FR2980629A1 - MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME - Google Patents

MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME Download PDF

Info

Publication number
FR2980629A1
FR2980629A1 FR1158457A FR1158457A FR2980629A1 FR 2980629 A1 FR2980629 A1 FR 2980629A1 FR 1158457 A FR1158457 A FR 1158457A FR 1158457 A FR1158457 A FR 1158457A FR 2980629 A1 FR2980629 A1 FR 2980629A1
Authority
FR
France
Prior art keywords
mixture
electrical
hydrofluoroolefin
gas
fluoroketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1158457A
Other languages
French (fr)
Other versions
FR2980629B1 (en
Inventor
Yannick Kieffel
Alain Girodet
Daniel Piccoz
Romain Maladen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Grid SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Grid SAS filed Critical Alstom Grid SAS
Priority to FR1158457A priority Critical patent/FR2980629B1/en
Priority to PCT/EP2012/068690 priority patent/WO2013041697A1/en
Publication of FR2980629A1 publication Critical patent/FR2980629A1/en
Application granted granted Critical
Publication of FR2980629B1 publication Critical patent/FR2980629B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing

Landscapes

  • Organic Insulating Materials (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

L'invention se rapporte à l'utilisation d'un mélange comprenant une hydrofluorooléfine et une fluorocétone, éventuellement associées à un gaz de dilution comme milieu d'isolation électrique et/ou d'extinction des arcs électriques dans un appareil électrique haute tension. Elle se rapporte également à un appareil électrique haute tension dans lequel l'isolation électrique et/ou l'extinction des arcs électriques est (sont) assurée (s) par un mélange comprenant une hydrofluorooléfine et une fluorocétone, éventuellement associées à un gaz de dilution.The invention relates to the use of a mixture comprising a hydrofluoroolefin and a fluoroketone, optionally combined with a dilution gas as an electrical isolation medium and / or extinguishing electric arcs in a high voltage electrical apparatus. It also relates to a high-voltage electrical apparatus in which the electrical insulation and / or the extinction of the electric arcs is (are) ensured by a mixture comprising a hydrofluoroolefin and a fluoroketone, optionally combined with a dilution gas .

Description

MELANGE D'HYDROFLUOROOLEFINE ET DE FLUOROCETONE POUR L'UTILISATION COMME MILIEU D'ISOLATION ET/OU D'EXTINCTION D'ARC ET APPAREIL ELECTRIQUE HAUTE TENSION A ISOLATION GAZEUSE LE COMPRENANT DESCRIPTION DOMAINE TECHNIQUE La présente invention se rapporte au domaine de 5 l'isolation électrique et de l'extinction des arcs électriques dans des appareils haute tension. Plus précisément, elle se rapporte à l'utilisation d'un mélange comprenant un alcène particulier, à savoir une hydrofluorooléfine à trois atomes de carbone, et 10 un gaz vecteur à base d'une fluorocétone, à savoir la décafluoro-2-méthylbutan-3-one, en tant que milieu d'isolation et/ou d'extinction d'arc dans des appareils électriques de sous-station et, en particulier, dans des appareils haute tension. Le mélange peut comprendre d'autres 15 gaz dont le potentiel de réchauffement global est inférieur, notamment inférieur ou égal à un. Elle se rapporte également à des appareils électriques de sous-station de haute tension dans lesquels l'isolation électrique et/ou l'extinction d'arc électrique 20 sont assurées par un mélange gazeux comprenant au moins une fluorocétone et une hydrofluorooléfine, ce dernier composé présentant le plus fort potentiel de réchauffement global dans le milieu gazeux. Un tel appareil électrique peut notamment être un 25 transformateur électrique tel qu'un transformateur d'alimentation ou de mesure, une ligne à isolation gazeuse pour le transport ou la distribution de l'électricité, un jeu de barres ou encore un appareil électrique de connexion/déconnexion (aussi appelé appareil de coupure) tel qu'un disjoncteur, un interrupteur, un combiné interrupteur-fusibles, un sectionneur, un sectionneur de mise à la terre ou un contacteur. ÉTAT DE LA TECHNIQUE ANTÉRIEURE Dans ce qui précède et ce qui suit, les termes « moyenne tension » (MT) et « haute tension » (HT) sont utilisés dans leur acceptation habituelle, à savoir que le terme « moyenne tension » désigne une tension qui est supérieure à 1 000 volts en courant alternatif et à 1 500 volts en courant continu mais qui ne dépasse pas 52 000 volts en courant alternatif et 75 000 volts en courant continu, tandis que le terme « haute tension » désigne une tension qui est strictement supérieure à 52 000 volts en courant alternatif et à 75 000 volts en courant continu. Dans les appareils électriques moyenne ou haute tension, l'isolation électrique et, le cas échéant, l'extinction des arcs électriques sont typiquement assurées par un gaz qui est confiné à l'intérieur d'une enceinte de ces appareils. Actuellement, le gaz le plus souvent utilisé est l'hexafluorure de soufre (SF6) : ce gaz présente une rigidité diélectrique relativement haute, une bonne conductivité thermique et des pertes diélectriques peu élevées. Il est chimiquement inerte et non toxique pour l'homme et les animaux et, après avoir été dissocié par un arc électrique, il se recombine rapidement et presque totalement. De plus, il est ininflammable et son prix est, encore aujourd'hui, modéré. Toutefois, le SF6 a pour inconvénient majeur de 30 présenter un potentiel de réchauffement global (PRG) de 22 800 (relativement au CO2 sur 100 ans) et une durée de séjour dans l'atmosphère de 3 200 ans, ce qui le place parmi les gaz à fort pouvoir d'effet de serre. Le SF6 a donc été inscrit par le Protocole de Kyoto (1997) sur la liste des gaz dont les émissions doivent être limitées. Le meilleur moyen de limiter les émissions du SF6 consiste à limiter l'utilisation de ce gaz, ce qui a conduit les industriels à chercher des alternatives au SF6. De fait, les autres solutions comme les systèmes hybrides associant une isolation gazeuse à une isolation solide (EP 1 724 802 référence [1]) augmentent le volume des appareils électriques par rapport à celui qu'autorise une isolation au SF6 ; la coupure dans l'huile ou le vide nécessite une refonte des appareillages. Des gaz diélectriques sont connus : voir par exemple WO 2008/073790 (référence [2]). Cependant, les gaz dits simples comme l'air ou l'azote, qui n'ont pas d'impact négatif sur l'environnement, présentent une rigidité diélectrique beaucoup plus faible que celle du SF6 ; leur utilisation pour l'isolation électrique et/ou l'extinction des arcs électriques dans des appareils HT/MT implique d'augmenter de façon drastique le volume et/ou la pression de remplissage de ces appareils, ce qui va à l'encontre des efforts qui ont été réalisés au cours de ces dernières décennies pour développer des appareils électriques compacts, à encombrement de plus en plus réduit. A MIXTURE OF HYDROFLUOROOLEFINE AND FLUOROCETONE FOR THE USE AS ARC ISOLATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE INCLUDING THE SAME TECHNICAL FIELD The present invention relates to the field of insulation. electric and extinction of electric arcs in high voltage devices. More specifically, it relates to the use of a mixture comprising a particular alkene, namely a hydrofluoroolefin having three carbon atoms, and a carrier gas based on a fluoroketone, namely decafluoro-2-methylbutane. 3-one, as an isolation and / or arc extinguishing medium in substation electrical equipment and, in particular, in high voltage equipment. The mixture may comprise other gases whose global warming potential is lower, in particular less than or equal to one. It also relates to high voltage substation electrical apparatus in which the electrical insulation and / or the extinction of electric arc 20 are provided by a gaseous mixture comprising at least one fluoroketone and a hydrofluoroolefin, the latter compound with the highest global warming potential in the gaseous environment. Such an electrical apparatus may in particular be an electrical transformer such as a supply or measurement transformer, a gas insulated line for the transport or distribution of electricity, a busbar or an electrical connection apparatus. / disconnection (also known as a switchgear) such as a circuit breaker, a switch, a fuse-switch combination, a disconnector, an earthing switch or a contactor. STATE OF THE PRIOR ART In the foregoing and the following, the terms "medium voltage" (MV) and "high voltage" (HT) are used in their usual acceptance, namely that the term "medium voltage" designates a voltage which is greater than 1,000 volts AC and 1,500 volts DC but does not exceed 52,000 volts AC and 75,000 volts DC, while the term "high voltage" refers to a voltage that is strictly greater than 52,000 volts AC and 75,000 volts DC. In medium and high voltage electrical appliances, the electrical insulation and, where appropriate, the extinction of electric arcs are typically provided by a gas that is confined within an enclosure of these devices. Currently, the most commonly used gas is sulfur hexafluoride (SF6): this gas has a relatively high dielectric strength, good thermal conductivity and low dielectric losses. It is chemically inert and non-toxic to humans and animals and, after being dissociated by an electric arc, it recombines quickly and almost completely. In addition, it is nonflammable and its price is still moderate today. However, SF6 has the major disadvantage of having a global warming potential (GWP) of 22,800 (relative to CO2 over 100 years) and a residence time in the atmosphere of 3,200 years, placing it among the gas with a high greenhouse effect. SF6 was therefore included in the Kyoto Protocol (1997) on the list of gases whose emissions must be limited. The best way to limit SF6 emissions is to limit the use of this gas, which has led industry to look for alternatives to SF6. In fact, other solutions such as hybrid systems combining gas insulation with solid insulation (EP 1 724 802 reference [1]) increase the volume of electrical appliances compared to that authorized by SF6 insulation; the cut in the oil or the vacuum requires a redesign of the apparatus. Dielectric gases are known: see for example WO 2008/073790 (reference [2]). However, so-called simple gases such as air or nitrogen, which do not have a negative impact on the environment, have a much lower dielectric strength than SF6; their use for electrical insulation and / or extinguishing of electric arcs in HV / MV equipment involves drastically increasing the volume and / or the filling pressure of these devices, which goes against efforts that have been made in recent decades to develop compact electrical appliances, with increasingly small footprint.

