant déterminée selon la méthode d’essai moteur normée CEC F-98-08.
Le copolymère peut, également, être utilisé pour réduire et/ou éviter la restriction du flux de carburant émis par l’injecteur d’un moteur Diesel à injection directe au cours de son fonctionnement, ladite restriction de flux étant déterminée selon la méthode d’essai moteur normée CEC F-23-1-01.
L’objet de la présente invention concerne également un procédé de maintien de la propreté et/ou de nettoyage d’au moins une des parties internes d’un moteur à combustion interne comprenant au moins les étapes suivantes :
- la préparation d’une composition de carburant par additivation d’un carburant avec un ou plusieurs copolymères et,
- la combustion de ladite composition de carburant dans ledit moteur à combustion interne.
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé.
En particulier, la partie interne du moteur à allumage commandé maintenue propre et/ou nettoyée est choisie parmi le système d’admission du moteur, en particulier les soupapes d’admission (IVD), la chambre de combustion (CCD ou TCD) et le système d’injection de carburant, en particulier les injecteurs d’un système d’injection indirecte (PFI) ou les injecteurs d’un système d’injection directe (DISI).
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un
ICG70096 FR texte dépôt moteur Diesel, de préférence un moteur Diesel à injection directe.
En particulier, la partie interne du moteur Diesel maintenue propre et/ou nettoyée est le système d’injection du moteur Diesel.
DESCRIPTION DETAILLEE
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre. Les modes particuliers de réalisation de l'invention sont donnés à titre d'exemples non limitatifs.
Selon un mode de réalisation particulier, un copolymère est obtenu par copolymérisation d’au moins un monomère apolaire (ma) et d’au moins un monomère polaire (mb).
Selon un mode de réalisation, le copolymère est choisi parmi les copolymères à blocs ou statistiques.
Selon un mode de réalisation particulièrement préféré, le copolymère est un copolymère à blocs.
Le monomère apolaire (ma) répond à la formule suivante (I) :
Figure FR3054223A1_D0004
Avec u = 0 ou 1 w = 0 ou 1
Avantageusement, le monomère apolaire (ma) est tel que w = 0.
Le groupement E du monomère apolaire (ma) est choisi parmi - E = -O-,
ICG70096 FR texte dépôt
E= -NH(Z)- avec Z représente H ou un groupement alkyle en C1-C6, linéaire ou ramifié, cyclique ou acyclique, de préférence acylique,
E = -O-CO- étant entendu que E est alors relié au carbone vinylique par l’atome d’oxygène,
- E = -NH-CO-, et
- E = -CO-NH-.
Selon une variante, le monomère apolaire (ma) est choisi parmi ceux vérifiant u=0
Selon une variante préférée, le monomère apolaire (ma) est choisi parmi ceux vérifiant : u=1, et le groupement E est choisi parmi
- E = -O-,
E = -NH(Z)- avec Z représente H ou un groupement alkyle en C1-C6, de préférence CH3, linéaire ou ramifié, cyclique ou acyclique, de préférence acylique, et E = -O-CO- où E est relié au carbone vinylique par l’atome d’oxygène.
Selon une variante encore préférée, le monomère apolaire (ma) est choisi parmi ceux vérifiant : u=1 et le groupement E est choisi parmi
E = -O-, et
E = -O-CO- où E est relié au carbone vinylique par l’atome d’oxygène.
Le groupement (G) du monomère apolaire (ma) peut être un alkyle en C1-C34, de préférence un radical alkyle en C4-C30, encore mieux en C6-C24, encore plus préférentiellement en C8 à C18. Le radical alkyle est un radical linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique. Ce radical alkyle peut comprendre une partie linéaire ou ramifiée et une partie cyclique. On peut citer, de façon non limitative, les groupements alkyles tels que l’octyle, le décyle, le dodécyle, l’éthyl-2-hexyle, l’isooctyle, l’isodécyle et l’isododécyle.
Parmi les monomères ester vinylique d’alkyle, on peut citer par exemple le l’octanoate de vinyle, le décanoate de vinyle, le dodécanoate de vinyle, le tétradécanoate de vinyle, l’hexadécanoate de vinyle, l’octodécanoate de vinyle, le docosanoate de vinyle, le 2éthylhexanoate de vinyle.
ICG70096 FR texte dépôt
Le groupement (G) du monomère apolaire (ma) peut également être un noyau aromatique. Parmi les groupements aromatiques, on peut citer, de façon non limitative, le groupement phényle ou naphtyle, de préférence le groupement phényle.
Le groupement (G) du monomère apolaire (ma) peut, selon une autre variante préférée, être un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C1-C34. De préférence, selon cette variante, le groupement (G) est un aralkyle comprenant au moins un noyau aromatique et un ou plusieurs groupements alkyles en C4C30, avantageusement en C6-C24, encore plus préférentiellement en C8 à C18.
Le noyau aromatique peut être mono-substitué ou être substitué sur plusieurs de ses atomes de carbone. De préférence, le noyau aromatique est monosubstitué.
Le groupement alkyle en C1-C34 peut être en position ortho, méta ou para sur le noyau aromatique, de préférence en para.
Le radical alkyle est un radical linéaire ou ramifié, cyclique ou acyclique, de préférence acyclique.
Le radical alkyle est, de préférence, un radical acyclique, linéaire ou ramifié, de préférence linéaire.
Le noyau aromatique peut être directement relié au groupement E ou au carbone vinylique mais il peut aussi lui être relié par l’intermédiaire d’un substituant alkyle.
On peut citer, à titre d’exemple de groupement G un groupement benzyle substitué en para par un groupement alkyle en C4-C30.
De préférence, selon cette variante, le groupement (G) du monomère apolaire (ma) est un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C4-C30, avantageusement en C6-C24, encore plus préférentiellement en C8 à C18.
Le monomère polaire (mb) est choisi de préférence parmi les monomères dérivés du styrène ou de l’alpha-méthylstyrène dont le noyau aromatique est substitué par au moins un groupement R ou par au moins une chaîne hydrocarbonée en Ci à C12, de préférence en Ci à C4, linéaire ou ramifiée, de préférence acyclique, avantageusement -CH2-, substituée par au moins un groupement R.
On entend par chaîne hydrocarbonée, une chaîne constituée exclusivement d'atomes de
ICG70096 FR texte dépôt carbone et d'hydrogène, ladite chaîne pouvant être linéaire ou ramifiée, cyclique, polycyclique ou acyclique, saturée ou insaturée, et éventuellement aromatique ou polyaromatique. Une chaîne hydrocarbonée peut comprendre une partie linéaire ou ramifiée et une partie cyclique. Elle peut comprendre une partie aliphatique et une partie aromatique.
La substitution sur le noyau aromatique du groupement styrénique est en ortho, méta ou para, de préférence en para.
De préférence le noyau aromatique du groupement styrénique est substitué par un seul substituant.
Le groupement R est choisi parmi :
- le groupement hydroxyle,
- les groupements alcoxy: -OR’, R’ représentant un alkyle en Ci à C24,
- les groupements polyalcoxy : -(OCyH2yO)rH où y est un entier allant de 2 à 8 et f est un entier allant de 1 à 10,
- les groupements polyalcoxy : -(OCyH2yO)rR’ où y est un entier allant de 2 à 8 et f est un entier allant de 1 à 10, R’ représentant un alkyle en Ci à C24,
- les carboxylates ou esters d’alkyle : -(CO)-OR’, R’ représentant un alkyle en Ci à C24,
- les alkyies carboxylates ou alkyies esters : -O-(CO)-R’, R’ représentant un alkyle en Ci à C24.
Le groupement R est choisi de préférence parmi :
- le groupement hydroxyle,
- les groupements alcoxy: -OR’, R’ représentant un alkyle en Ci à C12,
- les groupements polyalcoxy : -(OCyH2yO)f-H où y est un entier allant de de 2 à 4, plus préférentiellement de 2 à 3 et f est un entier allant de 2 à 8, plus préférentiellement de 2 à 4,
- les groupements polyalcoxy : -(OCyH2yO)rR’ où y est un entier allant de 2 à 4, plus préférentiellement de 2 à 3 et f est un entier allant de 2 à 8, plus préférentiellement de 2 à 4, R’ représentant un alkyle en Ci à C12,
- les carboxylates ou esters d’alkyle : -(CO)-OR’, R’ représentant un alkyle en Ci à Ci2.
- les alkyies carboxylates ou alkyies esters : -O-(CO)-R’, R’ représentant un alkyle en Ci à Ci2.
Encore plus préférentiellement, R est choisi parmi les alkyies carboxylates : -O-(CO)-R’, R’ représentant un alkyle en Ci à C24, de préférence en Ci à Ci2.
ICG70096 FR texte dépôt
Selon un mode de réalisation préféré, le groupement R est le groupement acétoxy.
Selon une autre variante préférée, le groupement R est le groupement hydroxyle.
Selon un mode de réalisation préféré, le monomère polaire (mb) est choisi parmi les monomères dérivés du styrène ou de l’alpha-méthylstyrène dont le noyau aromatique est substitué par un groupement -CH2-R.
Selon ce mode de réalisation préféré, le groupement R est, de préférence, choisi parmi :
- le groupement hydroxyle et,
- les alkyles carboxylates : -O-(CO)-R’, R’ représentant un alkyle en en Ci à C24 de préférence en Ci à C12, plus préférentiellement en Ci à C8, encore plus préférentiellement en Ci à C4, par exemple le groupement acétoxy.
Selon ce mode de réalisation préféré, le groupement R est, de préférence, choisi parmi le groupement hydroxyle.
