FR3022291B1 - Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau - Google Patents

Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau Download PDF

Info

Publication number
FR3022291B1
FR3022291B1 FR1455298A FR1455298A FR3022291B1 FR 3022291 B1 FR3022291 B1 FR 3022291B1 FR 1455298 A FR1455298 A FR 1455298A FR 1455298 A FR1455298 A FR 1455298A FR 3022291 B1 FR3022291 B1 FR 3022291B1
Authority
FR
France
Prior art keywords
stiffener
deformation
sensor
assembly
measuring sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
FR1455298A
Other languages
English (en)
Other versions
FR3022291A1 (fr
Inventor
Pedro Queiros
Henri Morand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Priority to FR1455298A priority Critical patent/FR3022291B1/fr
Priority to EP15727676.7A priority patent/EP3155204B1/fr
Priority to PCT/EP2015/062973 priority patent/WO2015189291A1/fr
Priority to BR112016028951-0A priority patent/BR112016028951B1/pt
Priority to DK15727676.7T priority patent/DK3155204T3/en
Publication of FR3022291A1 publication Critical patent/FR3022291A1/fr
Application granted granted Critical
Publication of FR3022291B1 publication Critical patent/FR3022291B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/017Bend restrictors for limiting stress on risers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Le raidisseur (16) comporte : - un corps (20) délimitant une lumière centrale (32) de passage de l'élément allongé (14), d'axe central (A-A'), - un ensemble (22 ; 24) de renfort du corps (20), au moins partiellement reçu dans le corps (20), l'ensemble de renfort (22 ; 24) comportant au moins une région circonférentielle s'étendant autour de l'axe central (A-A'), - au moins un capteur de mesure (60) d'une déformation au sein du raidisseur (16); Le ou chaque capteur de mesure de déformation (60) est porté par l'ensemble de renfort (22 ; 24) du corps (20).