Les perfluorocarbones (CriF2n+2, c-C4F8) présentent, d'une manière générale, des propriétés de tenue diélectrique intéressantes, mais leur PRG s'inscrit typiquement dans une gamme allant de 5 000 à 10 000. D'autres alternatives prometteuses d'un point de vue caractéristiques électriques et PRG, comme le trifluoroiodométhane (CF3I), sont classées parmi les substances cancérigènes, mutagènes et reprotoxiques de catégorie 3, ce qui est rédhibitoire pour une utilisation à une échelle industrielle. Perfluorocarbons (CriF2n + 2, c-C4F8) generally have interesting dielectric withstand properties, but their GWP is typically in the range of 5,000 to 10,000. Other promising alternatives include From a point of view electrical characteristics and PRG, such as trifluoroiodomethane (CF3I), are classified as carcinogenic, mutagenic and reprotoxic category 3, which is unacceptable for use on an industrial scale.

Des mélanges de SF6 et d'autres gaz comme l'azote ou le dioxyde d'azote sont utilisés pour limiter l'impact du SF6 sur l'environnement : voir, par exemple, WO 2009/049144 (référence [3]). Néanmoins, du fait du fort PRG du SF6, le PRG de ces mélanges reste très élevé. Ainsi, par exemple, un mélange de SF6 et d'azote dans un rapport volumique de 10/90 présente une rigidité diélectrique en tension alternative (50 Hz) égale à 59 % de celle du SF6 mais son PRG est de l'ordre de 8 000 à 8 650. De tels mélanges ne sauraient donc être utilisés comme gaz à faible impact environnemental. Ainsi donc, seuls les mélanges à PRG important permettent une tenue diélectrique proche de celle du SF6 à basse température ; tous les mélanges à faible PRG proposés dans l'art antérieur permettent d'atteindre au maximum 80 % des performances des appareils SF6 pour les températures d'utilisation les plus basses ; pour s'approcher des performances du SF6, ces mélanges gazeux nécessitent une nouvelle conception des appareillages MT et/ou HT en prenant des distances d'isolation supérieures et en ajoutant éventuellement des artifices comme des écrans, déflecteurs ou gainages. Aussi les Inventeurs se sont-ils fixé pour but de trouver un gaz qui, tout en ayant de bonnes propriétés d'isolation électrique et d'extinction des arcs électriques, ait un impact sur l'environnement faible ou nul. Les recherches les ont menés à envisager un nouveau mélange de gaz qui puisse être utilisé dans les appareils électriques moyenne ou haute tension qui sont actuellement commercialisés, en lieu et place du SF6 dont sont généralement remplis ces appareils, et ce sur toute la gamme de leurs températures d'utilisation, notamment à basses températures. Mixtures of SF6 and other gases such as nitrogen or nitrogen dioxide are used to limit the impact of SF6 on the environment: see, for example, WO 2009/049144 (reference [3]). Nevertheless, because of the high PRG of SF6, the GWP of these mixtures remains very high. Thus, for example, a mixture of SF6 and nitrogen in a volume ratio of 10/90 has a dielectric strength in alternating voltage (50 Hz) equal to 59% of that of SF6 but its GWP is of the order of 8 000 to 8 650. Such mixtures can not therefore be used as a low environmental impact gas. Thus, only the large GWP mixtures allow a dielectric strength close to that of SF6 at low temperature; all of the low GWP blends proposed in the prior art can achieve up to 80% of SF6 appliance performance for the lowest use temperatures; to approach the performance of SF6, these gas mixtures require a new design of MV and / or HT equipment by taking greater isolation distances and possibly adding devices such as screens, baffles or sheathings. The Inventors have therefore set themselves the goal of finding a gas which, while having good electrical insulation and arc extinction properties, has a low or no impact on the environment. The research has led them to consider a new gas mixture that can be used in medium and high voltage electrical equipment that is currently marketed, in place of the SF6 that is usually filled with these devices, and this over the full range of their operating temperatures, especially at low temperatures.

EXPOSÉ DE L'INVENTION Ces buts et d'autres encore sont atteints par l'invention qui propose, en premier lieu, l'utilisation d'un milieu gazeux comprenant au moins une hydrofluorooléfine et une fluorocétone comme milieu d'isolation électrique et/ou d'extinction des arcs électriques dans un appareil haute tension. Les fluorocétones utilisées sont des cétones de chaîne carbonée à cinq atomes de carbone, de préférence totalement substituées par du fluor et, mieux encore, de type décafluoro-2-méthylbutan-3-one, qui ne sont pas toxiques, pas corrosives, pas explosives, qui se dégradent très rapidement dans l'atmosphère en raison de la sensibilité aux ultraviolets que présente la double liaison du groupe cétone -C=0 et ont donc un PRG proche de 1. Les hydrofluorooléfines utilisées sont des alcènes fluorés de chaîne carbonée à trois atomes de carbone, de préférence de type C3H2F4 ou C3HF5, qui ne sont pas toxiques, pas corrosifs, pas explosifs, ont un potentiel de destruction de l'ozone ODP (« Ozone Depletion Potential » selon la terminologie anglosaxonne) de 0, un PRG inférieur à 10. Ces deux types de composé sont dotés de propriétés diélectriques aptes à leur faire remplacer le SF6 25 comme gaz d'isolation et/ou d'extinction d'arc dans les appareils électriques de sous-station de haute tension. Conformément à l'invention, le mélange est tel que ses composants sont maintenus à l'état de gaz dans les conditions de température et de pression auxquelles il est 30 destiné à être soumis une fois confiné dans l'appareil électrique. Le mélange entre fluorocétone et hydrofluorooléfine peut être ainsi utilisé seul ; toutefois, le mélange sera le plus souvent dilué avec au moins un autre gaz qui n'appartient pas à leurs familles, si la température d'ébullition ne permet pas de garantir son maintien à l'état gazeux à une pression totale suffisante pour certaines applications qui, par exemple, peuvent demander plus de 105 Pa. Dans ce cas, selon l'invention, les autres gaz utilisés dans le milieu gazeux ont un potentiel de réchauffement global inférieur à celui des hydrofluorooléfines ; le gaz vecteur, ou gaz de dilution, ou gaz tampon, présente de préférence une température d'ébullition très basse, c'est-à-dire typiquement égale ou inférieure à -50°C à la pression standard, et une rigidité diélectrique qui est au moins égale à celle que présente l'azote ou le dioxyde de carbone. De préférence, le mélange comprend un gaz de type azote, air, avantageusement air sec, oxygène, dioxyde de carbone, ou un mélange de ces gaz. Le PRG global du milieu gazeux est en rapport des pressions partielles de chacun de ses composants, et donc inférieur à 10, et de préférence inférieur à 5. DISCLOSURE OF THE INVENTION These and other objects are achieved by the invention which proposes, firstly, the use of a gaseous medium comprising at least one hydrofluoroolefin and a fluoroketone as an electrical isolation medium and / or extinction of electric arcs in a high voltage device. The fluoroketones used are ketones of carbon chain with five carbon atoms, preferably completely substituted by fluorine and better still of the decafluoro-2-methylbutan-3-one type, which are not toxic, not corrosive, not explosive. , which degrade very rapidly in the atmosphere due to the ultraviolet sensitivity of the double bond of the ketone group -C = 0 and therefore have a GWP close to 1. The hydrofluoroolefins used are fluorinated alkenes of carbon chain at three carbon atoms, preferably of the C3H2F4 or C3HF5 type, which are non-toxic, non-corrosive, not explosive, have an ODP (Ozone Depletion Potential) ozone depleting potential of 0, a GWP These two types of compounds have dielectric properties capable of replacing them with SF6 as an insulating and / or arc extinguishing gas in electrical appliances. e high voltage substation. According to the invention, the mixture is such that its components are kept in the gas state under the conditions of temperature and pressure to which it is intended to be subjected once confined in the electrical apparatus. The mixture between fluoroketone and hydrofluoroolefin can thus be used alone; however, the mixture will most often be diluted with at least one other gas that does not belong to their families, if the boiling temperature does not guarantee its maintenance in the gaseous state at a total pressure sufficient for certain applications. which, for example, may require more than 105 Pa. In this case, according to the invention, the other gases used in the gaseous medium have a global warming potential lower than that of the hydrofluoroolefins; the carrier gas, or dilution gas, or buffer gas, preferably has a very low boiling point, that is to say typically equal to or less than -50 ° C at standard pressure, and a dielectric strength which is at least equal to that of nitrogen or carbon dioxide. Preferably, the mixture comprises a nitrogen-type gas, air, preferably dry air, oxygen, carbon dioxide, or a mixture of these gases. The overall GWP of the gaseous medium is in relation to the partial pressures of each of its components, and therefore less than 10, and preferably less than 5.

