FR2977563A1 - PROPELLER COMPRISING A PLATE OF CONNECTION BETWEEN HIS HUB AND EACH OF ITS BLADES - Google Patents

PROPELLER COMPRISING A PLATE OF CONNECTION BETWEEN HIS HUB AND EACH OF ITS BLADES Download PDF

Info

Publication number
FR2977563A1
FR2977563A1 FR1155989A FR1155989A FR2977563A1 FR 2977563 A1 FR2977563 A1 FR 2977563A1 FR 1155989 A FR1155989 A FR 1155989A FR 1155989 A FR1155989 A FR 1155989A FR 2977563 A1 FR2977563 A1 FR 2977563A1
Authority
FR
France
Prior art keywords
hub
blade
blades
propeller
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1155989A
Other languages
French (fr)
Other versions
FR2977563B1 (en
Inventor
Philippe Bossis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELPHEON Sas
Original Assignee
ELPHEON Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELPHEON Sas filed Critical ELPHEON Sas
Priority to FR1155989A priority Critical patent/FR2977563B1/en
Priority to PCT/EP2012/063015 priority patent/WO2013004736A1/en
Priority to EP12733676.6A priority patent/EP2729356B1/en
Publication of FR2977563A1 publication Critical patent/FR2977563A1/en
Application granted granted Critical
Publication of FR2977563B1 publication Critical patent/FR2977563B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/20Hubs; Blade connections

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La présente invention se rapporte à une hélice (1) qui comporte un moyeu (2) et un ensemble de pales (4), caractérisée par le fait que : - ledit moyeu (2) présente une épaisseur sensiblement égale à celle des pales (4) ; - chaque pale (4) est reliée au moyeu (2) par une plaque intermédiaire (3) qui comporte un premier bord (30) de liaison au moyeu (2) et un deuxième bord de liaison (32) à la pale (4) associée, ce deuxième bord (32) ayant une longueur proche ou égale à celle de la base (40) de la pale ; - chacune des plaques (3) formant d'une part, avec l'une (23) des deux grandes faces (22, 23) du moyeu (2), dite « face avant », un même premier angle V compris entre 60 et 120° et, d'autre part, avec chaque pale (4), un même second angle W compris entre 60 et 120°.The present invention relates to a propeller (1) which comprises a hub (2) and a set of blades (4), characterized in that: - said hub (2) has a thickness substantially equal to that of the blades (4 ); - each blade (4) is connected to the hub (2) by an intermediate plate (3) which has a first edge (30) of connection to the hub (2) and a second connecting edge (32) to the blade (4) associated, the second edge (32) having a length close to or equal to that of the base (40) of the blade; each of the plates forming, on the one hand, with one (23) of the two large faces (22, 23) of the hub (2), called the "front face", the same first angle V between 60 and 120 ° and, on the other hand, with each blade (4), the same second angle W between 60 and 120 °.

Description

i La présente invention se rapporte à une hélice et à un procédé pour sa fabrication. La plupart des hélices actuellement disponibles sur le marché sont des hélices par exemple en plastique, réalisées par injection de matière plastique, ou en métal, obtenues en fonderie ou en usinage, ce qui entraîne des coûts de fabrication élevés. La forme des pales des hélices existantes, qui sont généralement disposées les unes par rapport aux autres selon le principe du pas de vis, quand elles sont destinées à un usage dans l'eau, crée une dépression sur l'extrados (c'est à dire la face convexe) et une surpression sur l'intrados (c'est à dire la face concave. L'eau est ensuite éjectée, créant ainsi une poussée. En milieu liquide, la plupart des hélices disponibles présentent des problèmes de cavitation à vitesse de rotation élevée. La cavitation crée des turbulences, ce qui est loin d'être optimal, car l'écoulement de liquide est laminaire dans des conditions d'utilisation usuelles. Cette cavitation entraîne une usure prématurée du (ou des) matériau(x) constitutif(s) de l'hélice. De fait, la plupart des hélices disponibles n'offrent pas un rendement optimal, de sorte qu'elles nécessitent l'utilisation de moteurs puissants, ce qui occasionne une forte consommation d'énergie. Par ailleurs, le pas des hélices existantes est faible. La plupart de ces hélices existantes ne sont pas construites selon le modèle partie convexe à l'avant et partie concave à l'arrière et ne séparent pas parfaitement les parties convexes (avant) des parties concaves (arrière) : leurs pales peuvent présenter des concavités sur la partie avant et des convexités sur la partie arrière. Ainsi, la présence d'une surface convexe à l'arrière a tendance à créer une aspiration vers l'arrière qui freine la propulsion. Cette partie convexe a, par ailleurs, tendance à gêner l'écoulement du fluide et à créer des turbulences. De même, la présence d'une concavité à l'avant freine la propulsion et peut être à l'origine de phénomènes de cavitation. Ces hélices offrent moins de poussée en marche arrière qu'en marche avant. Les formes d'hélices utilisées actuellement en association avec des 35 moteurs électriques sont mal adaptées. The present invention relates to a propeller and a process for its manufacture. Most propellers currently available on the market are propellers for example plastic, made by plastic injection, or metal, obtained in foundry or machining, resulting in high manufacturing costs. The shape of the blades of existing propellers, which are generally arranged relative to each other according to the principle of pitch, when they are intended for use in water, creates a depression on the extrados (this is at the convex face) and an overpressure on the underside (ie the concave face) The water is then ejected, creating a thrust In liquid medium, most available propellers present problems of cavitation at speed Cavitation creates turbulence, which is far from optimal, because the liquid flow is laminar under usual conditions of use.This cavitation causes premature wear of (the) material (s). Most of the propellers available do not offer optimal performance, so they require the use of powerful motors, which results in high energy consumption. , not existing propellers is weak. Most of these existing propellers are not built according to the convex part model at the front and concave part at the back and do not perfectly separate the convex (forward) parts of the concave (rear) parts: their blades may have concavities on the front part and convexities on the back part. Thus, the presence of a convex surface at the rear tends to create a rearward suction that slows the propulsion. This convex portion, moreover, tends to impede the flow of fluid and create turbulence. Similarly, the presence of a concavity at the front slows the propulsion and can cause cavitation phenomena. These propellers offer less thrust in reverse than in forward. The propeller shapes currently used in conjunction with electric motors are poorly adapted.

