FR3031848A1 - ROTOR FOR ELECTROMAGNETIC MACHINE WITH FLUX AXIAL ROTATING AT HIGH ROTATION SPEEDS AND ELECTROMAGNETIC MACHINE EQUIPPED WITH SUCH A ROTOR - Google Patents

ROTOR FOR ELECTROMAGNETIC MACHINE WITH FLUX AXIAL ROTATING AT HIGH ROTATION SPEEDS AND ELECTROMAGNETIC MACHINE EQUIPPED WITH SUCH A ROTOR Download PDF

Info

Publication number
FR3031848A1
FR3031848A1 FR1500104A FR1500104A FR3031848A1 FR 3031848 A1 FR3031848 A1 FR 3031848A1 FR 1500104 A FR1500104 A FR 1500104A FR 1500104 A FR1500104 A FR 1500104A FR 3031848 A1 FR3031848 A1 FR 3031848A1
Authority
FR
France
Prior art keywords
rotor
magnet
magnets
face
electromagnetic machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1500104A
Other languages
French (fr)
Other versions
FR3031848B1 (en
Inventor
Romain Ravaud
Loic Mayeur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whylot SAS
Original Assignee
Whylot SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whylot SAS filed Critical Whylot SAS
Priority to FR1500104A priority Critical patent/FR3031848B1/en
Priority to PCT/FR2016/000004 priority patent/WO2016116678A1/en
Publication of FR3031848A1 publication Critical patent/FR3031848A1/en
Application granted granted Critical
Publication of FR3031848B1 publication Critical patent/FR3031848B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

La présente invention porte sur un rotor (1) destiné à une machine électromagnétique à flux axial comportant un corps (2) présentant deux faces circulaires et au moins un aimant (3) porté circulairement sur au moins une des deux faces en étant maintenu par des moyens de solidarisation (4), une frette (5) formant couronne en matériau composite étant prévue à la périphérie du corps (2) pour son encadrement. Le corps (2) est à base de métal, ledit au moins un aimant (3) s'étend jusqu'à ou fait saillie radialement de la périphérie de ladite face, la frette (5) entourant directement le bord dudit au moins un aimant (3) extérieur au rotor (1), les moyens de solidarisation (4) maintenant ledit au moins un aimant (3) en direction axiale du rotor (1) tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette (5).The present invention relates to a rotor (1) for an axial flow electromagnetic machine comprising a body (2) having two circular faces and at least one magnet (3) borne circumferentially on at least one of the two faces being held by securing means (4), a ring (5) forming a ring of composite material being provided at the periphery of the body (2) for its frame. The body (2) is metal-based, said at least one magnet (3) extends up to or protrudes radially from the periphery of said face, the hoop (5) directly surrounding the edge of said at least one magnet (3) external to the rotor (1), the securing means (4) holding said at least one magnet (3) in the axial direction of the rotor (1) while they leave it a limited clearance in the radial direction allowing it to perform a compression job against the hoop (5).

Description

I « Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor» La présente invention concerne un rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et une machine électromagnétique équipée d'un tel rotor. Avantageusement mais non limitativement, la machine électrique peut 10 comprendre au moins un rotor encadré par deux stators. La présente invention trouve une application avantageuse mais non limitative dans un moteur électrique délivrant une forte puissance avec une vitesse de rotation du rotor élevée ce qui est obtenu par les caractéristiques spécifiques du rotor selon la présente invention. Un tel moteur peut être utilisé 15 par exemple comme moteur électrique dans un véhicule automobile totalement électrique ou hybride. Une machine électromagnétique comprend au moins un stator et au moins un rotor, un entrefer séparant ces deux éléments. Le rotor porte au moins un aimant permanent, avantageusement une série d'aimants 20 permanents, tandis qu'au moins une série d'éléments de bobinage est portée par le stator. De manière classique, chacun des éléments de bobinage comprend une dent portant une bobine, la dent étant encadrée sur chacun de ses côtés par une encoche, un fil métallique bon conducteur étant enroulé sur la dent 25 pour former la bobine. Quand la série ou les séries de bobinages sont alimentées électriquement, le rotor qui est solidarisé à l'arbre de sortie du moteur est soumis à un couple résultant du champ magnétique, le flux magnétique créé étant un flux axial pour une machine électrique à flux axial. 30 La demande de machines électriques pouvant délivrer une puissance élevée tout en gardant un poids et un encombrement réduits est actuellement très forte. Il est connu que la puissance P délivrée par une machine électrique est égale au couple C de la machine que multiplie la vitesse angulaire de rotation 35 w de la machine soit : P = C. w Pour augmenter la puissance, il convient d'augmenter le couple ou la vitesse angulaire ou vitesse de rotation ou les deux à la fois.The present invention relates to a rotor for an axial flow electromagnetic machine rotating at high rotational speeds and to an electromagnetic machine equipped with a rotor and an electromagnetic machine equipped with such a rotor. of such a rotor. Advantageously but not exclusively, the electrical machine may comprise at least one rotor flanked by two stators. The present invention finds an advantageous but non-limiting application in an electric motor delivering a high power with a high rotational speed of the rotor which is obtained by the specific characteristics of the rotor according to the present invention. Such an engine can be used, for example, as an electric motor in a fully electric or hybrid motor vehicle. An electromagnetic machine comprises at least one stator and at least one rotor, an air gap separating these two elements. The rotor carries at least one permanent magnet, advantageously a series of permanent magnets, while at least one series of winding elements is carried by the stator. Conventionally, each of the winding elements comprises a tooth carrying a coil, the tooth being framed on each of its sides by a notch, a good conductor wire being wound on the tooth 25 to form the coil. When the series or series of windings are electrically powered, the rotor which is secured to the output shaft of the motor is subjected to a torque resulting from the magnetic field, the magnetic flux created being an axial flow for an axial flow electric machine . The demand for electrical machines capable of delivering high power while keeping weight and space requirement is currently very high. It is known that the power P delivered by an electric machine is equal to the torque C of the machine that multiplies the angular rotation speed 35 w of the machine is: P = C. w To increase the power, it is necessary to increase the torque or angular velocity or rotational speed or both at a time.

On différencie ainsi des moteurs « coupleux » des moteurs « puissants ». Les moteurs « coupleux » sont des moteurs qui ne tournent pas forcément vite, mais pour lesquels la valeur du couple compense la faiblesse de cette vitesse de rotation. Les moteurs dits puissants sont ceux pour lesquels la valeur du couple n'est pas forcément très élevée mais qui tournent vite. Pour l'obtention d'un moteur « coupleux », il convient d'avoir une surface d'aimant portée par le rotor et une série de bobinages sur le stator suffisamment importantes pour créer un fort couple. Cela présente des désavantages notoires.This differentiates "torque" motors from "powerful" motors. "Coupless" engines are engines that do not necessarily turn fast, but for which the value of the torque compensates for the weakness of this speed of rotation. The so-called powerful engines are those for which the value of the torque is not necessarily very high but which turn fast. To obtain a "torque" motor, it is necessary to have a magnet surface carried by the rotor and a series of windings on the stator large enough to create a strong torque. This presents some notorious disadvantages.