Description

Raidisseur de courbure pour un élément allongé destiné à être introduit dans une étendue d’eau
La présente invention concerne un raidisseur de courbure pour un élément allongé destiné à être introduit dans une étendue d’eau, comportant : - un corps délimitant une lumière centrale de passage de l’élément allongé, d’axe central ; - un ensemble de renfort du corps, au moins partiellement reçu dans le corps, l’ensemble de renfort comportant au moins une région circonférentielle s’étendant autour de l’axe central ; - au moins un capteur de mesure d’une déformation au sein du raidisseur.
Le raidisseur est destiné à être monté autour d’un élément allongé destiné à être introduit au moins partiellement dans une étendue d’eau, pour limiter la courbure locale d’une région de cet élément. L’élément allongé est par exemple une conduite flexible, en particulier une conduite flexible de type non liée (« unbonded >>) destinée au transport d’hydrocarbures à travers une étendue d'eau, tel qu'un océan, une mer, un lac ou une rivière.
Une conduite flexible est par exemple réalisée suivant les documents normatifs API 17J (Spécification for Unbonded Flexible Pipe) et API RP 17B (Recommended Practice for Flexible Pipe) établis par l’American Petroleum Institute.
La conduite flexible est généralement formée d’un ensemble de couches concentriques et superposées. Elle est considérée comme « non liée >> au sens de la présente invention dès lors qu’au moins une des couches de la conduite est apte à se déplacer longitudinalement par rapport aux couches adjacentes lors d’une flexion de la conduite. En particulier, une conduite non liée est une conduite dépourvue de matériaux liants raccordant des couches formant la conduite.
La conduite est généralement disposée à travers une étendue d'eau, entre un ensemble de fond, destiné à recueillir le fluide exploité dans le fond de l’étendue d’eau et un ensemble de surface flottant destiné à collecter et à distribuer le fluide. L’ensemble de surface peut être une plateforme semi-submersible, un FPSO ou un autre ensemble flottant.
Lorsque la conduite est soumise aux effets de la houle et des courants marins, elle est susceptible de se déformer localement. Ceci est particulièrement le cas au niveau du raccordement de la conduite flexible sur l’ensemble de surface ou sur l’ensemble de fond, compte tenu des mouvements relatifs entre la conduite et l’ensemble sur laquelle elle est raccordée.
Pour que la conduite conserve un rayon de courbure supérieur à son rayon de courbure minimal acceptable (« MBR » pour « minimum bending radius » en anglais), un raidisseur, formé par exemple par un corps en polymère est monté autour de la conduite.
Le raidisseur limite localement les déplacements de la conduite et garantit l’absence de déformation locale au-delà d’une limite acceptable.
Cependant, la conduite reste fortement sollicitée, même au niveau du raidisseur. II est donc pertinent de suivre au cours du temps l’évolution des déformations subies par le raidisseur et par la conduite pour garantir l’intégrité de la conduite.
Pour suivre l’évolution des déformations subies par le raidisseur, il est connu par exemple de WO 2009/156486 de monter autour du raidisseur un chapelet de capteurs disposés dans un harnais.
Un tel montage est très fastidieux à mettre en œuvre, perturbe les opérations d’installation de la conduite et ne reflète pas toujours la déformation exacte du raidisseur, et encore moins de la conduite.
Un but de l’invention est de fournir un système peu intrusif de suivi des déformations d’un raidisseur disposé autour d’un élément allongé ou/et d’un élément allongé au niveau d’un raidisseur. A cet effet, l’invention a pour objet un raidisseur du type précité, caractérisé en ce que le ou chaque capteur de mesure de déformation est porté par l’ensemble de renfort du corps. L’embout selon l’invention peut comprendre l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement possible : - l’ensemble de renfort comporte une ossature au moins partiellement noyée dans le corps, l’ossature comprenant des organes longitudinaux de renfort, les organes longitudinaux de renfort étant avantageusement raccordés entre eux par un organe de liaison circonférentielle, au moins un capteur de mesure de déformation étant porté par l’ossature ; - au moins un organe longitudinal de renfort porte un capteur de mesure de déformation ; - l’ensemble de renfort délimite un orifice de réception du capteur de mesure de déformation, le capteur de mesure de déformation étant disposé dans l’orifice de réception ; - il comporte une pluralité de capteurs de mesure de déformation au sein du raidisseur, espacés les uns des autres dans l’ensemble de renfort ; - au moins deux capteurs de mesure de déformation sont espacés longitudinalement dans l’ensemble de renfort ; - au moins deux capteurs de mesure de déformation sont espacés radialement ou angulairement par rapport à l’axe central dans l’ensemble de renfort ; - il comporte au moins une ligne de capteurs de mesure de déformation s’étendant axialement, radialement ou circonférentiellement autour de l’axe central dans l’ensemble de renfort ; - le ou chaque capteur de mesure de déformation comporte une jauge de déformation propre à être alimentée électriquement ; - l’ensemble de renfort est métallique ; - il comporte au moins un capteur de mesure de la température porté par l’ensemble de renfort. L’invention a également pour objet un procédé de suivi du comportement d’un raidisseur disposé autour d’un élément allongé, le procédé comportant les étapes suivantes : - fourniture d’un raidisseur tel que défini plus haut autour de l’élément allongé ; - mesure d'une déformation subie par le raidisseur à l’aide du ou de chaque capteur de mesure de déformation ; - avantageusement, détermination d’une courbure locale du raidisseur, sur la base de la contrainte déterminée à partir des mesures effectuées par le ou par chaque capteur de mesure de déformation.