Le monomère polaire (mb) peut, en particulier, être choisi parmi les monomères dérivés du styrène ou de l’alpha-méthylstyrène dont le noyau aromatique est substitué par au moins un groupement alkyle carboxylate -O-(CO)-R’, R’ représentant un alkyle en Ci à C24, de préférence en Ci à Ci2, plus préférentiellement en Ci à C8, encore plus préférentiellement en Ci à C4, par exemple le groupement acétoxy.
Le groupement alkyle carboxylate -O-(CO)-R’ peut être en position ortho, méta ou para sur le noyau aromatique, de préférence en position para.
Selon un mode de réalisation particulier, le monomère polaire (mb) est choisi parmi les monomères dérivés du styrène ou de l’alpha-méthylstyrène dont le noyau aromatique est substitué en position ortho, méta ou para, par au moins un groupement hydroxyle ou par une chaîne hydrocarbonée en Ci à Ci2, de préférence en Ci à C4, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement hydroxyle.
Selon un mode de réalisation particulier, le monomère dérivé du styrène (mb) est représenté par la formule (II) suivante :
ICG70096 FR texte dépôt
Figure FR3054223A1_D0005
(II)
Dans laquelle : t = 0 oui g= 0 ou 1
X représente une chaîne hydrocarbonée en Ci à C12, de préférence en Ci à C4, plus préférentiellement le groupement -CH2,
R est tel que décrit ci-dessus, en particulier choisi parmi -OH, -OR’, -O-(CO)-R’ et (CO)-OR’ avec R’ étant choisi parmi les chaînes hydrocarbonées en Ci à C24, de préférence en Ci à Ci2, plus préférentiellement en Ci à C8,encore plus préférentiellement en Ci à C4
On préférera de façon générale, les monomères dérivés du styrène (t = 0) par rapport aux monomères dérivés de l’alpha-méthylstyrène (t = 1).
Le monomère dérivé du styrène (mb) est, par exemple, choisi parmi les vinyl-phénols et les (vinyl phényl)méthanols en position ortho, méta et para, de préférence para.
Le monomère dérivé du styrène (mb) est, par exemple, choisi parmi l’acétoxystyrène en position ortho, méta et para, de préférence para.
Le copolymère peut être préparé selon tout procédé connu de polymérisation. Les différentes techniques et conditions de polymérisation sont largement décrites dans la littérature et relèvent des connaissances générales de l’homme de l’art.
Il est entendu que l’on ne sortirait pas de l’invention si l’on obtenait le copolymère selon l’invention à partir d’autres monomères différents de (ma) et (mb), dans la mesure où le copolymère final correspond à celui de l’invention c’est-à-dire obtenu à partir d’au moins (ma) et (mb),. Par exemple, on ne sortirait pas de l’invention, si on obtenait le copolymère par copolymérisation de monomères différents de (ma) et (mb), suivie d’une postfonctionnalisation.
ICG70096 FR texte dépôt
Par exemple, les blocs dérivant d’un monomère apolaire (ma) peuvent être obtenus à partir de l’alcool vinylique ou de l’acide acrylique, respectivement par réaction de transestérification ou d’amidification.
Par exemple, les blocs poly(vinyl phénol) peuvent être obtenus à partir de blocs poly(acétoxystyrène) obtenus par copolymérisation de monomères polaires acétoxystyrène mb, suivi d’une hydrolyse selon tout procédé connu.
Par exemple, le bloc poly(alkyl ester de styrène) peut être obtenu à partir d’un fragment poly(vinyl phénol) par réaction d’estérification.
Le copolymère peut être un copolymère à bloc, un copolymère statistique ou toute autre forme de copolymère.
Selon un mode de réalisation particulier, le copolymère à blocs comprend au moins :
un bloc A consistant en une chaîne de motifs structuraux dérivés d’un ou plusieurs monomères apolaires choisis parmi les monomères apolaires (ma) de formule (I) et, un bloc B consistant en une chaîne de motifs structuraux dérivés d’un ou plusieurs monomères polaires choisis parmi les monomères polaires (mb),
Etant entendu que le bloc A est dérivé uniquement de monomères apolaires (ma) et que le bloc B ne contient que des blocs polaires (mb).
Selon un mode de réalisation particulier préféré, le copolymère à blocs comprend au moins : un bloc A consistant en une chaîne de motifs structuraux dérivés d’un monomère apolaire choisi parmi les monomères apolaires (ma) de formule (I) et, un bloc B consistant en une chaîne de motifs structuraux dérivés d’un monomère polaire choisi parmi les monomères polaires (mb).
Les copolymères à blocs peuvent être obtenus par polymérisation séquencée, de préférence par polymérisation séquencée et contrôlée et, éventuellement suivie d’une ou plusieurs post-fonctionnalisations.
Les polymérisations contrôlées peuvent être des polymérisations contrôlées radicalaires ou des polymérisations contrôlées ioniques.
Le choix du procédé de polymérisation relève des connaissances générales de l’homme du métier en fonction des monomères choisis.
Selon un mode de réalisation particulier, le copolymère à blocs décrit ci-dessus est obtenu par polymérisation séquencée et contrôlée. La polymérisation est, avantageusement,
ICG70096 FR texte dépôt choisie parmi la polymérisation radicalaire contrôlée ; par exemple, par polymérisation radicalaire par transfert d’atome (ATRP en anglais « Atom Transfer Radical Polymerization») ; la polymérisation radicalaire par le nitroxyde (NMP en anglais « Nitroxidemediated polymerization ») ; les procédés de transfert dégénératif (en anglais « degenerative transfer processes ») tels que la polymérisation par transfert d'iode dégénérative (en anglais « ITRP- iodine transfer radical polymerization ») ou la polymérisation radicalaire par transfert de chaîne réversible par addition-fragmentation (RAFT en anglais « Réversible Addition-Fragmentation Chain Transfer) ; les polymérisations dérivées de l’ATRP telles que les polymérisations utilisant des initiateurs pour la régénération continue de l'activateur (ICAR -Initiators for continuous activator régénération) ou utilisant des activateurs régénérés par transfert d’électron (ARGET en anglais « activators regenerated by électron transfer »). Les copolymères à blocs peuvent être synthétisés grâce à une polymérisation cationique vivante. La polymérisation cationique vivante se caractérise par une diminution de la réactivité des espèces propageantes cationiques, ce qui permet de supprimer les réactions de terminaison et de transfert tout en gardant une réactivité suffisante pour la propagation.
On citera, à titre d’exemple, la publication « Macromolecular Engineering by atom transfer radical polymerization », JACS, 136, 6513-6533 (2014) qui décrit un procédé de polymérisation séquencée et contrôlée pour former des copolymères à blocs.
La polymérisation séquencée et contrôlée est typiquement réalisée dans un solvant, sous atmosphère inerte, à une température de réaction allant en général de 0 à 200°C, de préférence de 50°C à 130°C. Le solvant peut être choisi parmi les solvants polaires, en particulier les éthers comme l’anisole (méthoxybenzène), le dioxane ou le tétrahydrofuranne ou les solvants apolaires, en particulier, les paraffines, les cycloparaffines, les aromatiques et les alkylaromatiques ayant de 1 à 19 atomes de carbone, par exemple, le benzène, le toluène, le cyclohexane, le méthylcyclohexane, le n-butène, le n-hexane, le n-heptane et similaire.
Pour la polymérisation radicalaire par transfert d’atome (ATRP en anglais «Atom Transfer Radical Polymerization»), la réaction est généralement réalisée sous vide en présence d’un amorceur, d’un ligand et d’un catalyseur. A titre d’exemple de ligand, on peut citer la Ν,Ν,Ν’,Ν’’,Ν’’-Pentaméthyldiéthylenetriamine (PMDETA), la 1,1,4,7,10,10hexaméthyltriéthylène-tétramine (HMTETA), la 2,2'-Bipyridine (BPY) et la Tris(2pyridylmethyl)amine (TPMA). A titre d’exemple de catalyseur, on peut citer : CuX, CuX2,
ICG70096 FR texte dépôt avec X=CI, Br et les complexes à base de ruthénium Ru2+/Ru3+.
La polymérisation ATRP est, de préférence, réalisée dans un solvant choisi parmi les solvants polaires.
Selon la technique de polymérisation séquencée et contrôlée, il peut également être envisagé de travailler sous pression.
Les nombres d’équivalents de monomère apolaire (ma) du bloc A et de monomère polaire (mb) du bloc B mis en réaction lors de la réaction de polymérisation sont identiques ou différents.
Le nombre d’équivalents de monomère apolaire (ma) du bloc A est, de préférence, de 2 à 50, de préférence de 5 à 50, plus préférentiellement de 10 à 50.
Le nombre d’équivalents de monomère polaire (mb) du bloc B est, de préférence, de 2 à 50, de préférence de 2 à 40, plus préférentiellement de 2 à 20.
Le nombre d’équivalents de monomère apolaire (ma) du bloc A est, avantageusement, supérieur ou égal à celui du monomère polaire (mb) du bloc B. En outre, la masse molaire en poids Mw du bloc A ou du bloc B est, de préférence, inférieure ou égale à 15 000 g.mol.'1, plus préférentiellement inférieure ou égale à 10 000 g.mol.'1.
Le copolymère à blocs comprend avantageusement au moins une séquence de blocs AB, ABA ou BAB où lesdits blocs A et B s’enchaînent sans présence de bloc intermédiaire de nature chimique différente.
D’autres blocs peuvent éventuellement être présents dans le copolymère à blocs décrit précédemment dans la mesure où ces blocs ne changent pas fondamentalement le caractère du copolymère à blocs. On privilégiera néanmoins les copolymères à blocs contenant uniquement des blocs A et B.
