FR3021999B1 - METHOD FOR DETERMINING THE EMISSION OF NITROGEN OXIDES DURING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE - Google Patents

METHOD FOR DETERMINING THE EMISSION OF NITROGEN OXIDES DURING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE Download PDF

Info

Publication number
FR3021999B1
FR3021999B1 FR1555130A FR1555130A FR3021999B1 FR 3021999 B1 FR3021999 B1 FR 3021999B1 FR 1555130 A FR1555130 A FR 1555130A FR 1555130 A FR1555130 A FR 1555130A FR 3021999 B1 FR3021999 B1 FR 3021999B1
Authority
FR
France
Prior art keywords
combustion
engine
emission
nitrogen oxides
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
FR1555130A
Other languages
French (fr)
Other versions
FR3021999A1 (en
Inventor
Johannes ZELLER
Laurent SOMMACAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of FR3021999A1 publication Critical patent/FR3021999A1/en
Application granted granted Critical
Publication of FR3021999B1 publication Critical patent/FR3021999B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Procédé pour déterminer l'émission d'oxydes d'azote pendant le fonctionnement d'un moteur à combustion interne (2). On détermine l'émission des oxydes d'azote en fonction de la température de combustion dans la chambre de combustion (10) et en fonction de la teneur en oxygène après la combustion.A method for determining the emission of nitrogen oxides during the operation of an internal combustion engine (2). The emission of nitrogen oxides is determined as a function of the combustion temperature in the combustion chamber (10) and as a function of the oxygen content after combustion.

Description

Domaine de l’invention

La présente invention se rapporte à un procédé pour déterminer l’émission d’oxydes d’azote pendant le fonctionnement d’un moteur thermique.

Etat de la technique

On connaît déjà des procédés pour déterminer la teneur en oxydes d’azote.

Le document DE 10 2011 075 875 Al concerne un procédé de calcul des émissions brutes d’oxydes d’azote NOx par un moteur à combustion interne. Pour cela, on utilise les paramètres de fonctionnement du moteur et une fonction de correction tient compte de la pression de charge.

Selon le document DE 10 2010 041 907 Al, on connaît un procédé de gestion d’un moteur à combustion interne selon lequel on détermine une valeur modélisée d’oxydes d’azote NOx à l’aide d’un modèle NOx. En particulier, on tient compte des tolérances des pièces du système d’injection et des tolérances des pièces du système d’alimentation en air. La valeur obtenue pour l’émission des oxydes d’azote sert, par exemple, à corriger les doses de carburant et/ou d’urée injectées pour améliorer le fonctionnement des catalyseurs et, en définitive, réduire globalement les émissions d’oxydes d’azote.

Exposé et avantages de l’invention

La présente invention a pour objet un procédé pour déterminer une émission d’oxydes d’azote nNOx(k) pour gestion d’un moteur à combustion interne, ce procédé étant caractérisé en ce qu’on détermine l’émission des oxydes d’azote nNOx(k) en fonction de la température de combustion Tcomb(/;) dans la chambre de combustion et en fonction de la teneur en oxygène [O2(/;)]aC après la combustion.

Comme l'émission des oxydes d’azote se détermine en fonction de la température de combustion dans la chambre de combustion et en fonction de la teneur en oxygène après la combustion, on peut déterminer, en sécurité et de façon avantageuse, l’émission des oxydes d’azote même dans les plages de fonctionnement transitoires du moteur à combustion interne. Les plages de fonctionnement transitoires correspondent, par exemple, à une réduction de charge ou à une aug- mentation de charge et une augmentation de la masse de carburant dosée ou une réduction de la masse de carburant dosée par comparaison aux temps ou phases de combustion antérieures. De façon avantageuse, le procédé selon l’invention permet une plus grande précision vis-à-vis de la valeur fournie par un capteur d’oxydes d’azote NOx ; cela permet de mieux surveiller le capteur d’oxydes d’azote NOx, voire de le remplacer. La suppression du capteur d’oxydes d’azote NOx a l’avantage d’économiser le coût du capteur et d’éliminer une éventuelle source de défauts.

Selon un développement avantageux, on détermine l’émission des oxydes d’azote en fonction de trois paramètres obtenus au préalable, ce qui simplifie le travail de calcul.

Selon un développement avantageux, les trois paramètres obtenus au préalable du moteur à combustion interne se déterminent de manière spécifique à l’aide de l’émission des oxydes d’azote mesurée par un capteur d’oxydes d’azote dans la région de l’échappement du moteur et par l’enregistrement de ces valeurs. Ainsi, pendant l’application, on peut déterminer un jeu de paramètres correspondant à tous les moteurs à combustion interne d’un certain type.