En effet, les moteurs électriques ont un couple plus élevé que celui des moteurs thermiques. De fait, le couple reçu par l'hélice exerce une forte pression sur les pales, entraînant ainsi une usure prématurée des matériaux. Indeed, electric motors have a higher torque than thermal engines. In fact, the torque received by the propeller exerts a strong pressure on the blades, thus causing premature wear of the materials.

Par ailleurs, le calage doit être très grand pour supporter le couple exercé par le moteur. Toutefois, à partir d'un certain calage, le rendement diminue. De fait, il n'est pas possible de trouver un calage optimal pour les formes d'hélices actuelles, avec un moteur électrique. Enfin, certaines formes d'hélice ont un moyeu large, produisant 10 une trainée derrière le bateau. Pour la plupart des hélices existantes, la rotation de l'hélice entraîne des turbulences pouvant perturber le flux, ce qui diminue le rendement de l'hélice. La présente invention vise à pallier tout ou partie ces 15 inconvénients cités ci-dessus. Ainsi, selon un premier objet, elle propose une hélice qui comporte un moyeu et un ensemble de pales, qui est remarquable en ce que : - ledit moyeu présente une épaisseur sensiblement égale à celle des pales ; 20 - chaque pale est reliée au moyeu par une plaque intermédiaire qui comporte un premier bord de liaison au moyeu et un deuxième bord de liaison à la pale associée, ce deuxième bord ayant une longueur proche ou égale à celle de la base de la pale; - chacune des plaques formant d'une part, avec l'une des deux 25 grandes faces du moyeu, dite << face avant >>, un même premier angle V compris entre 60 et 120°, et, d'autre part, avec chaque pale, un même second angle W compris entre 60 et 120°. Les avantages qui découlent de ces caractéristiques seront décrits plus loin dans la présente demande. 30 Selon d'autres caractéristiques avantageuses et non limitatives de cette hélice : - lesdits angles sont égaux et valent préférentiellement 90° ; - ledit moyeu a un contour en forme de polygone, notamment en forme d'hexagone, un côté sur deux étant relié à une plaque intermédiaire, ou 35 un contour de forme circulaire ; - ladite plaque est plane ; ladite plaque est non plane ; - quand le moyeu a un contour polygonal et que la plaque est plane, ladite plaque a un contour en forme de triangle, deux côtés de ce triangle constituant respectivement lesdits premier et deuxième bords de liaison, et préférentiellement un contour en forme de triangle rectangle dont l'hypoténuse correspond audit deuxième bord ; - l'une des faces des pales est concave, de préférence celle orientée du côté des dites plaques, cette concavité ayant : - une forme de portion de sphère dont le rayon est 10 préférentiellement égal à celui du cercle circonscrit à ladite hélice, ou - une forme de portion d'ellipsoïde, ou - une forme de portion de cylindre - elle est monobloc ; - elle est réalisée en métal, en plastique ou en bois. 15 Un autre objet de l'invention se rapporte à un procédé de fabrication d'une hélice monobloc et en métal telle que définie plus haut, caractérisé par le fait qu'il comprend une étape qui consiste, à partir d'une feuille plane prédécoupée, à plier cette feuille pour délimiter le moyeu, les plaques et les pales. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre. Celle-ci sera faite en référence aux dessins annexés dans lesquels : - la figure 1 est une vue en perspective d'une hélice selon l'invention, la face visible de son moyeu étant sa face arrière ; - la figure 2 est une vue en coupe partielle et transversale d'une partie du moyeu, et de la plaque de liaison, ainsi que de la pale associées ; - la figure 3 est une vue de dessus simplifiée d'une feuille de métal qui, notamment après pliage, conduira à l'obtention d'une hélice selon l'invention. En se reportant essentiellement à la figure 1, on a affaire à une hélice 1 monobloc selon l'invention. Par << monobloc >>, on entend qu'elle est constituée d'une seule et même pièce. Cette hélice est réalisée de préférence en métal, préférentiellement inoxydable, mais peut également être réalisée en un autre 35 matériau tel que le plastique ou le bois. 20 25 30 Ainsi qu'on le verra plus en détail ultérieurement, l'hélice 1 est réalisée de préférence par découpe au laser ou au jet d'eau d'une feuille F de métal, puis pliage et galbage des pales. Une autre technique envisageable est l'emboutissage. In addition, the setting must be very large to support the torque exerted by the engine. However, starting from a certain calibration, the yield decreases. In fact, it is not possible to find an optimal setting for the current propeller shapes, with an electric motor. Finally, some propeller shapes have a wide hub, producing a drag behind the boat. For most existing propellers, propeller rotation causes turbulence that can disrupt flow, which decreases propeller efficiency. The present invention aims to overcome all or part of the disadvantages mentioned above. Thus, according to a first object, it proposes a propeller which comprises a hub and a set of blades, which is remarkable in that: said hub has a thickness substantially equal to that of the blades; Each blade is connected to the hub by an intermediate plate which has a first connecting edge to the hub and a second connecting edge to the associated blade, this second edge having a length close to or equal to that of the base of the blade; each of the plates forming, on the one hand, with one of the two large faces of the hub, called the "front face", the same first angle V between 60 and 120 °, and, on the other hand, with each blade, the same second angle W between 60 and 120 °. The benefits that flow from these features will be described later in this application. According to other advantageous and nonlimiting features of this helix: said angles are equal and are preferably 90 °; said hub has a contour in the form of a polygon, in particular in the form of a hexagon, with each other side being connected to an intermediate plate, or to a contour of circular shape; said plate is flat; said plate is non-planar; when the hub has a polygonal contour and the plate is flat, said plate has a contour in the form of a triangle, two sides of this triangle respectively constituting said first and second connecting edges, and preferably a rectangle-shaped contour of which the hypotenuse corresponds to the said second edge; one of the faces of the blades is concave, preferably that oriented towards the said plates, this concavity having: a shape of sphere portion whose radius is preferably equal to that of the circle circumscribed to the said helix, or an ellipsoid portion shape, or - a cylinder portion shape - it is monoblock; - it is made of metal, plastic or wood. Another object of the invention relates to a method of manufacturing a monoblock and metal helix as defined above, characterized in that it comprises a step which consists, from a pre-cut flat sheet , bend this sheet to delimit the hub, plates and blades. Other features and advantages of the present invention will appear on reading the description which follows. This will be made with reference to the accompanying drawings in which: - Figure 1 is a perspective view of a propeller according to the invention, the visible face of its hub being its rear face; - Figure 2 is a partial and cross sectional view of a portion of the hub, and the connecting plate, and the associated blade; - Figure 3 is a simplified top view of a metal sheet which, in particular after folding, lead to obtaining a propeller according to the invention. Referring essentially to Figure 1, there is a propeller 1 monobloc according to the invention. By << monoblock >>, it is meant that it consists of a single piece. This helix is preferably made of metal, preferably stainless, but may also be made of another material such as plastic or wood. As will be seen in more detail later, the helix 1 is preferably made by laser or water jet cutting of a foil of metal, then folding and paddling of the blades. Another technique that can be considered is stamping.

