FR3042349A1 - PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE - Google Patents

PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE Download PDF

Info

Publication number
FR3042349A1
FR3042349A1 FR1502123A FR1502123A FR3042349A1 FR 3042349 A1 FR3042349 A1 FR 3042349A1 FR 1502123 A FR1502123 A FR 1502123A FR 1502123 A FR1502123 A FR 1502123A FR 3042349 A1 FR3042349 A1 FR 3042349A1
Authority
FR
France
Prior art keywords
plasmonic
solar cells
facing
filtration
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1502123A
Other languages
French (fr)
Other versions
FR3042349B1 (en
Inventor
Lionel Girardie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Athelios SARL
Original Assignee
Athelios SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Athelios SARL filed Critical Athelios SARL
Priority to FR1502123A priority Critical patent/FR3042349B1/en
Publication of FR3042349A1 publication Critical patent/FR3042349A1/en
Application granted granted Critical
Publication of FR3042349B1 publication Critical patent/FR3042349B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant caractérisé en ce qu'il comporte : - Des rangées de cellules solaires cristallines (1) interconnectées pour former une matrice (2) encapsulée entre un dioptre entrant (4) et sortant (7) dont la distance (e) séparant deux rangées est égale ou inférieure au segment d'une cellule solaire (1) - Deux filtres plasmoniques (3A) collés sur le dioptre entrant (4) et positionné en parallèle de part et d'autre d'une rangée de cellules solaires (1) dans l'intervalle (e) séparant les cellules solaires (1) d'une rangée de cellules solaires (1) dans l'intervalle (e) séparant les cellules solaires (1) et centré sur l'axe médian entre deux rangées de cellules donc 1/2 de (e) - Un filtre plasmonique (3B) collé sur le dioptre sortant (7) et positionnés en parallèle des rangées de cellules solaires (1) dans l'intervalle (e) séparant les cellules solaires (1) et centré sur l'axe médian entre deux rangées de cellules donc 1/2 de (e).A photovoltaic optical device with single rear-facing plasmonic filtration and double front-facing plasmonic filtration, characterized in that it comprises: - rows of crystalline solar cells (1) interconnected to form a matrix (2) encapsulated between an incoming dioptre (4) and outgoing (7) whose distance (e) separating two rows is equal to or smaller than the segment of a solar cell (1) - Two plasmonic filters (3A) glued on the incoming diopter (4) and positioned in parallel on both sides another of a row of solar cells (1) in the gap (e) separating the solar cells (1) from a row of solar cells (1) in the gap (e) between the solar cells (1) and centered on the median axis between two rows of cells so 1/2 of (e) - A plasmonic filter (3B) glued on the outgoing diopter (7) and positioned in parallel rows of solar cells (1) in the interval (e) separating the solar cells (1) and centered on the median axis between two rows of cells so 1/2 of (e).

Description

Dispositif optique photovoltaïque à simple filtration plasmonique face amère et double filtration plasmonique fecg ayantPhotovoltaic optical device with single binary-face plasmonic filtration and double plasmonic filtration fecg having

Introduction à l’art :Introduction to art:

La fabrication de module photovoltaïque cristallin requiert le processus suivant : nettoyage du verre ou positionnement d’un matériau à forte transparence positionnement d’un film encapsulant EVA « Ethylène Vinyle Acétate » qui est en majorité de l’éthylène vinyle acétate sur le verre ou matériau à forte transparence soudure d’un ruban de cuivre ayant une couche de protection à base d’un alliage à base d’argent, de plomb et d’étain : la température de la soudure n’excède pas 250°C et ne dure pas plus de 3 secondes par cellules solaires ayant des zones en forme de ligne collecteur de courant des métallisations de l’émetteur sur une largeur de 1,5 à 3 millimètres interconnexion de la polarité négative ‘face avant d’une cellule d’un substrat de type P à la polarité positive ‘face arrière d’une cellule d’un substrat de type P‘ par exemple disposition en rangée de cellules soudées interconnexion des rangées pour un montage en série des cellules solaires nécessitant une soudure de chaque ligne de collecteur de courant positionnement d’un film encapsulant sur la matrice de cellules positionnement d’un film arrière de protection électrique ou d’un verre ou autre matériaux isolant lamination à des fins d’encapsulation des cellules solairesThe manufacture of crystalline photovoltaic modules requires the following process: cleaning of the glass or positioning of a material with high transparency positioning of an encapsulating film EVA "Ethylene Vinyl Acetate" which is mostly ethylene vinyl acetate on the glass or material high-transparency welding of a copper ribbon having a protective layer based on an alloy based on silver, lead and tin: the temperature of the weld does not exceed 250 ° C and does not last more than 3 seconds per solar cells having current collector-like areas of the emitter metallizations over a width of 1.5 to 3 millimeters interconnection of the negative polarity front face of a cell of a substrate of type P at the positive polarity 'rear face of a cell of a P type substrate' for example row layout of welded cells row interconnection for a mounting in s solar cells requiring soldering of each current collector line positioning of a film encapsulating on the matrix of cells positioning of an electric protective backing film or glass or other lamination insulating material for encapsulation purposes solar cells

