FR2961261A1 - METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE - Google Patents

METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE Download PDF

Info

Publication number
FR2961261A1
FR2961261A1 FR1054657A FR1054657A FR2961261A1 FR 2961261 A1 FR2961261 A1 FR 2961261A1 FR 1054657 A FR1054657 A FR 1054657A FR 1054657 A FR1054657 A FR 1054657A FR 2961261 A1 FR2961261 A1 FR 2961261A1
Authority
FR
France
Prior art keywords
gaseous fuel
combustion chamber
temperature
valve
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1054657A
Other languages
French (fr)
Other versions
FR2961261B1 (en
Inventor
Serge Fauqueux
Denis Martin
Nicolas Pourron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Energy Products France SNC
Original Assignee
GE Energy Products France SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Energy Products France SNC filed Critical GE Energy Products France SNC
Priority to FR1054657A priority Critical patent/FR2961261B1/en
Priority to CN201180030834.1A priority patent/CN102947572B/en
Priority to PCT/EP2011/059701 priority patent/WO2011154528A1/en
Publication of FR2961261A1 publication Critical patent/FR2961261A1/en
Application granted granted Critical
Publication of FR2961261B1 publication Critical patent/FR2961261B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé de démarrage ou d'arrêt d'une turbine à gaz 1 comprenant une chambre de combustion 6 alimentée, selon une ou plusieurs commandes d'alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés. Selon le procédé : - on mesure la vitesse de la turbine, - on détermine la ou les commandes d'alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, - on mesure la température et/ou l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion, et - on corrige au moins une de la ou des commandes d'alimentation, en fonction de la température et/ou de l'indice de Wobbe mesurés du combustible gazeux alimentant la chambre de combustion. L'invention concerne également le dispositif de démarrage ou d'arrêt d'une turbine à gaz, mettant en oeuvre le procédé.The invention relates to a method for starting or stopping a gas turbine 1 comprising a combustion chamber 6 fed, according to one or more feed controls, with a gaseous fuel that may comprise one or more given different gases, said each having a lower heating value and a given temperature. According to the method: - the speed of the turbine is measured, - the power control (s) is determined according to a heat flow rate determined from a model considering that the gaseous fuel has a lower heating value substantially equal to the upper value of the lower calorific values given and a temperature substantially equal to the lower value of the given temperatures, - the temperature and / or the Wobbe index of the gaseous fuel supplying the combustion chamber is measured, and - at least one corrected of the supply control (s), as a function of the measured temperature and / or Wobbe index of the gaseous fuel supplying the combustion chamber. The invention also relates to the device for starting or stopping a gas turbine, implementing the method.

Description

B10/0706FR GBO Société en Nom Collectif dite : GE ENERGY PRODUCTS FRANCE SNC Procédé et dispositif de démarrage ou d'arrêt d'une turbine à gaz Invention de : S. FAUQUEUX D. MARTIN N. POURRON Procédé et dispositif de démarrage ou d'arrêt d'une turbine à gaz B10 / 0706 GBO Société en Nom Collectif known as: GE ENERGY PRODUCTS FRANCE SNC Method and device for starting or stopping a gas turbine Invention of: S. FAUQUEUX D. MARTIN N. POURRON Method and device for starting or stopping a gas turbine

La présente invention concerne les turbines à gaz. En particulier, la présente invention concerne un procédé de démarrage ou d'arrêt d'une turbine à gaz, et le dispositif mettant en oeuvre le procédé. Les turbines à gaz comprennent généralement un système d'admission d'air, un compresseur à un ou plusieurs étages de compression avec un dispositif de régulation de débit d'air, un système de combustion interne, une turbine de détente reliée mécaniquement au compresseur, et un conduit pour le rejet des gaz d'échappement. Les turbines à gaz sont conçues avec des systèmes de combustion capables d'injecter du combustible liquide ou du combustible gazeux dans le système de combustion, par l'intermédiaire d'injecteurs concentriques. The present invention relates to gas turbines. In particular, the present invention relates to a method of starting or stopping a gas turbine, and the device implementing the method. Gas turbines generally comprise an air intake system, a compressor with one or more compression stages with an air flow control device, an internal combustion system, an expansion turbine mechanically connected to the compressor, and a conduit for exhaust gas rejection. Gas turbines are designed with combustion systems capable of injecting liquid fuel or gaseous fuel into the combustion system via concentric injectors.