Le premier désavantage est le poids d'un tel moteur avec des surfaces d'aimant et de bobinage importantes. Un tel moteur pèse lourd et présente un encombrement important. Le deuxième désavantage est aussi son prix, le prix des aimants étant élevé de même que le prix des bobinages fréquemment fait à base de fils de 20 cuivre. Ces deux désavantages et principalement le premier freinent l'utilisation de moteurs électriques pour la propulsion de véhicules automobiles, étant donné que l'encombrement et le poids d'un tel moteur sont très préjudiciables à son embarquement dans un véhicule automobile pour 25 lequel la diminution du poids et de l'encombrement des éléments embarqués est cruciale. Le troisième désavantage d'un moteur « coupleux » est son refroidissement étant donné que les pertes en effet Joule d'un tel moteur sont importantes. 30 Ainsi, pour réduire l'encombrement d'un tel moteur en lui conférant une structure compacte, le risque de surchauffe du rotor est augmenté, d'autant plus que ce rotor comprend une surface d'aimants élevée pour obtenir un fort couple. Il se crée des courants de Foucault dans le moteur avec augmentation de la température dans le moteur et éventuellement perturbation des flux magnétiques créés, ce qui présente aussi le risque de diminution du rendement du moteur. Dans ce cas, il convient de procéder au refroidissement du moteur et donc de le munir d'un dispositif de refroidissement ce qui augmente son poids 5 et son encombrement de même que sa complexité. Le principal désavantage d'un moteur à forte vitesse de rotation réside dans la probabilité élevée de détachement de l'aimant ou des aimants du rotor ainsi que de casse au moins partielle du rotor. Le rotor d'un tel moteur doit donc être apte à supporter des vitesses de rotation élevées. 10 Le document FR-A-3 004 025 divulgue une machine électrique à flux axial censée concilier compacité, robustesse et performance. La machine électrique est dotée d'un rotor qui comprend une pluralité de pôles d'aimant disposés sur la partie périphérique du corps sous forme de disque du rotor. Les pôles d'aimant sont noyés dans un support rigidifié. Il est aussi prévu un 15 élément d'arbre pour l'entraînement en rotation d'un arbre, cet élément d'arbre comprenant une série de butées, chaque butée étant aussi noyée dans le support, ces butées absorbant au moins les efforts de couple lors de la rotation du rotor. Ce document montre aussi l'utilisation d'une frette à la périphérie du corps du rotor. 20 Dans ce document, il est indiqué que le support rigidifié est en matériau composite, en résine thermodurcissable ou thermoplastique. Les butées présentent des surfaces sur lesquelles viennent buter le support rigidifié en matériau composite. Il s'ensuit des risques de rupture du corps en forme de disque du rotor à sa périphérie. 25 Le demandeur de la présente demande a constaté qu'un matériau composite noyant les aimants portés par le rotor ne permettait pas de rigidifier de manière suffisante et homogène, aussi bien dans un sens axial que dans un sens radial, le rotor d'où des risques de rupture élevés du rotor ou de détachement des aimants du rotor à grande vitesse de rotation. 30 Le problème à la base de la présente invention est de concevoir un rotor pour une machine électromagnétique à flux axial qui puisse résister aux efforts dans toutes les directions de l'espace qu'il subit lors de vitesses de rotation élevées ou non de son rotor, tout en permettant d'évacuer les éventuelles pertes dues à des échauffements des aimants et de maximiser le 35 flux magnétique dans l'entrefer.The first disadvantage is the weight of such an engine with large magnet and winding surfaces. Such an engine weighs heavily and has a large footprint. The second disadvantage is also its price, the price of magnets being high as well as the price of coils frequently made from copper wires. These two disadvantages and mainly the first impede the use of electric motors for the propulsion of motor vehicles, since the size and weight of such an engine are very detrimental to its boarding in a motor vehicle for which the decrease weight and bulk of embedded elements is crucial. The third disadvantage of a "torque" engine is its cooling since the Joule effect losses of such a motor are significant. Thus, to reduce the size of such an engine by giving it a compact structure, the risk of overheating of the rotor is increased, especially since this rotor comprises a high magnet surface to obtain a high torque. Eddy currents are created in the motor with an increase in the temperature in the motor and possibly disturbance of the magnetic fluxes created, which also presents the risk of reducing the efficiency of the motor. In this case, it is necessary to cool the engine and thus provide a cooling device which increases its weight and its size as well as its complexity. The main disadvantage of a high rotation speed motor lies in the high probability of detachment of the rotor magnet or magnets as well as at least partial breakage of the rotor. The rotor of such an engine must be able to withstand high rotational speeds. FR-A-3,004,025 discloses an axial flow electric machine intended to reconcile compactness, robustness and performance. The electric machine is provided with a rotor which includes a plurality of magnet poles disposed on the peripheral portion of the rotor disk body. The magnet poles are embedded in a stiffened support. There is also provided a shaft member for driving a shaft in rotation, this shaft member comprising a series of stops, each stop being also embedded in the support, these stops absorbing at least the torque forces. when rotating the rotor. This document also shows the use of a hoop at the periphery of the rotor body. In this document, it is stated that the stiffened support is made of composite material, of thermosetting or thermoplastic resin. The abutments have surfaces on which abut the stiffened support of composite material. It follows the risk of rupture of the disk-shaped body of the rotor at its periphery. The applicant of the present application has found that a composite material embedding the magnets carried by the rotor does not allow to stiffen sufficiently and homogeneously, both in an axial direction and in a radial direction, the rotor where high risk of rupture of the rotor or detachment of the rotor magnets at high rotational speed. The problem underlying the present invention is to design a rotor for an axial flow electromagnetic machine that can withstand the forces in all directions of the space it undergoes at high rotational speeds or not its rotor while permitting to evacuate any losses due to heating of the magnets and to maximize the magnetic flux in the air gap.

