FR3037441A1 - PHOTOVOLTAIC MODULE AND METHOD FOR INTERCONNECTING PHOTOVOLTAIC CELLS TO MANUFACTURE SUCH A MODULE - Google Patents

PHOTOVOLTAIC MODULE AND METHOD FOR INTERCONNECTING PHOTOVOLTAIC CELLS TO MANUFACTURE SUCH A MODULE Download PDF

Info

Publication number
FR3037441A1
FR3037441A1 FR1555277A FR1555277A FR3037441A1 FR 3037441 A1 FR3037441 A1 FR 3037441A1 FR 1555277 A FR1555277 A FR 1555277A FR 1555277 A FR1555277 A FR 1555277A FR 3037441 A1 FR3037441 A1 FR 3037441A1
Authority
FR
France
Prior art keywords
cell
edge
wires
module according
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1555277A
Other languages
French (fr)
Other versions
FR3037441B1 (en
Inventor
Armand Bettinelli
Benjamin Novel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR1555277A priority Critical patent/FR3037441B1/en
Priority to PCT/FR2016/051395 priority patent/WO2016198797A1/en
Priority to TW105118380A priority patent/TW201709542A/en
Publication of FR3037441A1 publication Critical patent/FR3037441A1/en
Application granted granted Critical
Publication of FR3037441B1 publication Critical patent/FR3037441B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

L'invention concerne un module photovoltaïque comprenant au moins deux cellules photovoltaïques, dans lequel deux cellules (1, 2) adjacentes sont connectées par une nappe (30) de fils (3) électriquement conducteurs reliant électriquement une structure de contact (10) agencée sur une première face principale (1A), dite face avant, d'une première cellule (1) et une structure de contact (21) agencée sur une seconde face principale (2B), dite face arrière, de la seconde cellule (2) du côté opposé à la première face (1A), lesdits fils (3) étant rendus solidaires les uns des autres au moins localement par un film support, caractérisé en ce que lesdits fils électriquement conducteurs présentent un diamètre inférieur ou égal à 175 µm et en ce qu'un premier film protecteur est interposé entre les fils électriquement conducteurs (3) et un bord (1C) de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils (3) et un bord (2C) de la face arrière de la seconde cellule.The invention relates to a photovoltaic module comprising at least two photovoltaic cells, in which two adjacent cells (1, 2) are connected by a layer (30) of electrically conductive wires (3) electrically connecting a contact structure (10) arranged on a first main face (1A), said front face, of a first cell (1) and a contact structure (21) arranged on a second main face (2B), called the rear face, of the second cell (2) of the opposite side to the first face (1A), said wires (3) being secured to each other at least locally by a support film, characterized in that said electrically conductive wires have a diameter of less than or equal to 175 microns and in that a first protective film is interposed between the electrically conductive wires (3) and an edge (1C) of the front face of the first cell and a second protective film is interposed between said wires (3) and an edge (2C ) of the rear face of the second cell.

Description

1 MODULE PHOTOVOLTAIQUE ET PROCEDE D'INTERCONNEXION DE CELLULES PHOTOVOLTAIQUES POUR FABRIQUER UN TEL MODULE DOMAINE DE L'INVENTION La présente invention concerne un module photovoltaïque et un procédé d'interconnexion de cellules photovoltaïques pour fabriquer un tel module. ARRIERE PLAN DE L'INVENTION Le développement du photovoltaïque est en plein essor.FIELD OF THE INVENTION The present invention relates to a photovoltaic module and a method for interconnecting photovoltaic cells for manufacturing such a module. BACKGROUND OF THE INVENTION Photovoltaic development is booming.

D'importantes évolutions ont été réalisées dans le domaine des cellules à base de silicium, permettant d'augmenter fortement les rendements. En revanche, les modules photovoltaïques, qui sont formés de plusieurs cellules photovoltaïques interconnectées électriquement, ont connu moins de progrès. Dans les modules mis en oeuvre à ce jour, les cellules photovoltaïques sont interconnectées par des rubans de cuivre (en général, trois rubans de cuivre de 1,5 mm de large et de 0,20 à 0,25 mm d'épaisseur pour des cellules de 156 mm de côté). Avec ces cellules de 156 mm, le format de module le plus courant utilise 60 cellules par module, constitués de 6 rangées de 10 cellules, toutes ces cellules étant en série. Ainsi la tension électrique du module est environ 60 fois celle d'une cellule unitaire. Avec une cellule présentant une tension de circuit ouvert (Voc) de 0,65V, on obtient donc un module présentant une tension Voc de l'ordre de 39 volts. Le courant électrique produit par le module correspond environ au courant produit par chaque cellule unitaire (limité par le courant de la cellule la moins performante du module). Les progrès apportés aux procédés des cellules font que des courants supérieurs à 9A circulent dans les modules.Important developments have been made in the field of silicon-based cells, making it possible to greatly increase the yields. On the other hand, photovoltaic modules, which consist of several electrically interconnected photovoltaic cells, have seen less progress. In the modules implemented to date, the photovoltaic cells are interconnected by copper ribbons (generally three copper ribbons 1.5 mm wide and 0.20 to 0.25 mm thick for cells of 156 mm side). With these 156 mm cells, the most common module format uses 60 cells per module, consisting of 6 rows of 10 cells, all of these cells being in series. Thus the electrical voltage of the module is about 60 times that of a unit cell. With a cell having an open circuit voltage (Voc) of 0.65V, a module having a voltage Voc of the order of 39 volts is thus obtained. The electric current produced by the module corresponds approximately to the current produced by each unit cell (limited by the current of the least efficient cell of the module). Advances in cell processes cause currents greater than 9A to flow through the modules.

Ce courant électrique circule d'une cellule à l'autre par les interconnexions. A cet effet, les cellules sont métallisées pour former une structure de contact comprenant typiquement un motif en H composé d'une pluralité de doigts métalliques de collecte (généralement 60 à 100 doigts), étroits (largeur inférieure à 100 pm), et de bus perpendiculaires auxdits doigts (généralement 3 bus par cellule de 156 mm), larges (souvent de l'ordre de 1,5 mm). Augmenter la section des rubans de cuivre permet de limiter les pertes résistives entre cellules mais génère des contraintes mécaniques en raison d'une dilatation différentielle entre le cuivre et le silicium, ce qui peut altérer la fiabilité des modules. Augmenter le nombre de rubans (et de bus) sur la cellule, par exemple pour passer de 3 à 4, permet de limiter les pertes résistives mais en augmentant la complexité et le coût des équipements utilisés pour réaliser ces interconnexions. An niveau des installations photovoltaïques, les pertes résistives associées à ces courants élevés produits par les modules existent aussi dans les connectiques entre 3037441 2 modules, ce qui oblige à utiliser de fortes sections de cuivre pour relier les modules, ce qui se révèle particulièrement coûteux. Enfin, le fait de disposer de moins de 40V par module est aussi pénalisant. Pour toutes ces raisons il semble intéressant de s'intéresser à des modules dits 5 « haute tension », c'est-à-dire produisant directement des tensions nettement plus élevées que les modules conventionnels, par exemple des tensions supérieures à celles utilisées sur le réseau électrique, notamment supérieures à 300V. A cet égard, il est possible d'augmenter la tension d'un module photovoltaïque en utilisant les technologies des cellules actuelles, en produisant les substrats de silicium de 10 156 mm de façon classique mais en y découpant plusieurs cellules. Il convient à cet effet d'adapter le motif de métallisation pour éviter des métallisations dans les zones de découpe, notamment si la séparation des cellules se fait par clivage sur un sillon réalisé au laser. A titre d'exemple, en clivant un substrat de silicium de 156 x 156 mm en trois dans 15 les deux directions on peut en tirer neuf cellules de format 52 x 52 mm. En séparant de 2,5 mm les cellules dans le module, on peut ainsi placer 17 x 29 = 493 cellules de format 52 x 52 mm au lieu de 6 x 10 = 60 cellules de 156 x 156 mm, montant ainsi le voltage du module au-delà de 300V. Si l'on souhaite un voltage encore supérieur, on peut par exemple tirer 4 x 4 = 16 20 cellules d'un substrat de silicium de 156 mm de côté, ce qui permet de mettre en série 23 x 38 = 874 cellules de format 39 x 39 mm, montant le voltage du module au-delà de 500V. On peut ajuster la tension souhaitée en réalisant des cellules d'autres tailles, notamment des formats rectangulaires. Comme expliqué plus haut, la technologie d'interconnexion généralement utilisée 25 pour relier les cellules dans les modules est la soudure de rubans de cuivre. Dans le cas où le substrat de silicium de 156 mm de côté a été découpé en 3 ou en 4 cellules dans une direction, on peut se contenter d'un seul ruban par cellule de largeur réduite. Cependant, du fait que la cellule est de taille réduite dans les 2 sens, le courant qui en est extrait n'est pas 3 ou 4 fois plus faible mais 9 ou 16 fois plus faible qu'avec une cellule de 30 156 mm de côté. Ceci permet de réduire notablement la section des rubans. S'il est possible de réduire l'épaisseur des rubans, on préférera utiliser des rubans de cuivre plus étroits afin de réduire l'ombrage. Cependant, la largeur minimale des rubans est limitée à environ 0,8 mm, d'une part par manque de disponibilité de rubans plus étroits et d'autre part parce que la soudure de tels rubans plus étroits deviendrait complexe en termes 35 d'alignement, de soudabilité et d'adhésion des rubans. Les technologies d'interconnexion classiques par rubans ne sont donc pas bien adaptées aux modules photovoltaïques haute tension.This electric current flows from one cell to another through the interconnections. For this purpose, the cells are metallized to form a contact structure typically comprising an H-pattern composed of a plurality of metal collecting fingers (generally 60 to 100 fingers), narrow (width less than 100 μm), and bus perpendicular to said fingers (generally 3 buses per cell of 156 mm), wide (often of the order of 1.5 mm). Increasing the section of the copper ribbons makes it possible to limit the resistive losses between cells but generates mechanical stresses due to a differential expansion between the copper and the silicon, which can alter the reliability of the modules. Increasing the number of ribbons (and buses) on the cell, for example to go from 3 to 4, makes it possible to limit the resistive losses but by increasing the complexity and the cost of the equipment used to make these interconnections. At the level of photovoltaic installations, the resistive losses associated with these high currents produced by the modules also exist in the connections between 3037441 2 modules, which makes it necessary to use strong sections of copper to connect the modules, which proves to be particularly expensive. Finally, having less than 40V per module is also penalizing. For all these reasons it seems interesting to be interested in so-called "high voltage" modules, that is to say directly producing voltages much higher than the conventional modules, for example voltages higher than those used on the electrical network, especially greater than 300V. In this regard, it is possible to increase the voltage of a photovoltaic module using current cell technologies, by producing the silicon substrates of 1066 mm in a conventional manner but by cutting out several cells therein. It is appropriate for this purpose to adapt the metallization pattern to avoid metallization in the cutting areas, especially if the separation of cells is by cleavage on a groove made by laser. By way of example, by cleaving a silicon substrate of 156 x 156 mm in three in both directions, nine 52 x 52 mm format cells can be produced. By separating the cells in the module by 2.5 mm, it is thus possible to place 17 x 29 = 493 cells of format 52 x 52 mm instead of 6 x 10 = 60 cells of 156 x 156 mm, thus increasing the voltage of the module beyond 300V. If an even higher voltage is desired, it is possible, for example, to draw 4 x 4 = 16 20 cells from a silicon substrate of 156 mm on one side, which makes it possible to put in series 23 x 38 = 874 cells of format 39. x 39 mm, increasing the voltage of the module beyond 500V. The desired voltage can be adjusted by making cells of other sizes, including rectangular sizes. As explained above, the interconnection technology generally used to connect the cells in the modules is copper ribbon welding. In the case where the silicon substrate of 156 mm side has been cut into 3 or 4 cells in one direction, it can be satisfied with a single ribbon per cell of reduced width. However, because the cell is reduced in size in both directions, the current that is extracted is not 3 or 4 times smaller but 9 or 16 times lower than with a 156 mm cell. . This makes it possible to significantly reduce the section of the ribbons. If it is possible to reduce the thickness of the ribbons, it will be preferred to use narrower copper ribbons to reduce shading. However, the minimum width of the ribbons is limited to about 0.8 mm, on the one hand for lack of availability of narrower ribbons and, on the other hand, because the welding of such narrower ribbons would become complex in terms of alignment. , weldability and adhesion of ribbons. Conventional interconnection technologies by ribbons are therefore not well suited to high voltage photovoltaic modules.