Avantageusement, de manière à mettre la quantité maximale de chacun des gaz sans générer de phase liquide à la température minimale d'utilisation de l'appareil, la composition du milieu gazeux sera définie selon la loi de Raoult pour la température minimale d'utilisation de l'appareil, voire pour une température légèrement supérieure à cette dernière, notamment de 3°C. en particulier, pour un mélange ternaire fluorocétone (FK)/hydrofluorooléfine (HFO)/ gaz de dilution, les pressions de chaque constituant seront donc définies par : P,IF° +PFK +P . avec PVS = P PFK gaz dilution HFO PVS. PVSFK pression de vapeur saturante du gaz concerné. Ainsi, les propriétés diélectriques du milieu gazeux en ligne directe et en cheminement sont les plus élevées possibles et se rapprochent au mieux de celles du SF6. Dans les modes de réalisation préférés, la température minimale d'utilisation Tmin est choisie parmi : 0, -5, -10, -15, -20, -25, -30, -35, et -40°C. Avantageusement, la pression partielle de fluorocétone est comprise entre 80 et 120 hPa, notamment pour une température minimale d'utilisation de -25°C, avec complément en HFO et N2 selon la loi de Raoult appliquée à -22°C. Advantageously, in order to set the maximum amount of each of the gases without generating a liquid phase at the minimum temperature of use of the apparatus, the composition of the gaseous medium will be defined according to Raoult's law for the minimum temperature of use of the apparatus. the device, or even for a temperature slightly higher than the latter, in particular of 3 ° C. in particular, for a ternary fluoroketone (FK) / hydrofluoroolefin (HFO) / dilution gas mixture, the pressures of each constituent will therefore be defined by: P, IF ° + PFK + P. with PVS = P PFK gas dilution HFO PVS. PVSFK saturation vapor pressure of the gas concerned. Thus, the dielectric properties of the gaseous medium in direct line and on the way are the highest possible and are closer to those of SF6. In preferred embodiments, the minimum use temperature Tmin is selected from: 0, -5, -10, -15, -20, -25, -30, -35, and -40 ° C. Advantageously, the partial pressure of fluoroketone is between 80 and 120 hPa, especially for a minimum operating temperature of -25 ° C, with HFO and N2 complement according to Raoult's law applied at -22 ° C.

L'invention a également pour objet un appareil électrique de haute tension, qui comprend une enceinte étanche dans laquelle se trouvent des composants électriques ainsi qu'un milieu gazeux assurant l'isolation électrique et/ou l'extinction des arcs électriques au sein de cette enveloppe, ce milieu gazeux comprenant au moins une hydrofluorooléfine et une fluorocétone. Les caractéristiques du milieu gazeux sont telles que précédemment décrites à propos de son utilisation. L'appareil comprend de préférence un tamis moléculaire de CaSO4. The invention also relates to a high voltage electrical apparatus, which comprises a sealed enclosure in which there are electrical components as well as a gaseous medium ensuring the electrical isolation and / or the extinction of the electric arcs within this envelope, this gaseous medium comprising at least one hydrofluoroolefin and a fluoroketone. The characteristics of the gaseous medium are as previously described with reference to its use. The apparatus preferably comprises a CaSO4 molecular sieve.

Conformément à l'invention, cet appareil électrique peut être un transformateur électrique à isolation gazeuse comme, par exemple, un transformateur d'alimentation ou un transformateur de mesure. L'appareil électrique peut également être une ligne à isolation gazeuse, aérienne ou souterraine, ou un jeu de barres pour le transport ou la distribution de l'électricité. Enfin, il peut aussi être un appareil électrique de connexion/déconnexion (aussi appelé appareil de coupure) comme, par exemple, un disjoncteur, un interrupteur, un sectionneur, un combiné interrupteur- fusibles, un sectionneur de mise à la terre ou un contacteur. According to the invention, this electrical apparatus may be a gas-insulated electrical transformer such as, for example, a supply transformer or a measurement transformer. The electrical apparatus may also be a gas-insulated line, aerial or underground, or a busbar for the transmission or distribution of electricity. Finally, it can also be an electrical connection / disconnection device (also known as a switchgear) such as, for example, a circuit breaker, a switch, a disconnector, a fuse-switch combination, an earthing switch or a contactor. .