A cet effet, on prévoit selon l'invention un rotor destiné à une machine électromagnétique à flux axial, le rotor comportant un corps sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur ainsi qu'au moins un aimant permanent porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation, une frette formant couronne en matériau composite étant prévue à la périphérie du corps pour son encadrement, caractérisé en ce que : - le corps est à base de métal, ledit au moins un aimant s'étend jusqu'à la périphérie de ladite face ou fait saillie radialement de la périphérie de ladite face, la frette entourant directement le bord dudit au moins un aimant extérieur au rotor, les moyens de solidarisation maintiennent ledit au moins un aimant en direction axiale du rotor tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette. L'effet technique obtenu est une meilleure tenue du rotor aussi bien axialement que radialement et résulte d'un effet de synergie procuré par l'association de ces caractéristiques. D'une part, un corps à base de métal confère au rotor une bien 20 meilleure tenue axiale qu'un corps en matériau composite. De plus, il s'est avéré que le ou les aimants résistaient mieux à une sollicitation en compression plutôt qu'à une sollicitation en traction. En laissant un jeu radial limité à l'aimant ou aux aimants, il est possible que cet ou ces aimants travaillent en compression directement contre la frette. 25 Ainsi, il est évité des ruptures de zones du rotor pouvant fréquemment se trouver vers sa périphérie, ce qui était courant dans des rotors en matériau composite selon l'état de la technique. Une frette déjà présente pour l'absorption des forces centrifuges sert de plus comme butée à l'aimant ou aux aimants pour effectuer leur travail en 30 compression, ce qui est une économie de moyens. De manière facultative, l'invention comprend en outre au moins l'une quelconque des caractéristiques suivantes : - ledit au moins un aimant est sous la forme d'une pluralité d'aimants disposés directement adjacents l'un à l'autre ou séparés par un espacement 35 vide ou par une branche d'épaisseur moindre que les aimants, la pluralité d'aimants formant un anneau circulaire sur ladite au moins une face. Selon l'état de la technique il était prévu des bordures ou branches entre les aimants quand ceux-ci n'étaient pas entièrement noyés dans un matériau composite formant corps de rotor, ces bordures présentant une épaisseur plus grande que ou égale à celles des aimants. Il s'est avéré que ces bordures formaient des zones de fragilisation du rotor pouvant casser à cause des vibrations et plus principalement des forces centrifuges et peuvent également être le siège de pertes magnétiques importantes en cas d'épaisseur axiale importante. Un espacement vide ou une branche d'épaisseur réduite par rapport à celle des aimants concourt à une bonne rigidification du rotor tout en minimisant les pertes magnétiques qui pourraient être générées dans ces branches, notamment aux vitesses de rotation élevées. - les aimants présentent des angles au sommet en étant sous la forme de tuiles polygonales, chaque angle au sommet de chaque aimant étant associé à un élément de reprise de couple, les éléments de reprise de couple formant au moins en partie les moyens de solidarisation des aimants. Ainsi, des éléments déjà présents sur le rotor, à savoir les éléments de reprise de couple peuvent occuper une fonction supplémentaire à savoir permettre de maintenir le ou les aimants tout en leur laissant un jeu radial limité. Les formes des aimants permettent de diminuer les pertes engendrées par les courants de Foucault, notamment à des vitesses de rotation élevées ce qui peut être avantageusement combiné avec la présence de branches d'épaisseur réduite par rapport à celle des aimants, avantageusement en métal, permettant de rigidifier axialement le rotor en limitant sa masse dans un volume donné et de permettre une reprise de couple importante. - les éléments de reprise de couple présentent une élasticité en direction radiale du rotor. - les moyens de solidarisation sont formés par une colle appliquée entre ledit au moins un aimant et la face associée du corps du rotor, la colle étant résistante à un décollement dudit au moins un aimant en direction axiale du rotor tout en permettant une élasticité en direction radiale. Ces moyens de solidarisation peuvent être pris en alternative ou en complément avec les moyens de solidarisation formés par les éléments de reprise de couple. - le corps est en fer ou en un alliage à base de fer, en titane ou en oxyde de titane ou en un alliage à base de titane. Le fer présente l'avantage d'un prix bas mais le titane ou un alliage contenant du titane peut être préféré pour garantir une meilleure tenue axiale du rotor. - la frette en matériau composite est formée de fibres choisies parmi les fibres de verre, de carbone, de fibres polymères ou minérales. - le corps est percé de trous répartis autour d'un cercle concentrique aux faces circulaires du corps du rotor. Ces trous permettent la ventilation du rotor tout en allégeant son poids. - les deux faces circulaires portent respectivement au moins un aimant réparti circulairement sur la face associée du corps du rotor. Ainsi, il peut être 10 obtenu un rotor pouvant être associé à deux stators, chaque stator étant disposé sur un côté respectif du rotor. - ledit au moins un aimant est choisi parmi les aimants ferrites, les aimants à base de terres rares comme des aimants néodyme-fer-bore ou des aimants samarium cobalt, des aimants à base d'aluminium, de nickel et de 15 cobalt, avec ou sans liant thermoplastique. Avec un rotor à base de titane ou d'un mélange contenant du titane, de par le choix d'aimants sans fer, il peut être obtenu un rotor comportant un minimum de fer, ce qui est avantageux pour la diminution des courants de Foucault. Dans le cadre de l'invention, on prévoit une machine électromagnétique 20 présentant au moins un stator portant une série d'éléments de bobinage et au moins un rotor portant au moins un aimant, caractérisée en ce que ledit au moins un rotor est un rotor tel que précédemment décrit. Une telle machine électromagnétique peut présenter un rotor spécifiquement adapté pour tourner à des vitesses élevées d'où un surcroît de puissance produite. 25 Avantageusement, quand ledit au moins un rotor présente les deux faces circulaires de son corps portant respectivement au moins un aimant réparti circulairement sur sa face associée, ledit au moins un rotor est encadré de chaque côté par un stator. 30 D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels : - la figure 1 est une représentation schématique d'une vue en perspective d'un mode de réalisation d'une face d'un corps de rotor destiné à une machine électrique à flux axial selon la présente invention, le ou les aimants portés par cette face du corps du rotor ayant été omis à cette figure, - la figure 2 est une représentation schématique d'une vue en perspective du même mode de réalisation qu'illustré à la figure 1 montrant un corps de rotor destiné à une machine électrique à flux axial selon la présente invention, le corps du rotor portant le ou les aimants et étant entouré d'une frette à cette figure, - la figure 3 est une représentation schématique d'une vue de dessus d'une tuile formant un aimant permanent faisant partie d'une pluralité 10 d'aimants permanents pouvant être solidarisés avec le corps du rotor destiné à une machine électrique à flux axial selon la présente invention. Les figures sont données à titre d'exemples et ne sont pas limitatives de l'invention. Elles constituent des représentations schématiques de principe 15 destinées à faciliter la compréhension de l'invention et ne sont pas nécessairement à l'échelle des applications pratiques. En particulier les dimensions des différentes pièces ne sont pas représentatives de la réalité. En se référant aux figures 1 à 3, la présente invention concerne un rotor 1 destiné à une machine électromagnétique à flux axial. Le rotor 1 20 comporte un corps 2 sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur, une des deux faces étant visibles à la figure I. Le rotor 1 comprend un moyeu 7 destiné à entraîner un arbre en rotation, cet arbre n'étant pas montré aux figures. Le rotor 1 porte au moins un aimant 3 permanent, visible à la figure 2, 25 porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation 4, visibles à la figure 1. A la figure 2, un seul aimant est référencé 3 mais ce qui est énoncé pour un aimant 3 s'applique à tous les aimants représentés à cette figure. Il en va de même pour les moyens de solidarisation 4 qui sont référencés à la 30 figure 1 pour un seul groupe de moyens de solidarisation destiné à être solidarisé à un même