La plupart des installations thermiques utilisant des turbines à combustion sont alimentées par des combustibles gazeux. La présente invention concerne les turbines à combustion alimentées par un combustible gazeux. Par ailleurs, la présente invention concerne le fonctionnement transitoire d'une turbine à gaz, notamment les phases de démarrage et d'arrêt de la turbine à gaz. Lors de la mise en route de la turbine à gaz, on utilise un moteur de lancement qui remplit la fonction de démarreur. Les différents fluides nécessaires au fonctionnement de la turbine, arrivent par des circuits indépendants. On distingue ainsi le circuit d'admission de l'air ambiant apte à être comprimé dans le compresseur, un circuit de combustible liquide associé à un circuit d'air d'atomisation du combustible liquide après son entrée dans la chambre de combustion et un circuit de combustible gazeux. Cependant, les caractéristiques du combustible gazeux peuvent varier dans le temps, notamment en terme de composition des constituants formant le combustible gazeux. En effet, différents types de gaz peuvent être utilisés pour alimenter une turbine à gaz. I1 peut s'agir par exemple de gaz naturel, de propane, butane, de gaz de raffinage, de gaz de synthèse (en anglais : « syngaz ») etc. L'énergie de chacun de ces gaz peut varier en fonction de son origine et, évidemment, il peut y avoir des variations du pouvoir calorifique inférieur (gaz riche ou pauvre), entre ces différents types de gaz. La température des gaz alimentant une chambre de combustion peut aussi être différente d'un système à l'autre. Par exemple, beaucoup de centrales produisant de l'électricité en sortie de turbines à gaz comprennent un système de réchauffage en amont de la chambre de combustion afin de maintenir une température constante voulue. D'autres installations peuvent comprendre des compresseurs pour augmenter la température. Ainsi, différents systèmes peuvent fournir du gaz avec différents pouvoirs caloriques inférieurs, à des températures et pressions différentes. De plus, plusieurs installations peuvent s'alimenter en combustible à partir de différents fournisseurs, ce qui peut entraîner une variation à la fois de température et de composition du gaz. Les caractéristiques de composition et de température d'un combustible peuvent être caractérisées par un paramètre de référence appelé l'indice de Wobbe modifié (MWI). Le MWI permet une comparaison de l'énergie volumétrique de différents gaz, à différentes températures. Ainsi, l'indice de Wobbe dit modifié MWI, avec correction de température, est défini par : MWI = PCI .JSgxT dans laquelle : PCI est le pouvoir calorifique inférieur du gaz en BTU/SCF (en anglais « British Thermal Unit per Standard Cubic Foot »), Sg la densité du gaz par rapport à l'air (dans les mêmes conditions de température et de pression) et T sa température absolue en °R (degré Rankine). Actuellement, un réseau industriel de gaz peut avoir de variations d'indice de Wobbe modifié de plus ou moins 10% autour d'une valeur moyenne. I1 existe différents systèmes permettant de s'accommoder de variations de caractéristiques du combustible gazeux. La demande de brevet US 2008/115482 et le brevet US 7,472,540 décrivent des dispositifs comprenant des analyseurs de gaz, permettant de mesurer les caractéristiques du combustible, puis de réguler les vannes en entrée de la chambre de combustion en fonction des variations des caractéristiques pour compenser ces variations. En outre, un réservoir tampon peut éventuellement être utilisé, entre le dispositif de mesure et les vannes, comme réserve de gaz à composition