Entre chaque bloc A et B, il peut éventuellement exister une partie intermédiaire issue de la polymérisation statistique des monomères polaires (mb) et apolaire (ma), selon le type de copolymérisation choisi et/ou le type d’amorçeur ou agent de transfert.
ICG70096 FR texte dépôt
Avantageusement, A et B représentent au moins 70% massique, de préférence au moins 90% massique, plus préférentiellement au moins 95% massique, encore plus préférentiellement au moins 99% massique du copolymère à blocs.
Selon un mode de réalisation particulier, le copolymère à blocs est un copolymère diséquencé (diblocs).
Selon un autre mode de réalisation particulier, le copolymère à blocs est un copolymère triséquencé (triblocs) à blocs alternés comprenant deux blocs A et un bloc B (ABA) ou comprenant deux blocs B et un bloc A (BAB).
Selon un mode de réalisation particulier, le copolymère à blocs comprend également une chaîne terminale I consistant en une chaîne hydrocarbonée, cyclique ou acyclique, saturée ou insaturée, linéaire ou ramifiée, en Ci à C32, de préférence en C4 à C24, plus préférentiellement en Cw à C24.
On entend par chaîne hydrocarbonée cyclique, une chaîne hydrocarbonée dont au moins une partie est cyclique, notamment aromatique. Cette définition n’exclut pas les chaînes hydrocarbonées comprenant à la fois une partie acyclique et une partie cyclique.
La chaîne terminale I peut comprendre une chaîne hydrocarbonée aromatique, par exemple benzénique et/ou une chaîne hydrocarbonée, saturée et acyclique, linéaire ou ramifiée, en particulier une chaîne alkyle.
La chaîne terminale I est, de préférence, choisie parmi les chaînes alkyles, de préférence linéaires, plus préférentiellement les chaînes alkyles d’au moins 4 atomes de carbone, encore plus préférentiellement d’au moins 12 atomes de carbone.
Pour la polymérisation ATRP, la chaîne terminale I est située en position terminale du copolymère à blocs. Elle peut être introduite dans le copolymère à blocs grâce à l’amorceur de polymérisation. Ainsi, la chaîne terminale I peut, avantageusement, constituer au moins une partie de l’amorceur de polymérisation et est positionnée au sein de l’amorceur de polymérisation afin de permettre d’introduire, lors de la première étape d’amorçage de la polymérisation, la chaîne terminale I en position terminale du copolymère à blocs.
L’amorceur de polymérisation est, par exemple, choisi parmi les amorceurs de radicaux
ICG70096 FR texte dépôt libres mis en œuvre dans le procédé de polymérisation ATRP. Ces amorceurs de radicaux libres bien connus de l'homme du métier sont notamment décrits dans l’article « Atom Transfer Radical Polymerization : current status and future perspectives, Macromolecules, 45, 4015-4039, 2012 ».
L’amorceur de polymérisation est, par exemple, choisi parmi les esters d’alkyle d’acide carboxylique substitué par un halogénure, de préférence, un brome en position alpha, par exemple, le 2-bromopropionate d’éthyle, le α-bromoisobutyrate d’éthyle, le chorure ou bromure de benzyle, le α-bromophénylacetate d’éthyle et le chloroéthylbenzene. Ainsi, par exemple, le 2-bromopropionate d’éthyle pourra permettre d’introduire dans le copolymère la chaîne terminale I sous forme d’une chaîne alkyle en C2 et le bromure de benzyle sous forme d’un groupement benzyle.
Pour la polymérisation RAFT, l’agent de transfert peut classiquement être éliminé du copolymère en fin de polymérisation selon tout procédé connu.
Selon une variante, la chaîne terminale I peut également être obtenue dans le copolymère par polymérisation RAFT selon les méthodes décrites dans l’article de Moad, G. and co., Australian Journal of Chemistry, 2012, 65, 985-1076. La chaîne terminale I peut, par exemple, être introduite par aminolyse lorsque l’on utilise un agent de transfert, en particulier, les agents de transfert de type thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate et trithiocarbonate, par exemple le S,S-bis(a,a’-dimethyl-a”-acide acétique) trithiocarbonate (BDMAT) ou le 2-cyano-2-propyl benzodithioate.
Selon un mode de réalisation particulier, le copolymère à blocs est un copolymère diséquencé (encore appelé diblocs). La structure copolymère à blocs peut être du type IAB ou IBA, avantageusement IAB. La chaîne terminale I peut être directement liée au bloc A ou B selon la structure respectivement IAB ou IBA ou, être reliée par l’intermédiaire d’un groupement de liaison, par exemple, une fonction ester, amide, amine ou éther. Le groupement de liaison forme alors un pont entre la chaîne terminale I et le bloc A ou B.
Selon un mode de réalisation particulier, le copolymère à blocs peut également être fonctionnalisé en bout de chaîne selon tout procédé connu, notamment par hydrolyse, aminolyse et/ou substitution nucléophile.
On entend par aminolyse, toute réaction chimique dans laquelle une molécule est scindée
ICG70096 FR texte dépôt en deux parties par réaction d’une molécule d’ammoniac ou d’une amine. Un exemple général d’aminolyse consiste à remplacer un halogène d’un groupement alkyle par réaction avec une amine, avec élimination d’halogénure d’hydrogène. L’aminolyse peut être utilisée, par exemple, pour une polymérisation ATRP qui produit un copolymère ayant un halogénure en position terminale ou pour une polymérisation RAFT pour éliminer la liaison thio, dithio ou trithio introduite dans le copolymère par l’agent de transfert RAFT.
On peut ainsi introduire une chaîne terminale I’ par post-fonctionnalisation du copolymère à blocs obtenu par polymérisation séquencée et contrôlée des monomères (ma) et (mb) décrite ci-dessus.
La chaîne terminale I’ comprend, avantageusement, une chaîne hydrocarbonée, linéaire ou ramifiée, cyclique ou acyclique, en Ci à C32, de préférence en Ci à C24, plus préférentiellement Ci à C10, encore plus préférentiellement un groupement alkyle, éventuellement substituée par un ou plusieurs groupements contenant au moins un hétéroatome choisi parmi N et O, de préférence N.
Pour une polymérisation ATRP utilisant un halogénure métallique comme catalyseur, cette fonctionnalisation peut, par exemple, être réalisée en traitant le copolymère IAB ou IBA obtenu par ATRP avec une alkylamine primaire en Ci à C32 ou un alcool en Ci à C32 dans des conditions douces pour ne pas modifier les fonctions présentes sur les blocs A, B et I.
Selon un mode de réalisation particulier préféré, le copolymère à blocs est représenté par l’une des formules (III) et (IV) suivantes :
Figure FR3054223A1_D0006
Figure FR3054223A1_D0007
dans lesquelles m=0 ou 1, n est un entier allant de 2 à 50, de préférence de 5 à 50, plus préférentiellement de 10 à 50, p est un entier allant de 2 à 50, de préférence de 2 à 40, plus préférentiellement de 2 à 20,
Ro est choisi parmi l’hydrogène ou le groupement méthyle, de préférence Ro est H,
R! est choisi parmi les chaînes hydrocarbonées, de préférence les groupements alkyles, cycliques ou acycliques, saturées ou insaturées, linéaires ou ramifiées, en Ci à C32, de préférence en C4 à C24, plus préférentiellement enCw à C24, et les groupements issus d’un agent de transfert de polymérisation radicalaire par transfert de chaîne réversible par addition-fragmentation (RAFT en anglais « Réversible Addition-Fragmentation Chain Transfer), étant entendu que si Ri est un groupement issu d’un agent de transfert alors m=0.
Les agents de transfert de type RAFT sont bien connus de l’homme de l’art. Une grande diversité d'agents de transfert de type RAFT sont disponibles ou bien assez aisément synthétisables. On peut citer à titre d’exemple, les agents de transfert de type thiocarbonylthio, dithiocarbonate, xanthate, dithiocarbamate et trithiocarbonate, par exemple le S,S-bis(a,a’-dimethyl-a”-acide acétique) trithiocarbonate (BDMAT) ou le 2-cyano-2-propyl benzodithioate.
R2 représente le groupement -(E)u-G
Les groupements E, G, et l’entier u, ont la même définition que celle donnée ci-dessus dans la formule (I),
R3 est un substituant en position ortho, méta ou para sur le noyau aromatique, de préférence en position para, choisi parmi le groupe constitué par :
- un groupement hydroxyle ou -CH2OH,
- les groupements alcoxy en Ci à C24, de préférence en Ci à C12,
ICG70096 FR texte dépôt
- les groupements polyalcoxy : -(OCyH2yO)rH où y est un entier allant de 2 à 8 de préférence de 2 à 4, plus préférentiellement de 2 à 3 et f est un entier allant de 1 à 10, de préférence de 2 à 8, plus préférentiellement de 2 à 4,
- les groupements polyalcoxy : -(OCyH2yO)rR8 où y est tel que décrit ci-dessus, et R8 représente un alkyle en Ci à C24, de préférence en Ci à Ci2,
- les groupements -OCORg et -COORg dans lesquels Rg est choisi parmi les groupements alkyles en Ci à C24, de préférence en Ci à Ci2, plus préférentiellement en Ci à C6, linéaires ou ramifiés, de préférence acycliques et,
R4 est choisi parmi le groupe constitué par :
- l’hydrogène ;
-OH
- les halogènes, de préférence le brome ; et,
- les chaînes hydrocarbonées, cycliques ou acycliques, saturées ou insaturées, linéaires ou ramifiées, en Ci à C32, de préférence en Ci à C24, plus préférentiellement en Ci à Cw, de préférence les groupements alkyles, lesdites chaînes étant éventuellement substituées par un ou plusieurs groupements contenant au moins un hétéroatome choisi parmi N et O,