Selon un développement avantageux, on filtre les émissions d’oxydes d’azote mesurées, à l’aide d’un filtre passe-bas. Les paramètres déterminés au préalable sont déterminés en fonction d’au moins une émission d’oxydes d’azote filtrée par un filtrage passe-bas et ces paramètres ayant été obtenus pendant le mode de fonctionnement stationnaire du moteur à combustion interne. L’état stationnaire correspond à un régime moteur essentiellement constant (vitesse de rotation constante du moteur à combustion interne). Le filtrage passe-bas des émissions d’oxydes d’azote mesurées sert à tenir compte de la propagation de la veine des gaz d’échappement sur le trajet de l’échappement du moteur jusqu’au capteur d’oxydes d’azote. Cela permet de comparer les deux grandeurs relatives aux oxydes d’azote NOx du modèle présenté et du capteur NOx pour des variations dynamiques de l’état de fonctionnement du moteur à combustion interne. La variation dynamique de l’état de fonctionnement du moteur à combustion interne est, par exemple, la variation du régime moteur. En particulier pour déterminer les trois paramètres, il est avantageux de faire un filtrage passe-bas car on évite la dispersion des valeurs ou du moins on réduit très fortement cette dispersion.

Dessin

La présente invention sera décrite, ci-après, de manière plus détaillée à l’aide d’un exemple de réalisation du procédé pour déterminer l’émission d’oxydes d’azote d’un moteur à combustion interne, représenté dans Tunique dessin annexé.

Description d’un exemple de réalisation de l’invention L’unique figure du dessin montre un moteur à combustion 2 équipé d’un système d’admission d’air 4, d’un système de gaz d’échappement 6 et d’un retour de gaz d’échappement 8. Il comporte également une chambre de combustion 10. Les zones 12-20 sont également représentées. Le moteur à combustion interne 2, tel que représenté, utilise l’injection directe de carburant par des injecteurs 22 dans la chambre de combustion 10 selon le principe de combustion des moteurs à essence, celui des moteurs Diesel ou d’un autre principe de fonctionnement. Dans le cas des moteurs à essence, l’allumage commandée de la charge de la chambre de combustion formé par de l’air et du carburant injecté se fait à l’aide d’une bougie d’allumage 24. Si le moteur à combustion interne 2 est un moteur Diesel, il n’y aura pas de bougie d’allumage 24.

Chaque chambre de combustion 10 fermée de manière étanche et mobile par un piston 26 est remplie avec de l’air par le système d’admission 4. La charge brûlée de la chambre de combustion 10 est expulsée dans le système d’échappement 6. Le remplacement des charges des chambres de combustion est commandé par les soupapes d’échange de gaz 28 et 30. Le retour des gaz d’échappement 8 se fait pour une vanne de retour de gaz d’échappement 32 ouverte pour renvoyer les gaz d’échappement dans la chambre de combustion 10 et diminuer l’émission brute des oxydes d’azote par le moteur à combustion interne. Le système d’admission 4 transfère les gaz du côté air frais de la zone partielle 12 vers la zone partielle 16 et ferme la chambre de combustion 10. Le retour des gaz d'échappement 8 arrive dans le sys- tème d’admission 4 entre la zone partielle 12 et la zone partielle 16. La zone partielle 16 est également appelée conduite ou pipe d’admission.

Le système des gaz d’échappement 6 comporte un capteur d’oxydes d’azote NOx 34 appliquant ces signaux à un appareil de commande 36. Le procédé, permet de supprimer le capteur d’oxydes d’azote NOx 34. En outre, le système des gaz d’échappement peut comporter une sonde Lambda 38 dans ou en amont de la zone 18 et avant la dérivation vers le retour des gaz d’échappement. Le capteur 40 détecte la position de rotation du vilebrequin. D’autres capteurs de température ou autres capteurs peuvent être prévus dans la région du moteur à combustion interne 2. L’appareil de commande 36 exécute le procédé tel que présenté. En particulier, l’appareil de commande 36 est équipé d’un calculateur numérique appliquant un programme d’ordinateur.

Le capteur 38 permet de déterminer, par exemple, la teneur en oxygène des gaz d’échappement en aval de la zone de combustion. A la place du capteur 38 on peut prévoir un capteur dans la chambre de combustion 10 donnant la teneur en oxygène après la combustion. Selon une variante, on détermine la teneur en oxygène après la combustion en fonction d’autres grandeurs déjà présentes dans l’appareil de commande.

La température de combustion dans la chambre 10 au cours de la combustion se calcule de préférence en fonction de l’équation 13 donnée ci-après. Selon un mode de réalisation avantageux, on détermine l’émission brute d’oxydes d’azote NOx en fonction de paramètres prédéfinis, ce qui simplifie les calculs.

