FR2981902A1 - METHOD FOR DISTRIBUTING COUPLES BETWEEN FRONT AND REAR AXLES OF A HYBRID VEHICLE - Google Patents

METHOD FOR DISTRIBUTING COUPLES BETWEEN FRONT AND REAR AXLES OF A HYBRID VEHICLE Download PDF

Info

Publication number
FR2981902A1
FR2981902A1 FR1159749A FR1159749A FR2981902A1 FR 2981902 A1 FR2981902 A1 FR 2981902A1 FR 1159749 A FR1159749 A FR 1159749A FR 1159749 A FR1159749 A FR 1159749A FR 2981902 A1 FR2981902 A1 FR 2981902A1
Authority
FR
France
Prior art keywords
torque
rear axle
value
hybrid vehicle
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1159749A
Other languages
French (fr)
Other versions
FR2981902B1 (en
Inventor
Ridouane Habbani
Olivier Dumaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto Sas Fr
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR1159749A priority Critical patent/FR2981902B1/en
Priority to PCT/FR2012/052412 priority patent/WO2013060971A1/en
Publication of FR2981902A1 publication Critical patent/FR2981902A1/en
Application granted granted Critical
Publication of FR2981902B1 publication Critical patent/FR2981902B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/40Torque distribution
    • B60W2520/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

Le procédé de répartition (20) de couples entre un train avant (2) et un train arrière (3) d'un véhicule hybride comporte des étapes de : a. calcul (22), à partir d'un couple désiré (31), d'un couple de consigne (32) pour le train avant et un couple théorique (33) pour le train arrière ; b. mesure (34) d'un couple effectif du train avant ; et c. calcul (24) d'un couple de consigne (36) pour le train arrière à partir du couple théorique pour le train arrière et du couple effectif du train avant, dans lequel l'étape de calcul d'un couple de consigne pour le train arrière comporte des sous-étapes de : i. comparaison des signes des valeurs de couples effectif du train avant et théorique du train arrière ; et ii. si les signes sont opposés, établir une valeur nulle de couple de consigne pour le train arrière.The method of distributing pairs (20) between a front end (2) and a rear end (3) of a hybrid vehicle comprises steps of: a. calculating (22), from a desired torque (31), a target torque (32) for the front axle and a theoretical torque (33) for the rear axle; b. measuring (34) effective torque of the nose gear; and c. calculating (24) a target torque (36) for the rear axle from the theoretical torque for the rear axle and the actual torque of the front axle, in which the step of calculating a set torque for the train rear has substeps of: i. comparing the signs of the actual torque values of the nose gear and the theoretical nose gear; and ii. if the signs are opposite, establish a zero set torque value for the rear axle.