Le procédé selon l’invention peut comprendre l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement possible : - le raidisseur comporte une pluralité de capteurs de mesure de déformation espacés dans l’ensemble de renfort, le procédé comportant la mesure de la déformation subie par chaque capteur de mesure de déformation ; - il comporte une étape de division de la contrainte obtenue à partir des mesures effectuées par les capteurs de mesure de déformation en trois composantes de contrainte comprenant une composante de membrane, une composante de flexion, et une composante de pic, avantageusement par une méthode mathématique de linéarisation de contrainte ; - il comporte une étape de validation d’un profil de courbure du raidisseur déterminé sur la base des contraintes obtenues à partir des mesures de déformation effectuées à l’aide du ou de chaque capteur de mesure de déformation, l’étape de validation comportant la détermination d’un type de charge appliquée sur le raidisseur à partir d’au moins une des composantes de contrainte obtenues à l’étape de division ; - il comporte une étape de filtrage des valeurs de contrainte obtenues à partir des mesures effectuées par le ou par chaque capteur de mesure de déformation, pour obtenir des valeurs filtrées de contrainte, puis une étape de détermination d’une déformation locale du raidisseur sur la base des valeurs filtrées de contrainte . L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et faite en se référant aux dessins annexés, sur lesquels : - la figure 1 est une vue partielle, prise en coupe suivant un plan axial médian, des parties pertinentes d’une installation d’exploitation de fluide comportant un raidisseur de courbure selon l’invention ; - la figure 2 est une vue partielle en perspective de l’ossature interne du raidisseur de courbure de la figure 1 ; - la figure 3 est une vue de côté d’un organe longitudinal de renfort de l’ossature de la figure 2, muni d’une pluralité de capteurs de mesure de déformation espacés longitudinalement les uns des autres ; - la figure 4 est une section suivant un plan transversal des organes longitudinaux de renfort de l’ossature de la figure 2, munis chacun d’une pluralité de capteurs de mesure de déformation espacés angulairement autour de l’axe longitudinal ; - la figure 5 est une vue analogue à la figure 4, dans laquelle chaque organe longitudinal est muni d’une pluralité de capteurs de mesure de déformation espacés radialement autour de l’axe longitudinal ; - la figure 6 illustre un capteur de mesure de déformation formé par une jauge électrique de contrainte macroscopique ; - la figure 7 illustre un capteur de mesure de déformation formé par une jauge électrique de contrainte micrométrique ou nanométrique ; - la figure 8 illustre la division de la contrainte calculée à partir des mesures effectuées par une série de capteurs de mesure de déformation en trois composantes, à l’aide d’une méthode de linéarisation de contrainte, dans un premier procédé de traitement selon l’invention.
Les parties pertinentes d’une première installation 10 d’exploitation de fluide selon l’invention à travers une étendue d’eau 12 sont illustrées sur la figure 1. L’étendue d’eau 12 est par exemple, une mer, un lac ou un océan. La profondeur de l’étendue d’eau 12 au droit de l’installation 10 d’exploitation de fluide est par exemple comprise entre 500 m et 3000 m. L’installation d’exploitation de fluide 10 comporte un ensemble de surface, notamment flottant, et un ensemble de fond (non représentés). L’installation 10 comprend un élément allongé 14 raccordant l’ensemble de fond à l’ensemble de surface et au moins un raidisseur de courbure 16 selon l’invention, monté autour d’un tronçon de l’élément allongé 14. L’ensemble de surface comporte un connecteur (non représenté) destiné au raccordement de l’élément allongé 14, et avantageusement, comme illustré sur la figure 1, un élément de montage 18 du raidisseur 16, sur lequel le raidisseur 16 est destiné à être fixé. L’élément de montage 18 est par exemple un tube de guidage de l’élément allongé 14, tel qu’un tube en I ou un tube en J, faisant saillie vers le bas dans l’étendue d’eau 12.
Dans cet exemple, l’élément allongé 14 est une conduite flexible.
Des exemples de conduites flexibles sont décrits dans les documents normatifs publiés par l’American Petroleum Institute (API), API 17J, et API RP17B.
La conduite flexible délimite une pluralité de couches concentriques autour de l’axe A-A’, notamment au moins une première gaine à base de matériau polymère constituant avantageusement une gaine de pression et au moins une couche d’armures de traction disposée extérieurement par rapport à la première gaine.
Le raidisseur de courbure 14 comporte un corps 20 de révolution autour d’un axe A-A’ de l’élément allongé 14. II comprend en outre un ensemble de renfort du corps 20, comportant une ossature interne 22 métallique de renfort du corps 20, au moins partiellement noyée dans le corps 20, et avantageusement, un insert périphérique 24 disposé dans le corps 20.
Avantageusement, le raidisseur de courbure 16 comporte en outre une bride 26 de connexion à l’élément de montage 18, fixée sur l’ossature interne 22 et sur l’insert 24.
Selon l’invention, le raidisseur de courbure 16 comporte une instrumentation 27 de suivi de la déformation locale du corps 20, portée partiellement par l’ensemble de renfort.
Le corps 20 est réalisé en un matériau plus rigide que l’élément allongé 14. II est par exemple réalisé en matière plastique, notamment en polyuréthane.
Le corps 20 est destiné à limiter l’amplitude de flexion de l’élément allongé 14 au niveau du tronçon reçu dans le corps 20, pour définir un rayon minimal de courbure sans déformation plastique (ou « MBR ») minimum au niveau de ce tronçon.
Le rayon de courbure minimum est par exemple supérieur à 3 m.
Le corps 20 comporte ici un tronçon supérieur 28 sensiblement cylindrique et un tronçon inférieur 30 tronconique, de section transversale décroissante en s’écartant du tronçon supérieur 28.
La longueur du corps 20, prise le long de l’axe A-A’ est par exemple comprise entre 500 mm et 8 m.
Le corps 20 délimite une lumière axiale 32 traversante de passage de l’élément allongé 14, débouchant aux extrémités axiales du corps 20. L’ossature 22 est au moins partiellement noyée dans le corps 20. Elle est réalisée en métal. L’ossature 22 comporte une pluralité d’organes longitudinaux 34 de renfort maintenus en position les uns par rapport aux autres en étant fixés à la bride de connexion 26.
Les organes de renfort 34 sont séparés angulairement les uns des autres. Ils délimitent entre eux des espaces intermédiaires replis par le corps 20.
Optionnellement, dans l’exemple particulier illustré à la figure 2, l’ossature 22 comporte en outre un organe circonférentiel de liaison 36 raccordant les organes longitudinaux 34 entre eux.