La composition massique dans l’une des plages 12-10 du moteur à combustion interne 2 peut se décrire de façon générale par un vecteur massique [mX] selon l’équation 1. L’indice, dans l’équation 1 correspond à la matière, à la molécule ou au combustible de la masse correspondante.

Selon l’équation 2, dans la zone 12 du système d’admission 4, on détermine le vecteur massique [/n A ]„„.(/:) pour un

temps (phase) de combustion donné, avec: η e [o,O.Ol]qui représente l’humidité choisie de manière appropriée. La masse totale majr(k) dans la région 12 se détermine à l’aide du capteur massique d’air 40.

Pour sélectionner l’humidité, on a deux possibilités. Selon la première possibilité, on utilise un capteur pour mesurer l’humidité et on applique la valeur fournie par le capteur pour améliorer la précision du résultat fourni par le modèle prédéfini. La seconde possibilité consiste à choisir l’humidité sans capteur et d’utiliser une valeur fixe dans l’intervalle donné.

Dans la région 14 du retour de gaz d’échappement 8, on aura la composition massique pour le temps de combustion k par le vecteur massique selon l’équation 3 ; le vecteur massique se détermine à un instant (k-δ) pour tenir compte du retard lié au trajet :

La chambre de combustion 10 reçoit une masse de carburant [fnXjpueiik) selon l’équation 4 au cours de la phase de combustion k.

(4)

Ainsi, pour la composition massique dans la chambre de combustion 10 avant la combustion, on aura la combinaison selon l’équation 5 suivante :

(5)

La modification après la combustion par rapport à la composition massique [mXl,c(k) dans la chambre de combustion 10 avant la combustion, de la composition massique [mX]c est donnée par l’équation 6 dans laquelle : - Mo2,bc(k) est la masse d’oxygène avant la combustion, - [O2]ajr = 0,23135 est la teneur en oxygène dans la plage 12, - Lst = 14,5 correspondant à un moteur Diesel et Lst = 14,7 à un moteur à essence, - m,ileÎhl(k) représente la masse de carburant avant la combustion, - mNOx représente la masse molaire des oxydes d’azote, avec nNOx(k) représentant la quantité de matière dans la phase de combustion k et l’indice « C » de la composition massique [mX]c représente l’expression "combustion".

On a l’inégalité > 1 dans laquelle représente la limite minimale pour une combustion complète. Pour l’essence, on a = 1. Pour les moteurs à combustion interne Diesel, on détermine la valeur de qui améliore la précision du modèle.

(6)

Le coefficient λ, est donné par l’équation 7 pour l’instant de la combustion. L’inégalité > λ signifie qu’une partie du combustible n’a pas été brûlée car il y avait un manque d’oxygène pour la combustion :

(7)

Après la combustion, on aura dans la chambre de combustion 10 et dans la zone 18, une composition massique [mX]aC(k) donnée par l’équation 8 suivante :

(8)

La masse totale , après la combustion, est don née par l’équation 9 :

(9)

La concentration massique B(k) dans la région 14 du retour des gaz d’échappement 8 résulte de l’équation 10 dans laquelle [areprésente la concentration massique pour chaque teneur.

(10)

Le vecteur E résulte de l’équation 11 et les différentes valeurs représentent les valeurs caractéristiques de la masse molaire respective :

(11)

Le vecteur E permet de déterminer la composition totale nTot après la combustion, selon l’équation 12 :

(12)

La température de combustion Tcotnb(k), au moment de la combustion, résulte de l’équation 13 dans laquelle F représente un vecteur selon l’équation 14 avec des pouvoirs calorifiques isobares spécifiques, séparés, et les valeurs séparées correspondent au tableau suivant :

Le pouvoir calorifique du gas-oil donne par exemple BrennwertFuel = 45.4-106 J/Kg. (13) (14)

On forme ainsi la relation selon l’équation 15. Les paramètres ax,a2,a3 sont des nombres réels :

(15) avec les paramètres at,a2,a3 on établit un plan. Avec certaines valeurs des paramètres al,a2,a3, on pourra pour chaque temps de combustion k, déterminer la quantité d’oxydes d’azote nNOx(k) selon l’équation 16. La quantité d’oxydes d’azote nNOx(k) est aussi appelée émission d’oxydes d’azote :

(16)

Field of the invention

The present invention relates to a method for determining the emission of nitrogen oxides during the operation of a heat engine.

State of the art

Methods for determining the nitrogen oxide content are already known.

DE 10 2011 075 875 A1 relates to a method for calculating the raw NOx emissions of nitrogen oxides by an internal combustion engine. For this, the operating parameters of the motor are used and a correction function takes into account the load pressure.