Description

"PROCEDE DE REPARTITION DE COUPLES ENTRE DES TRAINS AVANT ET ARRIERE D'UN VEHICULE HYBRIDE" L'invention concerne un procédé de répartition de 5 couple entre un train avant et un train arrière d'un véhicule automobile de type hybride. De manière générale, un véhicule hybride comporte un train avant entraîné par un moteur thermique de 10 manière connue en soi et un train arrière entraîné par un moteur électrique. Une telle architecture de véhicule hybride permet un découplage du train avant et du train arrière. En effet, contrairement à un véhicule à quatre roues motrices (4 X 4) conventionnel, il est possible, 15 pour un véhicule hybride, d'avoir un couple, par exemple, positif sur le train avant et un couple négatif sur le train arrière, ou inversement. Une telle situation n'est pas viable d'un point de vue de la stabilité du véhicule. Une telle situation peut se présenter lorsque survient 20 une levée de pied de la pédale d'accélération, ou une réaccélération par le conducteur. Un tel véhicule hybride est décrit dans le document FR 2 894 547. Au surplus, ce document décrit un procédé, ainsi qu'un dispositif, de contrôle et de supervision 25 d'un tel véhicule en prenant en considération les conditions de stabilité du véhicule. Toutefois, ce document ne décrit pas de quelle manière est gérée la stabilité du véhicule du fait du découplage des trains avant et arrière. 30 Un but de l'invention est de fournir un procédé de gestion d'un véhicule hybride permettant d'éviter la situation précédemment décrite et de ce fait, d'améliorer la stabilité du véhicule hybride. 35 A cet effet, il est prévu, selon l'invention, un procédé de répartition de couples entre un train avant et un train arrière d'un véhicule automobile hybride comportant de étapes de : a. calcul, à partir d'une valeur d'un couple désiré par un conducteur du véhicule, d'une valeur de couple de 5 consigne pour le train avant et une valeur de couple théorique pour le train arrière ; b. mesure d'une valeur de couple effectif du train avant ; et c. calcul d'une valeur de couple de consigne pour 10 le train arrière à partir de la valeur de couple théorique pour le train arrière et de la valeur de couple effectif du train avant, dans lequel l'étape de calcul d'une valeur de couple de consigne pour le train arrière comporte des 15 sous-étapes de : i. comparaison des signes des valeurs de couples effectif du train avant et théorique du train arrière ; et ii. si les signes sont opposés, établir une valeur 20 nulle de couple de consigne pour le train arrière. Ainsi, en appliquant un couple de consigne nul sur le train arrière lorsque les couples effectif du train avant et théorique du train arrière sont de signes 25 opposés, le procédé permet d'éviter les situations où il y aurait une incohérence de signes entre les couples du train avant et arrière d'un véhicule Avantageusement, mais facultativement, le procédé 30 de répartition selon l'invention présente au moins l'une des caractéristiques suivantes : - suite à la comparaison des signes des valeurs de couples effectif du train avant et théorique du train arrière, si les signes sont identiques, calcul de la 35 valeur du couple de consigne pour le train arrière partir de la valeur de couple théorique pour le train arrière et de la valeur de couple effectif du train avant ; - le calcul de la valeur du couple de consigne pour le train arrière est fonction d'une valeur d'une vitesse de déplacement du véhicule hybride ; - le calcul de la valeur du couple de consigne pour 5 le train arrière est fonction d'un mode de fonctionnement d'un groupe motopropulseur du véhicule hybride ; et - le calcul de la valeur du couple de consigne pour le train arrière se base sur une calibration prédéterminée. 10 Il est prévu aussi, selon l'invention, un dispositif de calcul, comportant un processeur lié à une mémoire programmable, agencé de sorte à mettre en oeuvre le procédé de répartition présentant au moins l'une des 15 caractéristiques précédentes. Il est prévu aussi, selon l'invention, un support mémoire comportant en mémoire un programme destiné à être exécuté par le processeur du dispositif de calcul et apte 20 à réaliser le procédé de répartition présentant au moins l'une des caractéristiques précédentes. Il est prévu aussi, selon l'invention, un véhicule hybride comportant des moyens de mise en oeuvre du procédé 25 de répartition présentant au moins l'une des caractéristiques précédentes D'autres avantages et caractéristiques de l'invention apparaitront lors de la description ci-après 30 d'un mode de réalisation du procédé selon l'invention. Aux dessins annexés : - la figure 1 est une vue schématique d'un agencement de véhicule hybride ; - la figure 2 est un organigramme illustrant le 35 procédé selon l'invention ; et - la figure 3 est un chronographe de fonctionnement illustrant une application du procédé selon l'invention à un véhicule hybride. The invention relates to a method for distributing torque between a front axle and a rear axle of a hybrid type of motor vehicle. In general, a hybrid vehicle comprises a front axle driven by a heat engine in a manner known per se and a rear axle driven by an electric motor. Such a hybrid vehicle architecture allows a decoupling of the front axle and the rear axle. Indeed, unlike a conventional four-wheel-drive vehicle (4 X 4), it is possible, for a hybrid vehicle, to have a torque, for example, positive on the front axle and a negative torque on the rear axle. , Or vice versa. Such a situation is not viable from the point of view of vehicle stability. Such a situation may arise when a foot lift of the accelerator pedal occurs, or re-acceleration by the driver. Such a hybrid vehicle is described in document FR 2 894 547. In addition, this document describes a method and a device for controlling and supervising such a vehicle taking into consideration the stability conditions of the vehicle. . However, this document does not describe how the stability of the vehicle is managed by the decoupling of the front and rear trains. An object of the invention is to provide a method of managing a hybrid vehicle to avoid the situation described above and thereby improve the stability of the hybrid vehicle. To this end, according to the invention, there is provided a method of distributing couples between a front axle and a rear axle of a hybrid motor vehicle comprising steps of: a. calculating, from a value of a desired torque by a driver of the vehicle, a torque value of 5 set for the front axle and a theoretical torque value for the rear axle; b. measuring an effective torque value of the nose gear; and c. calculating a set torque value for the rear axle from the theoretical torque value for the rear axle and the actual torque value of the front axle, wherein the step of calculating a torque value set point for the rear axle comprises sub-steps of: i. comparing the signs of the actual torque values of the nose gear and the theoretical nose gear; and ii. if the signs are opposite, establish a zero set torque value for the rear axle. Thus, by applying a zero setpoint torque on the rear axle when the effective torques of the front and the theoretical front axle are of opposite signs, the method makes it possible to avoid situations where there is an inconsistency of signs between the pairs. of the front and rear axle of a vehicle Advantageously, but optionally, the method 30 of distribution according to the invention has at least one of the following characteristics: - following the comparison of the signs of the actual torque values of the front and theoretical gear of the rear axle, if the signs are identical, calculating the value of the target torque for the rear axle from the theoretical torque value for the rear axle and the effective torque value of the nose gear; the calculation of the value of the target torque for the rear axle is a function of a value of a traveling speed of the hybrid vehicle; the calculation of the value of the target torque for the rear axle is a function of a mode of operation of a power unit of the hybrid vehicle; and the calculation of the value of the target torque for the rear axle is based on a predetermined calibration. It is also envisaged, according to the invention, a computing device, comprising a processor linked to a programmable memory, arranged so as to implement the distribution method having at least one of the preceding characteristics. It is also provided, according to the invention, a memory medium having in memory a program intended to be executed by the processor of the computing device and adapted to perform the distribution method having at least one of the preceding characteristics. According to the invention, there is also provided a hybrid vehicle comprising means for implementing the distribution method having at least one of the preceding characteristics. Other advantages and characteristics of the invention will appear in the description herein. after one embodiment of the method according to the invention. In the accompanying drawings: - Figure 1 is a schematic view of a hybrid vehicle arrangement; FIG. 2 is a flowchart illustrating the method according to the invention; and FIG. 3 is an operating chronograph illustrating an application of the method according to the invention to a hybrid vehicle.