R5 et R6 sont identiques ou différents et choisis indépendamment parmi le groupe constitué par l’hydrogène et les groupements alkyles en Ci à Cm, de préférence en Ci à C4, linéaires ou ramifiés, plus préférentiellement acycliques, encore plus préférentiellement le groupement méthyle,
R7 est choisi parmi l’hydrogène ou le groupement méthyle, de préférence R7 est H.
R! est, de préférence, choisi parmi les groupements alkyles, cycliques ou acycliques, saturés ou insaturés, linéaires ou ramifiés, en Ci à C32, de préférence en C4 à C24, plus préférentiellement en Cw à C24.
R3 est, de préférence, un substituant en position ortho, méta ou para sur le noyau aromatique, de préférence en position para, choisi parmi les groupements -OCORg où Rg est tel que décrit ci-dessus.
Dans les formules (III) et (IV), le bloc A correspond au motif répété n fois et le bloc B au motif répété p fois. En outre, le groupement R! peut être constitué de la chaîne terminale I telle que décrite ci-dessus et/ou le groupement R4peut être constitué de la chaîne terminale l’telle que décrite ci-dessus.
Le copolymère décrit ci-dessus est particulièrement avantageux quand il est utilisé comme
ICG70096 FR texte dépôt additif détergent dans un carburant liquide de moteur à combustion interne.
On entend par additif détergent pour carburant liquide, un additif qui est incorporé à faible quantité dans le carburant liquide et produit un effet sur la propreté dudit moteur comparativement audit carburant liquide non spécialement additivé.
Le carburant liquide est avantageusement issu d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques. On choisira, de préférence, le pétrole comme source minérale.
Le carburant liquide est, de préférence, choisi parmi les carburants hydrocarbonés et les carburants non essentiellement hydrocarbonés, seuls ou en mélange.
On entend par carburant hydrocarboné, un carburant constitué d’un ou de plusieurs composés constitués uniquement de carbone et d’hydrogène.
On entend par carburant non essentiellement hydrocarboné, un carburant constitué d’un ou de plusieurs composés constitués non essentiellement de carbone et d’hydrogène c’est-àdire qui contiennent également d’autres atomes, en particulier des atomes d’oxygène.
Les carburants hydrocarbonés comprennent notamment des distillats moyens de température d'ébullition allant de 100 à 500°C ou les distillats plus légers ayant une température d’ébullition dans la gamme des essences. Ces distillats peuvent par exemple être choisis parmi les distillats obtenus par distillation directe d'hydrocarbures bruts, les distillats sous vide, les distillats hydrotraités, les distillats issus du craquage catalytique et/ou de l'hydrocraquage de distillats sous vide, les distillats résultant de procédés de conversion type ARDS (en anglais « atmosphérique residue désulfuration ») et/ou de viscoréduction, les distillats issus de la valorisation des coupes Fischer Tropsch. Les carburants hydrocarbonés sont typiquement les essences et les gazoles (également appelé carburant Diesel).
Les essences comprennent, en particulier, toutes compositions de carburant pour moteur par allumage commandé disponibles dans le commerce. On peut citer à titre d’exemple représentatif, les essences répondant à la norme NF EN 228. Les essences ont généralement des indices d’octane suffisamment élevés pour éviter le phénomène de cliquetis. Typiquement, les carburants de type essence commercialisés en Europe, conformes à la norme NF EN 228 ont un indice d’octane moteur (MON en anglais « Motor
ICG70096 FR texte dépôt
Octane Number») supérieur à 85 et un indice d’octane recherche (RON en anglais « Research Octane Number ») d’un minimum de 95. Les carburants de type essence ont, généralement, un RON allant de 90 à 100 et un MON allant de 80 à 90, les RON et MON étant mesurés selon la norme ASTM D 2699-86 ou D 2700-86.
Les gazoles (carburants Diesel) comprennent, en particulier, toutes compositions de carburant pour moteur Diesel disponibles dans le commerce. On peut citer, à titre d’exemple représentatif, les gazoles répondant à la norme NF EN 590.
Les carburants non essentiellement hydrocarbonés comprennent notamment les oxygénés, par exemple les distillats résultant de la conversion BTL (en anglais « biomass to liquid ») de la biomasse végétale et/ou animale, pris seuls ou en combinaison ; les biocarburants, par exemple les huiles et/ou esters d'huiles végétales et/ou animales ; les biodiesels d'origine animale et/ou végétale et les bioéthanols.
Les mélanges de carburant hydrocarboné et de carburant non essentiellement hydrocarboné sont typiquement les gazoles de type Bx ou les essences de type Ex.
On entend par gazole de type Bx pour moteur Diesel, un carburant gazole qui contient x% (v/v) d’esters d’huiles végétales ou animale (y compris huiles de cuisson usagées) transformés par un procédé chimique appelé transestérification, obtenu en faisant réagir cette huile avec un alcool afin d'obtenir des esters d’acide gras (EAG). Avec le méthanol et l’éthanol, on obtient, respectivement, des esters méthyliques d’acides gras (EMAG) et des esters éthyliques d’acides gras (EEAG). La lettre B suivie par un nombre indique le pourcentage d’EAG contenu dans le gazole. Ainsi, un B99 contient 99% de EAG et 1% de distillats moyens d’origine fossile (source minérale), le B20, 20% de EAG et 80% de distillats moyens d’origine fossile etc.... On distingue donc les gazoles de type Bo qui ne contiennent pas de composés oxygénés, des gazoles de type Bx qui contiennent x% (v/v) d’esters d’huiles végétales ou d’acides gras, le plus souvent esters méthyliques (EMHV ou EMAG). Lorsque l’EAG est utilisé seul dans les moteurs, on désigne le carburant par le terme B100.
On entend par essence de type Ex pour moteur par allumage commandé, un carburant essence qui contient x% (v/v) d’oxygénés, généralement de l’éthanol, du bioéthanol et/ou l’éthyl-tertio-butyl-éther (ETBE).
ICG70096 FR texte dépôt
La teneur en soufre du carburant liquide est, de préférence, inférieure ou égale à 5000 ppm, de préférence inférieure ou égale à 500 ppm, et plus préférentiellement inférieure ou égale à 50 ppm, voire même inférieure ou égale à 10 ppm et avantageusement sans soufre.
Le copolymère décrit ci-dessus est utilisé comme additif détergent dans le carburant liquide à une teneur, avantageusement d’au moins 10 ppm, de préférence d’au moins 50 ppm, plus préférentiellement à une teneur allant de 10 à 5 OOOppm, encore plus préférentiellement de 10 à 1 OOOppm.
Selon un mode de réalisation particulier, l’utilisation d’un copolymère tel que décrit précédemment dans le carburant liquide permet de maintenir la propreté d’au moins une des parties internes du moteur à combustion interne et/ou de nettoyer au moins une des parties internes du moteur à combustion interne.
L’utilisation du copolymère dans le carburant liquide permet, en particulier, de limiter ou éviter la formation de dépôts dans au moins une des parties internes dudit moteur (effet « keep-clean » en anglais) et/ou réduire les dépôts existant dans au moins une des parties internes dudit moteur (effet « clean-up » en anglais).
Ainsi, l’utilisation du copolymère dans le carburant liquide permet, comparativement au carburant liquide non spécialement additivé, de limiter ou éviter la formation de dépôts dans au moins une des parties internes dudit moteur ou réduire les dépôts existant dans au moins une des parties internes dudit moteur.
Avantageusement, l’utilisation du copolymère dans le carburant liquide permet d’observer à la fois les deux effets, limitation (ou empêchement) et réduction de dépôts (effets « keepclean » et « clean-up »).
On distingue les dépôts en fonction du type de moteur à combustion interne et de la localisation des dépôts dans les parties internes dudit moteur.
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé, de préférence à injection directe (DISI en anglais «Direct Injection Spark Ignition engine»). Les dépôts visés sont localisés dans au moins une des parties internes dudit moteur à allumage commandé. La partie interne du moteur à allumage commandé maintenue propre (keep-clean) et/ou nettoyée (clean-up) est, avantageusement,
ICG70096 FR texte dépôt choisie parmi le système d’admission du moteur, en particulier les soupapes d’admission (IVD en anglais «Intake Valve Deposit»), la chambre de combustion (CCD en anglais «Combustion Chamber Deposit» ou TCD en anglais «Total Chamber Deposit») et le système d’injection de carburant, en particulier les injecteurs d’un système d’injection indirecte (PFI en anglais «Port Fuel Injector») ou les injecteurs d’un système d’injection directe (DISI).
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un moteur Diesel, de préférence, un moteur Diesel à injection directe, en particulier un moteur Diesel à système d’injection Common-Rail (CRDI en anglais «Common Rail Direct Injection»), Les dépôts visés sont localisés dans au moins une des parties internes dudit moteur Diesel.