According to the document DE 10 2010 041 907 A1, there is known a method for managing an internal combustion engine in which a modeled value of NOx nitrogen oxides is determined using a NOx model. In particular, the tolerances of the injection system parts and the tolerances of the parts of the air supply system are taken into account. The value obtained for the emission of nitrogen oxides serves, for example, to correct the doses of fuel and / or urea injected to improve the operation of the catalysts and, ultimately, reduce overall emissions of oxides of nitrogen. nitrogen.

Description and advantages of the invention

The present invention relates to a method for determining an emission of nitrogen oxides nNOx (k) for management of an internal combustion engine, this method being characterized in that the emission of nitrogen oxides is determined. nNOx (k) as a function of the combustion temperature Tcomb (/;) in the combustion chamber and as a function of the oxygen content [O2 (/;)] aC after combustion.

Since the emission of the nitrogen oxides is determined as a function of the combustion temperature in the combustion chamber and as a function of the oxygen content after the combustion, it is possible to determine, safely and advantageously, the emission of oxides of nitrogen even in the transient operating ranges of the internal combustion engine. The transient operating ranges correspond, for example, to a load reduction or an increase in load and an increase in the metered fuel mass or a reduction in the metered fuel mass compared with the previous combustion times or phases. . Advantageously, the method according to the invention allows a greater precision with respect to the value provided by a NOx nitrogen oxide sensor; this makes it possible to better monitor the NOx nitrogen oxide sensor, or even replace it. The removal of the NOx nitrogen oxide sensor has the advantage of saving the cost of the sensor and eliminating a possible source of defects.

According to an advantageous development, the emission of nitrogen oxides is determined as a function of three previously obtained parameters, which simplifies the calculation work.

According to an advantageous development, the three parameters obtained beforehand from the internal combustion engine are determined specifically by means of the emission of nitrogen oxides measured by a nitrogen oxide sensor in the region of the engine exhaust and by recording these values. Thus, during the application, it is possible to determine a set of parameters corresponding to all the internal combustion engines of a certain type.

According to an advantageous development, the emissions of nitrogen oxides measured are filtered using a low-pass filter. The parameters determined in advance are determined as a function of at least one emission of nitrogen oxides filtered by low-pass filtering and these parameters have been obtained during the stationary operating mode of the internal combustion engine. The steady state corresponds to a substantially constant engine speed (constant rotation speed of the internal combustion engine). The low-pass filtering of measured nitrogen oxide emissions is used to account for the propagation of the exhaust gas stream in the engine exhaust path to the nitrogen oxide sensor. This makes it possible to compare the two quantities relative to the NOx nitrogen oxides of the presented model and the NOx sensor for dynamic variations of the operating state of the internal combustion engine. The dynamic variation of the operating state of the internal combustion engine is, for example, the variation of the engine speed. In particular to determine the three parameters, it is advantageous to carry out a low-pass filtering because it avoids the dispersion of the values or at least greatly reduces this dispersion.

Drawing

The present invention will be described, below, in more detail with the aid of an embodiment of the method for determining the emission of nitrogen oxides from an internal combustion engine, shown in the accompanying drawing. .

Description of an Exemplary Embodiment of the Invention The sole figure of the drawing shows a combustion engine 2 equipped with an air intake system 4, an exhaust system 6 and a exhaust gas return 8. It also comprises a combustion chamber 10. The zones 12-20 are also represented. The internal combustion engine 2, as shown, uses the direct injection of fuel by injectors 22 into the combustion chamber 10 according to the principle of combustion of gasoline engines, that of diesel engines or another operating principle . In the case of gasoline engines, the controlled ignition of the charge of the combustion chamber formed by air and injected fuel is done by means of a spark plug 24. If the combustion engine internal 2 is a diesel engine, there will be no spark plug 24.

Each combustion chamber 10 sealingly closed and movable by a piston 26 is filled with air by the intake system 4. The burnt load of the combustion chamber 10 is expelled into the exhaust system 6. The replacement of the charges of the combustion chambers is controlled by the gas exchange valves 28 and 30. The return of the exhaust gas 8 is for an exhaust gas return valve 32 open to return the exhaust gas in the combustion chamber 10 and decrease the gross emission of nitrogen oxides by the internal combustion engine. The intake system 4 transfers the fresh air gases from the partial zone 12 to the partial zone 16 and closes the combustion chamber 10. The return of the exhaust gases 8 arrives in the intake system 4 between the partial zone 12 and the partial zone 16. The partial zone 16 is also called pipe or intake pipe.

The exhaust system 6 comprises a NOx nitrogen oxide sensor 34 applying these signals to a control apparatus 36. The method makes it possible to eliminate the NOx 34 nitrogen oxide sensor. The exhaust system may comprise a Lambda probe 38 in or upstream of the zone 18 and before the bypass to the return of the exhaust gas. The sensor 40 detects the rotational position of the crankshaft. Other temperature sensors or other sensors may be provided in the region of the internal combustion engine 2. The control apparatus 36 performs the method as shown. In particular, the control device 36 is equipped with a digital computer applying a computer program.