En référence à la figure 1, nous allons décrire brièvement l'architecture d'un véhicule hybride. Le véhicule hybride 1 comporte un train avant 2 et un train arrière 3. Le train avant 2 est entraîné par un groupe motopropulseur 4. Le groupe motopropulseur 4 comporte un moteur thermique MTH lié à une boîte de vitesses BV par l'intermédiaire d'un embrayage, une sortie de la boîte de vitesses BV étant le train avant 2. En outre, le moteur thermique MTH comporte un alternateur A/C, un démarreur, et est couplé, ici, à une machine avant MEL AV HV. La machine avant comporte un moteur électrique alimenté en haute tension. Cette machine avant peut entraîner le train avant 2 du véhicule hybride 1 alors que le moteur thermique MTH est éteint Le train arrière 3 du véhicule hybride 1 est entraîné par une machine arrière 5 comportant un moteur électrique à haute tension MEL AR HV relié au train arrière 3 par l'intermédiaire d'un embrayage à griffes dont la sortie passe par un démultiplicateur DM permettant d'entraîner le train arrière 3 du véhicule hybride 1. Des moteurs électriques des machines avant MEL AV HV et arrière MEL AR HV sont connectés électriquement à un onduleur 7, lui-même alimenté par une batterie haute tension 8, cet ensemble formant un réseau haute tension au sein du véhicule hybride 1. D'autre part, le démarreur est relié à une batterie basse tension 9 au travers d'un convertisseur haute tension/basse tension 10. D'autre part, la batterie basse tension 9 est elle-même reliée au réseau basse tension 11 du véhicule hybride 1. Enfin, chacune des roues des trains avant 2 et arrière 3 du véhicule hybride 1 est associée à un dispositif de freinage 6 équipé d'un système ESP (électro-stabilisateur programmé) permettant d'améliorer un contrôle de trajectoire du véhicule automobile 1. Comme il ressort de la figure 1, une architecture hybride du véhicule hybride 1 permet un découplage total entre le train avant 2 et le train arrière 3. Du fait de ce découplage, il existe donc des situations de vie dans lesquelles il est possible d'avoir un couple, par exemple, positif sur le train avant 2 et un couple négatif sur le train arrière 3. La situation inverse est elle aussi possible de ce fait. Ces deux situations ne sont pas viables car elles mettent en péril la stabilité du véhicule hybride 1 lors d'une utilisation. De telle situations peuvent survenir lorsque le conducteur du véhicule hybride 1 effectue une levée de pied au niveau de la pédale d'accélération du véhicule hybride 1 ou bien, au contraire, demande une ré-accélération en appuyant sur ladite pédale d'accélération du véhicule hybride 1. Referring to Figure 1, we will briefly describe the architecture of a hybrid vehicle. The hybrid vehicle 1 comprises a front axle 2 and a rear axle 3. The front axle 2 is driven by a power train 4. The power train 4 comprises an MTH heat engine linked to a gearbox BV via a clutch, an output of the gearbox BV being the nose gear 2. In addition, the heat engine MTH comprises an alternator A / C, a starter, and is coupled here to a machine before MEL AV HV. The front machine has an electric motor powered by high voltage. This front machine can drive the front axle 2 of the hybrid vehicle 1 while the thermal engine MTH is off The rear axle 3 of the hybrid vehicle 1 is driven by a rear machine 5 comprising a high voltage electric motor MEL AR HV connected to the rear axle 3 via a clutch clutch whose output passes through a DM gearmotor for driving the rear axle 3 of the hybrid vehicle 1. Electric motors of the machines before MEL AV HV and rear MEL AR HV are electrically connected to an inverter 7, itself powered by a high voltage battery 8, this assembly forming a high voltage network within the hybrid vehicle 1. On the other hand, the starter is connected to a low voltage battery 9 through a converter high voltage / low voltage 10. On the other hand, the low voltage battery 9 is itself connected to the low voltage network 11 of the hybrid vehicle 1. Finally, each of the wheels of the train s front 2 and rear 3 of the hybrid vehicle 1 is associated with a braking device 6 equipped with an ESP system (electro-stabilizer programmed) to improve a control of trajectory of the motor vehicle 1. As shown in Figure 1 a hybrid architecture of the hybrid vehicle 1 allows a total decoupling between the front axle 2 and the rear axle 3. Due to this decoupling, there are therefore situations of life in which it is possible to have a couple, for example, positive on the front axle 2 and a negative torque on the rear axle 3. The opposite situation is also possible as a result. These two situations are not viable because they jeopardize the stability of the hybrid vehicle 1 during use. Such situations may occur when the driver of the hybrid vehicle 1 performs a foot lift at the accelerator pedal of the hybrid vehicle 1 or, on the contrary, requires a re-acceleration by pressing on said accelerator pedal of the vehicle hybrid 1.