et volume connus, afin de compenser le temps d'analyse du dispositif de mesure et réduire les variations rapides du PCI. Le fonctionnement de la turbine à gaz est alors adapté aux changements de caractéristiques du gaz. Most thermal installations using combustion turbines are powered by gaseous fuels. The present invention relates to combustion turbines fueled by a gaseous fuel. Furthermore, the present invention relates to the transient operation of a gas turbine, including the start and stop phases of the gas turbine. When starting up the gas turbine, a launch engine is used which fulfills the function of starter. The different fluids necessary for the operation of the turbine, arrive by independent circuits. There is thus distinguished the intake circuit of ambient air capable of being compressed in the compressor, a liquid fuel circuit associated with an atomization air circuit of the liquid fuel after entering the combustion chamber and a circuit of gaseous fuel. However, the characteristics of the gaseous fuel can vary over time, particularly in terms of composition of the constituents forming the gaseous fuel. Indeed, different types of gas can be used to power a gas turbine. It can be for example natural gas, propane, butane, refined gas, synthesis gas (in English: "syngaz") etc. The energy of each of these gases can vary according to its origin and, obviously, there can be variations of the lower heating value (rich or poor gas) between these different types of gas. The temperature of the gases supplying a combustion chamber can also be different from one system to another. For example, many plants producing electricity at the gas turbine outlet include a heating system upstream of the combustion chamber to maintain a desired constant temperature. Other installations may include compressors to increase the temperature. Thus, different systems can provide gas with different lower caloric powers, at different temperatures and pressures. In addition, several facilities can be fueled from different suppliers, which can result in a change in both temperature and gas composition. The composition and temperature characteristics of a fuel can be characterized by a reference parameter called the Modified Wobbe Index (MWI). The MWI allows a comparison of the volumetric energy of different gases at different temperatures. Thus, the modified Wobbe index MWI, with temperature correction, is defined by: MWI = PCI .JSgxT in which: PCI is the lower calorific value of the gas in BTU / SCF (in English "British Thermal Unit per Standard Cubic" Foot "), Sg the density of the gas with respect to the air (under the same conditions of temperature and pressure) and T its absolute temperature in ° R (Rankine degree). At present, an industrial gas network may have Wobbe index variations that are modified by plus or minus 10% around an average value. There are different systems for accommodating variations in gaseous fuel characteristics. US patent application 2008/115482 and US Pat. No. 7,472,540 describe devices comprising gas analyzers, for measuring the characteristics of the fuel, and then regulating the valves at the inlet of the combustion chamber according to the variations of the characteristics to compensate for these variations. In addition, a buffer tank may optionally be used, between the measuring device and the valves, as a gas reserve of known composition and volume, in order to compensate the analysis time of the measuring device and reduce the rapid variations of the PCI. The operation of the gas turbine is then adapted to changes in gas characteristics.