Chaque organe longitudinal 34 s’étend suivant un axe B-B’ (visible sur la figure 3) sensiblement parallèle à l’axe A-A’. II est disposé de préférence dans la partie cylindrique 28 du corps 20.
Chaque organe longitudinal 34 comporte une base 38, une membrure longitudinale 40, et une tête 42 d’assemblage de la bride 26, délimitant l’extrémité libre de l’organe longitudinal 34.
Dans cet exemple, la base 38 s’amincit à l’écart de la bride de connexion 26.
La membrure longitudinale 40 est noyée dans le corps 20, à l’écart de la surface périphérique intérieure et de la surface périphérique extérieure du corps 20.
La tête 42 fait saillie à partir de la membrure 40 hors du corps 20. Elle comporte avantageusement un filetage, pour permettre la fixation d’un boulon 44 de retenue de la bride 26, visible sur la figure 1.
Dans l’exemple de la figure 2, lorsqu’il est présent, l’organe circonférentiel de liaison 36 comporte un tore fermé d’axe A-A’. L’organe circonférentiel de liaison 36 forme une région circonférentielle de l’ensemble de renfort.
La région circonférentielle s’étend autour de l’axe A-A’ sur une étendue angulaire supérieure à 90°, notamment supérieure à 180° et iéégale à 360°. Elle est située à l’écart radialement de l’axe A-A’. L’organe circonférentiel de liaison 36 est ici totalement noyé dans le corps 20 en étant disposé à l’écart de la surface périphérique intérieure, de la surface périphérique extérieure et de la surface transversale supérieure du corps 20.
Dans ce cas particulier, la base 38 de chaque organe longitudinal 34 est solidaire de l’organe circonférentiel. Chaque organe longitudinal 34 fait saillie axialement à partir de l’organe circonférentiel 36. L’insert périphérique 24 est avantageusement métallique. II comporte une jupe intérieure 50 disposée dans le corps 20 à la périphérie de la lumière axiale 32, dans le tronçon supérieur 28 du corps 20, une jupe extérieure 52 disposée sur la surface périphérique extérieure du corps 20, et une paroi extérieure transversale 54 raccordant la jupe intérieure 50 à la jupe extérieure 52.
Les jupes 50, 52 sont de révolution autour de l’axe A-A’, de manière circonférentielle autour de l’axe A-A’.
Elles sont raccordées entre elles par leurs bords extérieurs, par l’intermédiaire de la paroi extérieure 54. La paroi extérieure 54 est appliquée sur la surface transversale extérieure du corps 20.
Chaque jupe 50, 52 forme une région circonférentielle de l’ensemble de renfort.
La région circonférentielle s’étend autour de l’axe A-A’ sur une étendue angulaire supérieure à 90°, notamment supérieure à 180° et iéégale à 360°. Elle est située à l’écart radialement de l’axe A-A’.
La bride de connexion 26 comporte ici une base cylindrique 56 plaquée contre la jupe intérieure 50 de l’insert 24, et une collerette de connexion 58, de révolution autour de l’axe A-A’. La base cylindrique 56 et la collerette de connexion 58 ne forment qu’une pièce.
Les têtes 42 des organes longitudinaux 34 sont insérées à travers la paroi extérieure 54 et la collerette 58. Les boulons 44 maintiennent l’insert 24 et la bride de connexion 26 plaquées contre la surface transversale extérieure du corps 20.
Comme précisé plus haut, la bride de connexion 26 forme un organe de liaison circonférentielle entre les organes de renfort 34. L’instrumentation 27 comporte une pluralité de capteurs 60 de mesure de déformation, qui sont ici portés par l’ossature 22, et une unité de traitement 62 raccordée aux capteurs de mesure de déformation 60.
Les capteurs de mesure de déformation 60 sont des capteurs électriques ou optiques. Ils sont propres à engendrer un signal électrique ou optique représentatif de la déformation locale engendrée par une (ou des) contrainte(s) s’appliquant sur le raidisseur 16.
Dans l’exemple illustré par la figure 6, chaque capteur de mesure de déformation 60 est formé par une jauge macroscopique de déformation ou jauge extensométrique résisitive, de taille supérieure à 1 mm, et avantageusement inférieure à 30 mm, qui est reçue dans un orifice ménagé dans l’ossature 22. Par exemple, la jauge extensométrique résistive est une jauge à trames métalliques ou bien à semiconducteurs.
Dans une variante représentée sur la figure 7, les capteurs sont des microcapteurs ou des nanocapteurs qui sont intégrés sous forme d’une couche métallique sur la surface ou dans le corps de l’ossature 22. Les capteurs sont par exemple des ponts de Wheatstone 66 ou des résistances 68 à circuit intégré.
En outre, chaque capteur de mesure de déformation 60 du type capteur optique est par exemple un capteur à fibres optiques dans lesquelles sont imprimés des réseaux de Bragg.
Dans une autre variante, chaque capteur de mesure de déformation 60 est un capteur de déplacement de type inductif tel qu’un capteur du type transformateur différentiel à variation linéaire ou LVDT (« Linear Variable Differential Transformer» en anglais), un capteur de type fréquentiel tel qu’un capteur à corde vibrante ou encore un capteur de type capacitif.
Les limites d’utilisation de chacun des capteurs sont principalement définies par ses qualités de précision et de résolution.
La précision d’un capteur est définie par l’écart en pourcentage que l’on peut obtenir entre la valeur réelle et la valeur mesurée en sortie du capteur. Plus cet écart est faible, plus le capteur est précis.
En outre, la résolution d’un capteur correspond à la plus petite variation de la grandeur à mesurer, que le capteur est capable de déceler.
Par exemple, si l’on considère un capteur de mesure de déformation 60 du type corde vibrante, eût égard de ses limites d’utilisation ainsi que des propriétés mécaniques de l’élément sur ou dans lequel il est disposé, dans notre cas, le corps de l’ossature 22 ou les organes longitudinaux 64, il est possible de déduire la précision ainsi que la résolution que l’on peut obtenir.
Selon le type de mesures que l’on souhaite acquérir, la qualité de précision qu’il est possible d’obtenir pour ce type de capteur est comprise dans une gamme de valeurs de l’ordre de ± 0,5%, notamment ± 0,25%. Par ailleurs, la qualité de la résolution qu’il est possible d’obtenir est de l’ordre de quelques dixièmes de micromètres, notamment de l’ordre de 1 micromètre.
Dans les modes de réalisation illustrés par les figures 3 à 5, les capteurs de mesure de déformation 60 sont portés par les organes longitudinaux 34.