Le procédé selon l'invention que nous allons maintenant décrire au regard de la figure 2 et 3 va permettre d'interdire les deux situations suivantes : - présence d'un couple positif sur le train avant 2 20 et présence d'un couple négatif sur le train arrière 3 du véhicule hybride ; - présence d'un couple négatif sur le train avant 2 et présence d'un couple positif sur le train arrière 3 du véhicule hybride 1. 25 Le chronographe de la figure 3 illustre la survenance de la première de ces situations, correspondante à une levée de pied de la part du conducteur. Pendant la période de temps 51, le conducteur 30 du véhicule hybride 1 demande un couple positif, cette demande de couple positif est illustrée par la position de la pédale d'accélération selon le début de la courbe 43. Durant cette période de temps 51, seul le train avant 2 du véhicule hybride 1 réalise le couple demandé à 35 travers le groupe motopropulseur 4. Le couple du train avant est illustré par la courbe 41. Comme illustré à la figure 3, le couple effectif 41 du train avant est sensiblement similaire au couple 40 demandé par le conducteur. Durant cette période de temps 51, le couple au niveau du train arrière 3 est nul et est illustré par la courbe 45. Il est à noter que la courbe 42 illustre un couple théorique au niveau du train arrière 3. The method according to the invention which we will now describe with regard to FIGS. 2 and 3 will make it possible to prohibit the following two situations: presence of a positive torque on the front axle 2 and presence of a negative torque on the rear axle 3 of the hybrid vehicle; - presence of a negative torque on the front axle 2 and presence of a positive torque on the rear axle 3 of the hybrid vehicle 1. 25 The chronograph of Figure 3 illustrates the occurrence of the first of these situations, corresponding to a lifting from the driver. During the period of time 51, the driver 30 of the hybrid vehicle 1 requires a positive torque, this positive torque demand is illustrated by the position of the accelerator pedal according to the beginning of the curve 43. During this period of time 51, only the front axle 2 of the hybrid vehicle 1 achieves the requested torque through the power train 4. The front axle torque is illustrated by the curve 41. As illustrated in FIG. 3, the effective torque 41 of the nose gear is substantially similar. torque 40 requested by the driver. During this period of time 51, the torque at the rear axle 3 is zero and is illustrated by the curve 45. It should be noted that the curve 42 illustrates a theoretical torque at the rear axle 3.