aimant. Le corps 2 du rotor 1 porte une frette 5 formant couronne en matériau composite, la frette 5 étant prévue à la périphérie du corps 2 pour son encadrement. Cette frette 5 sert essentiellement à absorber les forces 35 centrifuges.For this purpose, the invention provides a rotor for an axial flow electromagnetic machine, the rotor comprising a body in the form of a disk having two circular faces connected by a thickness and at least one permanent magnet carried circularly. on at least one of the two faces being held on said face by securing means, a ring forming a ring of composite material being provided at the periphery of the body for its frame, characterized in that: - the body is made of metal said at least one magnet extends to the periphery of said face or protrudes radially from the periphery of said face, the ferrule directly surrounding the edge of said at least one magnet outside the rotor, the securing means maintain said minus a magnet in the axial direction of the rotor while they leave it a limited clearance in radial direction allowing it to perform a compressive work co to be the fret. The technical effect obtained is a better rotor behavior both axially and radially and results from a synergistic effect provided by the combination of these characteristics. On the one hand, a metal-based body gives the rotor a better axial hold than a body of composite material. In addition, it has been found that the magnet or magnets resist better to a compressive stress rather than a tensile stress. By leaving a radial clearance limited to the magnet or magnets, it is possible that this or these magnets work in compression directly against the hoop. Thus, it is avoided breaks of rotor areas that can frequently be found around its periphery, which was common in composite material rotors according to the state of the art. A band already present for the absorption of centrifugal forces serves more as a stop to the magnet or magnets to perform their work in compression, which is a saving of means. Optionally, the invention further comprises at least any of the following: said at least one magnet is in the form of a plurality of magnets arranged directly adjacent to each other or separated by an empty gap or a branch of lesser thickness than the magnets, the plurality of magnets forming a circular ring on said at least one face. According to the prior art there were provided edges or branches between the magnets when they were not completely embedded in a composite material forming a rotor body, these edges having a thickness greater than or equal to that of the magnets . It turned out that these edges formed zones of weakening of the rotor which can break due to vibrations and more mainly centrifugal forces and can also be the seat of significant magnetic losses in case of significant axial thickness. An empty spacing or a branch of reduced thickness compared to that of the magnets contributes to a good stiffening of the rotor while minimizing the magnetic losses that could be generated in these branches, especially at high rotational speeds. the magnets have angles at the vertex being in the form of polygonal tiles, each vertex angle of each magnet being associated with a torque recovery element, the torque recovery elements forming at least partly the means for securing the magnets. Thus, elements already present on the rotor, namely the torque recovery elements may have an additional function namely to maintain the magnet or magnets while leaving them a limited radial clearance. The shapes of the magnets make it possible to reduce the losses generated by the eddy currents, in particular at high rotation speeds which can advantageously be combined with the presence of branches of reduced thickness compared to that of the magnets, advantageously made of metal, allowing axially stiffen the rotor by limiting its mass in a given volume and allow a significant torque recovery. - The torque recovery elements have elasticity in the radial direction of the rotor. the securing means are formed by an adhesive applied between the at least one magnet and the associated face of the rotor body, the adhesive being resistant to detachment of the at least one magnet in the axial direction of the rotor while allowing elasticity in the direction radial. These securing means may be taken alternatively or in addition to the securing means formed by the torque recovery elements. the body is made of iron or an alloy based on iron, titanium or titanium oxide or an alloy based on titanium. Iron has the advantage of a low price but titanium or an alloy containing titanium may be preferred to ensure better axial resistance of the rotor. - The hoop made of composite material is formed of fibers selected from glass fibers, carbon, polymer or mineral fibers. - The body is pierced with holes distributed around a concentric circle to the circular faces of the rotor body. These holes allow ventilation of the rotor while reducing weight. the two circular faces respectively carry at least one magnet distributed circularly on the associated face of the rotor body. Thus, it can be obtained a rotor that can be associated with two stators, each stator being disposed on a respective side of the rotor. said at least one magnet is selected from ferrite magnets, rare-earth magnets such as neodymium-iron-boron magnets or samarium cobalt magnets, magnets based on aluminum, nickel and cobalt, with or without thermoplastic binder. With a rotor based on titanium or a mixture containing titanium, by the choice of magnets without iron, it can be obtained a rotor with a minimum of iron, which is advantageous for the reduction of eddy currents. In the context of the invention, there is provided an electromagnetic machine 20 having at least one stator carrying a series of winding elements and at least one rotor carrying at least one magnet, characterized in that said at least one rotor is a rotor as previously described. Such an electromagnetic machine may have a rotor specifically adapted to rotate at high speeds resulting in additional power output. Advantageously, when said at least one rotor has the two circular faces of its body carrying respectively at least one magnet distributed circularly on its associated face, said at least one rotor is framed on each side by a stator. Other features, objects and advantages of the present invention will appear on reading the detailed description which follows and with reference to the appended drawings given as non-limiting examples and in which: FIG. 1 is a diagrammatic representation; a perspective view of an embodiment of a face of a rotor body for an axial flow electric machine according to the present invention, the magnet or magnets carried by this face of the rotor body having been omitted FIG. 2 is a schematic representation of a perspective view of the same embodiment illustrated in FIG. 1 showing a rotor body intended for an axial flow electric machine according to the present invention, the body of the rotor carrying the magnet or magnets and being surrounded by a hoop in this figure, - Figure 3 is a schematic representation of a top view of a permanent magnet forming a tile. part of a plurality of permanent magnets that can be secured to the rotor body for an axial flow electric machine according to the present invention. The figures are given by way of examples and are not limiting of the invention. They constitute schematic representations of principle intended to facilitate the understanding of the invention and are not necessarily at the level of practical applications. In particular, the dimensions of the different pieces are not representative of reality. Referring to Figures 1 to 3, the present invention relates to a rotor 1 for an axial flow electromagnetic machine. The rotor 1 comprises a body 2 in the form of a disc having two circular faces connected by a thickness, one of the two faces being visible in FIG. 1. The rotor 1 comprises a hub 7 intended to drive a rotating shaft, this tree not being shown in the figures. The rotor 1 carries at least one permanent magnet 3, visible in FIG. 2, carried circumferentially on at least one of the two faces while being held on said face by securing means 4, visible in FIG. 1. In FIG. 2 , a single magnet is referenced 3 but what is stated for a magnet 3 applies to all the magnets shown in this figure. The same goes for the securing means 4 which are referenced in Figure 1 for a single group of securing means intended to be secured to the same magnet. The body 2 of the rotor 1 carries a hoop 5 forming a composite material ring, the hoop 5 being provided at the periphery of the body 2 for its frame. This hoop 5 serves essentially to absorb the centrifugal forces.