Cette technique est unilatéralement utilisée mais a des inconvénients : le matériau encapsulant EVA a une viscosité d’une grande variabilité en fonction de la température ce qui induit une pression mécanique sur l’ensemble du dispositif des cellules solaires interconnectées le matériau encapsulant EVA contenant 1% d’eau libère de l’acide acétique et du peroxyde d’hydrogène en permanence qui se retrouvent piégés dans le module photovoltaïque entraînant des corrosions, des réactions chimiques avec les surfaces des cellules solaires, des réactions chimiques avec la surface intérieure du verre et crée la corrosion du verre par la formation de halogénures qui sont des pièges d’électrons mais aussi avec le polymère utilisé en protection électrique du module le matériau EVA ayant un indice de réfraction part réelle variant entre 1,49 et 1,47 sur la bande de rayonnement solaire, ce qui correspond une réponse spectrale proche du verre blanc utilisé, à savoir que le verre ait un traitement particulier le matériau EVA étant réticulé à la surface du verre, il est très difficile de séparer par quelques techniques que ce soient le film EVA du verre et le recyclage du verre comportant l’EVA rend les matériaux constituant le verre trop pollués et donc rendent le recyclage du module non fonctionnel l’encapsulation de 60 cellules solaires sur silicium monocristallin de wafer de format pseudo carré de 156mm de côté obtenu par la méthode de croissance Czochralski, « CZ » cellule à homojonction et émetteur homogène de 18,6% de rendement entraîne les pertes suivantes : à partir d’un ruban interconnectant en série les cellules de 2mm de largeur par 0,2mm d’épaisseur et interconnectant les rangées de cellules thermo-soudées par un ruban de 5 par 0,3mm, les pertes électriques sont de 2,5% les pertes optiques sont de 1% pour un verre avec une couche de silice poreuse d’indice de réfraction variant entre 1,23 et 1,33 pour un verre de transmittance sur le spectre solaire de 93% le module cristallin de ces 60 cellules solaires de 18,6% aura un rendement de 15,85% soit 2,75% et son comportement en température sera très affecté par l’encapsulationThis technique is used unilaterally but has drawbacks: the encapsulating material EVA has a viscosity of great variability as a function of the temperature which induces a mechanical pressure on the entire device of the interconnected solar cells the encapsulating material EVA containing 1% of water releases acetic acid and hydrogen peroxide permanently trapped in the photovoltaic module causing corrosions, chemical reactions with the surfaces of solar cells, chemical reactions with the inner surface of the glass and creates the corrosion of the glass by the formation of halides which are traps of electrons but also with the polymer used in electrical protection of the module the EVA material having a refractive index real part varying between 1.49 and 1.47 on the strip of solar radiation, which corresponds to a spectral response close to the white glass used, To know that the glass has a particular treatment the EVA material being crosslinked on the surface of the glass, it is very difficult to separate by some techniques that it is the EVA film of the glass and the recycling of the glass comprising the EVA makes the materials constituting the too polluted glass and therefore make the recycling of non-functional module the encapsulation of 60 solar cells on monocrystalline wafer silicon of square-shaped format of 156mm side obtained by Czochralski growth method, "CZ" homojunction cell and homogeneous transmitter of 18.6% yield results in the following losses: from a ribbon interconnecting in series cells 2mm wide by 0.2mm thick and interconnecting the rows of heat-sealed cells with a ribbon of 5 by 0, 3mm, the electrical losses are 2.5% the optical losses are 1% for a glass with a porous silica layer of refractive index varying between 1.23 and 1.33 for a glass of transmittance on the solar spectrum of 93% the crystalline modulus of these 60 solar cells of 18.6% will have a yield of 15,85% or 2,75% and its behavior in temperature will be very affected by encapsulation

la cellule solaire de 18,6% sur silicium CZ d’orientation «1-0-0» à émetteur homogène aura un coefficient de variation de sa puissance par rapport à la température d’un facteur négatif de 0,45%/°Kelvin et le module cristallin utilisant l’EVA entre autre aura un coefficient de variation de sa puissance d’un facteur négatif de 0,51%/°K la combinaison des matériaux verres à 93% de transmittance avec l’EVA et des cellules à émetteur homogène est compatible mais l’évolution technologique des cellules à homojonction vers des émetteurs sélectifs et des passivations arrières, la réponse spectrale des cellules évoluent grandement rendant la combinaison des matériaux d’un module impropre et non efficiente le module cristallin silicium se caractérise également par le comportement optique du silicium à savoir un fort coefficient d’absorption dans les ultra-violets « UV » et une quasi transparence aux infrarouges « IR » et le comportement en fonction de la température d’un module cristallin est intimement lié à la capacité de capter la bande solaire spectrale dont les longueurs d’onde de 250 à 1300nm représentant 80% du spectrethe 18.6% solar cell on homogeneous emitter "1-0-0" CZ silicon will have a coefficient of variation of its power relative to the temperature of a negative factor of 0.45% / ° Kelvin and the crystalline modulus using EVA among others will have a coefficient of variation of its power of a negative factor of 0.51% / ° K the combination of glass materials with 93% transmittance with EVA and transmitter cells Homogeneous is compatible but the technological evolution of homojunction cells to selective emitters and back passivations, the spectral response of cells evolve greatly making the combination of materials of a module unsuitable and inefficient the crystalline silicon module is also characterized by the optical behavior of silicon, namely a high absorption coefficient in ultraviolet "UV" and near-infrared transparency "IR" and the behavior as a function of e the temperature of a crystalline module is intimately related to the ability to capture the spectral solar band whose wavelengths from 250 to 1300nm representing 80% of the spectrum

La présente invention décrit un dispositif intégré optique permettant de filtrer le spectre lumineux par trois composants pour apporter à la jonction de cellule solaire les photons aux longueurs d’onde absorbées et transmettre les longueurs d’onde utiles à des applications sous le panneau photovoltaïque et réfléchir les longueurs d’onde qui ne sont pas utiles à la production photovoltaïque.The present invention discloses an optical integrated device for filtering the light spectrum by three components to provide the solar cell junction with photons at absorbed wavelengths and to transmit wavelengths useful for applications under the photovoltaic panel and to reflect wavelengths that are not useful for photovoltaic production.