Mais elle peut aussi être réalisée par rotomoulage, par injection quand elle est en matière plastique, par fonderie, moulage, usinage ou encore sculpture. Dans le mode de réalisation illustré ici, on a affaire à une hélice1 dont le moyeu 2 est constitué d'une pièce de métal de faible épaisseur, par 10 exemple de l'ordre de quelques millimètres. La référence 20 désigne un orifice central traversant pour l'emmanchement de l'hélice sur l'arbre de sortie rotatif d'un moteur non représenté. Ce moyeu 2 présente un contour en forme de polygone régulier, en 15 l'occurrence un hexagone. Les côtés de cet hexagone portent la référence 21. Le moyeu pourrait avoir une forme différente de celle présentée ici, par exemple à contour circulaire. A un côté 21 sur deux est associée une pale 4. En l'occurrence, la présente hélice présente trois pales équidistantes angulairement les unes des 20 autres par rapport au centre du moyeu. Ces pales 4 ne sont pas reliées directement au moyeu 2, mais par l'intermédiaire d'une plaque de liaison 3. Dans le mode de réalisation présenté ici, ces plaques sont planes et ont un contour en forme de triangle rectangle. L'un des côtés 30 de cette 25 plaque est d'une pièce avec l'un des côtés 21 de l'hexagone constituant le moyeu, tandis que le côté 32 matérialisant l'hypoténuse dudit triangle est relié à la base 40 de la pale associée 4. Ces côtés 30 et 32 ont respectivement une étendue longitudinale égale à celle d'un côté 21, respectivement de la base 40. Le dernier côté 31 relie les deux précédents. 30 Dans des variantes non représentées ici, les plaques 3 pourraient avoir une autre forme telle qu'une forme de quadrilatère dans laquelle le sommet commun entre la pale 4, la plaque 3 et le moyeu 2 est remplacé par un segment dont un sommet est commun à la plaque et à la pale et l'autre sommet est commun à la plaque et au moyeu. 35 Par ailleurs, les plaques 3 ne sont pas forcement planes. But it can also be done by rotational molding, by injection when it is plastic, by foundry, molding, machining or sculpture. In the embodiment illustrated here, there is a propeller1 whose hub 2 consists of a metal piece of small thickness, for example of the order of a few millimeters. The reference 20 designates a central through hole for the fitting of the propeller on the rotary output shaft of a motor not shown. This hub 2 has a contour in the form of a regular polygon, in this case a hexagon. The sides of this hexagon bear the reference 21. The hub could have a shape different from that presented here, for example with a circular contour. A side 21 of two is associated with a blade 4. In this case, the present propeller has three blades equidistant angularly from each other with respect to the center of the hub. These blades 4 are not connected directly to the hub 2, but through a connecting plate 3. In the embodiment presented here, these plates are flat and have a contour in the form of a right triangle. One of the sides 30 of this plate is in one piece with one of the sides 21 of the hexagon constituting the hub, while the side 32 materializing the hypotenuse of said triangle is connected to the base 40 of the blade associated 4. These sides 30 and 32 respectively have a longitudinal extent equal to that of a side 21, respectively of the base 40. The last side 31 connects the two previous. In variants not shown here, the plates 3 could have another shape such as a quadrilateral shape in which the common vertex between the blade 4, the plate 3 and the hub 2 is replaced by a segment of which a vertex is common to the plate and to the blade and the other vertex is common to the plate and the hub. Moreover, the plates 3 are not necessarily flat.