Avantageusement, les dépôts visés sont localisés dans le système d’injection du moteur Diesel, de préférence, localisés sur une partie externe d’un injecteur dudit système d’injection, par exemple le nez de l’injecteur et/ou sur une partie interne d’un injecteur dudit système d’injection (IDID en anglais «Internai Diesel Injector Deposits»), par exemple à la surface d’une aiguille d’injecteur.
Les dépôts peuvent être constitués de dépôts liés au phénomène de cokage («coking » en anglais) et/ou des dépôts de type savon et/ou vernis (en anglais «lacquering»).
Le copolymère tel que décrit précédemment peut, avantageusement, être utilisé dans le carburant liquide pour réduire et/ou éviter la perte de puissance due à la formation des dépôts dans les parties internes d’un moteur Diesel à injection directe, ladite perte de puissance étant déterminée selon la méthode d’essai moteur normée CEC F-98-08.
Le copolymère tel que décrit précédemment peut, avantageusement, être utilisé dans le carburant liquide pour réduire et/ou éviter la restriction du flux de carburant émis par l’injecteur d’un moteur Diesel à injection directe au cours de son fonctionnement, ladite restriction de flux étant déterminée selon la méthode d’essai moteur normée CEC F-23-1-01.
Avantageusement, l’utilisation du copolymère tel que décrit ci-dessus permet, comparativement au carburant liquide non spécialement additivé, de limiter ou éviter la formation de dépôts sur au moins un type de dépôts décrits précédemment et/ou réduire les dépôts existant sur au moins un type de dépôts décrits précédemment.
ICG70096 FR texte dépôt
Selon un mode de réalisation particulier, l’utilisation du copolymère décrit ci-dessus permet également de réduire la consommation de carburant du moteur à combustion interne.
Selon un autre mode de réalisation particulier, l’utilisation du copolymère décrit ci-dessus permet également de réduire les émissions de polluants, en particulier, les émissions de particules du moteur à combustion interne.
Avantageusement, l’utilisation du copolymère permet de réduire à la fois la consommation de carburant et les émissions de polluants.
Le copolymère décrit ci-dessus peut être utilisé seul, sous forme d’un mélange d’au moins deux desdits copolymères ou sous forme d’un concentré.
Le copolymère peut être ajouté dans le carburant liquide au sein d’une raffinerie et/ou être incorporé en aval de la raffinerie et/ou éventuellement, en mélange avec d'autres additifs sous forme d’un concentré d’additifs, encore appelé selon l’usage « package d'additifs ».
Le concentré décrit ci-dessus comprend un liquide organique inerte vis-à-vis du copolymère décrit ci-dessus et miscible dans le carburant liquide décrit précédemment. On entend par miscible, le fait que le copolymère et le liquide organique forment une solution ou une dispersion de manière à faciliter le mélange du copolymère dans les carburants liquides selon les procédés classiques d’additivation des carburants.
Le liquide organique est, avantageusement, choisi parmi les solvants hydrocarbonés aromatiques tels que le solvant commercialisé sous le nom « SOLVESSO », les alcools, les éthers et autres composés oxygénés et les solvants paraffiniques tels que l’hexane, le pentane ou les isoparaffines, seuls ou en mélange.
Le concentré peut, avantageusement, comprendre de 5 à 99% massique, de préférence de 10 à 80%, plus préférentiellement de 25 à 70% de copolymère tel que décrit précédemment.
Le concentré peut, typiquement, comprendre de 1 à 95% massique, de préférence de 10 à 70%, plus préférentiellement de 25 à 60% de liquide organique, le reste correspondant au copolymère, étant entendu que le concentré peut comprendre un ou plusieurs copolymères tels que décrits ci-dessus.
ICG70096 FR texte dépôt
De façon générale, la solubilité du copolymère dans les liquides organiques et les carburants liquides décrits précédemment dépendra notamment des masses molaires moyennes en poids et en nombre, respectivement Mw et Mndu copolymère. On choisira les masses molaires moyennes Mw et Mn du copolymère de manière à ce que le copolymère soit soluble dans le carburant liquide et/ou le liquide organique du concentré pour lesquels il est destiné.
Les masses molaires moyennes Mw et Mn du copolymère peuvent également avoir une influence sur l’efficacité de ce copolymère comme additif détergent. On choisira donc les masses molaires moyennes Mw et Mn de manière à optimiser l’effet du copolymère, notamment l’effet de détergence (propreté moteur) dans les carburants liquides décrits cidessus.
L’optimisation des masses molaires moyennes Mw et Mn peut être effectuée par des essais de routine accessibles à l’homme du métier.
Selon un mode de réalisation particulier, le copolymère a, avantageusement, une masse molaire moyenne en poids (Mw) allant de 500 à 30 000 g.mol1, de préférence de 1000 à 10 000 g.mol'1, plus préférentiellement inférieure ou égale à 4000 g.mol'1, et/ou une masse molaire moyenne en nombre (Mn) allant de 500 à 15 000 g.mol1, de préférence de 1000 à 10 000 g.mol'1, plus préférentiellement inférieure ou égale à 4000 g.mol1. Les masses molaires moyennes en nombre et en poids sont mesurées par chromatographie d'exclusion stérique (SEC en anglais « Size Exclusion Chromatography). Les conditions opératoires de la SEC, notamment, le choix du solvant seront choisies en fonction des fonctions chimiques présentent au sein du copolymère.
Selon un mode de réalisation particulier, le copolymère est utilisé sous forme d’un concentré d’additifs en association avec au moins un autre additif pour carburant de moteur à combustion interne différent du copolymère décrit précédemment.
Le concentré d’additifs peut, typiquement, comprendre un ou plusieurs autres additifs choisis parmi des additifs détergents différents du copolymère décrit ci-dessus, par exemple parmi les agents anti-corrosion, les dispersants, les désémulsifiants, les agents anti-mousse, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents améliorant le point de trouble, le point
ICG70096 FR texte dépôt d'écoulement, la TLF («Température limite de filtrabilité »), les agents anti-sédimentation, les agents anti-usure et les agents modifiant la conductivité.
Parmi ces additifs, on peut citer en particulier :
a) les additifs procétane, notamment (mais non limitativement) choisis parmi les nitrates d'alkyle, de préférence le nitrate de 2-éthyl hexyle, les peroxydes d'aryle, de préférence le peroxyde de benzyle, et les peroxydes d'alkyle, de préférence le peroxyde de ter-butyle;
b) les additifs anti-mousse, notamment (mais non limitativement) choisis parmi les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales. Des exemples de tels additifs sont donnés dans EP861882, EP663000, EP736590 ;
c) Les additifs fluidifiants à froid (CFI en anglais « Cold Flow Improver») choisis parmi les copolymères d'éthylène et d'ester insaturé, tels que copolymères éthylène/acétate de vinyle (EVA), éthylène/propionate de vinyle (EVP), éthylène/éthanoate de vinyle (EVE), éthylène/méthacrylate de méthyle (EMMA), et éthylène/fumarate d'alkyle décrits, par exemple, dans les documents US3048479, US3627838, US3790359, US3961961 et EP261957.
d) les additifs de lubrifiance ou agents anti-usure, notamment (mais non limitativement) choisis dans le groupe constitué par les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol, et les dérivés d'acides carboxyliques mono- et polycycliques. Des exemples de tels additifs sont donnés dans les documents suivants : EP680506, EP860494, WO98/04656, EP915944, FR2772783, FR2772784.
e) les additifs de point de trouble, notamment (mais non limitativement) choisis dans le groupe constitué par les terpolymères oléfine à chaîne longue/ester (méth)acrylique /maléimide, et les polymères d'esters d'acides fumarique /maléique. Des exemples de tels additifs sont donnés dans FR2528051, FR2528051, FR2528423, EP112195, EP172758, EP271385, EP291367;
f) les additifs détergents notamment (mais non limitativement) choisis dans le groupe constitué par les succinimides, les polyétheramines et les sels d’ammonium quaternaire ; par exemple ceux décrits dans les documents US4171959 et WO2006135881.
g) les additifs polyfonctionnels d'opérabilité à froid choisis dans le groupe constitué par les polymères à base d'oléfine et de nitrate d'alkényle tels que décrits dans EP573490.
Ces autres additifs sont en général ajoutés en quantité allant de 100 à 1 000 ppm (chacun).
Le rapport molaire et/ou massique entre le monomère polaire (mb) et le monomère apolaire
ICG70096 FR texte dépôt (ma) et/ou entre le bloc A et B dans le copolymère à blocs décrit ci-dessus sera choisi de manière à ce que le copolymère soit soluble dans le carburant et/ou le liquide organique du concentré pour lesquels il est destiné. De même, ce rapport pourra être optimisé en fonction du carburant et/ou du liquide organique de manière à obtenir le meilleur effet sur la propreté moteur.
L’optimisation du rapport molaire et/ou massique peut être effectuée par des essais de routine accessibles à l’homme du métier.