Description du dispositif optique photovoltaïque à simpk filtration plasmonique face arrière et double filtration plaspmiqm,fm amntDescription of the photovoltaic optic device with simplex plasma filtration on the back and double filtration plasminm, fm amnt

Un dispositif optique photovoltaïque à filtration plasmonique triple caractérisé selon les figures 1 et 2 en ce qu’il comporte : des rangées de cellules solaires cristallines (1) interconnectées pour former une matrice (2) encapsulée entre un dioptre entrant (4) et sortant (7) dont la distance (e) séparant deux rangées est égale ou inférieure au segment d’une cellule solaire (1)A photovoltaic optical device with triple plasmonic filtration characterized according to FIGS. 1 and 2 in that it comprises: rows of crystalline solar cells (1) interconnected to form a matrix (2) encapsulated between an incoming and outgoing diopter (4) ( 7) whose distance (e) separating two rows is equal to or less than the segment of a solar cell (1)

Deux filtres plasmoniques (3A) collés sur le dioptre entrant (4) et positionné en parallèle de part et d’autre d’une rangée de cellules solaires (1) dans l’intervalle (e) séparant les cellules solaires (1) d’une rangée de cellules solaires (1) dans l’intervalle (e) séparant les cellules solaires (1) et centré sur l’axe médian entre deux rangées de cellules donc '/2 de (e) un filtre plasmonique (3B) collé sur le dioptre sortant (7) et positionnés en parallèle des rangées de cellules solaires (1) dans l’intervalle (e) séparant les cellules solaires (1) et centré sur l’axe médian entre deux rangées de cellules donc Vz de (e)Two plasmonic filters (3A) stuck on the incoming diopter (4) and positioned in parallel on either side of a row of solar cells (1) in the gap (e) separating the solar cells (1) from a row of solar cells (1) in the gap (e) separating the solar cells (1) and centered on the median axis between two rows of cells, hence '/ 2 of (e) a plasmonic filter (3B) stuck on the outgoing diopter (7) and positioned in parallel rows of solar cells (1) in the interval (e) separating the solar cells (1) and centered on the median axis between two rows of cells so Vz de (e)

Ce dispositif optique photovoltaïque à filtration plasmonique triple selon la figure n°3 précédente caractérisé en ce que les filtres plasmoniques (3A) et (3B) comportent : un composé métallique (3’) à partir de matériaux conducteurs choisi parmi l’Argent, l’Aluminium, le Silicium, l’Or, le Chrome, le Zinc, le Cuivre, le Nickel, le Cobalt, le Lithium, le Platine des nanotubes de Carbone, de Nitrure de Bore la surface supérieure du composé métallique (3A) ou (3B) est texturée en tranchées parallèles de forme triangulaire (3”) avec une inclinaison des parois de tranchées parallèle s(3°) inférieure à 90° et de largeur de tranchée inférieure ou égale à 50micron caractérisant le pas des sillons formant les parois des tranchées le composé métallique a une face postérieure (3’”) enduite d’un matériau encapsulant choisi parmi l’éthylène vinyle acétate, les thermo-plastiques, les silicones, les acryliquesThis photovoltaic optical device with triple plasmonic filtration according to the preceding FIG. No. 3, characterized in that the plasmonic filters (3A) and (3B) comprise: a metal compound (3 ') starting from conductive materials chosen from Silver, Aluminum, Silicon, Gold, Chromium, Zinc, Copper, Nickel, Cobalt, Lithium, Platinum Carbon Nanotubes, Boron Nitride the upper surface of the metal compound (3A) or ( 3B) is textured in triangular parallel trenches (3 ") with an inclination of the parallel trench walls s (3 °) less than 90 ° and trench width less than or equal to 50 micron characterizing the pitch of the grooves forming the walls of the trenches. sliced the metal compound has a rear face (3 '") coated with an encapsulant material selected from ethylene vinyl acetate, thermoplastics, silicones, acrylics

Le dispositif optique photovoltaïque à filtration plasmonique triple selon la figure n°2 caractérisé en ce que les filtres plasmoniques (3A) et (3B) aient une longueur égale à la rangée de cellules solaires (1) et constitue une bande réfléchissante.The photovoltaic optical device with triple plasmonic filtration according to FIG. 2 characterized in that the plasmonic filters (3A) and (3B) have a length equal to the row of solar cells (1) and constitute a reflective band.

Le dispositif optique photovoltaïque à filtration plasmonique triple selon les figures 2 et 4 caractérisé en ce que la bande réfléchissante constituant le filtre plasmonique (3A) ait une largeur inférieure ou égale à 10mm par unité de bande réfléchissante.The photovoltaic optical device with triple plasmonic filtration according to FIGS. 2 and 4, characterized in that the reflective band constituting the plasmonic filter (3A) has a width of less than or equal to 10 mm per unit of reflective band.

Ce dispositif optique photovoltaïque à filtration plasmonique triple selon la figure n°2 caractérisé en ce que la bande réfléchissante constituant le filtre plasmonique (3B) ait une largeur inférieure ou égale à 10mm par unité de bande réfléchissante.This photovoltaic optical device with triple plasmonic filtration according to Figure No. 2 characterized in that the reflective band constituting the plasmonic filter (3B) has a width less than or equal to 10 mm per unit of reflective band.