Le moyeu 2, et plus précisément sa face 23 tournée vers l'avant AV, forme avec les plaques 3, un même angle V. Celui-ci a préférentiellement une valeur de 90°, mais peut être généralement compris entre 60 et 120°. Comme le montre plus particulièrement la figure 2, les pales 4 sont galbées, avec une face arrière 41 concave et une face avant 42 convexe. De manière similaire à ce qui a été dit plus haut, chaque plaque 3 forme avec la face arrière des pales un angle W. Celui-ci a également et préférentiellement une valeur de 90°, mais peut être généralement compris entre 60 et 120°. The hub 2, and more precisely its face 23 facing forward AV, forms with the plates 3, the same angle V. This preferably has a value of 90 °, but can be generally between 60 and 120 °. As shown more particularly in Figure 2, the blades 4 are curved, with a concave rear face 41 and a convex front face 42. In a manner similar to what has been said above, each plate 3 forms with the rear face of the blades an angle W. It also and preferably has a value of 90 °, but can generally be between 60 and 120 °.

Bien entendu, l'hélice est réalisée préférentiellement d'une pièce et sans soudure, mais peut aussi être constituée d'éléments distincts soudés, rivetés ou collés. En se reportant essentiellement à la figure 3, on définit un cercle C comme étant le cercle circonscrit à l'hélice 1, c'est-à-dire le cercle dont le centre est le centre du moyeu G (centre de gravité de l'hélice) et le rayon la distance entre G et l'extrémité d'une pale 4. Les pales 4 de l'hélice sont toutes identiques, de sorte que l'hélice 1 soit inchangée par rotation de centre G et d'angle 360° /nombre de pales. Les pales 4 sont des surfaces d'épaisseur identique à celle du moyeu 2 délimitées par trois lignes, en l'occurrence une ligne droite 43 et deux lignes courbes 44 et 45. Les extrémités de chacune de ces lignes peuvent être en arcs de cercle ou former des points anguleux. Le rayon de courbure de chacune des deux lignes courbes mentionnées précédemment est de préférence égal au rayon du cercle C. Of course, the helix is preferably made in one piece and seamless, but may also consist of separate elements welded, riveted or glued. Referring essentially to FIG. 3, a circle C is defined as being the circle circumscribed to the helix 1, that is to say the circle whose center is the center of the hub G (center of gravity of the helix) and the radius the distance between G and the end of a blade 4. The blades 4 of the helix are all identical, so that the helix 1 is unchanged by rotation of center G and angle 360 ° / number of blades. The blades 4 are surfaces of thickness identical to that of the hub 2 delimited by three lines, in this case a straight line 43 and two curved lines 44 and 45. The ends of each of these lines may be in arcs of circle or form angular points. The radius of curvature of each of the two curved lines mentioned above is preferably equal to the radius of the circle C.

La ligne courbe 44 opposée à l'arête de liaison plaque 3/pale 4, ci-après dénommée première ligne courbe, est un arc du cercle C. La ligne droite 43 et la seconde ligne courbe 45 partent de l'une et l'autre des extrémités de l'arête de liaison entre la plaque 3 et la pale 4. L'hélice peut être fabriquée avec ces lignes qui partent indifféremment de l'une ou l'autre de ces extrémités. L'angle formé entre la liaison plaque 3/pale 4 et la tangente à la seconde ligne courbe 45 passant par le point d'intersection entre ces deux lignes est proche de 100° de préférence, mais peut également prendre d'autres valeurs, par exemple 120°. The curved line 44 opposite to the plate 3 / blade 4 connection edge, hereinafter referred to as the first curved line, is an arc of the circle C. The straight line 43 and the second curved line 45 start from the one and the other end of the connecting edge between the plate 3 and the blade 4. The helix can be manufactured with these lines that depart indifferently from one or other of these ends. The angle formed between the connection plate 3 / blade 4 and the tangent to the second curved line 45 passing through the point of intersection between these two lines is close to 100 ° preferably, but can also take other values, for example. example 120 °.