La demande de brevet US 2007/0101724 décrit une méthode de régulation du débit de gaz dans laquelle le coefficient de débit Cv d'une vanne est calculé en fonction de la pression et de la température du gaz, puis ajusté en fonction de la différence de pression en entrée des injecteurs. Toutefois, il est nécessaire, dans cette méthode, de connaître la pression en aval des injecteurs, c'est-à-dire dans la chambre de combustion. Un capteur de pression doit donc être installé dans les zones de haute température de la chambre de combustion. Cependant, les variations des caractéristiques du combustible gazeux alimentant la chambre de combustion entraînent des problèmes tels que : pertes de flamme au démarrage de la turbine ou difficulté de maintien du taux d'accélération en phase de démarrage lorsque l'indice de Wobbe modifié est trop faible, propagation d'ondes de pression dans la chambre de combustion, fatigue thermique des éléments de la turbine, accélération trop rapide en phase de démarrage ou décélération trop lente en phase d'arrêt, lorsque l'indice de Wobbe est trop élevé. Une solution consisterait à mesurer en temps réel l'indice de Wobbe modifié, et de modifier le fonctionnement de la turbine à gaz en conséquence. Cependant, une telle solution est difficile à mettre en oeuvre, en raison notamment : du temps de réponse élevé des analyseurs de gaz par rapport à la vitesse de variation de l'indice de Wobbe modifié des combustibles gazeux, de l'inertie relative des dispositifs de chauffage des gaz, de la courte durée de la phase de démarrage d'une turbine à gaz, et de la consommation de gaz relativement importante au démarrage. Le but de la présente invention est de résoudre les problèmes cités précédemment. Notamment, un but de la présente invention est de permettre de limiter l'impact du changement d'indice de Wobbe modifié sur le fonctionnement d'une turbine à gaz, pendant les phases de démarrage ou d'arrêt, en particulier lorsque la variation de l'indice de Wobbe modifié est supérieure à plus ou moins 10%. Un autre but de l'invention est de s'affranchir en partie du temps de réponse long des analyseurs de gaz. Selon un aspect, il est proposé un procédé de démarrage ou d'arrêt d'une turbine à gaz comprenant au moins une chambre de combustion alimentée, selon une ou plusieurs commandes d'alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés. Selon le procédé : - on mesure la vitesse de la turbine, - on détermine la ou les commandes d'alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données - on mesure la température et/ou l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion et - on corrige au moins une de la ou des commandes d'alimentation, en fonction de la température et/ou de l'indice de Wobbe mesurés du combustible gazeux alimentant la chambre de combustion. L'indice de Wobbe WI est défini par : WI = PCS Sg dans laquelle : PCS est le pouvoir calorifique supérieur du gaz et Sg est sa densité (par rapport à l'air). Le pouvoir calorifique inférieur et la température de chaque gaz peut être fournie par exemple par l'exploitant de la turbine à gaz. US patent application 2007/0101724 describes a method of regulating the gas flow in which the flow coefficient Cv of a valve is calculated as a function of the pressure and the temperature of the gas, and then adjusted according to the difference in inlet pressure of the injectors. However, it is necessary in this method to know the pressure downstream of the injectors, that is to say in the combustion chamber. A pressure sensor must therefore be installed in the high temperature zones of the combustion chamber. However, the variations in the characteristics of the gaseous fuel supplying the combustion chamber cause problems such as: flame losses at start up of the turbine or difficulty maintaining the rate of acceleration during the starting phase when the modified Wobbe index is too much low, propagation of pressure waves in the combustion chamber, thermal fatigue of the turbine elements, acceleration too fast in the starting phase or deceleration too slow in the off phase, when the Wobbe index is too high. One solution would be to measure in real time the modified Wobbe index, and modify the operation of the gas turbine accordingly. However, such a solution is difficult to implement, in particular because of: the high response time of the gas analyzers with respect to the rate of change of the modified Wobbe index of the gaseous fuels, the relative inertia of the devices gas heating, the short duration of the startup phase of a gas turbine, and the relatively high gas consumption at startup. The object of the present invention is to solve the problems mentioned above. In particular, an object of the present invention is to make it possible to limit the impact of the modified Wobbe index change on the operation of a gas turbine, during the start-up or shutdown phases, in particular when the variation of the modified Wobbe index is greater than plus or minus 10%. Another object of the invention is to overcome in part the long response time of gas analyzers. According to one aspect, there is provided a method for starting or stopping a gas turbine comprising at least one combustion chamber fed, according to one or more feed controls, with a gaseous fuel that may comprise one or more different gases. given, said gases each having a lower calorific value and a given temperature. According to the method: - the speed of the turbine is measured, - the power control (s) is determined according to a heat flow rate determined from a model considering that the gaseous fuel has a lower heating value substantially equal to the upper value of the lower calorific values given and a temperature substantially equal to the lower value of the given temperatures - the temperature and / or the Wobbe index of the gaseous fuel supplying the combustion chamber is measured and - at least one of the or supply controls, depending on the measured temperature and / or Wobbe index of the gaseous fuel supplying the combustion chamber. The Wobbe WI index is defined by: WI = PCS Sg wherein: PCS is the higher heating value of the gas and Sg is its density (relative to air). The lower heating value and the temperature of each gas can be provided for example by the operator of the gas turbine.