Ce dispositif optique photovoltaïque à filtration plasmonique triple selon les figures 1 et 4 caractérisé en ce que l’espace libre de passage de lumière à travers le dispositif optique photovoltaïque à filtration plasmonique triple soit d’une largeur (e) entre deux rangées de cellules solaires (1) diminué de la largeur de deux bandes réfléchissantes (3A) et d’une largeur de bande réfléchissante (3B) et de la longueur de la rangée de cellules solaires (1) et inférieur ou égal à 10mm.This photovoltaic optical device with triple plasmonic filtration according to FIGS. 1 and 4, characterized in that the free space for the passage of light through the photovoltaic optical device with triple plasmonic filtration is of a width (e) between two rows of solar cells. (1) less the width of two reflective strips (3A) and a reflective bandwidth (3B) and the length of the row of solar cells (1) and less than or equal to 10mm.

Ce Dispositif optique photovoltaïque à filtration plasmonique triple caractérisé en ce que l’espace libre de passage libre de lumière à travers le dispositif optique photovoltaïque à filtration plasmonique triple ait une largeur inférieure ou égale à 10mm.This photovoltaic optical device with triple plasmonic filtration characterized in that the free space of free passage of light through the photovoltaic optical device with triple plasmonic filtration has a width less than or equal to 10mm.

Ce dispositif optique photovoltaïque à filtration plasmonique triple selon les figures 1 et 4 caractérisé en ce que le filtre plasmonique (3A) par sa face supérieure texturé (3”) soit orientée vers la face supérieure active de cellules solaires (1) et soit encapsulé entre la face supérieure de la matrice (2) de cellules solaires (1) et le dioptre entrant (4) par un matériau encapsulant (5) choisi parmi l’éthylène vinyle acétate, les thermo-plastiques, les silicones, les acryliques.This photovoltaic optical device with triple plasmonic filtration according to Figures 1 and 4 characterized in that the plasmonic filter (3A) by its textured upper face (3 ") is oriented towards the active upper face of solar cells (1) and is encapsulated between the upper face of the matrix (2) of solar cells (1) and the incoming dioptre (4) by an encapsulating material (5) selected from ethylene vinyl acetate, thermoplastics, silicones, acrylics.

Ce dispositif optique photovoltaïque à filtration plasmonique triple selon les figures 1 et 4 caractérisé en ce que le filtre plasmonique (3B) par sa face supérieure texturé (3”) soit orientée vers la face inférieure de cellules solaires (1) et soit encapsulé entre la face inférieure de la matrice (2) de cellules solaires (1) et le dioptre sortant (7) par un matériau encapsulant (6) choisi parmi l’éthylène vinyle acétate, les thermo-plastiques, les silicones, les acryliques.This photovoltaic optical device with triple plasmonic filtration according to Figures 1 and 4 characterized in that the plasmonic filter (3B) by its textured upper face (3 ") is oriented towards the underside of solar cells (1) and is encapsulated between the lower face of the matrix (2) of solar cells (1) and the outgoing diopter (7) by an encapsulating material (6) selected from ethylene vinyl acetate, thermoplastics, silicones, acrylics.

Le dispositif optique photovoltaïque à filtration plasmonique triple selon la figure n°4 caractérisé en ce que la bande réfléchissante constituant le filtre plasmonique (3A) ait une largeur inférieure ou égale à 2/5 de la largeur de la bande réfléchissante constituant le filtre plasmonique (3B) et que l’axe médian du filtre plasmonique (3A) ait une distance de l’axe médian du filtre plasmonique (3B) inférieure ou égale à 1/2 de (e) distance séparant deux rangées de cellules (1) de telle sorte que l’espace libre de passage de lumière est inférieure ou égale à la largeur d’un filtre (3A).The photovoltaic optical device with triple plasmonic filtration according to FIG. 4, characterized in that the reflective band constituting the plasmonic filter (3A) has a width less than or equal to 2/5 of the width of the reflective band constituting the plasmonic filter ( 3B) and that the median axis of the plasmonic filter (3A) has a distance from the median axis of the plasmonic filter (3B) less than or equal to 1/2 of (e) distance separating two rows of cells (1) of such so that the free space of passage of light is less than or equal to the width of a filter (3A).