La face concave 41 de chaque pale 4 est de préférence celle qui est située du côté de la plaque 3. Il est préférable que celle-ci soit une portion de sphère dont le rayon est le même que celui du cercle C. Il est nécessaire que la pale 4 soit réalisée de telle sorte que la partie convexe soit dirigée vers l'avant AV de la pale et la partie concave vers l'arrière AR, de telle sorte que la pale ne présente pas de convexités sur la partie concave ou de concavités sur la partie convexe. Autrement dit, aucune partie du bord avant convexe de la pale ne présente de concavité et aucune partie du bord arrière concave de la pale 1 ne présente de convexité. The concave face 41 of each blade 4 is preferably that located on the side of the plate 3. It is preferable that it be a portion of a sphere whose radius is the same as that of the circle C. It is necessary that the blade 4 is made in such a way that the convex part is directed towards the front AV of the blade and the concave part towards the rear AR, so that the blade does not have convexities on the concave part or concavities on the convex part. In other words, no part of the convex front edge of the blade has a concavity and no part of the concave rear edge of the blade 1 has convexity.

Comme indiqué plus haut, l'hélice est préférentiellement obtenue par découpage d'une feuille plane F, pliage de celle-ci pour obtenir l'angle V et W et délimiter les plaques 3, puis mise en forme du galbe des pales 4. La même hélice 1 peut être utilisée aussi bien en marche avant qu'en marche arrière, en changeant son sens de rotation. As indicated above, the helix is preferably obtained by cutting a flat sheet F, folding it to obtain the angle V and W and delimit the plates 3, then shaping the curve of the blades 4. The same propeller 1 can be used both in forward and reverse, changing its direction of rotation.

Les mêmes principes de fabrication et de fonctionnement d'hélice peuvent être appliqués pour différents fluides, en particulier l'eau et l'air et pour différentes utilisations (produire un mouvement, créer une aération, produire de l'énergie...). Toutefois, la forme des pales 4 de l'hélice doit être adaptée selon le fluide, en particulier la longueur du rayon du cercle circonscrit C, l'angle formé entre la ligne droite de la pale 4 et l'arrête de liaison plaque 3-pale 4, l'angle formé entre la tangente à la ligne courbe de la pale 4 et l'arête de liaison plaque-pale, et le galbe de l'hélice. En particulier, en écoulement laminaire, la forme de la pale est préférentiellement une portion de sphère alors qu'en écoulement turbulent, la pale peut être plus incurvée (portion d'ellipse ou de cylindre, éventuellement recourbée à l'extrémité) On décrit ci-après le fonctionnement de l'hélice dans un référentiel lié au fluide [référentiel du courant], pour un mouvement de traction d'un bateau. Le principe est similaire pour un mouvement de propulsion. Il peut être aisément étendu au mouvement d'accélération d'un fluide pour lequel l'hélice reste statique et donne un mouvement à un fluide ou à la production d'électricité, pour laquelle l'hélice entraînée par le fluide entraîne un alternateur. The same principles of manufacturing and propeller operation can be applied for different fluids, in particular water and air and for different uses (producing a movement, creating aeration, producing energy ...). However, the shape of the blades 4 of the helix must be adapted according to the fluid, in particular the length of the radius of the circumscribed circle C, the angle formed between the straight line of the blade 4 and the connecting plate stop 3- 4, the angle formed between the tangent to the curved line of the blade 4 and the plate-blade connection edge, and the curve of the propeller. In particular, in laminar flow, the shape of the blade is preferably a sphere portion whereas in turbulent flow, the blade can be more curved (portion of ellipse or cylinder, possibly curved at the end). -after the operation of the propeller in a reference linked to the fluid [current reference], for a traction movement of a boat. The principle is similar for a propulsion movement. It can be easily extended to the acceleration movement of a fluid for which the propeller remains static and gives a movement to a fluid or the production of electricity, for which the propeller driven by the fluid drives an alternator.

On appelle extrados d'une pale 4 le côté convexe de la pale et intrados, le côté concave. The upper side of a blade 4 is called the convex side of the blade and the underside is the concave side.