La turbine à gaz peut comprendre un moyen de régulation de la pression du combustible gazeux alimentant la chambre de combustion et une des commandes d'alimentation peut être la commande du moyen de régulation de la pression. En particulier, la pression du combustible gazeux alimentant la chambre de combustion varie en fonction de la vitesse instantanée de la turbine à gaz. La turbine à gaz peut comprendre une vanne d'alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion étant proportionnel au pourcentage d'ouverture de la vanne, et une des commandes d'alimentation peut être le pourcentage d'ouverture de la vanne. La vanne d'alimentation peut être une vanne de type sonique. Ainsi, il est possible de compenser les variations de caractéristiques du gaz alimentant la chambre de combustion en corrigeant les commandes d'alimentation de la chambre de combustion, c'est-à-dire en modifiant la pression du combustible gazeux et/ou le pourcentage d'ouverture de la vanne d'alimentation. La phase de démarrage correspond sensiblement à l'étape durant laquelle on obtient les flammes dans la chambre de combustion et durant laquelle on atteint une vitesse de rotation de la turbine environ égale à 10% de la vitesse nominale (en fonctionnement continu). La fin de la phase de démarrage correspond à l'instant où la turbine a atteint sa vitesse nominale. La phase d'arrêt de la turbine correspond à l'extinction des flammes dans la chambre de combustion et à une vitesse inférieure ou égale à 30% de la vitesse nominale. Lorsque plusieurs commandes d'alimentation sont corrigées en fonction de la température du combustible gazeux alimentant la chambre de combustion, on peut pondérer les corrections des commandes d'alimentation, par des facteurs multiplicatifs, la somme des facteurs multiplicatifs étant égale à 1. Alternativement, ou en complément, lorsque plusieurs commandes d'alimentation sont corrigées en fonction de l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion, on peut pondérer les corrections des commandes d'alimentation par des facteurs multiplicatifs, la somme des facteurs multiplicatifs étant égale à 1. Selon un autre aspect, il est également proposé un dispositif de démarrage ou d'arrêt d'une turbine à gaz comprenant une chambre de combustion apte à être alimentée, selon une ou plusieurs commandes d'alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés. Le dispositif comprend : - un moyen de mesure de la vitesse de la turbine, - un moyen de détermination apte à recevoir en entrée la vitesse de la turbine mesurée par le moyen de mesure et apte à délivrer, en sortie, la ou les commandes d'alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, - un moyen de mesure de la température et/ou de l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion et - un moyen de correction, apte à recevoir en entrée la ou les commandes d'alimentation déterminées par le moyen de détermination et la température et/ou l'indice de Wobbe mesurés par le moyen de mesure, et apte à délivrer en sortie la ou les commandes d'alimentation corrigées en fonction de la température et/ou de l'indice de Wobbe. La turbine à gaz peut comprendre un moyen de régulation de la pression du combustible gazeux alimentant la chambre de combustion et une des commandes d'alimentation est la commande du moyen de régulation de la pression. The gas turbine may comprise means for regulating the pressure of the gaseous fuel supplying the combustion chamber and one of the supply controls may be the control of the pressure regulating means. In particular, the pressure of the gaseous fuel supplying the combustion chamber varies according to the instantaneous speed of the gas turbine. The gas turbine may comprise a supply valve for the gaseous fuel combustion chamber, mounted downstream of the regulating means, the flow of gaseous fuel supplying the combustion chamber being proportional to the opening percentage of the valve, and one of the feed controls may be the valve opening percentage. The supply valve may be a sonic type valve. Thus, it is possible to compensate for the variations in the characteristics of the gas supplying the combustion chamber by correcting the combustion chamber supply controls, that is to say by modifying the gas fuel pressure and / or the percentage opening of the feed valve. The starting phase corresponds substantially to the stage during which the flames are obtained in the combustion chamber and during which a rotation speed of the turbine is reached equal to 10% of the nominal speed (in continuous operation). The end of the start-up phase corresponds to the moment when the turbine reaches its nominal speed. The stopping phase of the turbine corresponds to extinguishing the flames in the combustion chamber and at a speed less than or equal to 30% of the nominal speed. When several feed commands are corrected according to the temperature of the gaseous fuel supplying the combustion chamber, the corrections of the feed controls can be weighted by multiplicative factors, the sum of the multiplicative factors being equal to 1. Alternatively, or in addition, when several feed commands are corrected according to the Wobbe index of the gaseous fuel supplying the combustion chamber, the corrections of the feed controls can be weighted by multiplicative factors, the sum of the multiplicative factors being equal to 1. According to another aspect, it is also proposed a device for starting or stopping a gas turbine comprising a combustion chamber capable of being fed, according to one or more feed controls, with a gaseous fuel may comprise one or more given different gases, said gases each having a heating power lower temperature and a given temperature. The device comprises: a means for measuring the speed of the turbine; a determining means adapted to receive at the input the speed of the turbine measured by the measurement means and able to deliver, at the output, the control or controls; feeding according to a heat flow rate determined from a model considering that the gaseous fuel has a heating value lower substantially equal to the upper value of the given lower heating values and a temperature substantially equal to the lower value of the given temperatures, a means for measuring the temperature and / or the Wobbe index of the gaseous fuel supplying the combustion chamber and a correction means capable of receiving as input the supply control or controls determined by the determination means; and the temperature and / or the Wobbe index measured by the measuring means, and capable of outputting the at least one control depending on the temperature and / or the Wobbe index. The gas turbine may comprise means for regulating the pressure of the gaseous fuel supplying the combustion chamber and one of the supply controls is the control of the pressure regulating means.