Dans l’exemple représenté sur la figure 3, les capteurs de mesure de déformation 60 sont espacés longitudinalement les uns des autres le long de l’axe B-B’ de chaque organe longitudinal 34. Dans cet exemple, les capteurs de mesure de déformation 60 sont en outre disposés suivants une ligne parallèle ou confondue avec l’axe B-B’.
La densité linéique de capteurs 60 le long de l’axe B-B’ est par exemple comprise entre 1 capteur par millimètre et 1 capteur par 10 millimètre.
La présence d’une pluralité de capteurs de mesure de déformation 60 espacés longitudinalement les uns des autres enrichit les informations obtenues à l’aide de l’instrumentation 27, pour déterminer un profil de contrainte s’appliquant le long de chaque organe longitudinal 34.
Avantageusement, les capteurs de mesure de déformation 60 sont en outre espacés angulairement autour de l’axe A-A’ dans une section transversale par rapport à l’axe B-B’, comme illustré par la figure 4.
Dans une variante, ou en complément, les capteurs de mesure de déformation 60 sont espacés radialement par rapport à l’axe A-A’ dans une section transversale par rapport à l’axe B-B’, comme illustré par la figure 5.
Avantageusement, au moins un premier groupe de capteurs de mesure de déformation 60, situés à une première hauteur le long de l’axe B-B’, est agencé suivant la configuration de la figure 4, avec un espacement angulaire autour de l’axe A-A’. Au moins un deuxième groupe de capteurs de mesure de déformation 60, situés à une deuxième hauteur le long de l’axe B-B’, est agencé suivant la configuration de la figure 5, avec un espacement radial entre les capteurs 60.
Dans une autre variante non représentée, les capteurs de mesure de déformation 60 sont portés par l’organe circonférentiel de liaison 36.
En référence à la figure 1, l’unité de traitement 62 comporte un processeur de traitement et une mémoire contenant un module 80 de réception des mesures instantanées de déformation prises par les capteurs de mesure de déformation 60, un module 82 de stockage des mesures reçues, et un module 84 de calcul d’une courbure locale instantanée du raidisseur 16, sur la base des mesures reçues. L’unité de traitement 62 comporte en outre avantageusement un module 86 de linéarisation de contrainte le long des sections successives de chaque organe longitudinal 34, et un module 88 de validation des données obtenues par le module de calcul 84 sur la base de la linéarisation de contrainte effectuée le long des sections successives.
Le module de réception 80 est propre à recevoir, à une fréquence choisie, comprise par exemple entre une mesure par seconde et cent mesures par seconde, les mesures reçues de chaque capteur de mesure de déformation 60 de l’instrumentation 27. II est propre à attribuer à chacune des mesures reçues une information de localisation du capteur 60 et une information relative à l’instant auquel la mesure est effectuée.
Le module de stockage 82 est propre à stocker l’ensemble des mesures instantanées reçues par le module 80, en vue de leur traitement instantané ou ultérieur.
Le module de calcul 84 est propre à établir à partir des mesures effectuées par chaque capteur 60 à un instant donné une cartographie des contraintes subies par et le long des organes longitudinaux 34 et partant, à déterminer le profil de courbure du raidisseur 16 le long de chaque organe longitudinal 34 à cet instant donné, sur la base d’un modèle mathématique.
Avantageusement, le module de calcul 84 comporte un filtre de données, propre à éliminer les mesures d’amplitude inférieure à un seuil de contrainte prédéfinie, afin de limiter le temps de traitement par le processeur, notamment pour un traitement instantané.
Le module de linéarisation 86 est propre à diviser la contrainte totale obtenue à partir des mesures de chaque capteur 60 à un instant donné en trois composantes comprenant une composante de membrane M, une composante de flexion B, et une composante de pic P (visibles sur la figure 8), par une méthode mathématique de linéarisation de contrainte.
Le module de validation 88 est propre à déterminer le type de charge initiale appliqué à un instant donné sur le raidisseur 16, sur la base des valeurs des trois composantes Μ, B, P obtenues à partir du module de linéarisation 86.
Le module de validation 88 est ainsi apte à déterminer si la charge appliquée est axiale ou transverse. Par exemple, un profil de courbure plat et dominé par la composante de membrane M est représentatif d’une charge axiale. Au contraire, un profil de courbure incurvé et dominé par la composante de flexion B est représentatif d’une charge transverse.
Le module de validation 88 est ainsi apte à lever l’ambiguïté éventuelle sur le profil de courbure calculé à partir des contraintes établies à partir des mesures effectuées par chaque capteur de mesure de déformation 60, dans le cas ou plusieurs profils de courbure sont susceptibles d’engendrer une même distribution de contrainte, en fonction du type de charge appliquée.
Dans une variante, dès lors que le type de charge initial appliqué à un instant donné sur le raidisseur 16 a été déterminé par le module de validation 88, cette donnée est saisie dans les paramètres d’entrée d’un programme d’un logiciel de calcul par éléments finis (ou FEA « Finite Elément Analysis >> en anglais). On lance ensuite le programme et on attend les résultats de l’analyse, les résultats permettant de modéliser et calculer les déformations engendrées par la charge déterminée auparavant et partant, le profil de courbure du raidisseur 16.
La méthode par linéarisation de contrainte fonctionne aussi bien comme un outil de comparaison et validation lorsqu’il est utilisé en parallèle d’un logiciel de calcul par éléments finis, que comme un outil à part entière permettant l’obtention directe du profil de courbure du raidisseur 16 lorsqu’il est utilisé de manière synergique avec le logiciel de calcul par éléments finis.
Un procédé de suivi du comportement d’un raidisseur 16 selon l’invention, disposé autour d’un élément allongé 14, va maintenant être décrit.
Initialement, un raidisseur 16 tel que décrit plus haut est fourni et est installé autour de l’élément allongé 14. Le raidisseur 16 est immobilisé sur l’élément de montage 18.
Avantageusement, l’élément allongé 14 est raccordé à un connecteur sur l’ensemble de surface.