3037441 3 Il est envisageable de remplacer les rubans de cuivre par des nappes de fils électriquement conducteurs (en cuivre) s'étendant entre la face avant d'une cellule et la face arrière d'une cellule adjacente, ce qui permettra de réduire notablement les sections de cuivre utilisées pour les fils d'interconnexions des cellules.It is conceivable to replace the copper strips with layers of electrically conductive wires (copper) extending between the front face of a cell and the rear face of an adjacent cell, which will significantly reduce the Copper sections used for the interconnect wires of the cells.

5 Différents concepts d'interconnexion par fils ont été décrits pour des cellules présentant des métallisations sur leurs deux faces, tels que la SmartVVire Connection Technologyn" (SVVCT) de Meyer Burger Technology AG [1] ou le Multi Busbar ConnectorTM (MBB) de Schmid [2]. Dans la solution SVVCT, les fils électriquement conducteurs sont agencés sous la 10 forme d'une nappe dans laquelle ils sont rendus solidaires les uns des autres par un film support ; lesdits fils sont par ailleurs recouverts d'un revêtement en alliage présentant une température de fusion inférieure à 150°C, ce qui permet la soudure des fils au cours de l'étape de lamination du module qui est mise en oeuvre à 150-160°C environ ; des cellules de 156 mm de côté sont ainsi interconnectées par 18 à 38 fils de 200 ou 300 pm de 15 diamètre. Dans la solution MBB, des cellules de 156 mm de côté sont interconnectées par 15 fils de 250 ou 300 pm indépendants (non solidaires) les uns des autres ; lesdits fils sont par ailleurs recouverts d'un revêtement en alliage présentant une température de fusion supérieure à 170°C, ce qui nécessite une soudure à chaque point de contact entre un fil 20 et un doigt de collecte à une température supérieure à 200°C. La figure 1 est un schéma de principe de l'interconnexion de deux cellules photovoltaïques selon le procédé SVVCT mentionné plus haut. Les cellules photovoltaïques 1 et 2 sont deux cellules bifaciales présentant sur chacune de leurs faces principales une structure de contact formée d'une pluralité de 25 doigts métalliques 10,11, respectivement 20, 21. Par convention, on désigne dans l'ensemble du présent texte par « face avant » (notée 1A pour la cellule 1 et 2A pour la cellule 2) la face située du côté du module exposé au rayonnement solaire et « face arrière » (notée 1B pour la cellule 1 et 2B pour la cellule 2) la face opposée à la face avant.5 Different wire interconnection concepts have been described for cells with two-sided metallizations, such as the SmartVVire Connection Technologyn "(SVVCT) from Meyer Burger Technology AG [1] or Schmid's Multi Busbar ConnectorTM (MBB). In the SVVCT solution, the electrically conductive yarns are arranged in the form of a sheet in which they are secured to one another by a support film, said yarns are also covered with an alloy coating. having a melting temperature of less than 150 ° C, which allows the welding of the wires during the module lamination step which is carried out at about 150-160 ° C. 156 mm side cells are thus interconnected by 18 to 38 wires of 200 or 300 μm in diameter In the MBB solution, cells of 156 mm side are interconnected by wires of 250 or 300 μm independent (non-integral) from each other; its wires are furthermore coated with an alloy coating having a melting point greater than 170 ° C., which requires a solder at each point of contact between a wire 20 and a collecting finger at a temperature greater than 200 ° C. . FIG. 1 is a block diagram of the interconnection of two photovoltaic cells according to the SVVCT method mentioned above. Photovoltaic cells 1 and 2 are two bifacial cells having on each of their main faces a contact structure formed of a plurality of metal fingers 10, 11, 20, 21, respectively. text by "front face" (denoted 1A for cell 1 and 2A for cell 2) the face on the side of the module exposed to solar radiation and "back face" (denoted 1B for cell 1 and 2B for cell 2) the opposite side to the front face.