La turbine à gaz peut comprendre une vanne d'alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion étant proportionnel au pourcentage d'ouverture de la vanne, et une des commandes d'alimentation est le pourcentage d'ouverture de la vanne. La vanne d'alimentation peut être une vanne de type sonique. L'invention concerne également une turbine à gaz comprenant un dispositif de démarrage ou d'arrêt tel que décrit précédemment. The gas turbine may comprise a supply valve for the gaseous fuel combustion chamber, mounted downstream of the regulating means, the flow of gaseous fuel supplying the combustion chamber being proportional to the opening percentage of the valve, and one of the supply controls is the percentage of opening of the valve. The supply valve may be a sonic type valve. The invention also relates to a gas turbine comprising a starting or stopping device as described above.

D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de réalisation de l'invention nullement limitatif, et des dessins annexés, sur lesquels : - la figure 1 représente, de manière schématique, une turbine à gaz ; - la figure 2 illustre, de manière schématique, un dispositif d'alimentation en combustible gazeux de la turbine à gaz ; - la figure 3 présente un synoptique d'un procédé d'alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage ou d'arrêt ; et - la figure 4 représente un exemple de modèle de commande d'alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage. Other advantages and characteristics of the invention will appear on examining the detailed description of an embodiment of the invention, which is in no way limitative, and the attached drawings, in which: FIG. 1 represents, schematically, a gas turbine; FIG. 2 schematically illustrates a gaseous fuel supply device of the gas turbine; - Figure 3 shows a block diagram of a gaseous fuel supply method of a gas turbine, during a start-up or shutdown phase; and FIG. 4 represents an exemplary model for controlling the supply of gaseous fuel to a gas turbine during a start-up phase.