Selon la présente invention, le corps 2 du rotor 1 est à base de métal. De plus, le ou les aimants 3 s'étendent jusqu'à la périphérie de la face du corps 2 du rotor 1 les portant ou font saillie radialement de la périphérie de ladite face.According to the present invention, the body 2 of the rotor 1 is metal-based. In addition, the magnet or magnets 3 extend to the periphery of the face of the body 2 of the rotor 1 bearing or protruding radially from the periphery of said face.

La frette 5 entoure directement le bord dudit au moins un aimant 3 extérieur au rotor 1 et est donc en contact direct avec le bord le plus externe de l'aimant ou des aimants 3. Les moyens de solidarisation 4 maintiennent l'aimant ou les aimants 3 en direction axiale du rotor 1 tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette 5. Ceci permet de faire travailler l'aimant ou les aimants en compression plutôt qu'un étirement ce qui est plus favorable pour leur résistance mécanique en compression qui peut être dix fois supérieure en compression qu'en traction.The hoop 5 directly surrounds the edge of said at least one magnet 3 outside the rotor 1 and is therefore in direct contact with the outermost edge of the magnet or magnets 3. The securing means 4 hold the magnet or the magnets 3 in the axial direction of the rotor 1 while they leave it a limited play in the radial direction allowing it to perform a compressive work against the hoop 5. This makes it possible to work the magnet or the magnets in compression rather than stretching which is more favorable for their compressive strength which can be ten times higher in compression than in tension.

A la figure 2, le ou les aimants sont sous la forme d'une pluralité d'aimants 3 disposés directement adjacents l'un à l'autre ou séparés par un espacement vide 8 afin de former un anneau circulaire sur ladite au moins une face. Dans l'exemple de réalisation montré à la figure 2, les aimants 3 sont au nombre de seize, ce qui n'est pas limitatif.In FIG. 2, the magnet or magnets are in the form of a plurality of magnets 3 arranged directly adjacent to one another or separated by an empty spacing 8 in order to form a circular ring on the at least one face . In the embodiment shown in Figure 2, the magnets 3 are sixteen in number, which is not limiting.

Il est aussi possible de conserver une séparation entre les aimants faite d'une branche ou d'une bride intercalée entre deux aimants adjacents. Dans ce cas, cette branche ou bride est avantageusement d'une épaisseur moindre que l'aimant afin qu'elle soit plus éloignée du stator que les aimants et ainsi qu'il y ait moins de pertes magnétiques dues à la circulation de courants au sein de ces branches. Les aimants 3 peuvent prendre diverses formes, par exemple en étant sous la forme de tuiles polygonales, par exemple des tuiles triangulaires ou en forme de quadrilatères. Pour une tuile triangulaire, un sommet du triangle peut pointer 30 avantageusement vers le centre du rotor I. Comme il peut être particulièrement bien vu à la figure 3 tout en se référant aux autres figures pour les références, pour une tuile en forme de quadrilatère, cette tuile est un aimant unitaire 3 faisant partie d'une pluralité d'aimants formant un anneau sur au moins une face du corps 2 du rotor.It is also possible to keep a separation between the magnets made of a branch or a flange interposed between two adjacent magnets. In this case, this branch or flange is advantageously of a smaller thickness than the magnet so that it is further from the stator than the magnets and there is less magnetic losses due to the circulation of currents within of these branches. The magnets 3 can take various forms, for example by being in the form of polygonal tiles, for example triangular tiles or quadrilaterals. For a triangular tile, a vertex of the triangle may advantageously point towards the center of the rotor I. As can be particularly well seen in FIG. 3 while referring to the other figures for the references, for a quadrilateral-shaped tile, this tile is a unitary magnet 3 forming part of a plurality of magnets forming a ring on at least one face of the body 2 of the rotor.

Cette tuile peut présenter un petit côté circulaire 9 formant base le plus interne à la face du corps 2 du rotor 1. La succession des petits côtés circulaires 9 de la pluralité d'aimants délimite la circonférence interne de l'anneau formé par la succession d'aimants.This tile may have a small circular side 9 forming the innermost base to the face of the body 2 of the rotor 1. The succession of small circular sides 9 of the plurality of magnets defines the inner circumference of the ring formed by the succession of magnets.