A l'instant t 44, le conducteur effectue une levée de pied de la pédale d'accélération, la position de la pédale d'accélération 43 passant à zéro. S'en suit alors une période de temps 52 illustrant le temps de réponse du véhicule hybride 1 à la consigne de levée de pied 44. Du fait de cette levée de pied 44, le conducteur demande alors un couple négatif. La courbe 40, illustrant ce couple demandé, passe alors dans les valeurs négatives dans la période de temps 52. Toutefois, le temps de réponse du train avant 2 et du groupe motopropulseur 4 qui l'entraîne ne permet pas de satisfaire instantanément ce couple demandé par le conducteur. Cela est illustré par la courbe 41 qui décroît de la valeur de couple avant la levée de pied à l'instant t 44 jusqu'à atteindre zéro en fin de période de temps 52. En théorie, la machine arrière 5 entraînant le train arrière 3 du véhicule hybride 1 pourrait prendre la relève et effectuer le couple manquant afin d'obtenir un couple aussi proche que possible du couple demandé par le conducteur 40. Cette possibilité est illustrée par la courbe théorique 42. Dans ce cas, durant la période de temps 52, théoriquement, le couple sur le train avant 2 serait positif alors que le couple sur le train arrière 3 serait négatif. Cette situation n'est pas viable du point de vue de la stabilité du véhicule. Le procédé selon l'invention va permettre de gérer une telle situation en imposant un couple sur le train arrière 3 nul tel qu'illustré par la courbe 45 du chronographe de la figure 3. A la fin de la période de temps 52 et au début de la période de temps 53 qui suit, la courbe 41 illustrant le couple du train avant 2 du véhicule hybride 1 passe en valeurs négatives, le procédé selon l'invention va alors autoriser un couple négatif sur le train arrière 3 du véhicule hybride 1. En effet, à partir du début de la période de temps 53, aussi bien le couple sur le train avant 2 du véhicule hybride 1 que le couple sur le train arrière 3 du véhicule hybride 1 sont négatifs, et donc de même signe. Dès lors, la stabilité du véhicule n'est plus en péril. En référence à la figure 2, le procédé 20 selon l'invention reçoit, via un capteur de position par exemple, la position de la pédale d'accélération 30 qu'il compare 21 à une cartographie de position de la pédale d'accélération, ce qui permet de déterminer un couple 31 demandé par le conducteur. Lors d'une étape de répartition des couples entre le train avant et le train arrière 22, le procédé selon l'invention calcule un couple de consigne 32 destiné au groupe motopropulseur 4 entraînant le train avant 2. D'autre part, le procédé selon l'invention 20 calcule, lors de cette étape de répartition de couple entre le train avant et le train arrière 22, un couple théorique 33 destiné à être appliqué au train arrière 3 du véhicule hybride 1. Lors d'une étape 24, le procédé 20 selon l'invention réalise une étape de cohérence de couple dans laquelle il calcule le couple de consigne 36 destiné à être appliqué sur le train arrière 3 du véhicule hybride 1. Pour cela, le procédé 20 selon l'invention prend en considération le couple théorique 33 calculé lors de l'étape de répartition de couple entre le train avant et le train arrière 22, le couple effectif 34 appliqué sur le train avant 2 du véhicule hybride 1. En variante, le procédé 20 selon l'invention peut prendre en compte, en outre, le mode de fonctionnement, dit mode GMP, du véhicule hybride ainsi que la vitesse 35 dudit véhicule hybride. Par exemple, le mode GMP peut être un fonctionnement quatre roues motrices (4 X 4), hybride ou sport. Le couple de consigne 36 ainsi déterminé est alors envoyé à la machine arrière 5 qui fournit alors un couple effectif 37 sur le train arrière 3. Lors de l'étape de calcul de cohérence de couple 24, le procédé selon l'invention limite le couple de consigne 36 à appliquer sur le train arrière 3 du véhicule hybride 1 de sorte à respecter le critère de stabilité du véhicule hybride 1 en évitant les situations précédemment décrites dans lesquelles le couple effectif 34 appliqué sur le train avant et le couple effectif 37 appliqué sur le train arrière 3 soient de signe opposé. Ainsi, le procédé fournit l'assurance d'avoir des couples appliqués sur le train avant 2 et sur le train arrière 3 du véhicule hybride 1 de signes cohérents. At time t 44, the driver performs a lift of the accelerator pedal, the position of the accelerator pedal 43 passing to zero. Then follows a period of time 52 illustrating the response time of the hybrid vehicle 1 to the footlift instruction 44. Due to this foot lift 44, the driver then requires a negative torque. The curve 40, illustrating this requested torque, then passes into the negative values in the time period 52. However, the response time of the front axle 2 and the power train 4 that drives it does not allow instantaneous satisfaction of this requested torque. by the driver. This is illustrated by the curve 41 which decreases from the torque value before the foot lift at time t 44 until reaching zero at the end of time period 52. In theory, the rear machine 5 driving the rear axle 3 of the hybrid vehicle 1 could take over and perform the missing torque to obtain a torque as close as possible to the torque requested by the driver 40. This possibility is illustrated by the theoretical curve 42. In this case, during the period of time 52, theoretically, the torque on the front axle 2 would be positive while the torque on the rear axle 3 would be negative. This situation is not viable from the point of view of the stability of the vehicle. The method according to the invention will make it possible to manage such a situation by imposing a torque on the rear zero train 3 as illustrated by the curve 45 of the chronograph of FIG. 3. At the end of the time period 52 and at the beginning the following period of time 53, the curve 41 illustrating the torque of the front axle 2 of the hybrid vehicle 1 passes in negative values, the method according to the invention will then allow a negative torque on the rear axle 3 of the hybrid vehicle 1. Indeed, from the beginning of the period of time 53, both the torque on the front axle 2 of the hybrid vehicle 1 and the torque on the rear axle 3 of the hybrid vehicle 1 are negative, and therefore of the same sign. Therefore, the stability of the vehicle is no longer in danger. With reference to FIG. 2, the method 20 according to the invention receives, via a position sensor for example, the position of the acceleration pedal 30 which it compares to a map of the position of the accelerator pedal. which makes it possible to determine a torque 31 requested by the driver. During a step of distribution of the couples between the front axle and the rear axle 22, the method according to the invention calculates a target torque 32 for the powertrain 4 driving the nose gear 2. On the other hand, the method according to the invention the invention 20 calculates, during this step of distribution of torque between the front axle and the rear axle 22, a theoretical torque 33 intended to be applied to the rear axle 3 of the hybrid vehicle 1. During a step 24, the method 20 according to the invention performs a torque coherence step in which it calculates the setpoint torque 36 intended to be applied to the rear axle 3 of the hybrid vehicle 1. For this, the method 20 according to the invention takes into account the torque theoretical 33 calculated during the torque distribution step between the nose gear and the rear axle 22, the actual torque 34 applied to the front axle 2 of the hybrid vehicle 1. Alternatively, the method 20 according to i nvention can take into account, in addition, the mode of operation, said mode GMP, of the hybrid vehicle and the speed of said hybrid vehicle. For example, the GMP mode can be a four-wheel drive (4 X 4), hybrid or sport. The setpoint torque 36 thus determined is then sent to the rear machine 5 which then provides an effective torque 37 on the rear axle 3. During the torque coherence calculation step 24, the method according to the invention limits the torque set point 36 to be applied to the rear axle 3 of the hybrid vehicle 1 so as to meet the stability criterion of the hybrid vehicle 1 by avoiding the situations described above in which the effective torque 34 applied to the front axle and the effective torque 37 applied to the rear axle 3 are of opposite sign. Thus, the method provides the assurance of having pairs applied to the front axle 2 and the rear axle 3 of the hybrid vehicle 1 of coherent signs.