The sensor 38 makes it possible to determine, for example, the oxygen content of the exhaust gases downstream of the combustion zone. Instead of the sensor 38 can be provided a sensor in the combustion chamber 10 giving the oxygen content after combustion. According to one variant, the oxygen content is determined after the combustion according to other quantities already present in the control apparatus.

The combustion temperature in the chamber 10 during the combustion is preferably calculated according to the equation 13 given hereinafter. According to an advantageous embodiment, the crude emission of NOx nitrogen oxides is determined according to predefined parameters, which simplifies the calculations.

The mass composition in one of the ranges 12-10 of the internal combustion engine 2 may be generally described by a mass vector [mX] according to equation 1. The index in equation 1 corresponds to the material , to the molecule or fuel of the corresponding mass.

According to equation 2, in the zone 12 of the intake system 4, the mass vector [/ n A] "".

given combustion time (phase), with: η e [o, O.Ol] which represents the appropriately selected moisture. The total mass majr (k) in the region 12 is determined using the mass air sensor 40.

To select the humidity, there are two possibilities. According to the first possibility, a sensor is used to measure the humidity and the value supplied by the sensor is applied to improve the precision of the result provided by the predefined model. The second possibility is to choose the sensorless humidity and use a fixed value in the given interval.

In the region 14 of the exhaust gas return 8, there will be the mass composition for the combustion time k by the mass vector according to equation 3; the mass vector is determined at a time (k-δ) to account for the delay related to the path:

The combustion chamber 10 receives a mass of fuel [fnXjpueiik) according to equation 4 during the combustion phase k.

(4)

Thus, for the mass composition in the combustion chamber 10 before combustion, the combination will be according to the following equation:

(5)

The modification after combustion with respect to the mass composition [mX1, c (k) in the combustion chamber 10 before combustion, of the mass composition [mX] c is given by equation 6 in which: - Mo2, bc (k) is the mass of oxygen before combustion, - [O2] ajr = 0.23135 is the oxygen content in the range 12, - Lst = 14.5 corresponding to a Diesel engine and Lst = 14.7 to a gasoline engine, - m, ileH1 (k) represents the fuel mass before combustion, - mNOx represents the molar mass of the nitrogen oxides, with nNOx (k) representing the amount of material in the combustion phase k and the "C" index of the mass composition [mX] c represents the expression "combustion".

We have the inequality> 1 in which represents the minimum limit for a complete combustion. For gasoline, we have = 1. For Diesel internal combustion engines, the value of which improves the accuracy of the model is determined.

(6)

The coefficient λ is given by Equation 7 for the moment of combustion. Inequality> λ means that some of the fuel was not burned because there was a lack of oxygen for combustion:

(7)

After the combustion, there will be in the combustion chamber 10 and in the zone 18, a mass composition [mX] aC (k) given by the following equation 8:

(8)

The total mass, after combustion, is given by equation 9:

(9)

The mass concentration B (k) in the exhaust gas return region 14 results from Equation 10 in which [are] the mass concentration for each content.

(10)

The vector E results from equation 11 and the different values represent the characteristic values of the respective molar mass:

(11)

The vector E makes it possible to determine the total composition nTot after the combustion, according to the equation 12:

(12)

The combustion temperature Tcotnb (k), at the moment of combustion, results from equation 13 in which F represents a vector according to equation 14 with specific, separate isobaric calorific values, and the separate values correspond to the following table:

The calorific value of the gas oil gives for example BrennwertFuel = 45.4-106 J / Kg. (13) (14)

We thus form the relation according to the equation 15. The parameters ax, a2, a3 are real numbers:

(15) with the parameters at, a2, a3 we establish a plane. With certain values of the parameters al, a2, a3, it will be possible for each combustion time k, to determine the quantity of nitrogen oxides nNOx (k) according to equation 16. The quantity of nitrogen oxides nNOx (k ) is also called emission of nitrogen oxides:

(16)

Claims (5)