Cette tuile peut présenter un plus grand côté circulaire 10 formant le bord le plus externe de l'aimant 3 au rotor 1, les plus grands côtés circulaires 10 des aimants 3 formant le bord externe des aimants en contact direct avec la frette 5. Ainsi, de manière générale, les aimants 3 sont sous la forme de tuiles 10 polygonales en pouvant présenter certains de leurs côtés arrondis. Dans une première forme de réalisation de la présente invention, chaque angle au sommet de chaque aimant 3 peut être associé à un élément de reprise de couple 4, les éléments de reprise de couple 4 formant au moins en partie les moyens de solidarisation des aimants 3, les éléments de reprise 15 de couple 4 étant visibles à la figure 1. Le couple est donc ainsi repris à la fois par les moyens de solidarisation, avantageusement par collage, et également par les branches qui transmettent l'effort à l'arbre. Les éléments de reprise de couple 4 peuvent présenter une élasticité 20 en direction radiale du rotor 1 et notamment vers l'extérieur du rotor 1 afin de permettre à l'aimant ou aux aimants 3 un jeu limité en direction radiale leur permettant d'effectuer un travail en compression contre la frette 5. Dans une deuxième forme de réalisation de la présente invention, les moyens de solidarisation 4 sont formés par une colle appliquée entre le ou les 25 aimants et la face associée du corps 2 du rotor 1. La colle est résistante à un décollement de l'aimant ou les aimants 3 en direction axiale du rotor 1 tout en présentant une élasticité en direction radiale toujours afin de permettre à l'aimant ou aux aimants 3 un jeu limité en direction radiale leur permettant d'effectuer un travail en compression contre 30 la frette 5. Le corps 2 du rotor 1 peut être à base de fer, en alliage de fer, en titane, en oxyde de titane ou en un alliage contenant du titane. La part de titane peut ne pas être la part prépondérante dans l'alliage.This tile may have a larger circular side 10 forming the outermost edge of the magnet 3 to the rotor 1, the larger circular sides 10 of the magnets 3 forming the outer edge of the magnets in direct contact with the hoop 5. Thus, in general, the magnets 3 are in the form of polygonal tiles 10 being able to have some of their rounded sides. In a first embodiment of the present invention, each vertex angle of each magnet 3 may be associated with a torque recovery element 4, the torque recovery elements 4 forming at least in part the means for securing the magnets 3 , the torque recovery elements 4 being visible in Figure 1. The torque is thus taken up both by the securing means, preferably by gluing, and also by the branches which transmit the force to the shaft. The torque recovery elements 4 may have elasticity in the radial direction of the rotor 1 and in particular towards the outside of the rotor 1 in order to allow the magnet or the magnets 3 a limited play in the radial direction enabling them to perform a In a second embodiment of the present invention, the securing means 4 are formed by an adhesive applied between the magnet or magnets and the associated face of the body 2 of the rotor 1. The adhesive is resistant to detachment of the magnet or the magnets 3 in the axial direction of the rotor 1 while still having radial elasticity in order to allow the magnet or the magnets 3 a limited radial clearance allowing them to perform a The body 2 of the rotor 1 may be based on iron, iron alloy, titanium, titanium oxide or an alloy containing titanium. Titanium may not be the dominant part of the alloy.

La frette 5 en matériau composite peut être formée de fibres ou de bandes choisies parmi les fibres de verre, de carbone, de fibres polymères ou minérales. Les fibres ou bandes consécutives peuvent être de nature ou de dimensions différentes. Il peut, par exemple, être mélangé des fibres de verre de composition différente, des fibres de plastique, par exemple en PEEK, en polyaramide ou des fibres de composite. Les fibres sont avantageusement des fibres longues enlacées sur le bord externe de l'aimant ou des aimants avec de préférence l'utilisation d'une résine thermodurcissable ou thermoplastique. Divers procédés de positionnement et durcissement des fibres ou bandes peuvent être mis en oeuvre, les fibres ou bandes pouvant être pré-imprégnées ou non. Le corps 2 peut être percé de trous 6 régulièrement répartis autour d'un cercle concentrique aux faces circulaires du corps 2 du rotor 1, les trous 15 traversant le corps2 de part en part en débouchant sur chaque face circulaire. Les deux faces circulaires du corps 2 du rotor 1 peuvent porter respectivement au moins un aimant 3 réparti circulairement sur sa face associée. Ledit au moins un aimant 3 peut être choisi parmi les aimants ferrites, 20 les aimants à base de terres rares comme des aimants néodyme-fer-bore ou des aimants samarium cobalt, des aimants à base d'aluminium, de nickel et de cobalt, avec ou sans liant thermoplastique. Un tel rotor 1 peut faire partie d'une machine électromagnétique présentant au moins un stator portant une série d'éléments de bobinage et au 25 moins un rotor 1 portant au moins un aimant 3. Quand ledit au moins un rotor 1 présente ses deux faces circulaires portant respectivement au moins un aimant 3 réparti circulairement sur sa face associée, ledit au moins un rotor 1 est encadré de chaque côté par un stator.The hoop 5 of composite material may be formed of fibers or strips selected from glass fibers, carbon, polymer or mineral fibers. The consecutive fibers or bands may be of different nature or size. It may, for example, be mixed glass fibers of different composition, plastic fibers, for example PEEK, polyaramid or composite fibers. The fibers are advantageously long fibers entwined on the outer edge of the magnet or magnets with preferably the use of a thermosetting or thermoplastic resin. Various methods of positioning and curing the fibers or bands may be implemented, the fibers or strips may be pre-impregnated or not. The body 2 may be pierced with holes 6 regularly distributed around a circle concentric with the circular faces of the body 2 of the rotor 1, the holes 15 passing through the body 2 from one end to the other on each circular face. The two circular faces of the body 2 of the rotor 1 may respectively carry at least one magnet 3 distributed circularly on its associated face. Said at least one magnet 3 may be selected from ferrite magnets, rare earth magnets such as neodymium iron boron magnets or samarium cobalt magnets, magnets based on aluminum, nickel and cobalt, with or without thermoplastic binder. Such a rotor 1 may be part of an electromagnetic machine having at least one stator carrying a series of winding elements and at least one rotor 1 carrying at least one magnet 3. When said at least one rotor 1 has its two faces circular respectively carrying at least one magnet 3 distributed circularly on its associated face, said at least one rotor 1 is framed on each side by a stator.

30 La disposition des aimants peut être choisie pour établir un champ magnétique augmenté du côté destiné à être tourné vers le stator associé en vis-à-vis, tandis que le champ magnétique est diminué ou annulé sur son côté opposé. On réduit ainsi la déperdition du champ magnétique. Les stators peuvent être des stators dits bobinés, c'est-à-dire qu'ils 35 peuvent présenter une série d'éléments de bobinage successifs composés respectivement d'un bobinage de fil métallique bon conducteur d'électricité, par exemple en aluminium ou en cuivre, d'une dent et de deux encoches encadrant chaque dent sur chacun de ses côtés. Une telle machine électrique d'un poids réduit et délivrant une forte 5 puissance du fait des vitesses de rotation permises au rotor peut avantageusement être utilisée comme moteur et génératrice électrique dans un véhicule automobile, mais ceci n'est pas limitatif. L'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemples.The arrangement of the magnets may be chosen to establish an increased magnetic field on the side to be turned towards the associated stator vis-a-vis, while the magnetic field is decreased or canceled on its opposite side. This reduces the loss of the magnetic field. The stators may be so-called coiled stators, that is to say that they may have a series of successive winding elements respectively composed of a wire winding which is a good conductor of electricity, for example aluminum or copper, a tooth and two notches framing each tooth on each side. Such an electric machine of reduced weight and delivering a high power due to the rotational speeds allowed to the rotor can advantageously be used as an electric motor and generator in a motor vehicle, but this is not limiting. The invention is in no way limited to the described and illustrated embodiments which have been given by way of example only.