Selon un mode de réalisation particulier, le rapport molaire entre le monomère apolaire (ma) et le monomère polaire (mb), ou entre les blocs A et B en pourcentage molaire entre le monomère apolaire (ma) du bloc A et le monomère polaire (mb) du bloc B est, de préférence de 95 :5 à 70 :30, plus préférentiellement de 85 :15 à 75 :25.
Selon un mode de réalisation particulier, une composition de carburant est préparée selon tout procédé connu en additivant le carburant liquide décrit précédemment avec au moins un copolymère tel que décrit ci-dessus.
La combustion de cette composition de carburant comprenant un tel copolymère dans un moteur à combustion interne produit un effet sur la propreté du moteur comparativement au carburant liquide non spécialement additivé et permet, en particulier, de prévenir ou réduire l’encrassement des parties internes dudit moteur. L’effet sur la propreté du moteur est tel que décrit précédemment dans le cadre de l’utilisation du copolymère.
Selon un mode de réalisation particulier, la combustion de la composition de carburant comprenant un tel copolymère dans un moteur à combustion interne permet également de réduire la consommation de carburant et/ou les émissions de polluants.
Le copolymère est incorporé, de préférence, à faible quantité dans le carburant liquide décrit précédemment, la quantité de copolymère étant suffisante pour produire un effet détergent tel que décrit ci-dessus et améliorer ainsi la propreté moteur.
La composition de carburant comprend avantageusement au moins 10ppm, de préférence au moins 50 ppm, avantageusement de 10 à 5 OOOppm, plus préférentiellement de 10 à 1 000 ppm du copolymère décrit ci-dessus.
ICG70096 FR texte dépôt
Outre le copolymère décrit ci-dessus, la composition de carburant peut également comprendre un ou plusieurs autres additifs différents du copolymère selon l’invention choisis parmi les autres additifs détergents connus, par exemple parmi les agents anti-corrosion, les dispersants, les désémulsifiants, les agents anti-mousse, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents améliorant le point de trouble, le point d'écoulement, la TLF, les agents antisédimentation, les agents anti-usure et/ou les agents modifiant la conductivité.
Les additifs différents du copolymère selon l’invention sont, par exemple, les additifs pour carburant listés ci-dessus.
Selon un mode de réalisation particulier, le copolymère est un copolymère à blocs tel que décrit ci-dessus.
Selon un mode de réalisation particulier, un procédé de maintien de la propreté (« keepclean ») et/ou de nettoyage (« clean-up ») d’au moins une des parties internes d’un moteur à combustion interne comprend au moins les étapes suivantes :
- la préparation d’une composition de carburant par additivation d’un carburant avec un ou plusieurs copolymères telle que décrite ci-dessus et,
- la combustion de ladite composition de carburant dans le moteur à combustion interne.
Selon un mode de réalisation particulier, le moteur à combustion interne est un moteur à allumage commandé, de préférence à injection directe (DISI).
La partie interne maintenue propre et/ou nettoyée du moteur à allumage commandé est, de préférence, choisie parmi le système d’admission du moteur, en particulier les soupapes d’admission (IVD), la chambre de combustion (CCD ou TCD) et le système d’injection de carburant, en particulier les injecteurs d’un système d’injection indirecte (PFI) ou les injecteurs d’un système d’injection directe (DISI).
Selon un autre mode de réalisation particulier, le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à injection directe, en particulier un moteur Diesel à systèmes d’injection Common-Rail (CRDI).
ICG70096 FR texte dépôt
La partie interne maintenue propre et/ou nettoyée du moteur Diesel est, de préférence le système d’injection du moteur Diesel, de préférence une partie externe d’un injecteur dudit système d’injection, par exemple le nez de l’injecteur et/ou une des parties internes d’un injecteur dudit système d’injection, par exemple la surface d’une aiguille d’injecteur.
Le procédé de maintien de la propreté et/ou de nettoyage comprend les étapes successives de :
a) détermination de l’additivation la plus adaptée au carburant, ladite additivation correspondant à la sélection du ou des copolymères décrits ci-dessus à incorporer en association, éventuellement, avec d’autres additifs pour carburant tels que décrits précédemment et la détermination du taux de traitement nécessaire pour atteindre une spécification donnée relative à la détergence de la composition de carburant.
b) incorporation dans le carburant du ou des copolymères sélectionnés au taux déterminé à l’étape a) et, éventuellement, des autres l’additifs pour carburant.
Le ou les copolymères peuvent être incorporés dans le carburant, seuls ou en mélange, successivement ou simultanément.
Alternativement, le ou les copolymères peuvent être utilisés sous forme d’un concentré ou d’un concentré d’additifs tel que décrit ci-dessus.
L’étape a) est réalisée selon tout procédé connu et relève de la pratique courante dans le domaine de l’additivation des carburants. Cette étape implique de définir au moins une caractéristique représentative des propriétés de détergence de la composition de carburant.
La caractéristique représentative des propriétés de détergence du carburant dépendra du type de moteur à combustion interne, par exemple Diesel ou par allumage commandé, du système d’injection directe ou indirecte et de la localisation dans le moteur des dépôts visés pour le nettoyage et/ou le maintien de la propreté.
Pour les moteurs Diesel à injection directe, la caractéristique représentative des propriétés de détergence du carburant peut, par exemple, correspondre à la perte de puissance due à la formation des dépôts dans les injecteurs ou la restriction du flux de carburant émis par l’injecteur au cours du fonctionnement dudit moteur.
La caractéristique représentative des propriétés de détergence peut également correspondre
ICG70096 FR texte dépôt à l’apparition de dépôts de type lacquering au niveau de l’aiguille de l’injecteur (IDID).
Des méthodes d’évaluation des propriétés détergente des carburants ont largement été décrites dans la littérature et relèvent des connaissances générales de l’homme du métier. On citera, à titre d’exemple non limitatif, les essais normalisés ou reconnus par la profession ou les méthodes décrites dans la littérature suivants :
Pour les moteurs Diesel à injection directe :
- la méthode DW10, méthode d’essai moteur normée CEC F-98-08, pour mesurer de la perte de puissance des moteurs Diesel à injection directe
- la méthode XUD9, méthode d’essai moteur normée CEC F-23-1-01 Issue 5, pour mesurer la restriction de flux de carburant émise par l’injecteur
- la méthode décrite par la demanderesse dans la demande WO2014/029770 page 17 à
20, pour l’évaluation des dépôts lacquering (IDID), cette méthode étant citée à titre d’exemple et/ou incorporée par référence à la présente demande.
Pour les moteurs par allumage commandé à injection indirecte :
- la méthode Mercedes Benz M102E, méthode d’essai normée CEC F-05-A-93, et
- la méthode Mercedes Benz M111, méthode d’essai normée CEC F-20-A-98.
Ces méthodes permettent de mesurer les dépôts sur les soupapes d’admission (IVD), les tests étant généralement réalisés sur une essence Eurosuper répondant à la norme EN228.
Pour les moteurs par allumage commandé à injection directe :
- la méthode décrite par la demanderesse dans l’article « Evaluating Injector Fouling in
Direct Injection Spark Ignition Engines», Mathieu Arondel, Philippe China, Julien Gueit ; Conventional and future energy for automobiles ; 10th international colloquium ; January 20-22, 2015, p.375-386 (Technische Akademie Esslingen par Techn. Akad. Esslingen, Ostfildern), pour l’évaluation des dépôts de type coking sur l’injecteur, cette méthode étant citée à titre d’exemple et/ou incorporée par référence à la présente demande.
- la méthode décrite dans le document US20130104826, pour l’évaluation des dépôts de type coking sur l’injecteur, cette méthode étant citée à titre d’exemple et/ou incorporée par référence à la présente demande.
La détermination de la quantité de copolymère à ajouter à la composition de carburant pour atteindre la spécification (étape a) décrite précédemment) sera réalisée typiquement par
ICG70096 FR texte dépôt comparaison avec la composition de carburant mais sans le copolymère selon l’invention, la spécification donnée relative à la détergence pouvant par exemple être une valeur cible de perte de puissance selon la méthode DW10 ou une valeur de restriction de flux selon méthode XUD9 mentionnée ci-dessus.
La quantité de copolymère peut, également, varier en fonction de la nature et l’origine du carburant, en particulier en fonction du taux de composés à substituants n-alkyle, iso-alkyle ou n-alcényle. Ainsi, la nature et l’origine du carburant peuvent également être un facteur à prendre en compte pour l’étape a).
Le procédé de maintien de la propreté et/ou de nettoyage peut également comprendre une étape supplémentaire après l’étape b) de vérification de la cible atteinte et/ou d’ajustement du taux d’additivation avec le ou les copolymères comme additif détergent.
ICG70096 FR texte dépôt