Le sens de rotation des pales est illustré par la flèche f aux figures 1 et 3. Les effets décrits ici valent pour les trois pales 4: - L'eau est plus accélérée sur le bord convexe que sur le bord 5 concave de la pale 4. L'effet Venturi a donc tendance à créer une traction qui attire la pale 4 vers le côté convexe ; - Les particules d'eau en contact avec le bord convexe de la pale 4 reçoivent une certaine quantité de mouvement communiquée par la pale (il se crée un gradient de vitesses à proximité de la pale). Le vecteur vitesse des 10 particules de fluide au contact de la pale est dirigé suivant la tangente en chaque point de la pale. Les particules ainsi accélérées une première fois au contact de la partie convexe de la pale 4 vont être accélérées une deuxième fois au contact de la partie concave de la pale suivante. Par ce mécanisme, les particules reçoivent 15 deux fois de la quantité de mouvement au contact de l'hélice, alors que dans une hélice classique, la quantité de mouvement est généralement transmise aux particules une seule fois. La forme des pales ordonne le flux de telle sorte que les vecteurs vitesses de l'essentiel des particules soient orientés selon des directions proches 20 après le passage de la pale. Le fait de transmettre deux fois de la quantité de mouvement aux particules augmente la vitesse de ces particules en sortie, donc la force propulsive de l'hélice, et par conséquent son rendement. - Les plaques 3 stabilisent l'écoulement: D'une part, elles créent un effet de portance qui soutient l'hélice 1 25 et stabilise la force exercée sur le moyeu 2. D'autre part, les particules de fluide au contact du moyeu 2 sont entraînées dans un mouvement de rotation, par lequel le moyeu transmet une quantité de mouvement aux particules. Une particule située en OM(t), recevant une vitesse V à l'instant t, 30 se trouve à l'instant t+dt en OM(t+dt)=OM(t)+V dt (où les éléments soulignés désignent un vecteur). Pour une hélice classique, si une particule située sur la face avant du moyeu 2 est suffisamment proche du pourtour du moyeu, alors elle est éjectée en dehors du moyeu et peut éventuellement toucher une pale 4 ou 35 passer de l'autre côté de l'hélice suivant sa position. Dans le cas de l'hélice décrite ici, une partie des particules (environ 50%) qui devraient être éjectées se trouvent << capturées >> par une plaque de liaison 3. Cette plaque communique à ces particules un surcroît de quantité de mouvement, de sorte qu'une partie du flux de particules au contact de la plaque 3 est soit captée par la plaque de la pale 4 suivante, soit directement captée par la pale suivante, auquel cas les particules seront à nouveau accélérées par la pale et participeront au mouvement propulsif de l'hélice. La forme des pales 4 doit être choisie pour trouver le meilleur compromis entre deux contraintes : - d'une part, une forte convexité permet d'accélérer plus les 10 particules de fluide le long de la pale. - d'autre part, une forte convexité augmente la traînée. Ainsi, expérimentalement, on constate qu'une forme de pale en portion de sphère - dont le rayon est proche du rayon du cercle C - permet de trouver un bon compromis entre ces deux contraintes.The direction of rotation of the blades is illustrated by the arrow f in FIGS. 1 and 3. The effects described here apply to the three blades 4: - The water is more accelerated on the convex edge than on the concave edge 5 of the blade 4 The Venturi effect therefore tends to create a pull that pulls the blade 4 towards the convex side; The water particles in contact with the convex edge of the blade 4 receive a certain amount of movement imparted by the blade (a velocity gradient is created near the blade). The velocity vector of the fluid particles in contact with the blade is directed along the tangent at each point of the blade. The particles thus accelerated a first time in contact with the convex portion of the blade 4 will be accelerated a second time in contact with the concave portion of the following blade. By this mechanism, the particles receive twice the momentum in contact with the helix, whereas in a conventional helix the momentum is generally transmitted to the particles only once. The shape of the blades directs the flow so that the velocity vectors of the bulk of the particles are oriented in directions close to the passage of the blade. The fact of transmitting twice the momentum to the particles increases the speed of these particles at the exit, therefore the propulsive force of the helix, and consequently its efficiency. - The plates 3 stabilize the flow: On the one hand, they create a lift effect that supports the propeller 1 25 and stabilizes the force exerted on the hub 2. On the other hand, the fluid particles in contact with the hub 2 are driven in a rotational movement, whereby the hub transmits a momentum to the particles. A particle located at OM (t), receiving a velocity V at time t, is at time t + dt at OM (t + dt) = OM (t) + V dt (where the underlined elements denote a vector). For a conventional propeller, if a particle located on the front face of the hub 2 is sufficiently close to the periphery of the hub, then it is ejected outside the hub and can possibly touch a blade 4 or 35 pass on the other side of the hub propeller according to its position. In the case of the helix described here, a part of the particles (about 50%) that should be ejected are << captured >> by a connecting plate 3. This plate communicates to these particles an additional amount of movement, so that a part of the flow of particles in contact with the plate 3 is either picked up by the plate of the following blade 4, or directly captured by the following blade, in which case the particles will be accelerated again by the blade and will participate in propellant movement of the propeller. The shape of the blades 4 must be chosen to find the best compromise between two constraints: on the one hand, a strong convexity makes it possible to accelerate the fluid particles along the blade more. - on the other hand, a strong convexity increases the drag. Thus, experimentally, we see that a blade shape in a sphere portion - whose radius is close to the radius of the circle C - makes it possible to find a good compromise between these two constraints.

15 La transmission de la quantité de mouvement au voisinage de chaque pale 4 [et plus généralement au voisinage d'une surface au contact d'un fluide - donc en particulier au niveau des plaques 3] s'établit comme suit: Au contact de la pale, la vitesse normale des particules de fluide à la surface de la pale est nulle.The transmission of the momentum in the vicinity of each blade 4 [and more generally in the vicinity of a surface in contact with a fluid - so in particular at the level of the plates 3] is established as follows: In contact with the pale, the normal velocity of the fluid particles at the surface of the blade is zero.