30 L'interconnexion électrique des cellules 1 et 2 est réalisée au moyen d'une nappe 30 formée d'une pluralité de fils 3 électriquement conducteurs, les fils étant rendus solidaires entre eux par des portions d'un film support qui sont agencées alternativement sur le dessus et sur le dessous des fils. Plus précisément, la nappe de fils présente une première portion 40 de film support agencée sur les fils destinés à être soudés sur la 35 structure de contact 10 de la cellule 1 et une seconde portion 41 de film support agencée sous les fils destinés à être soudés sur la structure de contact 21 de la cellule 2. En d'autres termes, chaque portion 40, 41 de film support est agencée du côté des fils 3 3037441 4 opposé à la structure de contact 10, 21 sur laquelle les fils doivent être soudés, afin de ne pas gêner l'établissement d'une liaison électrique entre les fils et les structures de contact. Les deux portions 40, 41 ne sont pas contiguës mais distantes d'un intervalle d qui est choisi de telle sorte que les portions 40, 41 de film support soient positionnées en 5 regard de la face respective 1A, 2B desdites cellules et en retrait par rapport aux bords 1C, 20 de chaque cellule. Cette solution est en effet facile à mettre en oeuvre et ne requiert pas une précision très importante pour la localisation du film support. Comme expliqué plus haut, la réduction de la densité de courant produite par chaque cellule photovoltaïque permettrait de réduire la section de chacun desdits fils 10 électriquement conducteurs. Cependant, une telle réduction pose deux problèmes : d'une part, la fragilité de tels fils, qui engendre des risques de rupture et, d'autre part, la difficulté de souder des fils aussi fins. BREVE DESCRIPTION DE L'INVENTION 15 Un but de l'invention est de permettre la fabrication de modules photovoltaïques « haute tension » en concevant un système d'interconnexion adapté aux courants destinés à être produits par de tels modules et qui permette de remédier aux inconvénients précités. Conformément à l'invention, il est proposé un module photovoltaïque comprenant 20 au moins deux cellules photovoltaïques, dans lequel deux cellules adjacentes sont connectées par une nappe de fils électriquement conducteurs reliant électriquement une structure de contact agencée sur une première face principale, dite face avant, d'une première cellule et une structure de contact agencée sur une seconde face principale, dite face arrière, de la seconde cellule du côté opposé à la première face, lesdits fils étant 25 rendus solidaires les uns des autres au moins localement par un film support, caractérisé en ce que lesdits fils électriquement conducteurs présentent un diamètre inférieur ou égal à 175 pm et en ce qu'un premier film protecteur est interposé entre les fils électriquement conducteurs et un bord de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils et un bord de la face arrière de la seconde 30 cellule. Selon d'autres caractéristiques avantageuses mais non limitatives, considérées seules ou en combinaison : - le premier film protecteur est une première portion du film support et le second film protecteur est une seconde portion du film support située de l'autre côté de la nappe de 35 fils par rapport à la première portion ; - lesdites première et seconde portions de film support sont positionnées de chaque côté de la nappe de fils dans une région s'étendant de part et d'autre du bord de chaque cellule ; 3037441 5 - le film support comprend une première portion s'étendant jusqu'au bord de la première cellule et une seconde portion s'étendant en retrait vis-à-vis du bord de la face avant de ladite première cellule, et une portion additionnelle de film support est interposée entre les fils et le bord de la face arrière de la seconde cellule ; 5 - le film support comprend deux portions s'étendent uniquement en regard de la face avant de la cellule, respectivement de la face arrière de la cellule, et deux portions additionnelles de film support sont interposés respectivement entre les fils et le bord de la face avant de la première cellule d'une part, et entre les fils et le bord de la face arrière de la seconde cellule d'autre part ; 10 - la structure de contact agencée sur la face avant de chaque cellule comprend une pluralité de doigts métalliques ; - le premier film protecteur s'étend, sur la face avant de la première cellule, sur une distance inférieure à la distance entre le bord de la face avant de ladite première cellule et le doigt métallique le plus proche dudit bord ; 15 - lesdits doigts métalliques sont en une pâte d'argent dépourvue de composants organiques ; - les cellules photovoltaïques sont des cellules à homojonction ; - les cellules photovoltaïques sont des cellules bifaciales, la structure de contact agencée sur la face arrière de chaque cellule comprenant une pluralité de doigts 20 métalliques ; - le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance inférieure à la distance entre le bord de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord ; - le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une 25 distance supérieure à la distance entre le bord de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord, de sorte que ledit second film protecteur isole électriquement au moins le doigt métallique le plus proche du bord vis-à-vis des fils, et la structure de contact agencée sur la face arrière de ladite cellule comprend des éléments électriquement conducteurs perpendiculaires aux doigts métalliques pour relier 30 électriquement le ou les doigts isolés par ledit film protecteur à au moins un doigt non isolé par le second film protecteur ; - les cellules photovoltaïques sont des cellules monofaciales, la structure de contact agencée sur la face arrière de ladite cellule comprenant une couche métallique ; - la distance entre deux fils d'interconnexions adjacents est inférieure ou égale à 35 20 mm, de préférence inférieure à 10 mm ; - les cellules photovoltaïques présentent au moins un côté dont la longueur est inférieure ou égale à 52 mm, de préférence inférieure ou égale à 39 mm ; - le film support est en un matériau organique adhésif ; 3037441 6 - l'épaisseur du film support est inférieure à 100 pm, de préférence inférieure ou égale à 50 pm ; - la distance entre deux cellules adjacentes est inférieure à 2 mm, de préférence inférieure à 1 mm ; 5 - le diamètre des fils électriquement conducteurs est inférieur ou égal à 150 pm, de préférence inférieur ou égal à 100 pm et de manière encore préférée inférieur ou égal à 50 pm, - le ratio entre la section cumulée des fils électriquement conducteurs du module et la largeur de chaque cellule est inférieur à 0,035 mm2/cm, de préférence inférieur à 10 0,02 mm2/cm. Un autre objet concerne un procédé d'interconnexion de cellules photovoltaïques en vue de fabriquer un tel module. Ledit procédé comprend : - la fourniture d'une nappe de fils électriquement conducteurs rendus solidaires les 15 uns des autres au moins localement par un film support, - la connexion électrique desdits fils avec une structure de contact agencée sur une première face principale, dite face avant, d'une première cellule, - la connexion électrique desdits fils avec une structure de contact agencée sur une seconde face principale, dite face arrière, d'une seconde cellule adjacente à la première 20 du côté opposé à la première face, ledit procédé étant caractérisé en ce que lesdits fils présentent un diamètre inférieur ou égal à 175 pm et en ce que, avant ou pendant la mise en place de ladite nappe de fils, un premier film protecteur est interposé entre les fils électriquement conducteurs et le bord de la face avant de la première cellule et un second film protecteur est interposé 25 entre lesdits fils et le bord de la face arrière de la seconde cellule. BREVE DESCRIPTION DES DESSINS D'autres caractéristiques et avantages de l'invention ressortiront de détaillée qui va suivre, en référence aux dessins annexés sur lesquels : 30 - la figure 1 présente une vue en coupe de l'interconnexion de photovoltaïques selon une technique connue et une vue de dessus de la d'interconnexion, - la figure 2 présente une vue en coupe de l'interconnexion de photovoltaïques bifaciales à homojonction et une vue de dessus de la 35 d'interconnexion selon un mode de réalisation de l'invention, - la figure 3 présente une vue en coupe de l'interconnexion de photovoltaïques bifaciales à homojonction et une vue de dessus de la d'interconnexion selon un autre mode de réalisation de l'invention la description deux cellules nappe de fils deux cellules nappe de fils deux cellules nappe de fils 3037441 7 - la figure 4 présente une vue en coupe de l'interconnexion de deux cellules photovoltaïques monofaciales à homojonction et une vue de dessus de la nappe de fils d'interconnexion selon un mode de réalisation de l'invention.The electrical interconnection of the cells 1 and 2 is carried out by means of a ply 30 formed of a plurality of electrically conductive wires 3, the wires being made integral with each other by portions of a support film which are arranged alternately on the top and bottom of the wires. More specifically, the sheet of son has a first portion 40 of support film arranged on the son to be welded to the contact structure 10 of the cell 1 and a second portion 41 of support film arranged under the son to be welded on the contact structure 21 of the cell 2. In other words, each portion 40, 41 of the support film is arranged on the side of the wires 3 opposite the contact structure 10, 21 on which the wires must be soldered. so as not to interfere with the establishment of an electrical connection between the wires and the contact structures. The two portions 40, 41 are not contiguous but spaced apart by an interval d which is chosen so that the portions 40, 41 of support film are positioned opposite the respective face 1A, 2B of said cells and set back by relative to the edges 1C, 20 of each cell. This solution is indeed easy to implement and does not require a very important precision for the location of the support film. As explained above, reducing the current density produced by each photovoltaic cell would reduce the section of each of said electrically conductive wires. However, such a reduction raises two problems: on the one hand, the fragility of such threads, which generates risks of rupture and, on the other hand, the difficulty of welding such fine threads. BRIEF DESCRIPTION OF THE INVENTION An object of the invention is to enable the manufacture of "high voltage" photovoltaic modules by designing an interconnection system adapted to the currents intended to be produced by such modules and which makes it possible to remedy the disadvantages. supra. According to the invention, there is provided a photovoltaic module comprising at least two photovoltaic cells, in which two adjacent cells are connected by a sheet of electrically conductive wires electrically connecting a contact structure arranged on a first main face, said front face. , a first cell and a contact structure arranged on a second main face, said rear face, of the second cell on the side opposite the first face, said wires being made integral with each other at least locally by a film support, characterized in that said electrically conductive wires have a diameter less than or equal to 175 μm and in that a first protective film is interposed between the electrically conductive wires and an edge of the front face of the first cell and a second film protector is interposed between said wires and an edge of the rear face of the second 30th llule. According to other advantageous but nonlimiting characteristics, considered alone or in combination: the first protective film is a first portion of the support film and the second protective film is a second portion of the support film situated on the other side of the sheet of 35 threads with respect to the first portion; said first and second support film portions are positioned on each side of the sheet of threads in a region extending on either side of the edge of each cell; The support film comprises a first portion extending to the edge of the first cell and a second portion extending recessed vis-à-vis the edge of the front face of said first cell, and an additional portion a support film is interposed between the wires and the edge of the rear face of the second cell; 5 - the support film comprises two portions extending solely opposite the front face of the cell, respectively of the rear face of the cell, and two additional portions of support film are interposed respectively between the son and the edge of the face before the first cell on the one hand, and between the wires and the edge of the rear face of the second cell on the other hand; The contact structure arranged on the front face of each cell comprises a plurality of metal fingers; the first protective film extends, on the front face of the first cell, over a distance less than the distance between the edge of the front face of said first cell and the metal finger closest to said edge; Said metal fingers are made of a silver paste devoid of organic components; the photovoltaic cells are homojunction cells; the photovoltaic cells are bifacial cells, the contact structure arranged on the rear face of each cell comprising a plurality of metal fingers; the second protective film extends, on the rear face of the second cell, over a distance less than the distance between the edge of the rear face of said second cell and the metal finger closest to said edge; the second protective film extends, on the rear face of the second cell, over a distance greater than the distance between the edge of the rear face of said second cell and the metal finger closest to said edge, so that said second protective film electrically isolates at least the metal finger closest to the edge with respect to the wires, and the contact structure arranged on the rear face of said cell comprises electrically conductive elements perpendicular to the metal fingers for electrically connecting the finger or fingers isolated by said protective film to at least one non-insulated finger by the second protective film; the photovoltaic cells are monofacial cells, the contact structure arranged on the rear face of said cell comprising a metal layer; the distance between two adjacent interconnection wires is less than or equal to 20 mm, preferably less than 10 mm; the photovoltaic cells have at least one side whose length is less than or equal to 52 mm, preferably less than or equal to 39 mm; the support film is made of an organic adhesive material; The thickness of the support film is less than 100 μm, preferably less than or equal to 50 μm; the distance between two adjacent cells is less than 2 mm, preferably less than 1 mm; The diameter of the electrically conductive wires is less than or equal to 150 μm, preferably less than or equal to 100 μm and more preferably less than or equal to 50 μm, the ratio between the cumulative section of the electrically conductive wires of the module and the width of each cell is less than 0.035 mm 2 / cm 2, preferably less than 0.02 mm 2 / cm 2. Another object relates to a method of interconnecting photovoltaic cells in order to manufacture such a module. Said method comprises: - the supply of a sheet of electrically conductive wires secured to each other at least locally by a support film, - the electrical connection of said wires with a contact structure arranged on a first main face, said face before, a first cell, - the electrical connection of said son with a contact structure arranged on a second main face, said rear face, of a second cell adjacent to the first 20 of the side opposite to the first face, said method characterized in that said yarns have a diameter less than or equal to 175 μm and in that, before or during the placement of said sheet of yarns, a first protective film is interposed between the electrically conductive yarns and the edge of the yarn. front face of the first cell and a second protective film is interposed between said wires and the edge of the rear face of the second cell. BRIEF DESCRIPTION OF THE DRAWINGS Other features and advantages of the invention will become apparent from the following detailed description with reference to the accompanying drawings, in which: FIG. 1 shows a sectional view of the photovoltaic interconnection according to a known technique, and a top view of the interconnection, FIG. 2 shows a sectional view of the interconnection of homojunction bifacial photovoltaics and a top view of the interconnection according to one embodiment of the invention; FIG. 3 shows a sectional view of the interconnection of homojunction bifacial photovoltaics and a top view of the interconnect according to another embodiment of the invention, the description two cells, the two wires, the two wires, the two wires, and the two wires. FIG. 4 is a sectional view of the interconnection of two monofacial photovoltaic cells with homojunction and a view from above of FIGS. appe son interconnect according to one embodiment of the invention.

5 DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION L'invention propose l'utilisation de fils électriquement conducteurs plus fins que ceux utilisés classiquement pour l'interconnexion de cellules photovoltaïques, c'est-à-dire présentant un diamètre inférieur ou égal à 175 pm. Lesdits fils électriquement conducteurs se présentent sous la forme d'une nappe 10 dans laquelle les fils sont rendus solidaires par un film support. L'agencement du film support par rapport aux fils et la nature dudit film support seront décrits en détail plus bas. Les fils électriquement conducteurs sont généralement des fils de cuivre recouverts d'un revêtement en un alliage (par exemple à base d'indium) présentant une température de fusion inférieure à 150°C. Le revêtement typique est constitué d'environ 10 pm d'un 15 alliage Sn-ln dont le point de fusion est d'environ 120°C. Pour une technologie de cellule photovoltaïque donnée, une cellule de surface réduite dédiée à la haute tension délivrera la même densité de courant, de l'ordre de 35 à 40 mA/cm2. Cela signifie que pour une structure de contact présentant une métallisation identique, les mêmes courants circuleront dans les doigts de collecte, que ce soit pour 20 des cellules standard ou haute tension. Or l'argent nécessaire aux métallisations est le poste coût le plus important après le substrat de silicium. Réduire la distance entre les interconnexions réduit la longueur des doigts de collecte et permet d'imprimer des sections plus faibles. L'utilisation de fils très fins au lieu de rubans évite de générer un ombrage important.DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The invention proposes the use of finer electrically conductive wires than those conventionally used for the interconnection of photovoltaic cells, that is to say having a diameter less than or equal to 175 pm. Said electrically conductive son are in the form of a sheet 10 in which the son are made integral by a support film. The arrangement of the support film with respect to the wires and the nature of said support film will be described in detail below. The electrically conductive wires are generally copper wires covered with a coating of an alloy (for example based on indium) having a melting point of less than 150 ° C. The typical coating is about 10 μm Sn-ln alloy melting at about 120 ° C. For a given photovoltaic cell technology, a reduced surface cell dedicated to the high voltage will deliver the same current density, on the order of 35 to 40 mA / cm 2. This means that for a contact structure having identical metallization, the same currents will flow in the collection fingers, whether for standard or high voltage cells. Gold silver metallization is the largest cost item after the silicon substrate. Reducing the distance between the interconnects reduces the length of the collection fingers and makes it possible to print smaller sections. The use of very fine threads instead of ribbons avoids generating significant shading.