Claims (24)

  1. REVENDICATIONS
    Copolymère obtenu par copolymérisation d’au moins :
    - un monomère apolaire (ma) répondant à la formule suivante (I) h2c
    H u
    (l)
    Avec u = 0 ou 1, w = 0 ou 1,
    E = -O- ou -NH(Z)-, ou -O-CO-, ou -NH-CO- ou -CO-NH-, avec Z représente H ou un groupement alkyle en C1-C6, étant entendu que lorsque E = -O-CO- E est relié au carbone vinylique par l’atome d’oxygène,
    G représente un groupement choisi parmi un alkyle en C1-C34, un noyau aromatique, un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C1-C34, et
    - un monomère polaire (mb) choisi parmi les monomères dérivés du styrène ou de l’alphaméthylstyrène dont le noyau aromatique est substitué par au moins un groupement R ou par au moins une chaîne hydrocarbonée en Ci à C12, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement R, ledit groupement R étant choisi parmi :
    - le groupement hydroxyle,
    - un groupement -OR’,
    - un groupement -(OCyH2yO)f-H,
    - un groupement -(OCyH2yO)rR’,
    - un groupement-O-(CO)-R’, et
    - un groupement-(CO)-OR’, y est un entier allant de 2 à 8, f est un entier allant de 1 à 10 et R’ est choisi parmi les chaînes alkyles en Ci à C243054223
    ICG70096 FR texte dépôt
  2. 2. Copolymère selon la revendication 1, dans lequel le groupement E du monomère apolaire (ma) est choisi parmi -O-, -NH(Z)- avec Z représente H ou un groupement alkyle en C1-C6, et -O-CO- où E est relié au carbone vinylique par l’atome d’oxygène.
  3. 3. Copolymère selon l’une des revendications 1 et 2, dans lequel w est égal à 0.
  4. 4. Copolymère selon l’une quelconque des revendications précédentes, dans lequel le groupement G est un alkyle en C4-C30.
  5. 5. Copolymère selon l’une quelconque des revendications 1 à 3, dans lequel le groupement G est un aralkyle comprenant au moins un noyau aromatique et au moins un groupement alkyle en C4-30.
  6. 6. Copolymère selon l’une quelconque des revendications précédentes, dans lequel le copolymère est un copolymère à blocs ou statistique, de préférence un copolymère à blocs.
  7. 7. Copolymère à blocs selon l’une quelconque des revendications précédentes, dans lequel le copolymère comprend au moins :
    - un bloc A consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères apolaires choisis parmi les monomères apolaires (ma) de formule (I) et,
    - un bloc B consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères polaires choisis parmi les monomères polaires (mb).
  8. 8. Copolymère à blocs selon la revendication 7, dans lequel le copolymère comprend au moins une séquence de blocs AB, ABA ou BAB où lesdits blocs A et B s’enchaînent sans présence de bloc intermédiaire de nature chimique différente.
  9. 9. Copolymère à blocs selon l’une quelconque des revendications 7 et 8, dans lequel le copolymère est obtenu par polymérisation séquencée, éventuellement, suivie d’une ou plusieurs post-fonctionnalisations.
  10. 10. Copolymère selon l’une quelconque des revendications 1 à 9, dans lequel le monomère polaire (mb) est choisi parmi les monomères dérivés du styrène ou de l’alphaméthylstyrène dont le noyau aromatique est substitué par au moins un groupement -O(CO)-R’, R’ étant choisi parmi les alkyles en Ci à C24.
    ICG70096 FR texte dépôt
  11. 11. Copolymère selon l’une quelconque des revendications 1 à 9, dans lequel le monomère polaire (mb) est choisi parmi les monomères dérivés du styrène ou de l’alphaméthylstyrène dont le noyau aromatique est substitué par au moins un groupement hydroxyle ou par une chaîne hydrocarbonée en Ci à C12, linéaire ou ramifiée, de préférence acyclique, substituée par au moins un groupement hydroxyle.
  12. 12. Concentré pour carburant comprenant un ou plusieurs copolymères selon l’une quelconque des revendications 1 à 11, en mélange avec un liquide organique, ledit liquide organique étant inerte vis-à-vis du ou des copolymères et miscible audit carburant, ledit carburant étant issu d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques.
  13. 13. Composition de carburant qui comprend :
    (1) un carburant issu d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques, et (2) un ou plusieurs copolymères tels que définis dans l’une quelconque des revendications 1 à 11.
  14. 14. Composition selon la revendication 13, dans laquelle la composition de carburant comprend au moins 5 ppm de copolymère(s) (2).
  15. 15. Composition selon l’une des revendications 13 et 14, comprenant le ou les copolymères sous forme d’un concentré selon la revendication 12.
  16. 16. Utilisation d’un copolymère selon l’une quelconque des revendications 1 à 11, comme additif détergent dans un carburant liquide de moteur à combustion interne.
  17. 17. Utilisation selon la revendication 16, pour maintenir la propreté et/ou nettoyer au moins une des parties internes du moteur à combustion interne.
  18. 18. Utilisation selon l’une des revendications 16 et 17, pour limiter ou éviter la formation de dépôts dans au moins une des parties internes du moteur à combustion interne et/ou réduire les dépôts existant dans au moins une des parties internes dudit moteur.
  19. 19. Utilisation selon l’une quelconque des revendications 16 à 18, pour réduire la consommation de carburant du moteur à combustion interne.
    ICG70096 FR texte dépôt
  20. 20. Utilisation selon l’une quelconque des revendications 16 à 19, pour réduire les émissions de polluants, en particulier, les émissions de particules du moteur à combustion interne.
  21. 21. Utilisation selon l’une quelconque des revendications 16 à 20, dans laquelle le moteur à combustion interne est un moteur à allumage commandé.
  22. 22. Utilisation selon l’une quelconque des revendications 16 à 20, dans laquelle le moteur à combustion interne est un moteur Diesel, de préférence un moteur Diesel à injection directe.
  23. 23. Utilisation selon la revendication 22, pour limiter ou éviter et/ou réduire les dépôts liés au phénomène de cokage et/ou les dépôts de type savon et/ou vernis.
  24. 24. Procédé de maintien de la propreté et/ou de nettoyage d’au moins une des parties internes d’un moteur à combustion interne comprenant au moins les étapes suivantes :
    - la préparation d’une composition de carburant par additivation d’un carburant avec un ou plusieurs copolymères tels que décrits dans l’une quelconque des revendications 1 à 11 ou concentré selon la revendication 12 et,
    - la combustion de ladite composition de carburant dans ledit moteur à combustion interne.
FR1656972A 2016-07-21 2016-07-21 Copolymere et son utilisation comme additif detergent pour carburant Withdrawn FR3054223A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1656972A FR3054223A1 (fr) 2016-07-21 2016-07-21 Copolymere et son utilisation comme additif detergent pour carburant
PCT/FR2017/051974 WO2018015664A1 (fr) 2016-07-21 2017-07-20 Copolymere et son utilisation comme additif detergent pour carburant
EP17748554.7A EP3487893A1 (fr) 2016-07-21 2017-07-20 Copolymere et son utilisation comme additif detergent pour carburant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656972 2016-07-21
FR1656972A FR3054223A1 (fr) 2016-07-21 2016-07-21 Copolymere et son utilisation comme additif detergent pour carburant