La figure 1 représente de manière schématique une turbine à gaz 1 alimentée par un combustible gazeux provenant, par exemple, d'un réservoir 2. Les turbines à gaz sont généralement utilisées dans des centrales électriques, pour entraîner des générateurs et produire de l'énergie électrique. La turbine à gaz 1 comprend un compresseur axial 3 avec un arbre de rotor 4. L'air est introduit par l'entrée 5 du compresseur, est comprimé par le compresseur axial 3 puis dirigé vers une chambre de combustion 6. La chambre de combustion 6 est également alimentée par un combustible gazeux, par exemple du gaz naturel qui, lors de la combustion, produit des gaz chauds à haute énergie aptes à entraîner une turbine 7. Le combustible gazeux peut être acheminé du réservoir 2 à la chambre de combustion 6 par un dispositif d'alimentation en combustible gazeux 8 qui comprend une entrée reliée au réservoir 2 et une sortie reliée à la chambre de combustion 6. Dans la turbine 7, l'énergie des gaz chauds est convertie en travail dont une partie est utilisée pour entraîner le compresseur 3, par l'intermédiaire de l'arbre du rotor 4, et dont l'autre partie est utilisée pour entraîner un générateur 9 de production d'électricité, par l'intermédiaire d'un arbre 10. Les gaz d'échappement sortent ensuite de la turbine 7 par une sortie 11, et peuvent être utilisés pour d'autres applications. La figure 2 représente de manière plus détaillée, le dispositif d'alimentation 8 en combustible gazeux de la chambre de combustion. FIG. 1 schematically represents a gas turbine 1 fed with a gaseous fuel coming, for example, from a tank 2. Gas turbines are generally used in power plants, to drive generators and to produce energy. electric. The gas turbine 1 comprises an axial compressor 3 with a rotor shaft 4. The air is introduced through the inlet 5 of the compressor, is compressed by the axial compressor 3 and then directed towards a combustion chamber 6. The combustion chamber 6 is also supplied with a gaseous fuel, for example natural gas which, during combustion, produces high-energy hot gases capable of driving a turbine 7. The gaseous fuel can be conveyed from the tank 2 to the combustion chamber 6 by a gaseous fuel supply device 8 which comprises an inlet connected to the tank 2 and an outlet connected to the combustion chamber 6. In the turbine 7, the energy of the hot gases is converted into a work part of which is used to driving the compressor 3, via the rotor shaft 4, and the other part is used to drive a generator 9 for generating electricity, via a shaft 10. The gases exhaust then leave the turbine 7 through an outlet 11, and can be used for other applications. Figure 2 shows in more detail, the device 8 for supplying gaseous fuel to the combustion chamber.

Le dispositif d'alimentation 8 comprend une entrée 12 pour recevoir le combustible gazeux, et des sorties 13 pour alimenter la chambre de combustion avec le combustible gazeux, et une ligne d'acheminement 14 reliant l'entrée 12 aux sorties 13. La ligne d'acheminement 14 du combustible gazeux comprend successivement, dans le sens de circulation du combustible gazeux : une vanne d'isolation 15 (en anglais : Safety Shut-Off Valve SSOV) reliée à l'entrée 12, une vanne de régulation 16 (en anglais : Stop Ratio Valve SRV) montée en aval de la vanne d'isolation 15, et des lignes d'alimentation 17, par exemple trois, montées en parallèle, en aval de la vanne de régulation 16 et comprenant chacune une vanne de contrôle des gaz 18 (en anglais : Gaz Control Valve GCV) montée en amont d'une sortie 13 vers la chambre de combustion. La vanne d'isolation 15 est une vanne de sécurité et a pour but d'isoler le circuit d'alimentation en combustible gazeux du circuit d'alimentation de la chambre de combustion. La vanne 15 permet ainsi d'interrompre l'alimentation en combustible gazeux en cas de problème de fonctionnement de la turbine à gaz, ou en cas d'arrêt de celle-ci. The feed device 8 comprises an inlet 12 for receiving the gaseous fuel, and outlets 13 for supplying the combustion chamber with the gaseous fuel, and a routing line 14 connecting the inlet 12 to the outlets 13. The line In the direction of circulation of the gaseous fuel, the gaseous fuel conveyor 14 comprises, successively, an isolation valve 15 (in English: Safety Shut-Off Valve SSOV) connected to the inlet 12, a control valve 16 (in English). : Stop Ratio Valve SRV) mounted downstream of the isolation valve 15, and feed lines 17, for example three, connected in parallel, downstream of the control valve 16 and each comprising a gas control valve. 18 (in English: Gas Control Valve GCV) mounted upstream of an outlet 13 to the combustion chamber. The isolation valve 15 is a safety valve and is intended to isolate the gaseous fuel supply circuit of the supply circuit of the combustion chamber. The valve 15 thus makes it possible to interrupt the supply of gaseous fuel in the event of a problem of operation of the gas turbine, or in the event of its stopping.