Lors de l’installation, ou après celle-ci, le procédé comporte, à chaque instant de mesure à une fréquence avantageusement comprise entre une mesure par seconde et cent mesures par seconde, une étape de mesure des déformations locales subies par le raidisseur 16, à l’aide de chaque capteur de mesure de déformation 60, et la réception de chaque mesure effectuée par le module de réception 80 de l’unité de traitement 62.
Les mesures reçues par le module de réception 80 sont alors stockées dans la mémoire par le module de stockage 82 pour pouvoir être utilisées soit de manière instantanée en temps réel, soit ultérieurement, à terre, si l’ensemble des mesures reçues par le module de réception 80 est trop conséquent pour être utilisé en temps réel.
Si un traitement en temps réel est souhaité, une étape de filtrage des données est avantageusement effectuée à l’aide d’un filtre pour retenir les mesures de valeur supérieure par exemple à un seuil donné de contrainte. Ainsi, la puissance de calcul nécessaire dans le processeur de l’unité de traitement 62 est réduite.
Ensuite, une étape de calcul d’un profil de courbure du raidisseur 16 est mise en œuvre. Un modèle mathématique est utilisé par le module de calcul 84 pour déterminer un profil de courbure du raidisseur 16 autour de l’ossature 22, avantageusement le long de chaque organe longitudinal 34, sur la base d’une cartographie des contraintes établie à partir des mesures obtenues par les capteurs de mesure de déformation 60 espacés le long de l’organe longitudinal 34. À cet effet, à au moins un instant de mesure donné, la courbure locale du raidisseur 16 est calculée, sur la base des valeurs individuelles mesurées par chaque capteur de mesure de déformation 60 dans chaque position déterminée le long de l’organe longitudinal 34.
Ceci permet d’obtenir un profil de courbure du raidisseur 16 le long de chaque organe longitudinal 34.
En parallèle, chaque contrainte totale obtenue à partir des mesures réalisée par un capteur de mesure de déformation 60 est divisée en plusieurs composantes Μ, B, P, par une méthode mathématique de linéarisation de contrainte.
Pour chaque position donnée d’un capteur de mesure de déformation 60, à l’instant donné, le module de linéarisation 86 divise la contrainte totale obtenue en trois composantes, à savoir une composante de membrane M, une composante de flexion B, et une composante de pic P, par une méthode mathématique de linéarisation de contrainte.
Ainsi, le module de linéarisation 86 établit un profil de chaque composante Μ, B, P le long de l’organe longitudinal 34, comme illustré par la figure 8.
Ensuite, une étape de validation du profil de courbure calculé par le module de calcul 84 à l’étape de calcul est effectuée.
Le module de validation 88 établit tout d’abord le type de charge appliquée longitudinalement sur le raidisseur 16.
Ce choix est effectué sur la base des composantes Μ, B, P obtenues par linéarisation à l’étape de division. La valeur de chaque composante Μ, B, P, ainsi que sa distribution le long de l’organe longitudinal 34 est avantageusement corrélée avec le type de charge initiale.
Le type de charge initiale est choisi par exemple parmi une charge axiale et une charge transverse.
Une charge axiale présente généralement une composante de membrane M de valeur supérieure à celle des composantes de flexion B et de pic P, et une distribution sensiblement plate. À l’inverse, une charge transverse présente généralement une composante de flexion B supérieure aux autres composantes Μ, P et une distribution incurvée.
Le module de validation 88 attribue donc un type de charge appliquée au profil de contrainte déterminé à partir des mesures de déformation réalisées par les capteurs de mesure de déformation 60, sur la base des composantes Μ, B, P obtenues par linéarisation à l’étape de division. Ceci lève l’ambiguïté éventuelle sur le profil de courbure possible résultant du profil de contrainte mesuré.
Ainsi, même si différents profils de courbure peuvent résulter de la même distribution de contraintes le long de l’organe longitudinal 34, la détermination du type de charge s’appliquant sur l’organe longitudinal 34 permet de différencier entre les différents profils de courbure possible.
Le profil de courbure calculé, une fois validé, permet de suivre en continu le degré de contraintes appliquées sur le raidisseur 16, au cours de la vie du raidisseur 16, et d’en déduire éventuellement la fatigue du raidisseur et/ou de l’élément allongé 14 reçu dans le raidisseur 16, par modélisation.
Le raidisseur 16 selon l’invention est instrumenté sans changer la structure du corps 20 du raidisseur 16 ou la structure de l’élément allongé 14. Ainsi, la géométrie et les dimensions du raidisseur 16 sont gardées constantes, ce qui facilite l’utilisation pratique du raidisseur et évite au moins certaines étapes de requalification.
La disposition des capteurs 60 au sein de l’ossature 22, et notamment dans les organes longitudinaux 34 de l’ossature 22 autorise une détermination précise du champ de contrainte, et par suite des variations du profil de courbure subies au cours du temps par le raidisseur 16.
Le procédé selon l’invention s’applique indifféremment dans toute position du raidisseur 16, que le raidisseur 16 soit sous l’eau ou à la surface.
Le suivi des variations de courbure du raidisseur 16 est avantageusement validé par la détermination des composantes linéarisées Μ, B, P de la contrainte, en effectuant une linéarisation de contrainte.
Dans une variante, les calculs de détermination du profil de courbure sont effectués a posteriori, à l’écart du raidisseur 16 dans une unité de traitement 62 déportée par rapport au raidisseur 16. Dans ce cas, les données de mesure ne sont pas nécessairement filtrées.
Dans une variante, au moins un capteur de mesure de la température, par exemple un capteur à corde vibrante, un thermocouple ou encore un capteur de température résistif est disposé dans l’ossature 22 et/ou dans l’insert 50 au voisinage d’un capteur de mesure de déformation 60 pour fournir des données de température au modèle mathématique de calcul des profils de courbure. Le capteur de mesure de la température permet d’estimer à partir de quelle valeur de température le raidisseur 16 commence à se dégrader.
Dans une variante, les capteurs 60 sont disposés dans l’insert 50, en particulier dans la jupe 50, en étant espacés longitudinalement et/ou angulairement autour de l’axe A-A’.