25 Les efficacités des cellules et des modules photovoltaïques répondent à la formule : Eff = lsc (courant de court-circuit) x Voc (tension de circuit ouvert) x FF (« Fill Factor », paramètre intégrant les pertes résistives). Il a été étudié expérimentalement que pour disposer d'interconnexions non limitantes par leur résistance (se traduisant par peu de perte entre le Fill Factor de la 30 cellule et le Fill Factor du module), il est nécessaire d'utiliser 15 ou 18 fils de cuivre de 300 pm (la perte de FF étant significative avec diamètre 200 ou 250 pm) ou d'utiliser plus de 30 fils, notamment pour des fils de cuivre de diamètre 200 pm, ce qui correspond à des sections totale de cuivre de l'ordre de 1,2mm2 (1,27 mm2 pour de 18 fils de 300 pm, 1,13mm2 pour 36 fils de diamètre 200 pm).The efficiencies of the cells and the photovoltaic modules correspond to the formula: Eff = lsc (short-circuit current) x Voc (open circuit voltage) x FF ("Fill Factor", parameter integrating the resistive losses). It has been studied experimentally that in order to have non-limiting interconnections by their resistance (resulting in little loss between the cell's Fill Factor and the module's Fill Factor), it is necessary to use 15 or 18 wires of 300 micron copper (loss of FF being significant with diameter 200 or 250 pm) or use more than 30 wires, especially for copper wires of diameter 200 pm, which corresponds to total copper sections of the order of 1.2 mm 2 (1.27 mm 2 for 18 son of 300 pm, 1.13 mm 2 for 36 son diameter 200 pm).

35 Comme expliqué précédemment, les cellules de petite taille génèrent des courants beaucoup plus faibles, notamment 16 fois plus faibles pour une cellule 39 x 39 mm que pour une cellule 156 x 156 mm. Or la puissance dissipée par les pertes résistives dues aux interconnexions sont proportionnelles au carré de l'intensité du courant (P = R x 12), 3037441 8 d'où, pour l'exemple donné, des pertes résistives divisées par 256. Cela signifie qu'une section totale des fils de cuivre de 0,0047 mm2 sera suffisante sur une cellule de 39mm de côté (1,2 /16 = 0,0047). Or, la section d'un fil de diamètre de 100 pm est de 0,0050mm2, celle d'un fil de 50 pm de 0,0020mm2, celle d'un fil de 30 pm de 0,0007 mm2, 5 ce qui signifie qu'un fil de 100 pm ou 3 fils de 50 pm ou 7 fils de 30 pm devraient suffire pour interconnecter des cellules de 39 x 39 mm sans induire de pertes résistives significatives dans les interconnexions. Dans les trois cas l'ombrage est fortement réduit par rapport à une interconnexion utilisant des rubans de cuivre de section rectangulaire, d'autant que l'ombrage d'un fil rond utilisé en module est réduit de 30% du fait des 10 réflexions liées à la section circulaire. Utiliser sur une cellule de 39x39mm une section de cuivre de 0,0049mm2 permet l'obtention d'un FF module; en doublant cette section, soit 0,01mm2, des FF excellents seront obtenus en module. Ainsi pour interconnecter 4 rangées de cellules de largeur 39mm équivalant à une largeur cumulée de cellules de 156mm (largeur usuelle des 15 cellules) on pourra obtenir des modules présentant d'excellents FF en n'utilisant que 0.04mm2 de section de cuivre, soit plus de 2 fois moins que les modules classiques et cela avec de meilleurs FF. Ainsi si on définit un ratio R = section cumulée des fils d'interconnexion / largeur de chaque cellule, on passera de R = 0,057 mm2/cm (0,9mm2 /15,6 cm) pour un module utilisant des cellules classiques (cellules 156x156 20 interconnectées par 3 rubans de 1,5x0,2=0,9mm2) à R= 0,026 mm2/cm (0,4mm2 /(4x3,9cm) pour un module constitué de 4 rangées de cellules de 39x39mm interconnectées par des fils de diamètre 100pm. On obtiendra même un ratio R < 0,2 mm2/cm avec des fils de diamètre inférieur à 100pm. Si un seul fil est utilisé par cellule, on doit réaliser des doigts de collecte transportant 25 les courants générés sur d'assez grandes distances (1/2 largeur de la cellule pour une interconnexion au centre, soit 19 mm pour une cellule de 39 x 39 mm) alors qu'en choisissant un nombre plus élevé de fils on perd très légèrement en ombrage mais on peut réaliser des doigts de collecte de plus petites sections donc une cellule moins coûteuse car moins consommatrice en pâte d'argent. Le nombre de fils d'interconnexion 30 est avantageusement choisi pour avoir une longueur des doigts de collecte entre fils d'interconnexion adjacents inférieure à 20 mm, de préférence inférieure à 10 mm, de manière encore préférée inférieure à 5 mm. Diminuer la section des fils a un autre impact important sur le coût de l'interconnexion lorsque les fils de cuivre sont revêtus d'un alliage de soudure onéreux 35 comme c'est le cas pour les fils utilisés avec la technologie SVVCT (les fils étant recouverts d'un alliage à base d'indium d'une dizaine de micromètres d'épaisseur). A épaisseur d'alliage donnée, la quantité d'alliage étant proportionnelle au diamètre du fil, une réduction de coût de l'alliage par 2 peut donc être attendue en passant de fils de 3037441 9 200 pm à 100 pm de diamètre, et même davantage en passant à des fils de 50 pm ou moins. Ainsi, selon une forme d'exécution préférée de l'invention, le nombre de fils d'interconnexion est supérieur à 1 et le diamètre desdits fils est inférieur ou égal à 5 100 pm. Par ailleurs, l'utilisation de fils de 150 pm ou moins procure un autre avantage par rapport à des interconnexions à base de rubans ou par rapport aux interconnexions à base de fils de diamètre 200 pm telles que mises en oeuvre dans les techniques SVVCT et MBB. En effet, ces fils très fins donc très souples ne créent pas de contraintes au bord 10 des cellules lorsqu'ils passent de la face avant d'une cellule à la face arrière de la cellule adjacente. Ceci permet de rapprocher davantage les cellules dans le module, une distance inter-cellules inférieure ou égale à 1 mm devenant envisageable alors qu'un intervalle de 3 à 5 mm doit être ménagé pour les rubans de cuivre conventionnels nettement plus rigides pour éviter de voir apparaitre des fissures au bord des cellules, soit 15 lors de la soudure, soit durant les cyclages thermiques. Un module avec des cellules photovoltaïques rapprochées permet de réaliser des modules plus performants car présentant plus de puissance par unité de surface. Un problème lié à l'utilisation de fils très fins est le risque de rupture des fils sur les bords des cellules, éventuellement lors de la réalisation des interconnexions mais surtout 20 par cisaillement lors des changements de température auquel est soumis un module, les variations de température se traduisant par des contraintes de dilatation différentielle des matériaux en présence, notamment du substrat (le silicium se dilatant très peu) et des interconnexions (le cuivre se dilatant au contraire fortement). Cet écueil est évité en intercalant, entre lesdits fils et le bord de chaque cellule 25 contre lequel les fils électriquement conducteurs sont susceptibles de s'appuyer, un film protecteur. De manière particulièrement avantageuse, le film protecteur est une portion du film support utilisé pour solidariser les fils pour former la nappe et positionné de manière appropriée pour s'interposer entre les fils et le bord acéré du substrat.As previously explained, small cells generate much lower currents, especially 16 times lower for a 39 x 39 mm cell than for a 156 x 156 mm cell. However, the power dissipated by the resistive losses due to the interconnections are proportional to the square of the intensity of the current (P = R × 12), hence, for the given example, resistive losses divided by 256. This means that a total section of the copper wires of 0.0047 mm2 will be sufficient on a cell of 39mm of side (1.2 / 16 = 0.0047). However, the section of a wire with a diameter of 100 μm is 0.0050 mm 2, that of a wire of 50 μm of 0.0020 mm 2, that of a wire of 30 μm of 0.0007 mm 2, which means that a 100-μm or 3-wire 50-μm or 7-wire 30-μm wire should be sufficient to interconnect 39 x 39 mm cells without inducing significant resistive losses in the interconnections. In all three cases the shading is greatly reduced compared to an interconnection using copper ribbons of rectangular section, especially since the shading of a round wire used in module is reduced by 30% because of the 10 related reflections. to the circular section. Using a 39x39mm cell with a copper section of 0.0049mm2 makes it possible to obtain a FF module; doubling this section, 0.01mm2, excellent FF will be obtained in module. Thus to interconnect 4 rows of cells 39mm wide equivalent to a cumulative cell width of 156mm (usual cell width) can be obtained modules with excellent FF using only 0.04mm2 of copper section, or more 2 times less than conventional modules and this with better FF. So if we define a ratio R = cumulative section of the interconnection wires / width of each cell, we will go from R = 0.057 mm2 / cm (0.9mm2 / 15.6 cm) for a module using conventional cells (156x156 cells Interconnected by 3 ribbons of 1.5 × 0.2 = 0.9 mm 2) at R = 0.026 mm 2 / cm (0.4 mm 2 / (4x3.9 cm) for a module consisting of 4 rows of 39 × 39 mm cells interconnected by diameter wires It will even be possible to obtain a ratio R <0.2 mm 2 / cm with wires having a diameter of less than 100 pm If only one wire is used per cell, collecting fingers carrying the generated currents should be made on relatively large distances (1/2 width of the cell for an interconnection in the center, ie 19 mm for a cell of 39 x 39 mm) whereas by choosing a higher number of wires we lose very slightly in shading but we can make fingers collection of smaller sections so a less expensive cell because less consumer in p The number of interconnect wires 30 is advantageously chosen to have a length of the collection fingers between adjacent interconnection wires less than 20 mm, preferably less than 10 mm, more preferably less than 5 mm. . Decreasing the wire section has another important impact on the cost of interconnection when the copper wires are coated with an expensive solder alloy as is the case for wires used with SVVCT technology (the wires being coated with an indium-based alloy of about ten micrometers thick). With a given alloy thickness, the amount of alloy being proportional to the diameter of the wire, a reduction in the cost of the alloy by 2 can therefore be expected by passing son of 3037441 9 200 pm to 100 pm in diameter, and even more by switching to wires of 50 pm or less. Thus, according to a preferred embodiment of the invention, the number of interconnection son is greater than 1 and the diameter of said son is less than or equal to 100 pm. Furthermore, the use of wires 150 μm or less provides another advantage over ribbon-based interconnects or wire-based interconnects with a diameter of 200 μm as used in the SVVCT and MBB techniques. . Indeed, these very thin threads therefore very flexible do not create constraints at the edge of the cells when they pass from the front face of a cell to the rear face of the adjacent cell. This makes it possible to bring the cells closer together in the module, an inter-cell distance of less than or equal to 1 mm becoming possible while a gap of 3 to 5 mm must be provided for conventional copper strips that are much more rigid to avoid seeing cracks appear at the edge of the cells, either during the welding or during thermal cycling. A module with photovoltaic cells close together makes it possible to produce more efficient modules because they have more power per unit area. A problem related to the use of very fine threads is the risk of breakage of the wires on the edges of the cells, possibly during the making of the interconnections but especially by shearing during the temperature changes to which a module is subjected, the variations of temperature resulting in differential expansion stresses of the materials in the presence, in particular of the substrate (the silicon dilating very little) and interconnections (the copper expanding on the contrary strongly). This pitfall is avoided by interposing, between said wires and the edge of each cell 25 against which the electrically conductive son are likely to rest, a protective film. Particularly advantageously, the protective film is a portion of the support film used to secure the son to form the sheet and positioned appropriately to interpose between the son and the sharp edge of the substrate.