REVE N D I C AT IONS 1°) Procédé pour déterminer une émission d’oxydes d’azote (nVOx(k)} pour la gestion d’un moteur à combustion interne (2), selon lequel on détermine l’émission des oxydes d’azote {nNOx(k}} en fonction de la température de combustion (%„,,*(&)) dans la chambre de combustion (10) et en fonction de la teneur en oxygène {) aptes la combustion, caractérisé en ce qu’ on détermine la température de combustion (Tcomb(fc)) en fonction d’une première composition massique ([«r-TLr(&)) à l’entrée (12) du moteur et d’une première température (Tîir(k)) à l’entrée (12) du moteur, - en fonction d’une seconde composition massique dans le retour des gaz d’échappement (8), - d’une seconde température (TEGRds(k)) dans le retour des gaz d’échappement (8), et - en fonction d’une troisième composition massique après la combustion dans la chambre de combustion (10).1) Method for determining an emission of nitrogen oxides (nVOx (k)} for the management of an internal combustion engine (2), according to which the emission of nitrogen oxides is determined {nNOx (k}} as a function of the combustion temperature (% ",, * (&)) in the combustion chamber (10) and as a function of the oxygen content {) suitable for combustion, characterized in that the combustion temperature (Tcomb (fc)) is determined as a function of a first mass composition (["r-TLr (&)) at the inlet (12) of the engine and at a first temperature (Tir ( k)) at the inlet (12) of the engine, - as a function of a second mass composition in the return of the exhaust gas (8), - a second temperature (TEGRds (k)) in the return of the exhaust gas (8), and - depending on a third mass composition after combustion in the combustion chamber (10). 2°) Procédé selon la revendication 1, caractérisé en ce qu’ on détermine la température de combustion (Tcotnb(fc)) en fonction de la masse de carburant fournie (mFuel(k)), en fonction de la composition de la masse ([wX]) dans le moteur en combustion interne (2) et en fonction de températures UUk^T^Jk)).Method according to Claim 1, characterized in that the combustion temperature (Tcotnb (fc)) is determined as a function of the mass of fuel supplied (mFuel (k)), depending on the composition of the mass ( [wX]) in the internal combustion engine (2) and as a function of temperature UUk ^ T ^ Jk)). 3°) Procédé selon la revendication 1, caractérisé en ce qu’ on détermine l’émission d’oxydes d’azote (NOx) après chaque temps de combustion (k).Process according to Claim 1, characterized in that the emission of nitrogen oxides (NOx) is determined after each combustion time (k). 4°) Procédé selon la revendication 1, caractérisé en ce qu’ on détermine la température de combustion (Tcomb(£)) selon l’équation :Method according to Claim 1, characterized in that the combustion temperature (Tcomb (£)) is determined according to the equation: BrenrmertFuei étant le pouvoir calorifique du combustible. étant la masse de combustible alimentant la chambre de combustion (10), étant la température à l’entrée (12) du moteur, étant la capacité calorifique, étant la composition massique à l’entrée (12) du moteur, étant la température dans le retour des gaz d’échappement (8), étant la composition massique dans le retour des gaz: d'échappement (8), et étant la composition massique après la combustion.BrenrmertFuei being the calorific value of the fuel. being the mass of fuel fed to the combustion chamber (10), being the temperature at the inlet (12) of the engine, being the heat capacity, being the mass composition at the inlet (12) of the engine, being the temperature in the the return of the exhaust gases (8), being the mass composition in the return of exhaust gas (8), and being the mass composition after the combustion. 5°) Procédé selon la revendication 1, caractérisé en ce que l’émission d’oxydes d’azote (NOx) se détermine en fonction de trois paramètres (al, a2, a3) obtenus au préalable, selon la relation :Process according to Claim 1, characterized in that the emission of nitrogen oxides (NOx) is determined as a function of three parameters (a1, a2, a3) obtained beforehand, according to the relation: - composition totale après combustion, 6°) Procédé seloxi la revendication 5, caractérisé en ce que les trois paramètres obtenus au préalable (al, a2, a3) se déterminent de manière spécifique au moteur thermique par l’émission mesurée des oxydes, par un capteur d’oxydes d’azote (34) dans la région de l’échappement (20) du moteur et ces paramètres sont mémorisés.- total composition after combustion, 6 °) method according to claim 5, characterized in that the three previously obtained parameters (al, a2, a3) are determined specifically to the engine by the measured emission of the oxides, by a nitrogen oxide sensor (34) in the exhaust region (20) of the engine and these parameters are stored. 7°) Procédé selon la revendication 5, caractérisé en ce que les paramètres (al, a2, a3) obtenus au préalable se déterminent pour un état essentiellement stationnaire du moteur thermique (2). 8°) Programme d’ordinateur pour un calculateur numérique destiné à appliquer le procédé selon l’une quelconque des revendications 1 à 7, pour déterminer une émission d’oxydes d’azote {nNOx(k)} par la gestion d’un moteur à combustion interne (2), consistant à : déterminer l’émission des oxydes d’azote (nNOx(k)} en fonction de la température de combustion (TCOfnb(&)) dans la chambre de combustion (10) et en fonction de la teneur en oxygène (tP2(Œc ) après la combustion, 9°) Appareil de commande (36) pour gérer un moteur à combustion interne (2) équipé d’un calculateur numérique, notamment d’un microprocesseur appliquant un programme d’ordinateur selon la revendication 8,7 °) A method according to claim 5, characterized in that the parameters (al, a2, a3) obtained beforehand are determined for a substantially stationary state of the engine (2). 8 °) Computer program for a numerical computer for applying the method according to any one of claims 1 to 7, for determining an emission of nitrogen oxides {nNOx (k)} by the management of an engine internal combustion system (2), comprising: determining the emission of the nitrogen oxides (nNOx (k)} as a function of the combustion temperature (TCOfnb (&)) in the combustion chamber (10) and according to the oxygen content (tP2 (cc) after the combustion, 9 °) control device (36) for managing an internal combustion engine (2) equipped with a digital computer, in particular a microprocessor applying a program of computer according to claim 8,
FR1555130A 2014-06-06 2015-06-05 METHOD FOR DETERMINING THE EMISSION OF NITROGEN OXIDES DURING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE Expired - Fee Related FR3021999B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210841.1 2014-06-06
DE102014210841.1A DE102014210841A1 (en) 2014-06-06 2014-06-06 Method for determining a nitrogen oxide emission during operation of an internal combustion engine