En surplus, le procédé 20 permet d'assurer qu'un couple minimum soit appliqué au train arrière 3 du véhicule hybride, ce couple minimum étant limité en fonction du couple de consigne 32 appliqué sur le train avant 2 du véhicule hybride 1. La détermination de ce couple minimum accessible est réalisée par une calibration préalable prédéterminée. Le procédé 20 selon l'invention permet de répartir le couple entre le train avant 2 et le train arrière 3 du véhicule hybride 1 de manière à respecter les contraintes de stabilité du véhicule, en particulier dans le cas où les signes desdits couples appliqués au train avant 2 et au train arrière 3 du véhicule hybride 1 sont de signe opposé. D'autre part, le procédé 20 selon l'invention permet de pallier à une problématique de passage de jeu sur le train avant 32 du véhicule hybride 1, dû à un filtre prononcé ou bien à un surcouple potentiel demandé. Par construction du véhicule hybride, cela devrait être compensé par le train arrière, ce qui conduirait à des situations dans lesquelles il y aurait un couple positif appliqué au train avant 2 du véhicule hybride et un couple négatif, donc freineur, appliqué au train arrière 3 du véhicule hybride 1. Grâce au procédé 20 selon l'invention, cette possibilité induite par la dynamique et les jeux du train avant 2 est interdite. In addition, the method 20 makes it possible to ensure that a minimum torque is applied to the rear axle 3 of the hybrid vehicle, this minimum torque being limited as a function of the reference torque 32 applied to the front axle 2 of the hybrid vehicle 1. The determination this minimum accessible torque is achieved by a predetermined pre-calibration. The method 20 according to the invention makes it possible to distribute the torque between the front axle 2 and the rear axle 3 of the hybrid vehicle 1 so as to respect the constraints of stability of the vehicle, in particular in the case where the signs of said couples applied to the train before 2 and the rear axle 3 of the hybrid vehicle 1 are of opposite sign. On the other hand, the method 20 according to the invention makes it possible to overcome a problem of clearance of play on the front axle 32 of the hybrid vehicle 1, due to a pronounced filter or to a requested overtorque potential. By construction of the hybrid vehicle, this should be compensated by the rear axle, which would lead to situations in which there would be a positive torque applied to the front axle 2 of the hybrid vehicle and a negative torque, thus braking, applied to the rear axle 3 of the hybrid vehicle 1. With the method 20 according to the invention, this possibility induced by the dynamics and games of the front axle 2 is prohibited.

Afin de mettre en oeuvre le procédé 20 selon l'invention, qui vient d'être décrit, le véhicule hybride 1 comporte des moyens agencés à cette fin. Ces moyens 5 peuvent se présenter sous la forme d'un dispositif de type calculateur, comportant un processeur lié à une mémoire programmable. Cette dernière est capable de mémoriser un programme de type informatique correspondant au procédé 20 selon l'invention, mais aussi de mémoriser 10 des données de fonctionnement correspondant aux différents modes GMP de fonctionnement du véhicule hybride, ainsi que la calibration préalable prédéterminée. Afin d'initialiser le dispositif de type calculateur du véhicule hybride, le programme et les 15 données de fonctionnement sont enregistrés dans un support mémoire connu en soi comme un disque dur, une clef, une disquette, un disque compact, une carte mémoire, etc...In order to implement the method 20 according to the invention, which has just been described, the hybrid vehicle 1 comprises means arranged for this purpose. These means 5 may be in the form of a calculator-type device comprising a processor linked to a programmable memory. The latter is capable of storing a program of the computer type corresponding to the method 20 according to the invention, but also of memorizing 10 operating data corresponding to the different modes of operation GMP of the hybrid vehicle, as well as the predetermined pre-calibration. In order to initialize the hybrid vehicle computer type device, the program and the operating data are stored in a memory medium known per se as a hard disk, a key, a floppy disk, a compact disk, a memory card, etc. ...

20 Bien entendu, il est possible d'apporter l'invention de nombreuses modifications sans pour autant sortir du cadre de celle-ci. Of course, it is possible to bring the invention many modifications without departing from the scope thereof.

Claims (8)