30 De manière alternative, le film protecteur déposé directement sur la cellule elle- même de sorte à enrober le bord du substrat. Ledit film protecteur peut alors être un film organique adhésif ou une pâte organique. Le film support est transparent au rayonnement solaire et électriquement isolant. De manière particulièrement avantageuse, ledit film support est adhésif à 35 température ambiante et/ou à chaud. Le film support est avantageusement réalisé en un matériau organique, tel que du polyéthylène, éventuellement associé à une couche adhésive, notamment du 3037441 10 polyéthylène basse densité (PEBD), mais d'autres matériaux organiques, tels que du polyfluorure de vinylidène (PVDF) ou de l'acrylique, peuvent convenir. De préférence, le film support est très fin, c'est-à-dire présentant typiquement une épaisseur inférieure à 100 pm, de préférence inférieure à 50 pm.Alternatively, the protective film deposited directly on the cell itself so as to coat the edge of the substrate. Said protective film may then be an organic adhesive film or an organic paste. The support film is transparent to solar radiation and electrically insulating. Particularly advantageously, said support film is adhesive at room temperature and / or hot. The support film is advantageously made of an organic material, such as polyethylene, optionally combined with an adhesive layer, in particular low density polyethylene (LDPE), but other organic materials, such as polyvinylidene fluoride (PVDF). or acrylic, may be suitable. Preferably, the support film is very thin, that is to say typically having a thickness of less than 100 μm, preferably less than 50 μm.

5 La portion de film support interposée entre les fils et le bord de chaque cellule, de part et d'autre dudit bord, permet d'éviter un contact direct des fils sur le bord de la cellule et ainsi de minimiser le risque de cisaillement lors de la réalisation de l'interconnexion et/ou des cycles thermiques subis par le module au cours de son utilisation. Par ailleurs, des fils de moins de 150 pm de diamètre présentent une très faible 10 masse thermique et donc une grande difficulté à être soudés par des voies classiques, les surfaces de contact entre les doigts de collecte et les fils étant très faibles. Par conséquent, l'homme du métier évitera d'employer une soudure classique telle qu'utilisée dans la solution MBB, dont la courte durée (quelques secondes au maximum) est insuffisante pour permettre une bonne adhésion des fils sur les doigts de collecte, et 15 choisira plutôt de profiter de l'étape de lamination du module qui est plus longue (plusieurs minutes) pour solidariser les métallisations et les fils. De manière particulièrement avantageuse, on choisit des cellules photovoltaïques dans lesquelles la structure de contact est formée à partir de pâtes dites à haute température, c'est-à-dire d'encres à base d'argent, cuites au-delà de 700°C et dans lesquelles les composants 20 organiques ont été brûlés et l'argent a densifié par frittage, les métallisations présentent un métal dense sur lequel s'effectue une réelle soudure, ce qui permet une adhésion notable même avec des fils fins. Tel est le cas généralement des cellules à homojonction. En cas d'utilisation de cellules, telles que les cellules à hétérojonction, disposant de pâtes dites à basses température, c'est-à-dire des pâtes ayant subi un traitement thermique à 25 une température inférieure à 300°C et dans lesquelles les composants organiques ont été conservés et où l'argent n'a pas vraiment été densifié par frittage, l'étape de lamination au-delà du point de fusion de l'alliage enrobant les fils se traduit plus par une consolidation des points de contact par diffusion que par une réelle soudure, d'où une liaison doigts de collecte / fils moins solide, cela d'autant plus que les conducteurs sont 30 plus fins. La figure 2 est un schéma de principe d'une interconnexion selon un mode de réalisation de l'invention. Dans cet exemple, les cellules 1 et 2 sont des cellules photovoltaïques bifaciales à homojonction présentant sur chacune de leurs faces principales une structure de contact 35 formée d'une pluralité de doigts métalliques 10, 11 respectivement 20, 21. L'interconnexion électrique des cellules 1 et 2 est réalisée au moyen d'une nappe 30 formée d'une pluralité de fils 3 électriquement conducteurs, les fils étant rendus solidaires entre eux par des portions d'un film support qui sont agencées alternativement sur le 3037441 11 dessus et sur le dessous des fils. Le film support présente une première portion 40 agencée sur les fils destinés à être soudés sur la structure de contact de la cellule 1 et une seconde portion 41 agencée sous les fils de la structure de contact de la cellule 2. En d'autres termes, chaque portion de film support est agencée du côté des fils 30 opposé à 5 la structure de contact 10, 21 sur laquelle les fils doivent être soudés. Par ailleurs, la portion 40 du film support s'étend jusqu'au bord 20 de la face arrière 2B de la cellule 2, et s'étend sur ladite face arrière 2B sur une distance d2 à partir du bord. La distance d2 est avantageusement inférieure à la distance entre le bord 20 et le doigt de métallisation 21 le plus proche dudit bord, de sorte que la portion 40 n'empêche 10 pas la connexion électrique entre les fils et ledit doigt 21. Typiquement, on peut considérer que la distance d2 est comprise entre 0,5 et 1,5 mm. De manière similaire, la portion 41 du film support s'étend jusqu'au bord 10 de la face avant lA de la cellule 1, et s'étend sur ladite face avant lA sur une distance dl à partir du bord. La distance dl est avantageusement inférieure à la distance entre le bord 15 10 et le doigt de métallisation 10 le plus proche dudit bord, de sorte que la portion 41 n'empêche pas la connexion électrique entre les fils et ledit doigt 10. Typiquement, on peut considérer que la distance dl est comprise entre 0,5 et 1,5 mm. Il existe donc une région de la nappe de fils comprise entre le doigt métallique 10 le plus proche du bord 10 de la face avant lA de la cellule 1 et le doigt métallique 21 le plus 20 proche du bord 20 de la face arrière 2B de la cellule 2 dans laquelle les fils sont recouverts d'un côté de la portion 40 de film support et du côté opposé de la portion 41 de film support. La figure 3 est un schéma de principe d'une interconnexion selon un autre mode de réalisation de l'invention, appliqué également à des cellules photovoltaïques bifaciales.The portion of support film interposed between the wires and the edge of each cell, on either side of said edge, makes it possible to avoid direct contact of the wires on the edge of the cell and thus to minimize the risk of shear during the realization of the interconnection and / or thermal cycles experienced by the module during its use. On the other hand, wires of less than 150 μm in diameter have a very low thermal mass and therefore great difficulty in being soldered by conventional means, the contact surfaces between the collecting fingers and the wires being very small. Therefore, those skilled in the art will avoid using a conventional weld as used in the MBB solution, whose short duration (a few seconds maximum) is insufficient to allow good adhesion of the son on the collection fingers, and 15 will rather choose to take advantage of the lamination stage of the module which is longer (several minutes) to secure the metallizations and son. Particularly advantageously, photovoltaic cells are chosen in which the contact structure is formed from so-called high temperature pastes, that is to say silver-based inks, baked beyond 700 °. C and in which the organic components have been burned and the silver has densified by sintering, the metallizations have a dense metal on which a real solder takes place, which allows a notable adhesion even with fine wires. This is generally the case of homojunction cells. When using cells, such as cells with heterojunction, having so-called low temperature pasta, that is to say pasta having undergone a heat treatment at a temperature below 300 ° C and in which the organic components have been preserved and where the silver has not really been densified by sintering, the lamination step beyond the melting point of the alloy coating the wires is reflected more by a consolidation of the contact points by diffusion only by a real weld, resulting in a bond fingers collection / son less solid, especially since the drivers are thinner. Figure 2 is a block diagram of an interconnection according to an embodiment of the invention. In this example, the cells 1 and 2 are homojunction bifacial photovoltaic cells having on each of their main faces a contact structure 35 formed of a plurality of metal fingers 10, 11 respectively 20, 21. The electrical interconnection of the cells 1 and 2 is produced by means of a ply 30 formed of a plurality of electrically conductive wires 3, the wires being secured to one another by portions of a support film which are alternately arranged on the top and on the below the wires. The support film has a first portion 40 arranged on the wires intended to be welded to the contact structure of the cell 1 and a second portion 41 arranged under the wires of the contact structure of the cell 2. In other words, each support film portion is arranged on the wire side opposite the contact structure 10, 21 on which the wires are to be soldered. Furthermore, the portion 40 of the support film extends to the edge 20 of the rear face 2B of the cell 2, and extends on said rear face 2B by a distance d2 from the edge. The distance d2 is advantageously less than the distance between the edge 20 and the metallization finger 21 closest to said edge, so that the portion 40 does not prevent 10 the electrical connection between the wires and said finger 21. Typically, can consider that the distance d2 is between 0.5 and 1.5 mm. Similarly, the portion 41 of the support film extends to the edge 10 of the front face 1A of the cell 1, and extends on said front face 1A for a distance d1 from the edge. The distance d1 is advantageously less than the distance between the edge 10 and the metallization finger 10 closest to said edge, so that the portion 41 does not prevent the electrical connection between the wires and said finger 10. Typically, can consider that the distance dl is between 0.5 and 1.5 mm. There is therefore a region of the sheet of wires between the metal finger 10 closest to the edge 10 of the front face 1A of the cell 1 and the metal finger 21 closest to the edge 20 of the rear face 2B of the cell 2 in which the son are covered on one side of the portion 40 of support film and the opposite side of the portion 41 of the support film. Figure 3 is a block diagram of an interconnection according to another embodiment of the invention, also applied to bifacial photovoltaic cells.