Publications (2)

Publication Number Publication Date
FR3021999A1 FR3021999A1 (en) 2015-12-11
FR3021999B1 true FR3021999B1 (en) 2019-07-12

Family

ID=54704581

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1555130A Expired - Fee Related FR3021999B1 (en) 2014-06-06 2015-06-05 METHOD FOR DETERMINING THE EMISSION OF NITROGEN OXIDES DURING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE

Country Status (3)

Country Link
CN (1) CN105275636B (en)
DE (1) DE102014210841A1 (en)
FR (1) FR3021999B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224135A1 (en) * 2016-12-05 2018-06-07 Robert Bosch Gmbh Method for reducing nitrogen oxide emissions of a diesel vehicle

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219227A (en) * 1990-08-13 1993-06-15 Barrack Technology Limited Method and apparatus for determining burned gas temperature, trapped mass and NOx emissions in an internal combustion engine
JPH06108903A (en) * 1992-09-28 1994-04-19 Unisia Jecs Corp Combustion control device for internal combustion engine
US6405122B1 (en) * 1997-10-14 2002-06-11 Yamaha Hatsudoki Kabushiki Kaisha Method and apparatus for estimating data for engine control
US6810659B1 (en) * 2000-03-17 2004-11-02 Ford Global Technologies, Llc Method for determining emission control system operability
US6422003B1 (en) * 2000-11-15 2002-07-23 General Motors Corporation NOX catalyst exhaust feedstream control system
JP2002195071A (en) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp Internal combustion engine control device
US6490860B1 (en) * 2001-06-19 2002-12-10 Ford Global Technologies, Inc. Open-loop method and system for controlling the storage and release cycles of an emission control device
DE10148663A1 (en) * 2001-10-02 2003-04-10 Daimler Chrysler Ag Process for determining nitrogen oxide emissions in an Internal Combustion engine operating with excess of air comprises determining thermal condition of combustion chamber of engine, and calculating the mass of nitrogen oxide emissions
US6697729B2 (en) * 2002-04-08 2004-02-24 Cummins, Inc. System for estimating NOx content of exhaust gas produced by an internal combustion engine
US6882929B2 (en) * 2002-05-15 2005-04-19 Caterpillar Inc NOx emission-control system using a virtual sensor
US20040144082A1 (en) * 2003-01-29 2004-07-29 Visteon Global Technologies, Inc. Controller for controlling oxides of nitrogen (NOx) emissions from a combustion engine
JP3861869B2 (en) * 2003-11-06 2006-12-27 トヨタ自動車株式会社 NOx generation amount estimation method for internal combustion engine
FR2878569B1 (en) * 2004-11-26 2007-03-02 Peugeot Citroen Automobiles Sa DEVICE AND METHOD FOR DETERMINING THE NOX QUANTITY EMITTED BY A MOTOR VEHICLE DIESEL ENGINE AND DIAGNOSTIC AND OPERATING CONTROL SYSTEMS COMPRISING SUCH A DEVICE
US7676318B2 (en) * 2006-12-22 2010-03-09 Detroit Diesel Corporation Real-time, table-based estimation of diesel engine emissions
JP4830912B2 (en) * 2007-03-05 2011-12-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP2009264176A (en) * 2008-04-23 2009-11-12 Yanmar Co Ltd Gas engine control device
DE102009055058B4 (en) * 2009-12-21 2024-03-28 Robert Bosch Gmbh Method and control device for calculating the raw NOx emissions of an internal combustion engine
US8453431B2 (en) * 2010-03-02 2013-06-04 GM Global Technology Operations LLC Engine-out NOx virtual sensor for an internal combustion engine
DE102010041907B4 (en) 2010-10-04 2022-12-01 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102011075875B4 (en) 2011-05-16 2024-02-22 Robert Bosch Gmbh Method and control device for calculating the raw NOx emissions of an internal combustion engine
EP2574763A1 (en) * 2011-09-30 2013-04-03 Volvo Car Corporation NOx emission estimation method and arrangement
FR2982824B1 (en) * 2011-11-17 2013-11-22 IFP Energies Nouvelles METHOD FOR TRANSIENTLY CONTROLLING A HYBRID PROPULSION SYSTEM OF A VEHICLE
KR101317410B1 (en) * 2011-11-22 2013-10-10 서울대학교산학협력단 Nox mass prediction method
EP2820580A4 (en) * 2012-02-28 2015-07-29 Univ Wayne State Using ion current signal for engine performance and emissions measuring techniques and methods for doing the same