Un excemple de construction d’un tel dispositif photovoltaïque se compose de : - une matrice de cellules solaires formée sur silicium monocristallin de type N bifaciales dont les dimensions du substrat pseudo-carrés sont 156x156mm pour un rayon de lingot de 200mm : la cellule solaire a une efficacité de conversion de 20% minimum pour une puissance maximale de 4,78Watt, interconnectée par un ruban enrobé colle conductrice d’une résine de silicone et de cuivre et nano-fils de cuivre sans plomb : la matrice (2) est constituée de 6 rangées de 10 cellules solaires la matrice est organisée pour avoir 16mm d’espace (e) entre les rangées de cellules connectées en série - dioptre entrant (4) est un verre solaire imprimé trempé thermiquement de silicate à transmission de 96% sur le spetre solaire 1.5AM d’épaisseur de 2,6mm sur lequel est positionné les bandes réfléchissantes constituant le filtre plasmonique (3A). - la bande réfléchissante (3A) d’une largeur de 3,5mm est positionnée par un robot selon les axes X, Y pour être placée sur le verre dans l’intervalle entre deux rangées de la matrice (2) de cellules (1) à 70mm du bord de cellules (1) avec la face supérieure texturée (3”) orientée vers la face supérieure des cellules solaires et il ne peut y avoir de court-circuit étant donné que l’encapsulant (6) est un silicone liquide d’une viscosité dynamique de 30Pa.s est appliqué par lamination liquide afin d’encapsuler la face inférieure de la matrice (2) et du filtre plasmonique (3) avec le dioptre entrant (4) - la matrice (2) formée est encapsulée par sa face avant soumis en radiation solaire directe par un encapsulant (5) de silicone liquide transparent aux UV laminé par une lamination liquide - le dioptre sortant (7) est un verre solaire imprimé d’épaisseur de 2mm de silicate à trempe de durcissement ayant deux découpes par polissage du bord du verre pour l’extraction des câbles de polarité de la matrice (2) sur lequel est positionné les bandes réfléchissantes constituant le filtre plasmonique (3B). - le filtre plasmonique (3B) ou (3A) est un composé d’aluminium d’épaisseur de lOOmicron, dont les sillons sont formés sous presse afin de former une texturation de surface en tranchées d’un pas de 20mtcron et dont les parois forment un angle de 60° et dont l’interface (3’”) est une couche produite par évaporation de SiOx et de résine de silicone - la bande réfléchissante (3B) d’une largeur de 9mm sont positionnés par un robot selon les axes X, Y pour être placées sur le verre dans l’intervalle entre deux rangées de la matrice (2) de cellules (1) avec la face supérieure texturée (3”) orientée vers la face inférieure des cellules solaires et il ne peut y avoir de court-circuit étant donné que l’encapsulant (6) est vin silicone liquide d’une viscosité dynamique de 30Pa.s est appliqué par lamination liquide afin d’encapsuler la face inférieure de la matrice (2) et du filtre plasmonique (3) avec le dioptre sortantAn example of construction of such a photovoltaic device consists of: a matrix of solar cells formed on monocrystalline silicon type N bifacial whose dimensions of the pseudo-square substrate are 156x156mm for a radius of 200mm ingot: the solar cell has a conversion efficiency of at least 20% for a maximum power of 4.78 Watt, interconnected by a conductive tape coated with a silicone resin and copper and lead-free copper nano-wires: the matrix (2) consists of 6 rows of 10 solar cells the matrix is organized to have 16mm of space (e) between rows of cells connected in series - dioptre incoming (4) is a thermally tempered solar silicate printed glass with transmission of 96% on the speter solar panel 1.5AM of thickness of 2.6mm on which is positioned the reflective strips constituting the plasmonic filter (3A). - the reflective strip (3A) with a width of 3.5 mm is positioned by a robot along the X, Y axes to be placed on the glass in the interval between two rows of the matrix (2) of cells (1) at 70mm from the cell edge (1) with the textured upper face (3 ") facing towards the upper face of the solar cells and there can be no short circuit since the encapsulant (6) is a liquid silicone d a dynamic viscosity of 30Pa.s is applied by liquid lamination in order to encapsulate the lower face of the matrix (2) and the plasmonic filter (3) with the incoming diopter (4) - the matrix (2) formed is encapsulated by its front face subjected to direct solar radiation by an encapsulant (5) of liquid silicone UV laminated by a liquid lamination - the outgoing diopter (7) is a printed 2mm thick solar glass of hardening quenching silicate having two cut by polishing the edge of the glass for the extraction of the polarity cables from the matrix (2) on which the reflective strips constituting the plasmonic filter (3B) are positioned. the plasmonic filter (3B) or (3A) is an aluminum compound with a thickness of 100 μm, the grooves of which are formed in a press in order to form a surface texturing in trenches with a pitch of 20 μm and whose walls form an angle of 60 ° and whose interface (3 '") is a layer produced by evaporation of SiOx and silicone resin - the reflective band (3B) with a width of 9mm are positioned by a robot along the X axes , Y to be placed on the glass in the interval between two rows of the matrix (2) of cells (1) with the textured upper face (3 ") facing the underside of the solar cells and there can be no short circuit since the encapsulant (6) is liquid silicone wine with a dynamic viscosity of 30Pa.s is applied by liquid lamination in order to encapsulate the lower face of the matrix (2) and the plasmonic filter (3) with the outgoing diopter

COCO

Un tel dispositif optique photovoltaïque à double filtre plasmonique arrière a une puissance lors du test d’insolation sous condition standard de 345Watt pour seulement 60 cellules solaires de 4,78W et il est parfaitement adapté à des cellules à passivation et émetteur arrière sur silicium cristallin dopé au phosphore.Such a photovoltaic optical device with a double rear plasmon filter has a power during the standard condition irradiation test of 345Watt for only 60 solar cells of 4.78W and it is perfectly adapted to passivation cells and rear transmitter on doped crystalline silicon. phosphorus.