25 Les éléments de même nature que ceux de la figure 2 sont désignés par les mêmes signes de référence et ne sont pas décrits à nouveau en détail. Comme sur la figure 2, la portion 40 du film support s'étend jusqu'au bord 20 de la face arrière 2B de la cellule 2, et s'étend sur ladite face arrière 2B sur une distance d2 à partir du bord. La distance d2 est avantageusement inférieure à la distance entre le bord 30 20 et le doigt de métallisation 21 le plus proche dudit bord, de sorte que la portion 40 n'empêche pas la connexion électrique entre les fils et ledit doigt 21. Typiquement, on peut considérer que la distance d2 est comprise entre 0,5 et 1,5 mm. Sinon la métallisation de la cellule devra comporter des conducteurs additionnels (non représentés) perpendiculaires aux doigts de collecte pour relier électriquement le ou les 35 doigts qui seraient isolés par la portion 40. Dans cette variante de réalisation, la portion 41 de film support est en retrait vis-à- vis du bord 20 de la face arrière 2B de la cellule 2. En revanche, pour protéger les fils 3 du cisaillement contre le bord 10 de la face avant de la cellule 1, une portion 3037441 12 supplémentaire 42 de film support est interposée entre les fils et le bord 10. La portion 42 s'étend sur la face avant lA sur une distance dl à partir du bord. La distance dl est avantageusement inférieure à la distance entre le bord 10 et le doigt de métallisation 10 le plus proche dudit bord, de sorte que ladite portion 42 n'empêche pas la connexion 5 électrique entre les fils et ledit doigt 10. Typiquement, on peut considérer que la distance dl est comprise entre 0,5 et 1,5 mm. Comme mentionné plus haut, une alternative consisterait à placer cette portion 42 de film protecteur non pas sur la nappe de fils mais directement sur la cellule 1, qu'il s'agisse d'un film organique adhésif ou d'une pâte organique enrobant l'angle acéré du substrat.The elements of the same nature as those of FIG. 2 are designated by the same reference signs and are not described again in detail. As in Figure 2, the portion 40 of the support film extends to the edge 20 of the rear face 2B of the cell 2, and extends on said rear face 2B a distance d2 from the edge. The distance d2 is advantageously less than the distance between the edge 20 and the metallization finger 21 closest to said edge, so that the portion 40 does not prevent the electrical connection between the wires and said finger 21. Typically, can consider that the distance d2 is between 0.5 and 1.5 mm. Otherwise the metallization of the cell will have additional conductors (not shown) perpendicular to the collection fingers to electrically connect the finger or fingers that would be isolated by the portion 40. In this embodiment, the portion 41 of the support film is in removal against the edge 20 of the rear face 2B of the cell 2. On the other hand, to protect the wires 3 from the shear against the edge 10 of the front face of the cell 1, an additional portion 3037441 12 of film 42 The support is interposed between the wires and the edge 10. The portion 42 extends on the front face IA over a distance d1 from the edge. The distance d1 is advantageously less than the distance between the edge 10 and the metallization finger 10 closest to said edge, so that said portion 42 does not prevent the electrical connection 5 between the wires and said finger 10. Typically, can consider that the distance dl is between 0.5 and 1.5 mm. As mentioned above, an alternative would be to place this portion 42 of protective film not on the sheet of son but directly on the cell 1, whether it is an organic adhesive film or an organic paste coating the sharp angle of the substrate.

10 Bien que ces autres variantes ne soient pas représentées, il va de soi que l'invention couvre également les cas suivants : - la portion 41 de film support s'étend jusqu'au bord 10 de la cellule 1, la portion 40 est en retrait vis-à-vis du bord 10 de la face avant de la cellule 1, et un film protecteur (pouvant être une portion additionnelle de film support) est interposé entre les fils et le 15 bord 20 de la face arrière 2B de la cellule 2 pour protéger les fils du cisaillement contre ledit bord ; - les portions 40 et 41 s'étendent uniquement en regard de la face avant lA de la cellule 1, respectivement de la face arrière 2B de la cellule 2, et deux films protecteurs (pouvant être deux portions additionnelles de film support) sont interposés respectivement 20 entre les fils et le bord 10 de la face avant lA de la cellule 1 d'une part, et entre les fils et le bord 20 de la face arrière 2B de la cellule 2 d'autre part. Par ailleurs, les portions de film 40, 41 ne s'étendent pas nécessairement en regard de toute la surface de la face principale de chaque cellule respective. La figure 4 est un schéma de principe d'une interconnexion de deux cellules 1', 2' 25 monofaciales à homojonction. Par rapport aux cellules bifaciales 1, 2 des figures 2 et 3, les cellules 1' et 2' présentent, sur leur face arrière 1B, 2B, une structure de contact 11, 21 formée d'une couche métallique, par exemple en aluminium. La portion 40 du film support s'étend jusqu'au bord 20 de la face arrière 2B de la cellule 2', et s'étend sur ladite face arrière 2B sur une distance d2 à partir du bord. La 30 distance d2 est typiquement supérieure ou égale à 0,5 mm. La portion 41 de film support est en retrait vis-à-vis du bord 20 de la face arrière 2B de la cellule 2'. Pour protéger les fils 3 du cisaillement contre le bord 10 de la face avant de la cellule 1', une portion supplémentaire 42 de film support est interposée entre les fils et le bord 10. La portion 42 s'étend sur la face avant lA sur une distance dl à partir du 35 bord. La distance dl est avantageusement inférieure à la distance entre le bord 10 et le doigt de métallisation 10 le plus proche dudit bord, de sorte que ladite portion 42 n'empêche pas la connexion électrique entre les fils et ledit doigt 10. Typiquement, on peut considérer que la distance dl est comprise entre 0,5 et 1,5 mm.Although these other variants are not shown, it goes without saying that the invention also covers the following cases: the portion 41 of the support film extends to the edge 10 of the cell 1, the portion 40 is removal vis-à-vis the edge 10 of the front face of the cell 1, and a protective film (which may be an additional portion of the support film) is interposed between the son and the edge 20 of the rear face 2B of the cell 2 to protect the shear wires against said edge; the portions 40 and 41 extend only facing the front face 1A of the cell 1, respectively of the rear face 2B of the cell 2, and two protective films (which may be two additional portions of the support film) are interposed respectively 20 between the wires and the edge 10 of the front face 1A of the cell 1 on the one hand, and between the wires and the edge 20 of the rear face 2B of the cell 2 on the other hand. Moreover, the film portions 40, 41 do not necessarily extend opposite the entire surface of the main face of each respective cell. Fig. 4 is a block diagram of an interconnection of two homojunction monofacial cells 1 ', 2'. With respect to the bifacial cells 1, 2 of FIGS. 2 and 3, the cells 1 'and 2' have, on their back face 1B, 2B, a contact structure 11, 21 formed of a metal layer, for example made of aluminum. The portion 40 of the support film extends to the edge 20 of the rear face 2B of the cell 2 ', and extends on said rear face 2B by a distance d2 from the edge. The distance d2 is typically greater than or equal to 0.5 mm. The portion 41 of the support film is recessed vis-à-vis the edge 20 of the rear face 2B of the cell 2 '. To protect the shearing wires 3 against the edge 10 of the front face of the cell 1 ', an additional portion 42 of the support film is interposed between the wires and the edge 10. The portion 42 extends on the front face LA on a distance dl from the edge. The distance d1 is advantageously less than the distance between the edge 10 and the metallization finger 10 closest to said edge, so that said portion 42 does not prevent the electrical connection between the wires and said finger 10. Typically, it is possible to consider that the distance d1 is between 0.5 and 1.5 mm.

3037441 13 Pour fabriquer un module photovoltaïque selon l'invention, on met en oeuvre les étapes suivantes : - fourniture de la nappe de fils électriquement conducteurs présentant un diamètre inférieur à 175 pm rendus solidaires les uns des autres au moins localement par le film 5 support, - connexion électrique desdits fils avec une structure de contact agencée sur la face avant d'une première cellule, - connexion électrique desdits fils avec une structure de contact agencée sur la face arrière d'une seconde cellule adjacente à la première, 10 ladite nappe de fils étant mise en place de telle sorte qu'au moins une première portion de film support soit interposée entre les fils électriquement conducteurs et le bord de la face avant de la première cellule et qu'une seconde portion de film support soit interposée entre lesdits fils et le bord de la face arrière de la seconde cellule. Lorsque les films protecteurs ne font pas partie du film support solidaire de la nappe 15 de fils mais sont déposés directement sur les bords des cellules, cette étape de mise en place des films protecteurs est réalisée avant la réalisation de la connexion électrique des fils avec les structures de contact des cellules. Si le film support est adhésif, il adhère à la surface des cellules et est ainsi maintenu jusqu'au laminage du module.To manufacture a photovoltaic module according to the invention, the following steps are carried out: - supply of the sheet of electrically conductive yarns having a diameter less than 175 μm secured to each other at least locally by the support film 5 electrical connection of said wires with a contact structure arranged on the front face of a first cell, electrical connection of said wires with a contact structure arranged on the rear face of a second cell adjacent to the first one, said sheet wire being set up such that at least a first portion of the support film is interposed between the electrically conductive wires and the edge of the front face of the first cell and a second portion of the support film is interposed between said son and the edge of the back side of the second cell. When the protective films are not part of the support film integral with the son sheet 15 but are deposited directly on the edges of the cells, this step of placing the protective films is carried out before the electrical connection of the wires with the contact structures of the cells. If the support film is adhesive, it adheres to the surface of the cells and is thus maintained until the rolling of the module.