REVENDICATIONS1. Procédé de répartition (20) de couples entre un 5 train avant (2) et un train arrière (3) d'un véhicule automobile hybride (1) comportant des étapes de : a. calcul (22), à partir d'une valeur d'un couple désiré (31) par un conducteur du véhicule, d'une valeur de couple de consigne (32) pour le train avant et une 10 valeur de couple théorique (33) pour le train arrière ; b. mesure (34) d'une valeur de couple effectif du train avant ; et c. calcul (24) d'une valeur de couple de consigne (36) pour le train arrière à partir de la valeur de 15 couple théorique pour le train arrière et de la valeur de couple effectif du train avant, dans lequel l'étape de calcul d'une valeur de couple de consigne pour le train arrière comporte des sous-étapes de : 20 i. comparaison des signes des valeurs de couples effectif du train avant et théorique du train arrière ; et ii. si les signes sont opposés, établir une valeur nulle de couple de consigne pour le train arrière. 25 REVENDICATIONS1. A method of distributing (20) pairs between a front axle (2) and a rear axle (3) of a hybrid motor vehicle (1) having steps of: a. calculation (22), from a value of a desired torque (31) by a driver of the vehicle, a target torque value (32) for the front axle and a theoretical torque value (33) for the rear axle; b. measuring (34) an effective torque value of the nose gear; and c. calculation (24) of a set torque value (36) for the rear axle from the theoretical torque value for the rear axle and the actual torque value of the front axle, in which the calculation step a set torque value for the rear axle comprises sub-steps of: i. comparing the signs of the actual torque values of the nose gear and the theoretical nose gear; and ii. if the signs are opposite, establish a zero set torque value for the rear axle. 25 2. Procédé de répartition selon la revendication 1, caractérisé en ce que, suite à la comparaison des signes des valeurs de couples effectif du train avant et théorique du train arrière, si les signes sont 30 identiques, calcul de la valeur du couple de consigne pour le train arrière à partir de la valeur de couple théorique pour le train arrière et de la valeur de couple effectif du train avant. 35 2. A method of distribution according to claim 1, characterized in that, following the comparison of the signs of the actual torque values of the front and rear axle of the train, if the signs are identical, calculating the value of the set torque. for the rear axle from the theoretical torque value for the rear axle and the actual torque value of the nose gear. 35 3. Procédé de répartition selon la revendication 1 ou 2, caractérisé en ce que le calcul de la valeur du couple de consigne pour le train arrière est fonctiond'une valeur d'une vitesse (35) de déplacement du véhicule hybride. 3. Dispatch method according to claim 1 or 2, characterized in that the calculation of the value of the target torque for the rear axle is a function of a value of a speed (35) of displacement of the hybrid vehicle. 4. Procédé de répartition selon l'une des revendications 1 à 3, caractérisé en ce que le calcul de la valeur du couple de consigne pour le train arrière est fonction d'un mode de fonctionnement (35) d'un groupe motopropulseur du véhicule hybride. 4. Dispatch method according to one of claims 1 to 3, characterized in that the calculation of the value of the target torque for the rear axle is a function of an operating mode (35) of a powertrain of the vehicle hybrid. 5. Procédé de répartition selon l'une des revendications 1 à 4, caractérisé en ce que le calcul de la valeur du couple de consigne pour le train arrière se base sur une calibration prédéterminée. 5. Dispatch method according to one of claims 1 to 4, characterized in that the calculation of the value of the target torque for the rear axle is based on a predetermined calibration. 6. Dispositif de calcul comportant un processeur lié à une mémoire programmable caractérisé en qu'il est agencé de sorte à mettre en oeuvre le procédé de répartition selon l'une des revendications 1 à 5. 6. A computing device comprising a processor linked to a programmable memory characterized in that it is arranged so as to implement the distribution method according to one of claims 1 to 5. 7. Support mémoire caractérisé en ce qu'il comporte en mémoire un programme destiné à être exécuté par le processeur du dispositif de calcul selon la revendication 6 et apte à réaliser le procédé de répartition selon l'une des revendications 1 à 5. 7. Memory medium characterized in that it comprises in memory a program to be executed by the processor of the computing device according to claim 6 and adapted to perform the distribution method according to one of claims 1 to 5. 8. Véhicule hybride caractérisé en ce qu'il comporte des moyens de mise en oeuvre du procédé de répartition selon l'une des revendications 1 à 5. 8. Hybrid vehicle characterized in that it comprises means for implementing the distribution method according to one of claims 1 to 5.
FR1159749A 2011-10-27 2011-10-27 METHOD FOR DISTRIBUTING COUPLES BETWEEN FRONT AND REAR AXLES OF A HYBRID VEHICLE Active FR2981902B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1159749A FR2981902B1 (en) 2011-10-27 2011-10-27 METHOD FOR DISTRIBUTING COUPLES BETWEEN FRONT AND REAR AXLES OF A HYBRID VEHICLE
PCT/FR2012/052412 WO2013060971A1 (en) 2011-10-27 2012-10-22 Method for splitting torque between the front and rear axle assemblies of a hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1159749A FR2981902B1 (en) 2011-10-27 2011-10-27 METHOD FOR DISTRIBUTING COUPLES BETWEEN FRONT AND REAR AXLES OF A HYBRID VEHICLE

Publications (2)

Publication Number Publication Date
FR2981902A1 true FR2981902A1 (en) 2013-05-03
FR2981902B1 FR2981902B1 (en) 2013-12-20

Family

ID=47191976

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1159749A Active FR2981902B1 (en) 2011-10-27 2011-10-27 METHOD FOR DISTRIBUTING COUPLES BETWEEN FRONT AND REAR AXLES OF A HYBRID VEHICLE

Country Status (2)