20 La vitesse tangentielle d'une particule de fluide est égale à la vitesse du point de la pale au contact de la particule de fluide Au voisinage de la pale, à l'intérieur de la couche limite existe un gradient de vitesse Expérimentalement, la forme les plaques de la présente hélice 25 augmente la taille du pas par rapport aux hélices classiques, donc la distance parcourue par tour d'hélice. Le moteur doit donc fournir moins d'énergie pour propulser une embarcation à une vitesse donnée. 30 The tangential velocity of a fluid particle is equal to the velocity of the point of the blade in contact with the fluid particle. In the vicinity of the blade, within the boundary layer exists a velocity gradient Experimentally, the shape the plates of this helix 25 increases the size of the pitch compared to conventional propellers, so the distance traveled per turn of the propeller. The engine must therefore provide less energy to propel a boat at a given speed. 30

Claims (10)

REVENDICATIONS1. Hélice (1) qui comporte un moyeu (2) et un ensemble de pales (4), caractérisée par le fait que : - ledit moyeu (2) présente une épaisseur sensiblement égale à celle des pales (4) ; - chaque pale (4) est reliée au moyeu (2) par une plaque intermédiaire (3) qui comporte un premier bord (30) de liaison au moyeu (2) et un deuxième bord de liaison (32) à la pale (4) associée, ce deuxième bord (32) ayant une étendue longitudinale proche ou égale à celle de la base (40) de la pale; - chacune des plaques (3) formant d'une part, avec l'une (23) des deux grandes faces (22, 23) du moyeu (2), dite << face avant », un même premier angle V compris entre 60 et 120°, et, d'autre part, avec chaque pale (4), un même second angle W compris entre 60 et 120°. REVENDICATIONS1. Propeller (1) which comprises a hub (2) and a set of blades (4), characterized in that: - said hub (2) has a thickness substantially equal to that of the blades (4); - each blade (4) is connected to the hub (2) by an intermediate plate (3) which has a first edge (30) of connection to the hub (2) and a second connecting edge (32) to the blade (4) associated, the second edge (32) having a longitudinal extent close to or equal to that of the base (40) of the blade; each of the plates forming, on the one hand, with one (23) of the two large faces (22, 23) of the hub (2), called the "front face", the same first angle V between 60 and 120 °, and, on the other hand, with each blade (4), the same second angle W between 60 and 120 °. 2. Hélice selon la revendication 1, caractérisée par le fait que 15 lesdits angles sont égaux et valent préférentiellement 90° . 2. Propeller according to claim 1, characterized in that said angles are equal and are preferably 90 °. 3. Hélice selon l'une des revendications précédentes, caractérisée par le fait que ledit moyeu (2) a un contour en forme de polygone, notamment en forme d'hexagone , un de ses côtés (21) sur deux étant relié à une plaque (3) intermédiaire, ou que ledit moyeu a un contour de forme circulaire. 20 3. Propeller according to one of the preceding claims, characterized in that said hub (2) has a contour in the form of a polygon, in particular in the form of a hexagon, one of its sides (21) out of two being connected to a plate (3) intermediate, or that said hub has a contour of circular shape. 20 4. Hélice selon l'une des revendications précédentes, caractérisée par le fait que ladite plaque (3) est plane. 4. Propeller according to one of the preceding claims, characterized in that said plate (3) is flat. 5. Hélice selon l'une des revendications 1 à 3, caractérisée par le fait que ladite plaque (3) est non plane. 5. Propeller according to one of claims 1 to 3, characterized in that said plate (3) is non-planar. 6. Hélice selon la revendication 3 quand le moyeu a un contour 25 polygonal, prise en combinaison avec la revendication 4 ou 5, caractérisée par le fait que ladite plaque (3) a un contour en forme de triangle, deux côtés de ce triangle (30, 32) constituant respectivement lesdits premier et deuxième bords de liaison, et préférentiellement un contour en forme de triangle rectangle dont l'hypoténuse correspond audit deuxième bord (32). 30 6. Propeller according to claim 3 when the hub has a polygonal contour, taken in combination with claim 4 or 5, characterized in that said plate (3) has a contour in the form of a triangle, two sides of this triangle ( 30, 32) constituting respectively said first and second connecting edges, and preferably a contour in the form of a right triangle whose hypotenuse corresponds to said second edge (32). 30 7. Hélice selon l'une des revendications précédentes, caractérisée par le fait que l'une (41) des faces (41, 42) des pales (4) est concave, de préférence celle (4) orientée du côté des dites plaques (3), cette concavité ayant :- une forme de portion de sphère dont le rayon est préférentiellement égal à celui du cercle circonscrit à ladite hélice, ou - une forme de portion d'ellipsoïde, ou - une forme de portion de cylindre. 7. Propeller according to one of the preceding claims, characterized in that one (41) of the faces (41, 42) of the blades (4) is concave, preferably that (4) oriented on the side of said plates ( 3), this concavity having: a shape of sphere portion whose radius is preferably equal to that of the circle circumscribed to said helix, or a shape of ellipsoid portion, or a cylinder portion shape. 8. Hélice selon l'une des revendications précédentes, caractérisée par le fait qu'elle est monobloc. 8. Propeller according to one of the preceding claims, characterized in that it is monobloc. 9. Hélice selon l'une des revendications précédentes, caractérisée par le fait qu'elle est réalisée en métal, en plastique ou en bois. 9. Propeller according to one of the preceding claims, characterized in that it is made of metal, plastic or wood. 10. Procédé de fabrication d'une hélice (1) selon les revendications 8 et 9 prises en combinaison, ladite hélice étant en métal, caractérisé par le fait qu'il comprend une étape qui consiste, à partir d'une feuille (F) plane prédécoupée, à plier cette feuille pour délimiter le moyeu (2) , les plaques (3) et les pales (4). 10. A method of manufacturing a helix (1) according to claims 8 and 9 taken in combination, said helix being made of metal, characterized in that it comprises a step which consists, from a sheet (F) pre-cut flat, to fold this sheet to delimit the hub (2), the plates (3) and the blades (4).
FR1155989A 2011-07-04 2011-07-04 PROPELLER COMPRISING A PLATE OF CONNECTION BETWEEN HIS HUB AND EACH OF ITS BLADES Expired - Fee Related FR2977563B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1155989A FR2977563B1 (en) 2011-07-04 2011-07-04 PROPELLER COMPRISING A PLATE OF CONNECTION BETWEEN HIS HUB AND EACH OF ITS BLADES
PCT/EP2012/063015 WO2013004736A1 (en) 2011-07-04 2012-07-04 Propeller comprising a connecting plate between its hub and each of its blades
EP12733676.6A EP2729356B1 (en) 2011-07-04 2012-07-04 Propeller comprising a plate joining its hub and each of its blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1155989A FR2977563B1 (en) 2011-07-04 2011-07-04 PROPELLER COMPRISING A PLATE OF CONNECTION BETWEEN HIS HUB AND EACH OF ITS BLADES