20 De manière avantageuse, la réalisation de la connexion électrique est réalisée au cours du laminage du module. Le laminage est un procédé connu en lui-même qui ne sera donc pas décrit en détail ici. Cette étape comprend l'encapsulation des cellules et des fils d'interconnexion dans un matériau encapsulant et le laminage de cet ensemble entre deux plaques de verre ou entre une plaque de verre constituant la face avant du 25 module et une plaque en polymère pour la face arrière du module (ledit polymère pouvant être transparent ou non selon que le module est monofacial ou bifacial). Le laminage est réalisé à une température supérieure à la température de fusion de l'alliage dont sont revêtus les fils et pendant une durée suffisamment longue pour permettre à l'alliage de fondre et d'assurer une bonne adhésion vis-à-vis des structures de contact.Advantageously, the realization of the electrical connection is performed during the rolling of the module. Rolling is a process known per se which will not be described in detail here. This step includes encapsulation of the cells and interconnect wires in encapsulating material and rolling of this assembly between two glass plates or between a glass plate constituting the front face of the module and a polymer plate for the face. rear of the module (said polymer may or may not be transparent depending on whether the module is monofacial or bifacial). The rolling is carried out at a temperature above the melting temperature of the alloy which is coated son and for a time long enough to allow the alloy to melt and ensure good adhesion vis-à-vis the structures of contact.

30 REFERENCES [1] Brochure "SmartVVire Connection Technology", Octobre 2014, http://www.meyerburger. com/en/products-systems/technologies/photovoltaic/swct/ [2] Communiqué de presse "SCHM ID Presents Multi Busbar Connector Prototype 35 at PVSEC", 19 septembre 2012, http://www.schmid-group. com/en/pressnews/a103/schmid-presents-multi-busbar-connector-at-pvsec.html30 REFERENCES [1] Brochure "SmartVVire Connection Technology", October 2014, http: //www.meyerburger. com / en / products-systems / technologies / photovoltaic / swct / [2] Press release "SCHM ID Presents Multi Busbar Connector Prototype 35 at PVSEC", 19 September 2012, http: //www.schmid-group. com / en / pressnews / A103 / schmid-presents-busbar multi-connector-at-pvsec.html

Claims (21)

REVENDICATIONS1. Module photovoltaïque comprenant au moins deux cellules photovoltaïques, dans lequel deux cellules (1,REVENDICATIONS1. Photovoltaic module comprising at least two photovoltaic cells, in which two cells (1, 2) adjacentes sont connectées par une nappe (30) de fils (3) électriquement conducteurs reliant électriquement une structure de contact (10) agencée sur une première face principale (1A), dite face avant, d'une première cellule (1) et une structure de contact (21) agencée sur une seconde face principale (2B), dite face arrière, de la seconde cellule (2) du côté opposé à la première face (1A), lesdits fils (3) étant rendus solidaires les uns des autres au moins localement par un film support, caractérisé en ce que lesdits fils électriquement conducteurs présentent un diamètre inférieur ou égal à 175 pm et en ce qu'un premier film protecteur est interposé entre les fils électriquement conducteurs (3) et un bord (10) de la face avant de la première cellule et un second film protecteur est interposé entre lesdits fils (3) et un bord (20) de la face arrière de la seconde cellule. 2. Module selon la revendication 1, caractérisé en ce que le premier film protecteur est une première portion (41, 42) du film support et le second film protecteur est une seconde portion (40) du film support située de l'autre côté de la nappe de fils par rapport à la première portion (41, 42).2) are connected by a sheet (30) of electrically conductive wires (3) electrically connecting a contact structure (10) arranged on a first main face (1A), said front face, of a first cell (1) and a contact structure (21) arranged on a second main face (2B), said rear face, of the second cell (2) on the opposite side to the first face (1A), said wires (3) being secured to one another; at least locally by a support film, characterized in that said electrically conductive wires have a diameter of less than or equal to 175 μm and in that a first protective film is interposed between the electrically conductive wires (3) and an edge (10). ) of the front face of the first cell and a second protective film is interposed between said son (3) and an edge (20) of the rear face of the second cell. 2. Module according to claim 1, characterized in that the first protective film is a first portion (41, 42) of the support film and the second protective film is a second portion (40) of the support film located on the other side of the web of threads relative to the first portion (41, 42). 3. Module selon la revendication 2, caractérisé en ce que lesdites première et seconde portions de film support sont positionnées de chaque côté de la nappe de fils dans une région s'étendant de part et d'autre du bord (10, 20) de chaque cellule.3. Module according to claim 2, characterized in that said first and second portions of support film are positioned on each side of the sheet of son in a region extending on either side of the edge (10, 20) of each cell. 4. Module selon la revendication 1, caractérisé en ce que le film support comprend une première portion s'étendant jusqu'au bord (10) de la première cellule (1) et une seconde portion (40) s'étendant en retrait vis-à-vis du bord (10) de la face avant de ladite première cellule (1), et en ce qu'une portion additionnelle de film support est interposée entre les fils (3) et le bord (20) de la face arrière (2B) de la seconde cellule (2).4. Module according to claim 1, characterized in that the support film comprises a first portion extending to the edge (10) of the first cell (1) and a second portion (40) extending recessed vis- to the edge (10) of the front face of said first cell (1), and that an additional portion of the support film is interposed between the wires (3) and the edge (20) of the rear face ( 2B) of the second cell (2). 5. Module selon la revendication 1, caractérisé en ce que le film support comprend deux portions (40, 41) s'étendent uniquement en regard de la face avant (1A) de la cellule (1), respectivement de la face arrière (2B) de la cellule (2), et en ce que deux portions additionnelles de film support sont interposés respectivement entre les fils (3) et le bord (10) de la face avant (1A) de la première cellule (1) d'une part, et entre les fils (3) et le bord (20) de la face arrière (2B) de la seconde cellule (2) d'autre part. 3037441 155. Module according to claim 1, characterized in that the support film comprises two portions (40, 41) extending only opposite the front face (1A) of the cell (1), respectively of the rear face (2B). ) of the cell (2), and in that two additional portions of the support film are respectively interposed between the wires (3) and the edge (10) of the front face (1A) of the first cell (1) of a part, and between the wires (3) and the edge (20) of the rear face (2B) of the second cell (2) on the other hand. 3037441 15 6. Module selon l'une des revendications 1 à 5, caractérisé en ce que la structure de contact (10, 20) agencée sur la face avant de chaque cellule comprend une pluralité de doigts métalliques. 56. Module according to one of claims 1 to 5, characterized in that the contact structure (10, 20) arranged on the front face of each cell comprises a plurality of metal fingers. 5 7. Module selon la revendication 6, caractérisé en ce que le premier film protecteur s'étend, sur la face avant de la première cellule, sur une distance (dl) inférieure à la distance entre le bord (10) de la face avant de ladite première cellule et le doigt métallique le plus proche dudit bord. 107. Module according to claim 6, characterized in that the first protective film extends on the front face of the first cell, a distance (dl) less than the distance between the edge (10) of the front face of said first cell and the metal finger closest to said edge. 10 8. Module selon l'une des revendications 6 ou 7, caractérisé en ce que lesdits doigts métalliques sont en une pâte d'argent dépourvue de composants organiques.8. Module according to one of claims 6 or 7, characterized in that said metal fingers are in a silver paste devoid of organic components. 9. Module selon l'une des revendications 1 à 8, caractérisé en ce que les cellules photovoltaïques sont des cellules à homojonction. 159. Module according to one of claims 1 to 8, characterized in that the photovoltaic cells are homojunction cells. 15 10. Module selon l'une des revendications 1 à 8, caractérisé en ce que les cellules photovoltaïques sont des cellules bifaciales, la structure de contact (11, 21) agencée sur la face arrière de chaque cellule comprenant une pluralité de doigts métalliques. 2010. Module according to one of claims 1 to 8, characterized in that the photovoltaic cells are bifacial cells, the contact structure (11, 21) arranged on the rear face of each cell comprising a plurality of metal fingers. 20 11. Module selon la revendication 10, caractérisé en ce que le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance (d2) inférieure à la distance entre le bord (20) de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord. 2511. Module according to claim 10, characterized in that the second protective film extends, on the rear face of the second cell, a distance (d2) less than the distance between the edge (20) of the rear face of said second cell and the metal finger closest to said edge. 25 12. Module selon la revendication 10, caractérisé en ce que le second film protecteur s'étend, sur la face arrière de la seconde cellule, sur une distance (d2) supérieure à la distance entre le bord (20) de la face arrière de ladite seconde cellule et le doigt métallique le plus proche dudit bord, de sorte que ledit second film protecteur isole électriquement au moins le doigt métallique le plus proche du bord vis-à-vis des fils (3), et 30 en ce que la structure de contact agencée sur la face arrière de ladite cellule comprend des éléments électriquement conducteurs perpendiculaires aux doigts métalliques pour relier électriquement le ou les doigts isolés par ledit film protecteur à au moins un doigt non isolé par le second film protecteur. 3512. Module according to claim 10, characterized in that the second protective film extends, on the rear face of the second cell, a distance (d2) greater than the distance between the edge (20) of the rear face of said second cell and the metal finger closest to said edge, so that said second protective film electrically insulates at least the metal finger closest to the edge with respect to the wires (3), and in that the structure contact strip arranged on the rear face of said cell comprises electrically conductive elements perpendicular to the metal fingers for electrically connecting the finger or fingers insulated by said protective film to at least one non-insulated finger by the second protective film. 35 13. Module selon l'une des revendications 1 à 9, caractérisé en ce que les cellules photovoltaïques sont des cellules monofaciales, la structure de contact (11, 21) agencée sur la face arrière de ladite cellule comprenant une couche métallique. 3037441 1613. Module according to one of claims 1 to 9, characterized in that the photovoltaic cells are monofacial cells, the contact structure (11, 21) arranged on the rear face of said cell comprising a metal layer. 3037441 16 14. Module selon l'une des revendications 1 à 13, caractérisé en ce que la distance entre deux fils d'interconnexions adjacents est inférieure ou égale à 20 mm, de préférence inférieure à 10 mm. 514. Module according to one of claims 1 to 13, characterized in that the distance between two adjacent interconnection son is less than or equal to 20 mm, preferably less than 10 mm. 5 15. Module selon l'une des revendications 1 à 14, caractérisé en ce que les cellules photovoltaïques présentent au moins un côté dont la longueur est inférieure ou égale à 52 mm, de préférence inférieure ou égale à 39 mm.15. Module according to one of claims 1 to 14, characterized in that the photovoltaic cells have at least one side whose length is less than or equal to 52 mm, preferably less than or equal to 39 mm. 16. Module selon l'une des revendications 1 à 15, caractérisé en ce que le film 10 support est en un matériau organique adhésif.16. Module according to one of claims 1 to 15, characterized in that the support film is an organic adhesive material. 17. Module selon l'une des revendications 1 à 16, caractérisé en ce que l'épaisseur du film support est inférieure à 100 pm, de préférence inférieure ou égale à 50 pm. 1517. Module according to one of claims 1 to 16, characterized in that the thickness of the support film is less than 100 pm, preferably less than or equal to 50 pm. 15 18. Module selon l'une des revendications 1 à 17, caractérisé en ce que la distance entre deux cellules (1, 2) adjacentes est inférieure à 2 mm, de préférence inférieure à 1 mm. 2018. Module according to one of claims 1 to 17, characterized in that the distance between two adjacent cells (1, 2) is less than 2 mm, preferably less than 1 mm. 20 19. Module selon l'une des revendications 1 à 18, caractérisé en ce que le diamètre des fils électriquement conducteurs est inférieur ou égal à 150 pm, de préférence inférieur ou égal à 100 pm et de manière encore préférée inférieur ou égal à 50 pm. 2519. Module according to one of claims 1 to 18, characterized in that the diameter of the electrically conductive son is less than or equal to 150 pm, preferably less than or equal to 100 pm and more preferably less than or equal to 50 pm . 25 20. Module selon l'une des revendications 1 à 19, caractérisé en ce que le ratio entre la section cumulée des fils (3) électriquement conducteurs du module et la largeur de chaque cellule est inférieur à 0,035 mm2/cm, de préférence inférieur à 0,02 mm2/cm.20. Module according to one of claims 1 to 19, characterized in that the ratio between the cumulative section of the electrically conductive son (3) of the module and the width of each cell is less than 0.035 mm2 / cm, preferably less than 0.02 mm 2 / cm. 21. Procédé d'interconnexion de cellules photovoltaïques pour fabriquer un 30 module photovoltaïque, comprenant : - la fourniture d'une nappe (30) de fils (3) électriquement conducteurs rendus solidaires les uns des autres au moins localement par un film support, - la connexion électrique desdits fils avec une structure de contact (10) agencée sur une première face principale (1A), dite face avant, d'une première cellule (1), 35 - la connexion électrique desdits fils avec une structure de contact (21) agencée sur une seconde face principale (2B), dite face arrière, d'une seconde cellule adjacente à la première du côté opposé à la première face (1A), 3037441 17 caractérisé en ce que lesdits fils (3) présentent un diamètre inférieur ou égal à 175 pm et en ce que, avant ou pendant la mise en place de ladite nappe (30) de fils, un premier film protecteur est interposé entre les fils électriquement conducteurs et le bord (10) de la face avant (1A) de la première cellule et un second film protecteur est interposé 5 entre lesdits fils et le bord (20) de la face arrière (2B) de la seconde cellule.21. A method for interconnecting photovoltaic cells for manufacturing a photovoltaic module, comprising: - supplying a sheet (30) of electrically conductive wires (3) secured to each other at least locally by a support film; the electrical connection of said wires with a contact structure (10) arranged on a first main face (1A), said front face, of a first cell (1), - the electrical connection of said wires with a contact structure (21). ) arranged on a second main face (2B), said rear face, of a second cell adjacent to the first side opposite the first face (1A), characterized in that said wires (3) have a smaller diameter or equal to 175 μm and in that, before or during the placement of said sheet (30) of son, a first protective film is interposed between the electrically conductive son and the edge (10) of the front face (1A) from the first cell and a second protective film is interposed between said wires and the edge (20) of the rear face (2B) of the second cell.
FR1555277A 2015-06-10 2015-06-10 PHOTOVOLTAIC MODULE AND METHOD FOR INTERCONNECTING PHOTOVOLTAIC CELLS TO MANUFACTURE SUCH A MODULE Active FR3037441B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1555277A FR3037441B1 (en) 2015-06-10 2015-06-10 PHOTOVOLTAIC MODULE AND METHOD FOR INTERCONNECTING PHOTOVOLTAIC CELLS TO MANUFACTURE SUCH A MODULE
PCT/FR2016/051395 WO2016198797A1 (en) 2015-06-10 2016-06-10 Photovoltaic module and method for interconnecting photovoltaic cells for producing such a module
TW105118380A TW201709542A (en) 2015-06-10 2016-06-13 Photovoltaic module and method for interconnecting photovoltaic cells to produce said module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1555277A FR3037441B1 (en) 2015-06-10 2015-06-10 PHOTOVOLTAIC MODULE AND METHOD FOR INTERCONNECTING PHOTOVOLTAIC CELLS TO MANUFACTURE SUCH A MODULE