Also Published As

Publication number Publication date
CN105275636A (en) 2016-01-27
FR3021999A1 (en) 2015-12-11
CN105275636B (en) 2020-06-05
DE102014210841A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
EP2007976A1 (en) Method and device for monitoring the regeneration of a pollution-removal system
FR2832459A1 (en) Internal combustion engine operating method, involves computing pressure in inlet valve upstream at discrete time points during engine work cycle considering fresh air charge of combustion chamber and detected engine rpm
FR2922598A1 (en) PROCESS FOR DETERMINING THE FLAMMABILITY OF FUEL OF UNKNOWN QUALITY.
FR3042819A1 (en) METHOD OF ESTIMATING RECIRCULATED EXHAUST GAS FLOW THROUGH A VALVE
FR2915772A1 (en) METHOD AND INSTALLATION FOR MANAGING AN INTERNAL COMBUSTION ENGINE WITH EXHAUST GAS RECYCLING
FR2804169A1 (en) System for assisting regeneration of particle filter in diesel engine exhaust line has means for determining particle load of filter
FR2843615A1 (en) Regulation method for combustion process of I.C. engine with controlled auto-ignition utilizes modeled combustion process formed with aid of regulated values influencing process and output quantities of modeled process
FR2990996A1 (en) INTERNAL COMBUSTION ENGINE WITH AN EXHAUST GAS RECIRCULATION SYSTEM (EGR) AND METHOD OF CONTROLLING THE GAS RECIRCULATION THEREFOR
FR3021999B1 (en) METHOD FOR DETERMINING THE EMISSION OF NITROGEN OXIDES DURING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE
FR2866072A1 (en) METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
WO2003087562A1 (en) Diesel engine comprising a device for controlling the flow of injected fuel
FR2840362A1 (en) METHOD FOR CONTROLLING THE FILLING OF AN INTERNAL COMBUSTION ENGINE
WO2016012095A1 (en) Method for determining the total pressure in the cylinder of an engine
FR2916805A1 (en) Pure alcohol e.g. ethanol, quantity estimating device for vehicle's spark ignition internal combustion engine, has control unit determining variation of engine torque, due to injections, from measurements of sensor
FR2964153A1 (en) Method for estimating fresh air of e.g. double injection petrol engine of motor vehicle, involves calculating mass of fresh air of mixture based on mass of waste gas and based on determined temperature of mixture
FR3054603A1 (en) METHOD FOR CORRECTING THE MEASUREMENT OF A FLOWMETER IN AN INTERNAL COMBUSTION ENGINE
FR2901319A1 (en) Internal combustion engine`s real torque adjusting method, involves adjusting real torque by acting on Lambda co-efficient in fuel branch, where action on co-efficient totally/partially replaces action on ignition angle in ignition branch
WO2014095052A1 (en) Method for determining the recycled air flow rate and the quantity of oxygen available at the inlet of an internal combustion engine cylinder
EP1627140A2 (en) Method of controlling heat engine noise
FR2878905A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
FR3017654A1 (en) METHOD FOR DETERMINING THE REFERENCE AIR FILLING FOR CALCULATING THE IGNITION ADVANCE OF AN ENGINE
FR2915514A1 (en) Fuel particle mass estimating method for e.g. diesel engine, has comparison unit comparing mass of particles at starting of phase and mass of eliminated particles during phase to determine mass of particles remaining within filter
EP1207290A2 (en) Method for optimizing of the combustion of a self-ignited internal combustion engine
FR3034812A1 (en) METHOD FOR DETERMINING NITROGEN OXIDES IN EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
FR3121182A1 (en) Method for controlling fuel injectors of a spark-ignition engine

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLSC Search report ready

Effective date: 20181123

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20210205