BRÈVE DESCRIPTION DES DESSINS D'autres avantages et caractéristiques ressortiront plus clairement de la description qui suit de modes particuliers de réalisation de l'invention, donnés à 5 titre illustratif et nullement limitatifs, représentés dans les figures annexées. Les figures 1A et 1B montrent la pression de vapeur saturante dans un mélange selon un mode de réalisation préféré de l'invention en fonction de la température : la 10 figure 1A illustre l'évolution de la pression totale de gaz pour un mélange ternaire dont les proportions ont été définies par la loi de Raoult pour une apparition théorique de phase liquide à -25°C, la figure 1B pour une apparition théorique à -22°C. 15 La figure 2A représente une coupe longitudinale de l'appareil pour les essais de cheminement, dont les résultats sont synthétisés en figure 2B. La figure 3A montre un dispositif dans lequel les tests de tenue diélectrique en ligne directe ont été réalisés 20 avec un milieu gazeux selon l'invention, dont les résultats sont synthétisés en figure 3B. La figure 4 synthétise les résultats obtenus durant des essais de décharges partielles. La figure 5 synthétise les résultats obtenus 25 durant des essais d'échauffement. La figure 6 représente la pression de vapeur saturante de deux HFO et de C5K selon la température. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS L'invention est basée sur l'utilisation, avec ou 30 sans gaz de dilution (gaz « tampon » comme N2, CO2, air,...), de fluorocétones à cinq atomes de carbone (C5K), et d'hydrofluorooléfines (HFO) à au moins trois atomes de carbone. Les C5K sont des cétones substituées par du fluor, ininflammables et de PRG très faible ; notamment les C5K utilisées ont pour formule brute C5F100, et en particulier est sélectionnée la décafluoro-2-méthylbutan-3-one qui répond à la formule semi développée CF3-CO-CF-(CF3)2, avec un potentiel de réchauffement global PRG = 1. Les C5K ne présentent pas de toxicité pour l'homme avec une valeur moyenne d'exposition VME (teneur limite moyenne à laquelle la majorité des travailleurs peut être exposée régulièrement à raison de 8 heures de travail pendant 5 jours par semaine, sans subir d'effet nocif) de 1 000 ppm, et une dose létale DL50 causant la mort de 50 % d'une population animale supérieure à 200 000 ppm. Les HFO sont des alcènes substitués par du fluor, de formule générale Cfl(H,F)2,-, ; en particulier, les HFO utilisées comprennent 3 atomes de carbone ; elles sont ininflammables et leur PRG est inférieur à 10. Notamment l'hydrofluorooléfine HF0-1234ze, ou trans-1,3,3,3- tétrafluoro-1-propène, qui répond à la formule semi développée CHF=CH-CF3, est utilisée pour les exemples comparatifs suivants. Son impact environnemental est PRG = 6, et elle ne présente pas de toxicité pour l'homme avec une VME = 1 000 ppm et une DL50 > 200 000 ppm. Or dans la plupart des applications classiques à très basse température (-30°C, voire -40°C), HFO est diluée, parfois à moins de 20 %, dans un gaz vecteur neutre de type azote : le mélange n'est donc pas toxique. Les HF0-1234yf, ou 2,3,3,3-tétrafluoro-1- propène, et HF0-1225ye, ou 1,2,2,5-pentafluoro-1-propène, sont également envisagées pour le mélange selon l'invention. BRIEF DESCRIPTION OF THE DRAWINGS Other advantages and features will become more clearly apparent from the following description of particular embodiments of the invention, given by way of illustration and in no way limiting, represented in the appended figures. FIGS. 1A and 1B show the saturated vapor pressure in a mixture according to a preferred embodiment of the invention as a function of temperature: FIG. 1A illustrates the evolution of the total gas pressure for a ternary mixture whose proportions were defined by Raoult's law for a theoretical appearance of liquid phase at -25 ° C, Figure 1B for a theoretical appearance at -22 ° C. Fig. 2A shows a longitudinal section of the apparatus for tracking tests, the results of which are synthesized in Fig. 2B. FIG. 3A shows a device in which the direct line dielectric withstand tests were carried out with a gaseous medium according to the invention, the results of which are synthesized in FIG. 3B. Figure 4 summarizes the results obtained during partial discharge tests. Figure 5 summarizes the results obtained during heating tests. Figure 6 shows the saturation vapor pressure of two HFO and C5K depending on the temperature. DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS The invention is based on the use, with or without dilution gas ("buffer" gas, such as N 2, CO 2, air, etc.), of five-carbon fluoroketones (C 5 K ), and hydrofluoroolefins (HFO) with at least three carbon atoms. C5K are fluorine-substituted ketones, non-flammable and very low GWP; in particular the C5K used have the empirical formula C5F100, and in particular is selected decafluoro-2-methylbutan-3-one which corresponds to the semi-developed formula CF3-CO-CF- (CF3) 2, with a global warming potential PRG = 1. C5K do not show any toxicity to humans with a mean exposure value TWA (average limit value at which the majority of workers can be regularly exposed for 8 working hours for 5 days a week, without adverse effect) of 1000 ppm, and a lethal dose of LD50 causing the death of 50% of an animal population greater than 200 000 ppm. HFOs are fluorine-substituted alkenes of the general formula Cf (H, F) 2, -,; in particular, the HFOs used comprise 3 carbon atoms; they are non-flammable and their GWP is less than 10. Notably the hydrofluoroolefin HF0-1234ze, or trans-1,3,3,3-tetrafluoro-1-propene, which corresponds to the semi-developed formula CHF = CH-CF3, is used for the following comparative examples. Its environmental impact is PRG = 6, and it does not show any toxicity for humans with a VME = 1000 ppm and an LD50> 200 000 ppm. However, in most conventional applications at very low temperatures (-30 ° C or -40 ° C), HFO is diluted, sometimes less than 20%, in a nitrogen-type neutral carrier gas: the mixture is therefore not not toxic. HFO-1234yf, or 2,3,3,3-tetrafluoro-1-propene, and HFO-1225ye, or 1,2,2,5-pentafluoro-1-propene, are also contemplated for the mixture according to the invention. .

Selon l'invention, le mélange de HFO et C5K est utilisé sous forme gazeuse quelle que soit la température d'utilisation de l'appareillage électrique. Il convient donc que la pression partielle de chacun de ces deux composants soit inférieure ou égale à la pression calculée selon la loi de Raoult. En effet, les molécules de fluorocétones et d'hydrofluorooléfines étant très proches de par leur composition, une limitation à leur pression de vapeur saturante pour une température d'utilisation donnée générerait une phase liquide à des températures supérieures à la température d'utilisation souhaitée du fait des interactions. Selon l'appareillage, la pression interne du milieu d'isolation et/ou d'extinction d'arc qui est préconisée varie ; en particulier pour différentes raisons techniques, il est intéressant d'avoir une pression totale suffisamment importante, généralement strictement supérieure à 105 Pa. Comme le mélange HFO/C5K est, selon l'invention, entièrement sous forme gazeuse à la température la plus basse de l'appareil électrique, pour remplir les conditions de pressions de remplissage données, un gaz de dilution, ou gaz tampon, est ajouté si besoin. De préférence, le gaz de dilution présente une température d'ébullition très basse, inférieure ou égale à la température minimale 'min d'utilisation de l'appareil, et une rigidité diélectrique supérieure ou égale à celle du CO2 ou de l'air dans des conditions d'essai identiques (même appareillage, même configuration géométrique, mêmes paramètres opératoires,...) à celles utilisées pour mesurer la rigidité diélectrique dudit gaz. Par ailleurs, selon l'invention, le gaz de dilution utilisé est un gaz à faible PRG de type air ou CO2 : ainsi, le milieu gazeux utilisé comme isolant et extincteur d'arc dans les appareils électriques a un PRG inférieur ou égal à celui de la HFO de référence. De préférence, pour les appareils à champ inhomogène, le dioxyde de carbone est utilisé ; alternativement, un gaz dilution de PRG nul, l'azote N2, est utilisé. According to the invention, the mixture of HFO and C5K is used in gaseous form regardless of the temperature of use of the electrical equipment. It is therefore appropriate that the partial pressure of each of these two components is less than or equal to the pressure calculated according to Raoult's law. Indeed, since the fluoroketone and hydrofluoroolefin molecules are very similar in composition, a limitation to their saturation vapor pressure for a given use temperature would generate a liquid phase at temperatures above the desired temperature of use. makes interactions. Depending on the equipment, the internal pressure of the insulation medium and / or extinction arc that is recommended varies; in particular for various technical reasons, it is advantageous to have a sufficiently large total pressure, generally strictly greater than 105 Pa. As the HFO / C5K mixture is, according to the invention, entirely in gaseous form at the lowest temperature of the electrical apparatus, to fulfill the conditions of filling pressures given, a dilution gas, or buffer gas, is added if necessary. Preferably, the dilution gas has a very low boiling point, less than or equal to the minimum operating temperature of the apparatus, and a dielectric strength greater than or equal to that of CO2 or air in the apparatus. identical test conditions (same apparatus, same geometrical configuration, same operating parameters, etc.) as those used to measure the dielectric strength of said gas. Furthermore, according to the invention, the dilution gas used is a gas with a low GWP of the air or CO2 type: thus, the gaseous medium used as insulator and arc extinguisher in electrical appliances has a GWP less than or equal to that of the reference HFO. Preferably, for inhomogeneous field devices, carbon dioxide is used; alternatively, a zero PRG dilution gas, N2 nitrogen, is used.