Publications (2)

Publication Number Publication Date
FR2977563A1 true FR2977563A1 (en) 2013-01-11
FR2977563B1 FR2977563B1 (en) 2013-07-26

Family

ID=46506358

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1155989A Expired - Fee Related FR2977563B1 (en) 2011-07-04 2011-07-04 PROPELLER COMPRISING A PLATE OF CONNECTION BETWEEN HIS HUB AND EACH OF ITS BLADES

Country Status (3)

Country Link
EP (1) EP2729356B1 (en)
FR (1) FR2977563B1 (en)
WO (1) WO2013004736A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2222118A (en) * 1937-03-09 1940-11-19 Knapp Monarch Co Propeller
WO2001038697A1 (en) * 1999-11-25 2001-05-31 Jayden David Harman A single or multi-bladed rotor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2222118A (en) * 1937-03-09 1940-11-19 Knapp Monarch Co Propeller
WO2001038697A1 (en) * 1999-11-25 2001-05-31 Jayden David Harman A single or multi-bladed rotor

Also Published As

Publication number Publication date
EP2729356B1 (en) 2016-04-06
EP2729356A1 (en) 2014-05-14
WO2013004736A1 (en) 2013-01-10
FR2977563B1 (en) 2013-07-26

Similar Documents

Publication Publication Date Title
EP2622227B1 (en) Propeller for ventilator, with a variable chord length
EP2622226B1 (en) Propeller for ventilator, with a variable blade angle
EP1755942B1 (en) Marine engine assembly including a pod mountable under a ship&#39;s hull
CA2714439C (en) Blade with non-axisymmetric platform: recess and boss on the extrados
CA2716248C (en) Blade with non-axisymmetric platform
EP2697517B1 (en) Propeller of a pulsed airflow generator, in particular for a portable blower
CA2670268A1 (en) Device for reducing a drag produced by the relative displacement of a body and fluid
EP2257694A2 (en) Blade with 3d platform comprising an inter-blade bulb
FR2929334A1 (en) DEVICE FOR REDUCING NOISE GENERATION BY AIRCRAFT REACTOR WITH BLEED FLUID CONDUITS
EP2620634B1 (en) Rotor of a marine turbine comprising at least one blade rotatably mobile about a radial axis, and means for limiting the rotational movement of said blade, and marine turbine including such a rotor
EP2179163A1 (en) Noise control chevron for a nozzle, and nozzle and turboshaft engine provided with such a chevron
FR2983834A1 (en) HOOK PYLONE FOR TURBOMACHINE
FR2479132A1 (en) HIGH PERFORMANCE BLADE FOR HELICOPTER ROTOR
EP1034376B1 (en) Fan blade
CA2721227A1 (en) Dual-flow turbine engine for aircraft with low noise emission
EP2729356B1 (en) Propeller comprising a plate joining its hub and each of its blades
FR2855441A1 (en) HOLLOW BLADE FOR A TURBOMACHINE AND METHOD FOR MANUFACTURING SUCH A BLADE.
EP2839166B1 (en) Impeller for motor vehicle fan, including segmented hub stiffeners
CA2951333A1 (en) Savonius wind power rotor
FR3079211A1 (en) PROPELLANT AIRCRAFT ASSEMBLY COMPRISING TWO ADJACENT ENGINES, WHOSE OUTLETS HOLES HAVE A RIGHT PORTION CLOSE TO A MEDIAN PLAN OF THE PROPULSIVE ASSEMBLY
FR3082827A1 (en) REAR PROPULSIVE SYSTEM FOR AIRCRAFT
EP4294716A1 (en) Lift-generating system and boat fitted with such a system
WO2013014376A1 (en) Hydraulic turbine with reduced drag at the end of the wing
FR2986504A1 (en) Device for attaching turbopropeller with structure element of aircraft, has center line intersected with driving axis in point along radial direction, where portion of center line forms angle with radial direction
WO2012084499A1 (en) Fan impeller and associated cooling module

Legal Events

Date Code Title Description
IM Registration of a company
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

ST Notification of lapse

Effective date: 20230305