Claims (12)

REVENDICATIONS1. Rotor (1) destiné à une machine électromagnétique à flux axial, le rotor (1) comportant un corps (2) sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur ainsi qu'au moins un aimant (3) permanent porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation (4), une frette (5) formant couronne en matériau composite étant prévue à la périphérie du corps (2) pour son encadrement, caractérisé en ce que : le corps (2) est à base de métal, ledit au moins un aimant (3) s'étend jusqu'à la périphérie de ladite face ou fait saillie radialement de la périphérie de ladite face, la frette (5) entourant directement le bord dudit au moins un aimant (3) extérieur au rotor (1), les moyens de solidarisation (4) maintiennent ledit au moins un aimant (3) en direction axiale du rotor (1) tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette (5).REVENDICATIONS1. Rotor (1) for an axial flow electromagnetic machine, the rotor (1) comprising a body (2) in the form of a disc having two circular faces connected by a thickness and at least one permanent magnet (3) worn circularly on at least one of the two faces being held on said face by securing means (4), a hoop (5) forming a ring of composite material being provided at the periphery of the body (2) for its frame, characterized in that that: the body (2) is metal-based, said at least one magnet (3) extends to the periphery of said face or projects radially from the periphery of said face, the hoop (5) surrounding directly the edge of said at least one magnet (3) outside the rotor (1), the securing means (4) hold said at least one magnet (3) in the axial direction of the rotor (1) while they leave it a limited game in radial direction allowing him to perform work in co against the fret (5). 2. Rotor (1) selon la revendication précédente, dans lequel ledit au moins un aimant (3) est sous la forme d'une pluralité d'aimants (3) disposés directement adjacents l'un à l'autre ou séparés par un espacement vide (8) ou par une branche d'épaisseur moindre que les aimants (3), la pluralité d'aimants (3) formant un anneau circulaire sur ladite au moins une face.2. Rotor (1) according to the preceding claim, wherein said at least one magnet (3) is in the form of a plurality of magnets (3) arranged directly adjacent to each other or separated by a spacing vacuum (8) or by a branch of lesser thickness than the magnets (3), the plurality of magnets (3) forming a circular ring on said at least one face. 3. Rotor (1) selon la revendication précédente, dans lequel les aimants (3) présentent des angles au sommet en étant sous la forme de tuiles polygonales, chaque angle au sommet de chaque aimant (3) étant associé à un élément de reprise de couple (4), les éléments de reprise de couple (4) formant au moins en partie les moyens de solidarisation des aimants (3).3. Rotor (1) according to the preceding claim, wherein the magnets (3) have corners at the top being in the form of polygonal tiles, each vertex angle of each magnet (3) being associated with a recovery element of torque (4), the torque recovery elements (4) forming at least partly the means for securing the magnets (3). 4. Rotor (1) selon la revendication précédente, dans lequel les éléments de reprise de couple (4) présentent une élasticité en direction radiale du rotor (1).4. Rotor (1) according to the preceding claim, wherein the torque recovery elements (4) have a radial elasticity of the rotor (1). 5. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel les moyens de solidarisation (4) sont formés par une colle appliquée entre ledit au moins un aimant (3) et la face associée du corps (2) du rotor (1), la colle étant résistante à un décollement dudit au moins un aimant (3) en direction axiale du rotor (1) tout en présentant une élasticité en direction radiale.5. Rotor (1) according to any one of the preceding claims, wherein the securing means (4) are formed by an adhesive applied between said at least one magnet (3) and the associated face of the body (2) of the rotor (1), the glue being resistant to a detachment of said at least one magnet (3) in the axial direction of the rotor (1) while having a radial elasticity. 6. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel le corps (2) est en fer ou en un alliage à base de fer, en titane ou en oxyde de titane ou en un alliage à base de titane.6. Rotor (1) according to any one of the preceding claims, wherein the body (2) is made of iron or an alloy based on iron, titanium or titanium oxide or a titanium-based alloy. 7. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel la frette (5) en matériau composite est formée de fibres choisies parmi les fibres de verre, de carbone, de fibres polymères ou minérales.7. Rotor (1) according to any one of the preceding claims, wherein the hoop (5) of composite material is formed of fibers selected from glass fibers, carbon, polymeric or mineral fibers. 8. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel le corps (2) est percé de trous (6) répartis autour d'un cercle concentrique aux faces circulaires du corps (2) du rotor (1).8. Rotor (1) according to any one of the preceding claims, wherein the body (2) is pierced with holes (6) distributed around a circle concentric with the circular faces of the body (2) of the rotor (1). 9. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel les deux faces circulaires du corps (2) du rotor (1) portent respectivement au moins un aimant (3) réparti circulairement sur sa face associée.9. Rotor (1) according to any one of the preceding claims, wherein the two circular faces of the body (2) of the rotor (1) carry respectively at least one magnet (3) distributed circularly on its associated face. 10. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un aimant (3) est choisi parmi les aimants ferrites, les aimants à base de terres rares comme des aimants néodyme-fer-bore ou des aimants samarium cobalt, des aimants à base d'aluminium, de nickel et de cobalt, avec ou sans liant thermoplastique.10. Rotor (1) according to any preceding claim, wherein said at least one magnet (3) is selected from ferrite magnets, rare earth magnets such as neodymium iron boron magnets or magnets samarium cobalt, magnets based on aluminum, nickel and cobalt, with or without thermoplastic binder. 11. Machine électromagnétique présentant au moins un stator portant une série d'éléments de bobinage et au moins un rotor (1) portant au moins un aimant (3), caractérisée en ce que ledit au moins un rotor est un rotor (1) selon l'une quelconque des revendications précédentes.An electromagnetic machine having at least one stator carrying a series of winding elements and at least one rotor (1) carrying at least one magnet (3), characterized in that said at least one rotor is a rotor (1) according to any one of the preceding claims. 12. Machine électromagnétique selon la revendication précédente, dans laquelle, quand ledit au moins un rotor (1) présente les deux faces circulaires de son corps (2) portant respectivement au moins un aimant (3) réparti circulairement sur sa face associée, ledit au moins un rotor (1) est encadré de chaque côté par un stator.12. Electromagnetic machine according to the preceding claim, wherein, when said at least one rotor (1) has the two circular faces of its body (2) carrying respectively at least one magnet (3) distributed circularly on its associated face, said at least one rotor (1) is framed on each side by a stator.
FR1500104A 2015-01-19 2015-01-19 ROTOR FOR ELECTROMAGNETIC MACHINE WITH FLUX AXIAL ROTATING AT HIGH ROTATION SPEEDS AND ELECTROMAGNETIC MACHINE EQUIPPED WITH SUCH A ROTOR Active FR3031848B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1500104A FR3031848B1 (en) 2015-01-19 2015-01-19 ROTOR FOR ELECTROMAGNETIC MACHINE WITH FLUX AXIAL ROTATING AT HIGH ROTATION SPEEDS AND ELECTROMAGNETIC MACHINE EQUIPPED WITH SUCH A ROTOR
PCT/FR2016/000004 WO2016116678A1 (en) 2015-01-19 2016-01-18 Rotor for an axial flux electromagnetic machine rotating at high rotational speeds and electromagnetic machine equipped with such a rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1500104 2015-01-19
FR1500104A FR3031848B1 (en) 2015-01-19 2015-01-19 ROTOR FOR ELECTROMAGNETIC MACHINE WITH FLUX AXIAL ROTATING AT HIGH ROTATION SPEEDS AND ELECTROMAGNETIC MACHINE EQUIPPED WITH SUCH A ROTOR