Avantageusement, afin de maximiser la quantité de chacun des gaz fluorés constituant le mélange tout en ne générant pas de phase liquide à la température minimale d'utilisation de l'appareil pour un mélange ternaire fluorocétone C5K, hydrofluorooléfine HFO et gaz de dilution, les pressions de chaque constituant seront donc définies par la formule suivante issue de la loi de Raoult (Px étant la pression du gaz concerné et PVSx sa pression de vapeur saturante) : PHFO PC5K Pt o t r + Pgaz dilution ilF0 PC5K PVSHFO PVSC5K Par exemple, pour une température minimale d'utilisation Tmin = -25°C, plusieurs compositions de mélanges pourraient être utilisées pour remplir sans formation de liquide un appareillage électrique à enceinte étanche dont la pression totale de remplissage à 20°C est de 1,3 bar, c'est- à-dire 1,3.105 Pa, tel que présenté dans le tableau I ci-après. 25 30 PC5K PHFO PN2 0,15.105 Pa 0,05.105 Pa 1,10.105 Pa 0,14.105 Pa 0,12.105 Pa 1,04.105 Pa 0,13-105 Pa 0,18-105 Pa 0,99-105 Pa 0,12-105 Pa 0,25-105 Pa 0,93-105 Pa 0,11.105 Pa 0,31.105 Pa 0,88.105 Pa 0,10.105 Pa 0,37.105 Pa 0,83.105 Pa 0,09.105 Pa 0,43.105 Pa 0,78.105 Pa 0,08.105 Pa 0,49.105 Pa 0,73.105 Pa 0,07-105 Pa 0,55-105 Pa 0,68-105 Pa 0,06-105 Pa 0,62-105 Pa 0,62-105 Pa 0,05-105 Pa 0,68-105 Pa 0,57-105 Pa 0,04.105 Pa 0,74.105 Pa 0,52.105 Pa 0,03.105 Pa 0,8.105 Pa 0,47.105 Pa 0,02.105 Pa 0,86.105 Pa 0,42.105 Pa 103 Pa 0,92-105 Pa 0,37-105 Pa 102 Pa 0,98-105 Pa 0,319-105 Pa Tableau I : proportions d'un mélange C5K + HF0-1234ze + N2 à 1,3.105 Pa Il apparaît cependant, en remplissant une enceinte équipée d'un hublot transparent avec un tel mélange, qu'il n'y a apparition pour ces mélanges d'une phase liquide que pour une température inférieure ou égale à -28°C : la loi de Raoult ne s'applique donc pas totalement. Or la rigidité diélectrique de chacun des deux composés fluorés utilisés dans le mélange, HFO pur et C5K pur, est meilleure que celle des gaz de dilution (voir aussi figure 3B). Aussi, pour augmenter les propriétés diélectriques du mélange qui dérivent directement de sa composition molaire, selon un mode de réalisation préféré de l'invention, le mélange est optimisé pour comprendre plus de composé fluoré que la valeur théorique ci-dessus ; avantageusement, on augmente la composition théorique par un ajout de C5K pour améliorer les propriétés diélectriques du mélange gazeux, notamment en cheminement, dans des proportions telles qu'il n'y a pas d'apparition de phase liquide. Advantageously, in order to maximize the quantity of each of the fluorinated gases constituting the mixture while not generating a liquid phase at the minimum temperature of use of the apparatus for a ternary mixture C5K fluoroketone, hydrofluoroolefin HFO and dilution gas, the pressures of each constituent will therefore be defined by the following formula resulting from the law of Raoult (Px being the pressure of the gas concerned and PVSx its saturation vapor pressure): PHFO PC5K Pt otr + Pgaz dilution ilF0 PC5K PVSHFO PVSC5K For example, for a temperature minimum use Tmin = -25 ° C, several compositions of mixtures could be used to fill without liquid formation sealed electrical equipment whose total filling pressure at 20 ° C is 1.3 bar, it is ie 1.3.105 Pa, as shown in Table I below. 25 PC5K PHFO PN2 0.15.105 Pa 0.05.105 Pa 1.10.105 Pa 0.14.105 Pa 0.12.105 Pa 1.04.105 Pa 0.13-105 Pa 0.18-105 Pa 0.99-105 Pa 0.12 -105 Pa 0.25-105 Pa 0.93-105 Pa 0.11.105 Pa 0.31.105 Pa 0.88.105 Pa 0.10.105 Pa 0.37.105 Pa 0.83.105 Pa 0.09.105 Pa 0.43.105 Pa 0.78.105 Pa 0.08.105 Pa 0.49.105 Pa 0.73.105 Pa 0.07-105 Pa 0.55-105 Pa 0.68-105 Pa 0.06-105 Pa 0.62-105 Pa 0.62-105 Pa 0 , 05-105 Pa 0.68-105 Pa 0.57-105 Pa 0.04.105 Pa 0.704.105 Pa 0.52.105 Pa 0.03.105 Pa 0.8.105 Pa 0.47.105 Pa 0.02.105 Pa 0.86.105 Pa 0 , 42.105 Pa 103 Pa 0.92-105 Pa 0.37-105 Pa 102 Pa 0.98-105 Pa 0.319-105 Pa Table I: proportions of a mixture C5K + HF0-1234ze + N2 at 1.3.105 Pa It However, by filling an enclosure equipped with a transparent window with such a mixture, it appears that there is an appearance for these mixtures of a liquid phase for a temperature less than or equal to -28 ° C: the law of Raoult does not apply totally. However, the dielectric strength of each of the two fluorinated compounds used in the mixture, pure HFO and pure C5K, is better than that of the dilution gases (see also FIG. 3B). Also, to increase the dielectric properties of the mixture which derive directly from its molar composition, according to a preferred embodiment of the invention, the mixture is optimized to comprise more fluorinated compound than the theoretical value above; advantageously, the theoretical composition is increased by adding C5K to improve the dielectric properties of the gaseous mixture, especially during the course, in proportions such that there is no appearance of liquid phase.

En particulier, tel qu'illustré en figure 1A, un mélange comprenant 4 hPa de C5K, 74 hPa de HF0-1234ze et 52 hPa d'azote suit, à température élevée, plus ou moins la courbe définie par la loi des gaz parfaits ; il en diverge à température basse, notamment inférieure à -28°C (et parfois avant en raison des limites d'utilisation des appareils de test à -20°C par exemple), correspondant au croisement avec la courbe illustrant le comportement de ce mélange selon la loi de Raoult. De fait, aux températures les plus faibles, respecter les valeurs données par la loi de Raoult est plus conservateur et permet de s'assurer de la non-apparition d'une phase liquide, zone en dessous de la courbe de Raoult. Ainsi, en figure 1B est illustré le comportement du mélange précédent dans lequel 0,2 hPa de C5K ont été ajoutés ; bien entendu, la courbe est décalée d'autant en dessous de la courbe des gaz parfaits aux températures élevées. Si, théoriquement, l'apparition de liquide devait se produire à -22°C, expérimentalement (voir aussi le décrochement de la courbe réelle), la formation de liquide intervient en dessous de -25°C. In particular, as illustrated in FIG. 1A, a mixture comprising 4 hPa of C5K, 74 hPa of HF0-1234ze and 52 hPa of nitrogen follows, at elevated temperature, more or less the curve defined by the ideal gas law; it diverges at low temperature, especially below -28 ° C (and sometimes before because of the limits of use of test devices at -20 ° C for example), corresponding to the crossing with the curve illustrating the behavior of this mixture according to Raoult's law. In fact, at the lowest temperatures, respecting the values given by Raoult's law is more conservative and makes it possible to ensure the non-appearance of a liquid phase, an area below the Raoult curve. Thus, in FIG. 1B is illustrated the behavior of the preceding mixture in which 0.2 hPa of C5K was added; of course, the curve is shifted all the way below the ideal gas curve at high temperatures. If, theoretically, the appearance of liquid should occur at -22 ° C, experimentally (see also the setback of the actual curve), the formation of liquid occurs below -25 ° C.

Selon un mode de réalisation préféré de l'invention, la composition en chacun des composants du mélange ternaire est déterminée par la loi de Raoult pour qu'il n'y ait pas apparition de phase liquide à une température que l'on peut prendre égale à la température minimale de fonctionnement de l'appareil ou un peu plus, par exemple à ladite température minimale moins 10 %, ou de préférence à la température minimale prévue d'utilisation augmentée de 3°C. According to a preferred embodiment of the invention, the composition in each of the components of the ternary mixture is determined by Raoult's law so that there is no appearance of liquid phase at a temperature that can be taken equally. at the minimum operating temperature of the apparatus or a little more, for example at said minimum temperature minus 10%, or preferably at the minimum expected use temperature increased by 3 ° C.