Claims (15)

  1. REVENDICATIONS
    1. - Raidisseur (16) de courbure pour un élément allongé (14) destiné à être introduit dans une étendue d’eau (12) comportant : - un corps (20) délimitant une lumière centrale (32) de passage de l’élément allongé (14), d’axe central (A-A’) ; - un ensemble (22 ; 24) de renfort du corps (20), au moins partiellement reçu dans le corps (20), l’ensemble de renfort (22 ; 24) comportant au moins une région circonférentielle s’étendant autour de l’axe central (A-A’) ; - au moins un capteur de mesure (60) d’une déformation au sein du raidisseur (16); caractérisé en ce que le ou chaque capteur de mesure de déformation (60) est porté par l’ensemble de renfort (22 ; 24) du corps (20), et en ce que l’ensemble de renfort (22 ; 24) est métallique.
  2. 2. - Raidisseur (16) selon la revendication 1, caractérisé en ce que l’ensemble de renfort (22 ; 24) comporte une ossature (22) au moins partiellement noyée dans le corps (20), l’ossature (22) comprenant des organes longitudinaux (34) de renfort, les organes longitudinaux de renfort (34) étant avantageusement raccordés entre eux par un organe de liaison circonférentielle (26, 36), au moins un capteur de mesure de déformation (60) étant porté par l’ossature (22).
  3. 3. - Raidisseur (16) selon la revendication 2, caractérisé en ce qu’au moins un organe longitudinal de renfort (34) porte un capteur de mesure de déformation (60).
  4. 4. - Raidisseur (16) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’ensemble de renfort (22 ; 24) délimite un orifice de réception du capteur de mesure de déformation (60), le capteur de mesure de déformation (60) étant disposé dans l’orifice de réception.
  5. 5. - Raidisseur (16) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte une pluralité de capteurs de mesure de déformation (60) au sein du raidisseur (16), espacés les uns des autres dans l’ensemble de renfort (22 ; 24).
  6. 6. - Raidisseur (16) selon la revendication 5, caractérisé en ce qu’au moins deux capteurs de mesure de déformation (60) sont espacés longitudinalement dans l’ensemble de renfort (22 ; 24).
  7. 7. - Raidisseur (16) selon l’une quelconque des revendications 5 ou 6, caractérisé en ce qu’au moins deux capteurs de mesure de déformation (60) sont espacés radialement ou angulairement par rapport à l’axe central (A-A’) dans l’ensemble de renfort (22 ; 24).
  8. 8. - Raidisseur (16) selon l’une quelconque des revendications 5 à 7, caractérisé en ce qu’il comporte au moins une ligne de capteurs de mesure de déformation (60) s’étendant axialement, radialement ou circonférentiellement autour de l’axe central (A-A’) dans l’ensemble de renfort (22 ; 24).
  9. 9. - Raidisseur (16) selon l’une quelconque des revendications précédentes, caractérisé en ce que le ou chaque capteur de mesure de déformation (60) comporte une jauge de déformation propre à être alimentée électriquement.
  10. 10. - Raidisseur (16) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comporte au moins un capteur de mesure de la température porté par l’ensemble de renfort (22 ; 24).
  11. 11. - Procédé de suivi du comportement d’un raidisseur (16) disposé autour d’un élément allongé (14), le procédé comportant les étapes suivantes : - fourniture d’un raidisseur (16) selon l’une quelconque des revendications précédentes autour de l’élément allongé (14) ; - mesure d'une déformation subie par le raidisseur (16) à l’aide du ou de chaque capteur de mesure de déformation (60) ; - avantageusement, détermination d’une courbure locale du raidisseur (16), sur la base de la contrainte déterminée à partir des mesures effectuées par le ou par chaque capteur de mesure de déformation (60).
  12. 12. - Procédé selon la revendication 11, caractérisé en ce que le raidisseur (16) comporte une pluralité de capteurs de mesure de déformation (60) espacés dans l’ensemble de renfort (22 ; 24), le procédé comportant la mesure de la déformation subie par chaque capteur de mesure de déformation (60).
  13. 13. - Procédé selon la revendication 12, caractérisé en ce qu’il comporte une étape de division de la contrainte obtenue à partir des mesures effectuées par les capteurs de mesure de déformation (60) en trois composantes de contrainte comprenant une composante de membrane, une composante de flexion, et une composante de pic, avantageusement par une méthode mathématique de linéarisation de contrainte.
  14. 14. - Procédé selon l’une des revendications 11 à 13, caractérisé en ce qu’il comporte une étape de validation d’un profil de courbure du raidisseur (16) déterminé sur la base des contraintes obtenues à partir des mesures de déformation effectuées à l’aide du ou de chaque capteur de mesure de déformation (60), l’étape de validation comportant la détermination d’un type de charge appliquée sur le raidisseur (16) à partir d’au moins une des composantes de contrainte obtenues à l’étape de division.
  15. 15. - Procédé selon l’une quelconque des revendications 11 à 14, caractérisé en ce qu’il comporte une étape de filtrage des valeurs de contrainte obtenues à partir des mesures effectuées par le ou par chaque capteur de mesure de déformation (60), pour obtenir des valeurs filtrées de contrainte, puis une étape de détermination d’une déformation locale du raidisseur (16) sur la base des valeurs filtrées de contrainte .
FR1455298A 2014-06-11 2014-06-11 Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau Expired - Fee Related FR3022291B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1455298A FR3022291B1 (fr) 2014-06-11 2014-06-11 Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau
EP15727676.7A EP3155204B1 (fr) 2014-06-11 2015-06-10 Raidisseur de courbure pour un élément allongé destiné a être introduit dans une étendue d'eau
PCT/EP2015/062973 WO2015189291A1 (fr) 2014-06-11 2015-06-10 Raidisseur de courbure pour un élément allongé destiné a être introduit dans une étendue d'eau
BR112016028951-0A BR112016028951B1 (pt) 2014-06-11 2015-06-10 Esticador e processo de monitoramento do comportamento de um esticador
DK15727676.7T DK3155204T3 (en) 2014-06-11 2015-06-10 Curvature bracing for an elongated body in water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455298A FR3022291B1 (fr) 2014-06-11 2014-06-11 Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau
FR1455298 2014-06-11