Publications (2)

Publication Number Publication Date
FR3037441A1 true FR3037441A1 (en) 2016-12-16
FR3037441B1 FR3037441B1 (en) 2017-07-21

Family

ID=54291414

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1555277A Active FR3037441B1 (en) 2015-06-10 2015-06-10 PHOTOVOLTAIC MODULE AND METHOD FOR INTERCONNECTING PHOTOVOLTAIC CELLS TO MANUFACTURE SUCH A MODULE

Country Status (3)

Country Link
FR (1) FR3037441B1 (en)
TW (1) TW201709542A (en)
WO (1) WO2016198797A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074360B1 (en) * 2017-11-30 2019-12-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD OF INTERCONNECTING PHOTOVOLTAIC CELLS WITH AN ELECTRODE PROVIDED WITH METAL NANOWIRES
CN109309135A (en) * 2018-11-09 2019-02-05 武宇涛 Photovoltaic cell mould group and preparation method thereof
CN110429143A (en) * 2019-07-19 2019-11-08 苏州迈展自动化科技有限公司 A kind of electrode, photovoltaic cell and photovoltaic cell component for photovoltaic cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184457B1 (en) * 1997-12-22 2001-02-06 Canon Kabushiki Kaisha Photovoltaic device module
EP1770791A1 (en) * 2005-09-30 2007-04-04 Sanyo Electric Co., Ltd. Rectangular shaped solar cell module and its manufacturing method using hexagonal shaped unit solar cells
US20070283996A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US20110132423A1 (en) * 2006-10-11 2011-06-09 Gamma Solar Photovoltaic solar module comprising bifacial solar cells
US20120103383A1 (en) * 2010-11-03 2012-05-03 Miasole Photovoltaic Device and Method and System for Making Photovoltaic Device
EP2525395A1 (en) * 2011-05-17 2012-11-21 DelSolar Co., Ltd. Machine for manufacturing electrode tapes
US8951824B1 (en) * 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184457B1 (en) * 1997-12-22 2001-02-06 Canon Kabushiki Kaisha Photovoltaic device module
EP1770791A1 (en) * 2005-09-30 2007-04-04 Sanyo Electric Co., Ltd. Rectangular shaped solar cell module and its manufacturing method using hexagonal shaped unit solar cells
US20070283996A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
US20110132423A1 (en) * 2006-10-11 2011-06-09 Gamma Solar Photovoltaic solar module comprising bifacial solar cells
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US20120103383A1 (en) * 2010-11-03 2012-05-03 Miasole Photovoltaic Device and Method and System for Making Photovoltaic Device
US8951824B1 (en) * 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
EP2525395A1 (en) * 2011-05-17 2012-11-21 DelSolar Co., Ltd. Machine for manufacturing electrode tapes

Also Published As

Publication number Publication date
FR3037441B1 (en) 2017-07-21
TW201709542A (en) 2017-03-01
WO2016198797A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2006045968A1 (en) Monolithic multilayer structure for the connection of semiconductor cells
EP3493277B1 (en) Method for interconnecting photovoltaic cells with an electrode having metal nanowires
EP2510553B1 (en) Photovoltaic cell, method for assembling plurality of cells, and assembly of a plurality of photovoltaic cells
BE1022988B1 (en) PARALLEL INTERCONNECTION OF SOLAR CELLS VIA VIA A COMMON REAR PLAN
FR3094570A1 (en) PHOTOVOLTAIC CELL AND CHAIN AND RELATED PROCESSES
WO2016198797A1 (en) Photovoltaic module and method for interconnecting photovoltaic cells for producing such a module
FR3039706A1 (en) METHOD FOR MANUFACTURING A PHOTOVOLTAIC MODULE HAVING LOW RESISTIVE LOSSES
EP2497118B1 (en) Photovoltaic cell conductor consisting of two, high-temperature and low-temperature, screen-printed parts
EP2981156B1 (en) Photovoltaic panel and method for manufacturing such a panel
WO2020109408A1 (en) Photovoltaic daisychain and cell and associated manufacturing processes
EP2852981B1 (en) Photovoltaic module with photovoltaic cells having local widening of the bus
EP3353816B1 (en) Method for producing a photovoltaic module
FR3074963A1 (en) PHOTOVOLTAIC MODULE COMPRISING PHOTOVOLTAIC CELLS INTERCONNECTED BY INTERCONNECTION ELEMENTS
EP3809473A1 (en) Method for interconnection of photovoltaic cells with metal wires in contact with pads of solder paste
FR2964251A1 (en) Photovoltaic device i.e. photovoltaic cell, for photovoltaic power station, has metal strip that is mechanically and electrically connected to bus via interconnection zones, and not mechanically connected to bus via non-connection zones
EP3276673B1 (en) Method for manufacturing a photovoltaic element
EP4158693A1 (en) Photovoltaic chain and associated methods
FR3043252B1 (en) PROCESS FOR PRODUCING A COMPOSITE SUBSTRATE
FR3026229A1 (en) PHOTOVOLTAIC PHOTOCOLTAIC CELL WITH REAR-BACK CONTACTS, PHOTOVOLTAIC MODULE AND METHOD OF MANUFACTURING SUCH A MODULE
EP4348718A1 (en) Photovoltaic strings and cells
FR3111018A1 (en) Photovoltaic cell and chain and associated processes
FR2939966A1 (en) STRUCTURE OF A PHOTOVOLTAIC MODULE
WO2017081400A1 (en) Electronic structure on a ceramic support
FR3031624A1 (en) PARALLEL INTERCONNECTION OF SOLAR CELLS VIA VIA A COMMON REAR PLAN
FR3023062A1 (en) SILICON HETEROJUNCTION PHOTOVOLTAIC CELL AND METHOD OF MANUFACTURING SUCH CELL

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20161216

PLFP Fee payment

Year of fee payment: 3