Le milieu gazeux selon l'invention remplit les conditions d'utilisation des appareillages actuels et ses propriétés sont supérieures aux mélanges binaires de chaque gaz fluoré, voire même du SF6, avec effet synergique entre les deux molécules d'hydrofluorooléfine et de fluorocétone. Notamment, des essais de tenue en cheminement ont été réalisés dans un appareil à 1,3 = 2 bars illustré en figure 2A, entre deux électrodes distantes de 251 mm, avec des conducteurs en cuivre et une résine époxyde chargée en silice comme isolant. Tel que présenté en figure 2B, on note que les mélanges ternaires constitués de HFO, de C5K et d'un gaz de dilution selon l'invention possèdent une meilleure tenue en cheminement que le SF6 (plus de 1 000 V/mm comparés à moins de 930 V/mm) sur de l'époxyde chargé en silice et que les 15 mélanges binaires de chacun des composants (ces constituants pris isolément ayant des propriétés plus faibles que le SF6). De façon similaire, les essais de tenue diélectrique en ligne directe à 1,3 bar montrent que les performances du mélange selon l'invention sont supérieures à 20 celle des composants individuels associés uniquement à un gaz de dilution : la figure 3A illustre l'enceinte époxyde remplie de 1,3 bar de SF6 ou d'un mélange de N2 avec HFO et/ou C5K pour mesurer la tenue diélectrique entre deux contacts de rayon de 12 mm, distants de 12 mm. Un effet 25 synergique entre HFO et C5K est notable pour la tenue diélectrique mesurée : figure 3B. L'avantage d'un mélange ternaire selon l'invention comparé à un mélange binaire est également visible pour les décharges partielles (figure 4) : le seuil 30 d'extinction est même supérieur à celui aux 65 kV du SF6 pour le mélange ternaire, alors qu'il lui était inférieur pour les mélanges binaires. The gaseous medium according to the invention fulfills the conditions of use of current equipment and its properties are superior to the binary mixtures of each fluorinated gas, or even SF6, with synergistic effect between the two molecules of hydrofluoroolefin and fluoroketone. In particular, tracking tests have been carried out in a device at 1.3 = 2 bar illustrated in Figure 2A, between two electrodes 251 mm apart, with copper conductors and an epoxy resin loaded with silica as insulation. As shown in FIG. 2B, it is noted that the ternary mixtures consisting of HFO, C5K and a dilution gas according to the invention have a better tracking behavior than SF6 (more than 1000 V / mm compared to minus 930 V / mm) on silica-loaded epoxide and the binary mixtures of each of the components (these components taken in isolation having lower properties than SF6). Similarly, the direct line dielectric strength tests at 1.3 bar show that the performance of the mixture according to the invention is greater than that of the individual components only associated with a dilution gas: FIG. 3A illustrates the enclosure epoxy filled with 1.3 bar of SF6 or a mixture of N2 with HFO and / or C5K to measure the dielectric strength between two contacts of 12 mm radius, 12 mm apart. A synergistic effect between HFO and C5K is notable for the measured dielectric strength: FIG. 3B. The advantage of a ternary mixture according to the invention compared with a binary mixture is also visible for partial discharges (FIG. 4): the extinction threshold is even greater than that at the 65 kV of SF6 for the ternary mixture, while it was inferior to him for the binary mixtures.

Au vu des performances du mélange fluoré selon l'invention, seul ou avec un gaz de dilution simple de type air ou azote, une utilisation dans un appareillage existant peut être envisagée. En particulier, après avoir fait le vide (0 à 0,1 kPa) à l'aide d'une pompe à vide à huile, on peut remplir un appareil commercial moyenne tension de type GIS (appareil FBX 24 kV de Schneider Electric par exemple, rempli dans sa version commerciale actuelle, de SF6 à une pression de 130 kPa) conçu pour une application -25°C avec un mélange de gaz C5K, HF0-1234ze et de CO2, préféré dans ce cas où les champs électriques ne sont pas homogènes. Par ailleurs, pour éviter les amorçages entre les dérivations, il est avantageux de les gainer par une gaine thermorétractable. La pression totale de gaz à l'intérieur de l'appareil avec le mélange selon l'invention est choisie également à 1,3 bar (Ptot = 1,3.105 Pa) pour 20°C, et le mélange respecte les conditions définies par la loi de Raoult, par exemple avec une pression partielle comprise entre 80 et 120 hPa pour la C5K dans la mesure du possible. In view of the performance of the fluorinated mixture according to the invention, alone or with a single dilution gas of the air or nitrogen type, use in an existing apparatus can be envisaged. In particular, after evacuating (0 to 0.1 kPa) with the aid of an oil vacuum pump, it is possible to fill a medium-voltage GIS-type commercial appliance (24 kV FBX device from Schneider Electric, for example). , filled in its current commercial version, SF6 at a pressure of 130 kPa) designed for application -25 ° C with a mixture of gas C5K, HF0-1234ze and CO2, preferred in this case where the electric fields are not homogeneous. In addition, to avoid starting between the branches, it is advantageous to sheath them with a heat-shrinkable sheath. The total gas pressure inside the apparatus with the mixture according to the invention is also chosen at 1.3 bar (Ptot = 1.3 × 10 5 Pa) for 20 ° C., and the mixture complies with the conditions defined by the Raoult's law, for example with a partial pressure between 80 and 120 hPa for the C5K as far as possible.

Au vu de la taille de l'enceinte de cet appareil (volume supérieur à 100 litres), il est préférable, pour accélérer l'homogénéisation du mélange gazeux d'utiliser des bulleurs ; cette option n'est bien entendu pas obligatoire, notamment dans le cas d'appareillages plus petits ou de délai suffisant avant expérimentation. Par ailleurs, comme outre l'amélioration de la tenue diélectrique en ligne directe, les fluorocétones permettent d'améliorer la tenue diélectrique en cheminement du système, il est préférable de l'adsorber sur les parois des isolants. Dans un premier temps, pour tapisser les parois internes de l'appareil en C5K, ce composé est injecté pur dans l'enceinte, par exemple entre 3 et 10 mbars ; avantageusement entre 8 et 12.105 Pa de C5K, de préférence à une température supérieure à la température ambiante afin d'accélérer le débit (par exemple, le réservoir contenant le C5K peut être chauffé), sont injectés par l'intermédiaire de la sortie « gaz » de l'appareil. Après cette première étape permettant d'adsorber la fluorocétone sur les parois, le remplissage de l'appareil s'effectue à l'aide d'un mélangeur de gaz avec double bulleur permettant de contrôler le rapport entre C5K, HF0-1234ze et CO2, ce rapport étant maintenu constant en pression à 20°C tout au long du remplissage grâce à l'utilisation d'un débitmètre massique de précision ; par exemple, C5K est placée dans les deux bulleurs qui sont traversés par le CO2 et l'hydrofluorooléfine sous pression afin d'atteindre la pleine saturation. Les essais sur ce type d'appareil traversé par un courant permanent de 630 A RMS ont montré que l'échauffement au niveau des contacts électriques (points les plus chauds) est très proche du SF6 pour le mélange ternaire selon l'invention (comme pour les mélanges binaires) : voir figure 5, qui donne les résultats en variation de l'échauffement par rapport au SF6. Il est à noter par ailleurs que les appareils seront de préférence équipés d'un ou plusieurs tamis moléculaires de type sulfate de calcium (CaSO4) anhydre, qui adsorbent les petites molécules créées lors de la coupure. La toxicité du gaz n'est donc pas augmentée après décharges partielles par des molécules pouvant présenter une toxicité. De plus, en fin de vie ou après essais de coupure, le gaz est récupéré par les techniques classiques de récupération utilisant un compresseur et une pompe à vide. Given the size of the enclosure of this device (volume greater than 100 liters), it is preferable, to accelerate the homogenization of the gas mixture to use bubblers; this option is of course not mandatory, especially in the case of smaller equipment or sufficient time before testing. Furthermore, as well as improving the dielectric strength in direct line, fluoroketones can improve the dielectric strength of the system, it is preferable to adsorb to the walls of insulators. In a first step, to line the internal walls of the C5K apparatus, this compound is injected pure into the chamber, for example between 3 and 10 mbar; advantageously between 8 and 12 × 10 5 Pa of C5K, preferably at a temperature above ambient temperature in order to accelerate the flow rate (for example, the tank containing C5K may be heated), are injected via the "gas" outlet. Of the device. After this first step to adsorb fluoroketone on the walls, the filling of the apparatus is carried out using a gas mixer with double bubbler to control the ratio between C5K, HF0-1234ze and CO2, this ratio being kept constant at 20 ° C throughout the filling by the use of a precision mass flowmeter; for example, C5K is placed in the two bubblers which are traversed by the CO2 and hydrofluoroolefin under pressure in order to reach full saturation. Tests on this type of apparatus traversed by a permanent current of 630 A RMS have shown that the heating at the electrical contacts (hottest points) is very close to SF6 for the ternary mixture according to the invention (as for binary mixtures): see figure 5, which gives the results in variation of the heating with respect to SF6. It should also be noted that the apparatus will preferably be equipped with one or more anhydrous calcium sulphate (CaSO4) molecular sieves, which adsorb the small molecules created during the cleavage. The toxicity of the gas is not increased after partial discharges by molecules that may be toxic. In addition, at the end of life or after breaking tests, the gas is recovered by conventional recovery techniques using a compressor and a vacuum pump.