Publications (2)

Publication Number Publication Date
FR3031848A1 true FR3031848A1 (en) 2016-07-22
FR3031848B1 FR3031848B1 (en) 2018-03-16

Family

ID=53269592

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1500104A Active FR3031848B1 (en) 2015-01-19 2015-01-19 ROTOR FOR ELECTROMAGNETIC MACHINE WITH FLUX AXIAL ROTATING AT HIGH ROTATION SPEEDS AND ELECTROMAGNETIC MACHINE EQUIPPED WITH SUCH A ROTOR

Country Status (2)

Country Link
FR (1) FR3031848B1 (en)
WO (1) WO2016116678A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145831A1 (en) * 2018-01-26 2019-08-01 Whylot Unitary magnet having an ovoid configuration, and magnet structure comprising multiple unitary magnets

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064423B1 (en) * 2017-03-22 2019-11-15 Whylot Sas ROTOR FOR MOTOR OR ELECTROMAGNETIC GENERATOR WITH ALVEOLAR STRUCTURE COMPRISING ALVEOLES FOR THE HOUSING OF RESPECTIVE MAGNETS
CN107492962A (en) * 2017-08-31 2017-12-19 杭州中豪电动科技股份有限公司 A kind of magnetic steel fixed structure of disc type electric machine
FR3075505B1 (en) * 2017-12-18 2022-03-11 Whylot Sas MOTOR STATOR OR ELECTROMAGNETIC GENERATOR WITH INDIVIDUAL WINDING SUPPORT SNAP-ON ON AN ASSOCIATED TOOTH
CN110838764A (en) 2018-08-16 2020-02-25 奥的斯电梯公司 Motor stator assembly, synchronous motor and passenger transportation device
CN109327090A (en) * 2018-12-13 2019-02-12 上海盘毂动力科技股份有限公司 A kind of rotor disk, rotor assembly and motor in axial magnetic field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001619A1 (en) * 1983-10-03 1985-04-11 Micro-Electric Ag Alternating current synchronous servomotor
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
WO2007091727A1 (en) * 2006-02-08 2007-08-16 Honda Motor Co., Ltd. Rotor for electric motor
EP2773023A1 (en) * 2013-02-27 2014-09-03 Yasa Motors Ltd Axial flux motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004025B1 (en) 2013-03-29 2015-03-27 Renault Sa DISCOID ROTOR FOR AN AXIAL FLUX ELECTRIC MOTOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001619A1 (en) * 1983-10-03 1985-04-11 Micro-Electric Ag Alternating current synchronous servomotor
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
WO2007091727A1 (en) * 2006-02-08 2007-08-16 Honda Motor Co., Ltd. Rotor for electric motor
EP2773023A1 (en) * 2013-02-27 2014-09-03 Yasa Motors Ltd Axial flux motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145831A1 (en) * 2018-01-26 2019-08-01 Whylot Unitary magnet having an ovoid configuration, and magnet structure comprising multiple unitary magnets
FR3077414A1 (en) * 2018-01-26 2019-08-02 Whylot Sas MAGNET UNIT WITH OVID CONFIGURATION AND MAGNET STRUCTURE WITH MULTIPLE UNIT MAGNETS
US11323016B2 (en) 2018-01-26 2022-05-03 Whylot Sas Unitary magnet having an ovoid configuration, and magnet structure comprising multiple unitary magnets

Also Published As

Publication number Publication date
FR3031848B1 (en) 2018-03-16
WO2016116678A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
EP3602740B1 (en) Motor or electromagnetic generator comprising a rotor with magnetised structures comprising unit magnets and a stator with concentric windings
WO2016116678A1 (en) Rotor for an axial flux electromagnetic machine rotating at high rotational speeds and electromagnetic machine equipped with such a rotor
WO2020065488A1 (en) Axial-flux rotor with magnets and body made of layers of composite with fibers of different orientations
FR2519483A1 (en) High speed sync. avoiding alternator - uses permanent magnets between magnetic sheets with axially directed support bars and radial bars linking outer ring to hub
EP3430706B1 (en) Rotor for axial flux electromagnetic motor or generator with semi-embedded magnets and axial holding means
EP3811498A1 (en) Rotor for an electromagnetic motor or generator with tapered branches
EP3387742B1 (en) Rotor of an axial-flow electromagnetic motor having a corrugated-shape integral magnet
WO2015193562A1 (en) Electromagnetic synchronous motor with combined axial and radial magnetic fluxes
FR3042329A1 (en) POWER ASSISTED STEERING OF A MOTOR VEHICLE WITH AN ELECTROMAGNETIC MOTOR WITH MAGNETIC FLUX
EP3164929A2 (en) Electromagnetic motor comprising radial air gaps and a rotor surrounded by two stators, reducing cogging torque
WO2014122374A1 (en) Electromagnetic motor or generator with a plurality of air gaps having permanent magnets and ironless winding element
FR2837631A1 (en) Rotating electrical machine with modular stator and rotor for use as radiator cooling fan in motor vehicle, uses modular segments of wound teeth to form stator, with segments supported in magnetic frame
FR3008539A1 (en) ELECTROMAGNETIC ACTUATOR POLYENTREFERS WITH PERMANENT MAGNETS AND WINDING ELEMENTS WITHOUT IRON
WO2019073128A1 (en) Reduced-stiffness rotor for an electromagnetic generator or motor
FR2486730A1 (en) Very high revolution rate flywheel energy store - with rotor discs made of titanium alloy with carbon fibre material binding
FR2837632A1 (en) Rotating electrical machine with separate poles, to drive cooling fans for motor vehicles, uses separate pole teeth formed from a powdered material that flows through windings and which are attached by a mechanical joint to rotor or stator
WO2015193563A1 (en) Electromagnetic synchronous motor with combined axial and radial magnetic fluxes with double excitation
WO2022128983A1 (en) Element with magnetic poles, comprising an assembly of several individual magnets, for the rotor of an axial flux electric machine
FR3078594A1 (en) COMPACT POLYENTREFERS ELECTROMAGNETIC MOTOR WITH AXIAL MAGNETIC FLUX

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160722

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10