Cette invention permet la réalisation d’une augmentation de la puissance d’un module photovoltaïque à fotre transparence par une faible densité de matrice de cellules solaires par une filtration plasmonique qui n’est pas sensible au photo vieillissement par la combinaison des matériaux intégrés : la géométrie du filtre est adaptée en fonction de la réponse spectrale de la cellule solaire et correspond à la réflexion de longueurs d’ondes entre 300 et 900nm : cette fonctionnalité a un intérêt économique par le gain de puissance et la réponse spectrale utilisant la face arrière d’une cellule solaire trifaciale sans avoir de support réflectif ou d’un sol ou support à l’Albédo correspond. L’utilisation de la face arrière de la cellule rend le module photovoltaïque bifacial quelque soit l’angle incident du rayonnement solaire et permet une réponse spectrale de la face arrière maîtrisée à savoir que les filtres plasmoniques permettent le piégeage photonique et les nombreuses réflexions vers la face amère sous des angles faibles ou sous un angle normal assure un courant augmenté de la face amère de 25 à 35% constamment ce qui évite les sauts de courant du générateur photovoltaïque et donc de réduire les pertes électriques et les déphasages par ce lissage de la réponse spectrale de la face amère d’un module bifacial photovoltaïque.This invention allows the realization of an increase in the power of a photovoltaic module fotre transparency by a low density of solar cell matrix by a plasmonic filtration which is not sensitive to photo aging by the combination of integrated materials: the geometry of the filter is adapted according to the spectral response of the solar cell and corresponds to the reflection of wavelengths between 300 and 900 nm: this feature has an economic interest by the power gain and the spectral response using the back side of the solar cell. a trifacial solar cell without having a reflective support or a ground or support to the Albedo corresponds. The use of the rear face of the cell makes the photovoltaic module bifacial whatever the incident angle of the solar radiation and allows a spectral response of the rear face controlled that plasmonic filters allow photonic trapping and the many reflections to the bitter side at low angles or at a normal angle ensures an increased current of the bitter face of 25 to 35% constantly which avoids the current jumps of the photovoltaic generator and thus reduce the electrical losses and phase shifts by this smoothing of the spectral response of the bitter face of a photovoltaic bifacial module.

Claims (3)