L'hydrofluorooléfine HF0-1234ze et la fluorocétone C5K sont alors séparées du gaz tampon en utilisant une zéolithe capable de piéger uniquement le gaz tampon, de taille inférieure ; alternativement, une membrane à séparation sélective laisse s'échapper l'azote et/ou le CO2 et/ou l'air et garde C5K et HF0-1234ze dont la taille et la masse molaire sont plus importantes ; toute autre option est envisageable. Bien que les exemples ci-dessus aient été 5 réalisés avec HF0-1234ze, des alternatives à ce gaz sont possibles. En particulier, l'isomère HF0-1234yf (2,3,3,3- tétrafluoro-1-propène) peut être utilisé, avec les adaptations inhérentes aux propriétés de ce gaz : en particulier, tel qu'illustré en figure 6, comme sa 10 température d'ébullition est de -30°C (contre -19°C pour HFO- 1234ze), il est possible pour la même température de fonctionnement de -30°C de mettre 50 % de plus de HF0-1234yf que de HF0-1234ze. Comme pour une pression de remplissage donnée, plus il y a de HFO, et par conséquent moins il y a de 15 gaz tampon, et que les propriétés d'isolation et d'extinction d'arc dépendent du mélange, la rigidité diélectrique est augmentée. La solution selon l'invention permet ainsi de proposer un mélange gazeux à faible impact environnemental 20 (PRG diminué de plus de 99,9 % par rapport à une isolation au SF6) compatible avec les températures d'utilisation minimales de l'appareillage électrique et ayant des propriétés diélectrique, de coupure et de dissipation thermique proches de celles obtenues sur les appareils existants. Ce mélange 25 peut directement remplacer le SF6 utilisé dans les appareils, sans modifier ou presque leur conception : les lignes de production peuvent être gardées, avec simple changement du gaz de remplissage et éventuellement avec un ajout de systèmes d'aide à la coupure ou de matériaux gazogènes.The hydrofluoroolefin HF0-1234ze and the fluoroketone C5K are then separated from the buffer gas using a zeolite capable of trapping only the buffer gas, of a smaller size; alternatively, a selectively separated membrane releases nitrogen and / or CO2 and / or air and keeps C5K and HF0-1234ze of larger size and molecular weight; any other option is possible. Although the above examples have been carried out with HF0-1234ze, alternatives to this gas are possible. In particular, the HF0-1234yf (2,3,3,3-tetrafluoro-1-propene) isomer can be used, with the adaptations inherent to the properties of this gas: in particular, as illustrated in FIG. its boiling temperature is -30 ° C (against -19 ° C for HFO-1234ze), it is possible for the same operating temperature of -30 ° C to put 50% more HF0-1234yf than HF0-1234ze. As for a given filling pressure, the more HFO there is, and therefore the less buffer gas, and the insulation and arc quenching properties are dependent on the mixture, the dielectric strength is increased . The solution according to the invention thus makes it possible to propose a gaseous mixture with a low environmental impact (PRG decreased by more than 99.9% compared with SF6 insulation) compatible with the minimum operating temperatures of the electrical equipment and having dielectric, cut-off and heat dissipation properties close to those obtained on existing apparatus. This mixture can directly replace the SF6 used in the apparatuses, without modifying or almost their design: the production lines can be kept, with a simple change of the filling gas and possibly with the addition of cutting assistance systems or gas generating materials.

30 REFERENCES CITEES [1] EP 1 724 802 [2] WO 2008/073790 [3] WO 2009/0491445 REFERENCES CITED [1] EP 1 724 802 [2] WO 2008/073790 [3] WO 2009/0491445

Claims (1)

REVENDICATIONS I. Utilisation d'un milieu gazeux comprenant une hydrofluorooléfine à trois atomes de carbone et une fluorocétone à cinq atomes de carbone, comme milieu d'isolation électrique et/ou d'extinction des arcs électriques dans des appareils électriques de sous-station de haute tension. 2. Utilisation d'un milieu selon la revendication 1, dans laquelle l'hydrofluorooléfine est le trans-1,3,3,3- tétrafluoro-1-propène (HF0-1234ze), le 2,3,3,3-tétrafluoro-1- propène (HF0-1234yf), ou le 1,2,2,5-pentafluoro-l-propène (HF0-1225ye). 3. Utilisation d'un mélange selon la revendication 1 ou la revendication 2, dans laquelle la fluorocétone est la décafluoro-2-méthylbutan-3-one. 4. Utilisation selon l'une des revendications 1 à 3, dans laquelle le milieu gazeux comprend en outre un gaz de dilution. 5. Utilisation selon la revendication 4, dans laquelle le gaz de dilution est choisi parmi l'air, l'azote, l'oxygène, le dioxyde de carbone ou un mélange de ces gaz. 6. Utilisation selon l'une des revendications 1 à 5, dans laquelle les pressions partielles de la fluorocétone et de l'hydrofluorooléfine au sein du mélange sont choisies en fonction de la température minimale de l'appareillage de manière à ne pas créer de phase liquide selon la loi deRaoult à une température de 3°C inférieure à la température minimale d'utilisation de l'appareil. 7. Utilisation selon la revendication 6, dans laquelle la pression partielle de fluorocétone est comprise entre 80 et 120 mbars. 8. Utilisation selon la revendication 6 ou la revendication 7, dans laquelle la température minimale (Tmin) est choisie parmi -40°C, -35°C, -30°C, -25°C, -20°C, -15°C, -10°C, -5°C et 0°C. 9. Appareil électrique haute tension, comprenant une enceinte étanche dans laquelle se trouvent des composants électriques ainsi qu'un milieu gazeux assurant l'isolation électrique et/ou l'extinction des arcs électriques susceptibles de se produire au sein de cette enceinte, caractérisé en ce que le milieu gazeux comprend une hydrofluorooléfine à trois atomes de carbone et une fluorocétone à cinq atomes de carbone. 10. Appareil électrique selon la revendication 9, dans lequel l'hydrofluorooléfine est le trans-1,3,3,3- tétrafluoro-1-propène (HF0-12134ze) ou le 2,3,3,3- tétrafluoro-1-propène (HF0-1234yf) ou le 1,2,2,5-pentafluoro-1-propène (HF0-1225ye), et la fluorocétone est la décafluoro2-méthylbutan-3-one. 11. Appareil électrique selon la revendication 9 ou la revendication 10, dans lequel le milieu gazeux comprend en outre un gaz de dilution.12. Appareil électrique selon la revendication 11, dans lequel le gaz de dilution est choisi parmi l'air, l'azote, l'oxygène, le dioxyde de carbone ou un mélange de ces gaz. 13. Appareil électrique selon l'une des revendications 9 à 12, dans lequel l'hydrofluorooléfine et la fluorocétone sont présentes dans le milieu avec des proportions définies selon la loi de Raoult pour ne pas créer de phase liquide à une température de 3°C inférieure à la température minimale d'utilisation de l'appareil. 14. Appareil électrique selon l'une des revendications 9 à 13, qui est un transformateur électrique à isolation gazeuse, une ligne à isolation gazeuse pour le transport ou la distribution de l'électricité ou un appareil électrique de connexion/déconnexion. 15. Appareil électrique selon l'une des revendications 9 à 14, qui comprend un tamis moléculaire de CaSO4. CLAIMS I. Use of a gaseous medium comprising a hydrofluoroolefin with three carbon atoms and a fluoroketone with five carbon atoms, as an electrical isolation medium and / or extinguishing electric arcs in electrical substation equipment. high tension. 2. Use of a medium according to claim 1, wherein the hydrofluoroolefin is trans-1,3,3,3-tetrafluoro-1-propene (HF0-1234ze), 2,3,3,3-tetrafluoro -1-propene (HFO-1234yf), or 1,2,2,5-pentafluoro-1-propene (HFO-1225ye). Use of a mixture according to claim 1 or claim 2, wherein the fluoroketone is decafluoro-2-methylbutan-3-one. 4. Use according to one of claims 1 to 3, wherein the gaseous medium further comprises a dilution gas. 5. Use according to claim 4, wherein the dilution gas is selected from air, nitrogen, oxygen, carbon dioxide or a mixture of these gases. 6. Use according to one of claims 1 to 5, wherein the partial pressures of the fluoroketone and the hydrofluoroolefin in the mixture are selected according to the minimum temperature of the apparatus so as not to create phase liquid according to the law of Raoult at a temperature of 3 ° C below the minimum temperature of use of the device. 7. Use according to claim 6, wherein the fluoroketone partial pressure is between 80 and 120 mbar. Use according to claim 6 or claim 7, wherein the minimum temperature (Tmin) is selected from -40 ° C, -35 ° C, -30 ° C, -25 ° C, -20 ° C, -15 ° C. ° C, -10 ° C, -5 ° C and 0 ° C. 9. High voltage electrical apparatus, comprising a sealed enclosure in which there are electrical components as well as a gaseous medium ensuring electrical insulation and / or extinguishing of the electric arcs likely to occur within this enclosure, characterized in that the gaseous medium comprises a hydrofluoroolefin with three carbon atoms and a fluoroketone with five carbon atoms. An electrical apparatus according to claim 9, wherein the hydrofluoroolefin is trans-1,3,3,3-tetrafluoro-1-propene (HFO-12134ze) or 2,3,3,3-tetrafluoro-1- propene (HFO-1234yf) or 1,2,2,5-pentafluoro-1-propene (HFO-12,225ye), and the fluoroketone is decafluoro-2-methylbutan-3-one. An electrical apparatus according to claim 9 or claim 10, wherein the gaseous medium further comprises a dilution gas. Electrical apparatus according to claim 11, wherein the dilution gas is selected from air, nitrogen, oxygen, carbon dioxide or a mixture of these gases. 13. Electrical apparatus according to one of claims 9 to 12, wherein the hydrofluoroolefin and the fluoroketone are present in the medium with proportions defined by Raoult's law to avoid creating a liquid phase at a temperature of 3 ° C. less than the minimum operating temperature of the device. 14. Electrical apparatus according to one of claims 9 to 13, which is a gas-insulated electrical transformer, a gas-insulated line for the transport or distribution of electricity or electrical connection / disconnection apparatus. An electrical apparatus according to one of claims 9 to 14, which comprises a CaSO4 molecular sieve.
FR1158457A 2011-09-22 2011-09-22 MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME Active FR2980629B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1158457A FR2980629B1 (en) 2011-09-22 2011-09-22 MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME
PCT/EP2012/068690 WO2013041697A1 (en) 2011-09-22 2012-09-21 Mixture of hydrofluoroolefin and fluoroketone for use as an insulation and/or arc-extinguishing medium and a gas insulated high-voltage electrical device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1158457A FR2980629B1 (en) 2011-09-22 2011-09-22 MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME

Publications (2)

Publication Number Publication Date
FR2980629A1 true FR2980629A1 (en) 2013-03-29
FR2980629B1 FR2980629B1 (en) 2015-01-16

Family

ID=46880726

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1158457A Active FR2980629B1 (en) 2011-09-22 2011-09-22 MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME

Country Status (2)

Country Link
FR (1) FR2980629B1 (en)
WO (1) WO2013041697A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995462B1 (en) 2012-09-10 2014-09-05 Alstom Technology Ltd MEDIUM OR HIGH VOLTAGE ELECTRICAL APPARATUS WITH LOW ENVIRONMENTAL IMPACT AND HYBRID INSULATION
FR3011138B1 (en) 2013-09-20 2015-10-30 Alstom Technology Ltd GAS INSULATED MEDIUM OR HIGH VOLTAGE ELECTRICAL APPARATUS COMPRISING CARBON DIOXIDE, OXYGEN AND HEPTAFLUOROISOBUTYRONITRILE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009009305U1 (en) * 2009-06-17 2009-11-05 Ormazabal Gmbh Switching device for medium, high or very high voltage with a filling medium
US7655610B2 (en) * 2004-04-29 2010-02-02 Honeywell International Inc. Blowing agent compositions comprising fluorinated olefins and carbon dioxide
US20100123095A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene and hydrocarbons and uses thereof
DE202009018239U1 (en) * 2009-06-12 2011-06-01 Abb Technology Ag Switching device with dielectric insulation medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4429205B2 (en) 2005-05-16 2010-03-10 三菱電機株式会社 Gas insulation equipment
US7807074B2 (en) 2006-12-12 2010-10-05 Honeywell International Inc. Gaseous dielectrics with low global warming potentials
US7736529B2 (en) 2007-10-12 2010-06-15 Honeywell International Inc Azeotrope-like compositions containing sulfur hexafluoride and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655610B2 (en) * 2004-04-29 2010-02-02 Honeywell International Inc. Blowing agent compositions comprising fluorinated olefins and carbon dioxide
US20100123095A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene and hydrocarbons and uses thereof
DE202009018239U1 (en) * 2009-06-12 2011-06-01 Abb Technology Ag Switching device with dielectric insulation medium
DE202009009305U1 (en) * 2009-06-17 2009-11-05 Ormazabal Gmbh Switching device for medium, high or very high voltage with a filling medium

Also Published As

Publication number Publication date
WO2013041697A1 (en) 2013-03-28
FR2980629B1 (en) 2015-01-16

Similar Documents

Publication Publication Date Title
EP2758976B1 (en) Mixture of hydrofluoroolefin and fluoroketone for use as an insulation and/or arc-extinguishing medium and a gas insulated medium-voltage electrical device comprising same
EP2729940B1 (en) Use of a mixture comprising a hydrofluoroolefin as a medium-voltage arc-extinguishing and/or insulating gas and medium-voltage electrical device comprising same
EP2826051B1 (en) Mixture of a hydrofluoroolefin and hydrofluorocarbon for improving internal arc resistance in medium- and high-voltage electrical apparatuses
EP2715760B1 (en) Mixture of decafluoro-2-methylbutan-3-one and a carrier-gas as an electrical insulation medium and/or electrical arc extinction medium in high tension
EP3257059A1 (en) Gas-insulated medium- or high-voltage electrical apparatus including heptafluoroisobutyronitrile and tetrafluoromethane
EP3341951A1 (en) Use of hexafluorobutenes for isolating or extinguishing electric arcs
EP2715759B1 (en) Mixture of decafluoro-2-methylbutan-3-one and a vector gas as a medium for the electric insulation and/or quenching of high-voltage electric arcs
FR2983341A1 (en) Use of a gaseous medium comprising polyfluorinated oxirane compounds, as electrical insulating gas and/or extinguishing arcs in a medium voltage electrical appliance, which is e.g. gas-insulated electrical transformer or gas-insulated line
WO2013004798A1 (en) Use of a mixture comprising a hydrofluoroolefin as a high-voltage arc-extinguishing and/or insulating gas and high-voltage electrical device comprising same
WO2013079569A1 (en) Polyfluorinated oxirane as an electrical insulation gas and/or a gas for extinguishing high-voltage electric arcs
FR2980629A1 (en) MIXTURE OF HYDROFLUOROOLEFIN AND FLUOROCETONE FOR USE AS ARC INSULATION AND / OR EXTINGUISHING MEDIUM AND HIGH VOLTAGE ELECTRICAL GAS INSULATING DEVICE COMPRISING SAME
WO2013110600A1 (en) Gaseous medium including at least one polyfluorinated oxyrane and a hydrofluoroolefin for electrical insulation and/or for extinguishing high-voltage electric arcs
FR2975818A1 (en) Use of a mixture comprising a fluoroketone and carrier gas as a medium for electrical insulation and/or quenching electric arcs in high voltage electric appliance, where the fluoroketone is octofluorobutan-2-one
WO2016059075A1 (en) Electrical insulation or electric arc extinguishing gas
EP3769329A2 (en) Use of 1-chloro-2,3,3,3-tetrafluoropropene for isolating or extinguishing electric arcs
WO2020002788A1 (en) Use of trifluoroethylene for insulating or extinguishing electric arcs
FR2975819A1 (en) Use of a mixture comprising a fluoroketone and carrier gas as a medium for electrical insulation or quenching electric arcs in high voltage electric appliance, where the fluoroketone is octafluorobutan-2-one

Legal Events

Date Code Title Description
TP Transmission of property

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20130710

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13