Publications (2)

Publication Number Publication Date
FR3022291A1 FR3022291A1 (fr) 2015-12-18
FR3022291B1 true FR3022291B1 (fr) 2019-07-12

Family

ID=51225807

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1455298A Expired - Fee Related FR3022291B1 (fr) 2014-06-11 2014-06-11 Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau

Country Status (5)

Country Link
EP (1) EP3155204B1 (fr)
BR (1) BR112016028951B1 (fr)
DK (1) DK3155204T3 (fr)
FR (1) FR3022291B1 (fr)
WO (1) WO2015189291A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975629B2 (en) 2016-10-17 2021-04-13 National Oilwell Varco Denmark I/S Offshore installation
GB201807370D0 (en) 2018-05-04 2018-06-20 Trelleborg Offshore Uk Ltd Bend shiffener
CN109506540A (zh) * 2018-09-30 2019-03-22 武汉船用机械有限责任公司 油管伸长量的测量装置及测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526846A (en) * 1990-12-26 1996-06-18 Coflexip Stiffener with reinforced structure
NO321079B1 (no) * 2004-09-23 2006-03-13 Marine Subsea Group As Boyestiver
WO2009112813A1 (fr) * 2008-03-10 2009-09-17 Schlumberger Holdings Limited Dispositif de fixation d’extrémité de tuyau flexible
BR112015011387A2 (pt) * 2012-11-20 2017-07-11 Nat Oilwell Varco Denmark Is conjunto de um tubo flexível e um encaixe de extremidade

Also Published As

Publication number Publication date
WO2015189291A1 (fr) 2015-12-17
FR3022291A1 (fr) 2015-12-18
BR112016028951A2 (pt) 2017-08-22
EP3155204A1 (fr) 2017-04-19
DK3155204T3 (en) 2019-03-25
BR112016028951B1 (pt) 2022-05-31
EP3155204B1 (fr) 2018-12-05
BR112016028951A8 (pt) 2021-04-20

Similar Documents

Publication Publication Date Title
EP3397883B1 (fr) Embout de connexion d'une ligne flexible, dispositif de mesure et procédé associé
EP3080504B1 (fr) Embout de connexion d'une conduite flexible, dispositif et procédé associés
FR3022291B1 (fr) Raidisseur de courbure pour un element allonge destine a etre introduit dans une etendue d'eau
EP3074748B1 (fr) Procédé et dispositif de détermination de l'usure d'une face de dépouille d'un outil de coupe
EP2935759B1 (fr) Procede de controle d'un etat de vissage d'un joint filete tubulaire
EP2347217B1 (fr) Procédé d'étalonnage d'un dispositif de contrôle optique de courbure
EP2434280B1 (fr) Contrôle non destructif d'une structure dans un aéronef
EP2834546B1 (fr) Assemblage d'une conduite tubulaire flexible pour le transport de fluides d'hydrocarbures avec un tube metallique secondaire
EP2817607B1 (fr) Tete de mesure destinee a equiper un penetrometre dynamique et procede de mesure a l'aide d'une telle tete de mesure
EP3011278A1 (fr) Methode de conversion d'une mesure de vitesse locale d'un fluide en une vitesse moyenne dans un canal ou un conduit
FR2993359A1 (fr) Procede de realisation d'un essai en fatigue vibratoire d'une piece mecanique
WO2014207369A1 (fr) Ecrou de palier pour la mesure de regime de rotation d'un arbre lie a une turbomachine et dispositif de mesure associe
FR3003346A1 (fr) Capteur a fibre optique
FR2852879A1 (fr) Cle a serrage controle
EP1759085B1 (fr) Dispositif de controle pour raidisseurs de conduites flexibles
EP3732386A1 (fr) Embout de connexion d'une ligne flexible, procédé de fabrication et méthode de surveillance associés
EP2034275B1 (fr) Dispositif de validation de mesures d'une grandeur cinématique
WO2017109425A2 (fr) Dispositif de détection de fuite dans un réseau de fluide
FR2972528A1 (fr) Dispositif et methode de fiabilisation d'une grandeur mesuree par des chaines de mesure
WO2015118066A1 (fr) Procede de suivi d'une intervention dans un puits d'exploitation de fluide menage dans le sous-sol, et dispositif d'intervention associe
WO2019219622A1 (fr) Débitmètre piézoélectrique
FR2996917A1 (fr) Procede et dispositif de determination de l'apparition d'un defaut lors du percage d'un panneau en materiau composite
FR3007833A1 (fr) Cable optique de mesure de deformation et de temperature d'une structure, et procede de mesure associe
OA19062A (fr) Procédé de surveillance de la poussée d'une bouée de conduite sous-marine.
OA17837A (fr) Détection d'eau dans une bouée de tensionnement

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20151218

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

ST Notification of lapse

Effective date: 20210205