REVENDICATIONS 1 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant caractérisé en ce qu’il comporte : Des rangées de cellules solaires cristallines (1) interconnectées pour former une matrice (2) encapsulée entre un dioptre entrant (4) et sortant (7) dont la distance (e) séparant deux rangées est égale ou inférieure au segment d’une cellule solaire (1) Deux filtres plasmoniques (3A) collés sur le dioptre entrant (4) et positionné en parallèle de part et d’autre d’une rangée de cellules solaires (1) dans l’intervalle (e) séparant les cellules solaires (1) d’une rangée de cellules solaires (1) dans l’intervalle (e) séparant les cellules solaires (1) et centré sur l’axe médian entre deux rangées de cellules donc V2 de (e) Un filtre plasmonique (3B) collé sur le dioptre sortant (7) et positionnés en parallèle des rangées de cellules solaires (1) dans l’intervalle (e) séparant les cellules solaires (1) et centré sur l’axe médian entre deux rangées de cellules donc V2 de (e). 2 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication n°l caractérisé en ce que les filtres plasmoniques (3A) et (3B) comportent : un composé métallique (3”) à partir de matériaux conducteurs choisi parmi l’Argent, l’Aluminium, le Silicium, l’Or, le Chrome, le Zinc, le Cuivre, le Nickel, le Cobalt, le Lithium, le Platine des nanotubes de Carbone, de Nitrure de Bore la surface supérieure du composé métallique (3A) ou (3B) est texturée en tranchées parallèles de forme triangulaire (3”) avec une inclinaison des parois de tranchées parallèles (3°) inférieure à 90° et de largeur de tranchée inférieure ou égale à 50micron caractérisant le pas des sillons formant les parois des tranchées 3 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication précédente caractérisé en ce que face postérieure (3’”) des filtres plasmoniques (3A) et (3B) soit enduite d’un matériau encapsulant choisi parmi l’éthylène vinyle acétate, les thermo-plastiques, les silicones, les acryliques 4 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication n°l caractérisé en ce que les filtres plasmoniques (3A) et (3B) aient une longueur égale à la rangée de cellules solaires (1) et constitue une bande réfléchissante. 5 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication n°l caractérisé en ce que la bande réfléchissante constituant le filtre plasmonique (3A) ait une largeur inférieure ou égale à 10 mm par unité de bande réfléchissante. 6 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication n°l caractérisé en ce que la bande réfléchissante constituant le filtre plasmonique (3B) ait une largeur inférieure ou égale à 10mm par unité de bande réfléchissante. 7 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon les revendications n°l, 5, 6 caractérisé en ce que l’espace libre de passage de lumière à travers le dispositif optique photovoltaïque à filtration plasmonique triple soit d’une largeur (e) entre deux rangées de cellules solaires (1) diminué de la largeur de deux bandes réfléchissantes (3A) et d’une largeur de bande réfléchissante (3B) et de la longueur de la rangée de cellules solaires (1) et inférieur ou égal à 10mm.CLAIMS 1 - Photovoltaic optical apparatus with single rear-facing plasmonic filtration and double front-facing plasmonic filtration, characterized in that it comprises: rows of crystalline solar cells (1) interconnected to form a matrix (2) encapsulated between an incoming diopter (4); ) and outgoing (7) whose distance (e) separating two rows is equal to or smaller than the segment of a solar cell (1) Two plasmonic filters (3A) glued on the incoming diopter (4) and positioned in parallel on the one hand and other than a row of solar cells (1) in the gap (e) separating the solar cells (1) from a row of solar cells (1) in the gap (e) separating the solar cells (1) ) and centered on the median axis between two rows of cells so V2 of (e) A plasmonic filter (3B) glued on the outgoing diopter (7) and positioned in parallel rows of solar cells (1) in the interval ( e) parant solar cells (1) and centered on the median axis between two rows of cells so V2 of (e). 2 - Photovoltaic optical device with single rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claim 1, characterized in that the plasmonic filters (3A) and (3B) comprise: a metal compound (3 ") from materials Conductors selected from Silver, Aluminum, Silicon, Gold, Chrome, Zinc, Copper, Nickel, Cobalt, Lithium, Platinum Carbon Nanotubes, Boron Nitride the upper surface of the metal compound (3A) or (3B) is textured into triangular parallel trenches (3 ") with a parallel trench wall inclination (3 °) of less than 90 ° and a trench width of less than or equal to 50 micron characterizing the not trenches forming the walls of the trenches 3 - Photovoltaic optical device with single plasmonic filtration rear face and double plasmonic filtration front face according to the preceding claim erised in that posterior face (3 '") of the plasmonic filters (3A) and (3B) is coated with an encapsulant material selected from ethylene vinyl acetate, thermoplastics, silicones, acrylics 4 - Optical device a photovoltaic system with a single face-mounted plasmonic single filtration and double front-facing plasmonic filtration according to claim 1, characterized in that the plasmonic filters (3A) and (3B) have a length equal to the row of solar cells (1) and constitutes a band reflective. 5 - Photovoltaic optical device with single rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claim 1, characterized in that the reflective band constituting the plasmonic filter (3A) has a width of less than or equal to 10 mm per band unit. reflective. 6 - Photovoltaic optical device with single rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claim 1, characterized in that the reflective band constituting the plasmonic filter (3B) has a width of less than or equal to 10 mm per unit of reflective band. . 7 - Photovoltaic optical device with simple rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claims 1, 5, 6, characterized in that the free space for the passage of light through the photovoltaic optical device with triple plasmonic filtration is a width (e) between two rows of solar cells (1) minus the width of two reflective strips (3A) and a reflective bandwidth (3B) and the length of the row of solar cells (1) ) and less than or equal to 10mm. 8 - Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication n°l caractérisé en ce que le filtre plasmonique (3A) par sa face supérieure texturé (3”) soit orientée vers la face supérieure active de cellules solaires (1) et soit encapsulé entre la face supérieure de la matrice (2) de cellules solaires (1) et le dioptre entrant (4) par un matériau encapsulant (5) choisi parmi l’éthylène vinyle acétate, les thermo-plastiques, les silicones, les acryliques.8 - Photovoltaic optical apparatus with single rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claim 1, characterized in that the plasmonic filter (3A) by its textured upper surface (3 ") is oriented towards the active upper face of solar cells (1) and is encapsulated between the upper face of the matrix (2) of solar cells (1) and the incoming diopter (4) by an encapsulating material (5) selected from ethylene vinyl acetate, thermoplastics , silicones, acrylics. 9 - Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon la revendication n°l caractérisé en ce que le filtre plasmonique (3B) par sa face supérieure texturé (3”) soit orientée vers la face inférieure de cellules solaires (1) et soit encapsulé entre la face inférieure de la matrice (2) de cellules solaires (1) et le dioptre sortant (7) par un matériau encapsulant (6) choisi parmi l’éthylène vinyle acétate, les thermo-plastiques, les silicones, les acryliques. 10 — Dispositif optique photovoltaïque à simple filtration plasmonique face arrière et double filtration plasmonique face avant selon les revendications n°l, 5, 6, 7 caractérisé en ce que la bande réfléchissante constituant le filtre plasmonique (3A) ait une largeur inférieure ou égale à 2/5 de la largeur de la bande réfléchissante constituant le filtre plasmonique (3B) et que l’axe médian du filtre plasmonique (3A) ait une distance de l’axe médian du filtre plasmonique (3B) inférieure ou égale à 1/2 de (e) distance séparant deux rangées de cellules (1) de telle sorte que l’espace libre de passage de lumière est inférieure ou égale à la largeur d’un filtre (3A).9 - Photovoltaic optical apparatus with single rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claim 1, characterized in that the plasmonic filter (3B) with its textured upper surface (3 ") is oriented towards the lower face of cells. solar cells (1) and is encapsulated between the underside of the matrix (2) of solar cells (1) and the outgoing diopter (7) by an encapsulating material (6) selected from ethylene vinyl acetate, thermoplastics, silicones, acrylics. 10 - Photovoltaic optical device with single rear-facing plasmonic filtration and double front-facing plasmonic filtration according to claims 1, 5, 6, 7 characterized in that the reflective band constituting the plasmonic filter (3A) has a width less than or equal to 2/5 of the width of the reflective band constituting the plasmonic filter (3B) and that the median axis of the plasmonic filter (3A) has a distance from the median axis of the plasmonic filter (3B) less than or equal to 1/2 of (e) the distance separating two rows of cells (1) so that the free space of light passage is less than or equal to the width of a filter (3A).
FR1502123A 2015-10-08 2015-10-08 PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE Expired - Fee Related FR3042349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1502123A FR3042349B1 (en) 2015-10-08 2015-10-08 PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502123 2015-10-08
FR1502123A FR3042349B1 (en) 2015-10-08 2015-10-08 PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE

Publications (2)

Publication Number Publication Date
FR3042349A1 true FR3042349A1 (en) 2017-04-14
FR3042349B1 FR3042349B1 (en) 2018-03-16

Family

ID=55178006

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1502123A Expired - Fee Related FR3042349B1 (en) 2015-10-08 2015-10-08 PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE

Country Status (1)