Country Link
FR (1) FR2981902B1 (en)
WO (1) WO2013060971A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104828087B (en) * 2014-11-24 2017-08-04 北汽福田汽车股份有限公司 Antero posterior axis driving force adjustment control method, system and the four-wheel drive cars of four-wheel drive cars
FR3078304B1 (en) * 2018-02-28 2020-01-24 Psa Automobiles Sa METHOD FOR MANAGING THE TORQUES APPLIED TO VEHICLE ROLLING VEHICLES EACH INCLUDING MOTORIZATION
CN113022328B (en) * 2021-02-24 2022-11-25 北京汽车股份有限公司 Vehicle torque control method and device and vehicle
CN113022538B (en) * 2021-04-02 2022-10-11 中国第一汽车股份有限公司 Motor torque zero-crossing parameter processing method and system and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066023A1 (en) * 2005-12-08 2007-06-14 Renault S.A.S. Method and device for controlling and monitoring a hybrid four-wheel drive vehicle
WO2007091172A1 (en) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Control device for vehicle, and control method thereof
WO2007091144A2 (en) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for vehicle
DE102008041693A1 (en) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Method for driving a hybrid vehicle during a load change

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066023A1 (en) * 2005-12-08 2007-06-14 Renault S.A.S. Method and device for controlling and monitoring a hybrid four-wheel drive vehicle
WO2007091172A1 (en) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Control device for vehicle, and control method thereof
WO2007091144A2 (en) * 2006-02-08 2007-08-16 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for vehicle
DE102008041693A1 (en) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Method for driving a hybrid vehicle during a load change

Also Published As

Publication number Publication date
WO2013060971A1 (en) 2013-05-02
FR2981902B1 (en) 2013-12-20

Similar Documents

Publication Publication Date Title
FR2902705A1 (en) MICRO-HYBRID SYSTEM FOR A MOTOR VEHICLE INCORPORATING A MODULE OF STEERING STRATEGIES
FR2853609A1 (en) Brake installation monitoring and controlling process for use in vehicle, involves taking measure modifying deceleration on wheel brake and constantly maintaining or modifying vehicle deceleration only in negligible manner
WO2013060971A1 (en) Method for splitting torque between the front and rear axle assemblies of a hybrid vehicle
FR3092811A1 (en) METHOD AND SYSTEM FOR DRIVING AN ELECTRIC AXLE OF A TRAILER OR SEMI-TRAILER
EP2928716B1 (en) Method for controlling the coupling/decoupling of a traction machine of a motor vehicle
EP2937554B1 (en) Diagnostic method for detecting a slip in the accessory drive belt of a power train
FR3005921A1 (en) DISTRIBUTION OF THE TORQUE BETWEEN THE FRONT AXLE AND THE REAR AXLE OF A HYBRID VEHICLE
FR3030425A1 (en) METHOD FOR CONTROLLING AN AUTOMATIC GEARBOX FOR A MOTOR VEHICLE
FR3044993B1 (en) POWER MANAGEMENT METHOD FOR HYBRID MOTOR VEHICLE
EP2911904B1 (en) Method for controlling the coupling/uncoupling of a drive machine of a motor vehicle
EP1846647B1 (en) Method for control of the reversal of power in a system comprising a torque converter and mechanical unit encompassing said method
FR3010030A1 (en) METHOD FOR COUPLING A TRACTION MACHINE OF A MOTOR VEHICLE
EP3990327A1 (en) Method for evaluating a coastdown load, and assisted driving method
EP2212579B1 (en) Method for hill start assistance for motor vehicle
FR3025474A1 (en) METHOD FOR CONTROLLING THE COUPLING OF A TRACTION MACHINE OF A HYBRID VEHICLE
FR2905905A1 (en) ANTI-SKATING METHOD AT THE STARTING OF A MOTOR VEHICLE.
EP3268255B1 (en) Method for distributing torque between the wheelsets of a motor vehicle
FR3024855A1 (en) METHOD AND DEVICE FOR DETERMINING THE SETTING TORQUE TO BE APPLIED TO WHEELS OF A MOTOR VEHICLE
FR3022207A1 (en) METHOD FOR INDICATING A NULL TORQUE OF A MOTOR VEHICLE AND ASSOCIATED DEVICE
FR2995275A1 (en) Method for training to save energy for driving e.g. hybrid vehicle, involves establishing statistics related to speed of vehicle for each passage of vehicle to provide indications to driver depending on driving related to energy saving
FR2992041A1 (en) Method for checking use of electric motor and thermal motor of power unit of hybrid vehicle i.e. car, involves determining motor to be utilized according to current operating mode of power unit, and current speed of vehicle
WO2002054159A1 (en) Method for generating a control process for a hybrid vehicle electromechanical drive train
FR3057523A1 (en) METHOD FOR STARTING A THERMAL MOTOR OF A MOTORPOWER GROUP OF A VEHICLE, IN PARTICULAR A MOTOR VEHICLE
FR3034735A1 (en) METHOD FOR MANAGING THE STARTING OF THE THERMAL MOTOR OF A HYBRID VEHICLE
WO2020174131A1 (en) Control of a motor vehicle drive train during assisted-control deceleration

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

CA Change of address

Effective date: 20180312

CD Change of name or company name

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

CD Change of name or company name

Owner name: STELLANTIS AUTO SAS, FR

Effective date: 20240423