Publications (1)

Publication Number Publication Date
FR3054223A1 true FR3054223A1 (fr) 2018-01-26

Family

ID=56990621

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1656972A Withdrawn FR3054223A1 (fr) 2016-07-21 2016-07-21 Copolymere et son utilisation comme additif detergent pour carburant

Country Status (3)

Country Link
EP (1) EP3487893A1 (fr)
FR (1) FR3054223A1 (fr)
WO (1) WO2018015664A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173645A (ja) * 1988-12-26 1990-07-05 Konica Corp 画像形成方法
EP0489550A1 (fr) * 1990-12-06 1992-06-10 Hoechst Celanese Corporation Procédé de préparation de polymères de 4-hydroxystyrène de polymères de 4-acétoxystyrène
JP2003286495A (ja) * 2002-01-23 2003-10-10 Sanyo Chem Ind Ltd 流動性向上剤および燃料油組成物
US20130012618A1 (en) * 2011-07-05 2013-01-10 Jsr Corporation Resin composition, polymer, cured film and electronic part
US20150183897A1 (en) * 2013-12-31 2015-07-02 Industrial Technology Research Institute Polyelectrolyte and energy storage device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048479A (en) 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US3790359A (en) 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
US3961961A (en) 1972-11-20 1976-06-08 Minnesota Mining And Manufacturing Company Positive or negative developable photosensitive composition
US4171959A (en) 1977-12-14 1979-10-23 Texaco Inc. Fuel composition containing quaternary ammonium salts of succinimides
FR2528051B1 (fr) 1982-06-08 1986-05-02 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2528423B1 (fr) 1982-06-10 1987-07-24 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2535723A1 (fr) 1982-11-09 1984-05-11 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2567536B1 (fr) 1984-07-10 1986-12-26 Inst Francais Du Petrole Compositions d'additifs destinees notamment a ameliorer les proprietes de filtrabilite a froid des distillats moyens de petrole
IN184481B (fr) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
FR2607139B1 (fr) 1986-11-21 1989-08-18 Inst Francais Du Petrole Polymeres a fonctions azotees derives de polyesters insatures et leur utilisation comme additifs d'abaissement du point d'ecoulement des distillats moyens d'hydrocarbures
FR2613371B1 (fr) 1987-04-01 1989-07-07 Inst Francais Du Petrole Copolymeres azotes, leur preparation et leur utilisation comme additifs pour ameliorer les proprietes d'ecoulement des distillats moyens d'hydrocarbures
GB9104138D0 (en) 1991-02-27 1991-04-17 Exxon Chemical Patents Inc Polymeric additives
GB9219962D0 (en) 1992-09-22 1992-11-04 Exxon Chemical Patents Inc Additives for organic liquids
GB9301119D0 (en) 1993-01-21 1993-03-10 Exxon Chemical Patents Inc Fuel composition
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
US5730029A (en) 1997-02-26 1998-03-24 The Lubrizol Corporation Esters derived from vegetable oils used as additives for fuels
JPH10237467A (ja) 1997-02-26 1998-09-08 Tonen Corp ディーゼルエンジン用燃料油組成物
FR2772784B1 (fr) 1997-12-24 2004-09-10 Elf Antar France Additif d'onctuosite pour carburant
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
PL2998384T3 (pl) 2005-06-16 2019-02-28 The Lubrizol Corporation Kompozycja paliwa do silników diesla zawierająca detergent - czwartorzędową sól amoniową
US9026267B2 (en) 2007-03-09 2015-05-05 Gordon*Howard Associates, Inc. Methods and systems of selectively enabling a vehicle by way of a portable wireless device
WO2009008252A1 (fr) * 2007-07-06 2009-01-15 Maruzen Petrochemical Co., Ltd. Copolymère tribloc aba et son procédé de fabrication
GB201007756D0 (en) 2010-05-10 2010-06-23 Innospec Ltd Composition, method and use
FR2994695B1 (fr) 2012-08-22 2015-10-16 Total Raffinage Marketing Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173645A (ja) * 1988-12-26 1990-07-05 Konica Corp 画像形成方法
EP0489550A1 (fr) * 1990-12-06 1992-06-10 Hoechst Celanese Corporation Procédé de préparation de polymères de 4-hydroxystyrène de polymères de 4-acétoxystyrène
JP2003286495A (ja) * 2002-01-23 2003-10-10 Sanyo Chem Ind Ltd 流動性向上剤および燃料油組成物
US20130012618A1 (en) * 2011-07-05 2013-01-10 Jsr Corporation Resin composition, polymer, cured film and electronic part
US20150183897A1 (en) * 2013-12-31 2015-07-02 Industrial Technology Research Institute Polyelectrolyte and energy storage device

Also Published As

Publication number Publication date
WO2018015664A1 (fr) 2018-01-25
EP3487893A1 (fr) 2019-05-29
WO2018015664A9 (fr) 2018-03-15

Similar Documents

Publication Publication Date Title
EP3350232B1 (fr) Composition de carburant comprenant un copolymere blocs comme additif detergent
FR3054225A1 (fr) Copolymere utilisable comme additif detergent pour carburant
FR3054224A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant
EP4157971B1 (fr) Composition d'additifs pour carburant moteur
EP3394226A1 (fr) Utilisation d'un additif detergent pour carburant
FR3071850A1 (fr) Composition d’additifs pour carburant
FR3041362A1 (fr) Additif detergent pour carburant
WO2017109368A1 (fr) Additif détergent pour carburant
FR3054223A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant
WO2019091950A1 (fr) Nouveau copolymère et son utilisation comme additif pour carburant
EP3350292A1 (fr) Utilisation d'un additif detergent pour carburant
FR3072095A1 (fr) Composition d'additifs pour carburant
EP4065672B1 (fr) Utilisation de diols comme additifs de détergence
FR3045657A1 (fr) Additif detergent pour carburant et copolymeres utilisables dans cette application
EP4065671B1 (fr) Utilisation de composés alkyl phénol comme additifs de détergence pour essences
FR3074499A1 (fr) Utilisation d'un copolymere particulier pour prevenir les depots sur les soupapes des moteurs a injection indirecte essence
FR3054240A1 (fr) Utilisation de copolymeres pour ameliorer les proprietes a froid de carburants ou combustibles
EP3824050A1 (fr) Nouveaux additifs pour carburant, de type sucre-amide

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20180126

PLFP Fee payment

Year of fee payment: 3

ST Notification of lapse

Effective date: 20200306