Country Link
FR (1) FR3042349B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449504A (en) * 2007-05-25 2008-11-26 Renewable Energy Corp Asa Photovoltaic module with reflective V-grooves
DE102008004771A1 (en) * 2007-09-27 2009-04-16 Leonhard Kurz Stiftung & Co. Kg Solar cell, particularly flexible solar cell, has light deflecting structure, light guiding structure and front side provided as light incident side and laminar body with one or multiple transparent or semitransparent layers
WO2012164814A1 (en) * 2011-05-27 2012-12-06 三洋電機株式会社 Solar cell module
US20130298965A1 (en) * 2012-05-14 2013-11-14 Au Optronics Corporation Solar module and fabricating method thereof
US20130312811A1 (en) * 2012-05-02 2013-11-28 Prism Solar Technologies Incorporated Non-latitude and vertically mounted solar energy concentrators
WO2014066265A1 (en) * 2012-10-25 2014-05-01 Sunpower Corporation Bifacial solar cell module with backside reflector
DE102013001363A1 (en) * 2013-01-28 2014-07-31 Vincenzo Gabriele Curto Reflection surface device for photovoltaic systems
DE202015102238U1 (en) * 2015-05-04 2015-06-01 Solarworld Innovations Gmbh Photovoltaic cell and photovoltaic module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449504A (en) * 2007-05-25 2008-11-26 Renewable Energy Corp Asa Photovoltaic module with reflective V-grooves
DE102008004771A1 (en) * 2007-09-27 2009-04-16 Leonhard Kurz Stiftung & Co. Kg Solar cell, particularly flexible solar cell, has light deflecting structure, light guiding structure and front side provided as light incident side and laminar body with one or multiple transparent or semitransparent layers
WO2012164814A1 (en) * 2011-05-27 2012-12-06 三洋電機株式会社 Solar cell module
US20130312811A1 (en) * 2012-05-02 2013-11-28 Prism Solar Technologies Incorporated Non-latitude and vertically mounted solar energy concentrators
US20130298965A1 (en) * 2012-05-14 2013-11-14 Au Optronics Corporation Solar module and fabricating method thereof
WO2014066265A1 (en) * 2012-10-25 2014-05-01 Sunpower Corporation Bifacial solar cell module with backside reflector
DE102013001363A1 (en) * 2013-01-28 2014-07-31 Vincenzo Gabriele Curto Reflection surface device for photovoltaic systems
DE202015102238U1 (en) * 2015-05-04 2015-06-01 Solarworld Innovations Gmbh Photovoltaic cell and photovoltaic module

Also Published As

Publication number Publication date
FR3042349B1 (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP5328363B2 (en) Method for manufacturing solar cell element and solar cell element
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
FR3042350A1 (en) PHOTONIC NON-ENCAPSULATED PHOTOVOLTAIC YIELD INCREASING DEVICE
FR3042353A1 (en) OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE
JP2007035914A (en) Thin film photoelectric converter
FR3042333A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH DOUBLE FILTRATION PLASMONIC REAR SIDE AND SIMPLE PLASMONIC FILTRATION FRONT PANEL
FR3042342A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMONIC FILTRATION AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONVEX AND DOUBLE CONCAVE LOCALLY
FR3042346A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMON FILTRATION AND VARIABLE MULTIREFRIGENCE WITH LOCAL CONCAVE DICHROIC MIRROR
FR3042336A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH VARIABLE DICHROIC FILTRATION WITH SINGLE CONCAVE DICHROIC MIRROR AND DOUBLE CONVEX LOCALLY
FR3042337A1 (en) VARIALBLE DICHROIC FILTRATION PHOTOVOLTAIC OPTICAL DEVICE WITH LOCAL CONVEX DICHROIC MIRROR
FR3042349A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH SINGLE PLASMONIC FILTRATION BACK SIDE AND DOUBLE PLASMONIC FILTRATION FRONT SIDE
TW201304158A (en) Photovoltaic device and method for scribing a photovoltaic device
FR3042338A1 (en) VARIABLE DICHROIC FILTRATION PHOTOVOLTAIC OPTICAL DEVICE WITH LOCAL CONCAVE DICHROIC MIRROR
FR3042348A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH DEDOUBLE PLASMON FILTRATION
FR3042347A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMON FILTRATION
FR2957952A1 (en) HIGHLY GALBE PHOTOVOLTAIC ELEMENT
FR3038140A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH TRIPLE PLASMON FILTRATION
FR3042354A1 (en) OPTICAL DEVICE REPORTED ON A PHOTOVOLTAIC MODULE WITH A CONVEX CENTER DICHROIC MIRROR AND A DISSYMMETRIC CONCAVE
FR3042345A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMON FILTRATION AND VARIABLE MULTIREFRINGENCE WITH LOCAL CONVEX DICHROIC MIRROR
FR3038135A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH FRONTAL PLASMON FILTRATION AND VARIABLE MULTIREFRINGENCE WITH LOCAL TEXTURATION
FR3038142A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMONIC FILTRATION SIMPLE REAR
FR3038141A1 (en) OPTICAL PHOTOVOLTAIC DEVICE WITH DOUBLE BACK PLASMONIC FILTRATION
FR3038138A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH FRONTAL PLASMON FILTRATION AND TOTAL REVERSE VARIABLE MULTIREFRINGENCE
FR3038139A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMON FILTRATION AND TOTAL REVERSE VARIABLE MULTIREFRINGENCE
FR3042334A1 (en) PHOTONIC ENCAPSULE FOR PHOTOVOLTAIC YIELD INCREASE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20170414

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 7

ST Notification of lapse

Effective date: 20230606