La vanne de régulation 16 permet également d'interrompre l'alimentation en combustible gazeux de la chambre de combustion, mais permet surtout de contrôler la pression du combustible gazeux dans la ligne d'acheminement, entre la vanne de régulation 16 et les vannes de contrôle 18, qui varie en fonction de la vitesse instantanée de la turbine. Les vannes de contrôle 18 déterminent la quantité de combustible gazeux délivrée par la ligne d'alimentation 13 à la chambre de combustion. On considère dans la suite de la description que les vannes 18 sont des vannes pour lesquelles le débit de gaz les traversant est proportionnel au pourcentage d'ouverture des vannes ou à la pression du combustible gazeux en amont des vannes 18, c'est-à-dire que le débit de gaz est proportionnel au pourcentage d'ouverture de la vanne 18 pour une pression de gaz constante, ou que le débit de gaz est proportionnel à la pression du gaz, pour un pourcentage d'ouverture de la vanne 18 constant. La quantité de combustible gazeux alimentant la chambre de combustion est donc commandée par la commande d'ouverture d'au moins l'une des vannes de contrôle 18 ou par la commande d'ouverture de la vanne de régulation 16. Les vannes 18 peuvent être par exemple des vannes commandées selon une technologie hydraulique/électrique : une telle technologie permet en effet un positionnement rapide et précis de la vanne pour ajuster le débit de combustible gazeux. En particulier, les vannes 18 peuvent être de type sonique. The control valve 16 also makes it possible to interrupt the supply of gaseous fuel to the combustion chamber, but above all it makes it possible to control the pressure of the gaseous fuel in the conveyance line between the control valve 16 and the control valves. 18, which varies according to the instantaneous speed of the turbine. The control valves 18 determine the amount of gaseous fuel delivered by the feed line 13 to the combustion chamber. It will be considered in the remainder of the description that the valves 18 are valves for which the flow rate of gas passing through them is proportional to the percentage of opening of the valves or to the pressure of the gaseous fuel upstream of the valves 18, that is to say that the gas flow rate is proportional to the opening percentage of the valve 18 for a constant gas pressure, or that the gas flow rate is proportional to the gas pressure, for a constant opening percentage of the valve 18 . The quantity of gaseous fuel supplying the combustion chamber is thus controlled by the opening control of at least one of the control valves 18 or by the opening control of the control valve 16. The valves 18 can be for example valves controlled by a hydraulic / electrical technology: such a technology indeed allows a fast and accurate positioning of the valve to adjust the flow of gaseous fuel. In particular, the valves 18 may be sonic type.

Le dispositif d'alimentation en combustible gazeux 8 vise à déterminer et à contrôler la quantité de combustible gazeux délivrée à la chambre de combustion, afin notamment de permettre à la turbine à gaz de fonctionner dans des conditions de fiabilité et de rendement élevées. En particulier, le dispositif d'alimentation 8 est apte à tenir compte des variations de caractéristiques intrinsèques du combustible gazeux provenant du réseau d'alimentation. En effet, le combustible gazeux peut varier dans le temps, notamment le type de gaz et la composition. Cette variation du combustible gazeux entraîne un changement des caractéristiques du combustible, notamment son pouvoir calorifique inférieur (PCI), sa température et sa densité, qui sont des caractéristiques ayant un impact sur la combustion dudit gaz et donc sur le fonctionnement de la turbine. Ainsi, lors des phases de démarrage ou d'arrêt de la turbine, il est important de contrôler l'énergie délivrée par la chambre de combustion à la turbine, c'est-à-dire l'énergie délivrée par la combustion du combustible gazeux. On considère dans la suite de la description, que le combustible gazeux peut être composé de plusieurs gaz donnés, dont les pouvoirs calorifiques inférieurs et les températures sont différents. Ces informations peuvent être connues, par exemple, par mesure des caractéristiques de ces différents gaz ou par communication de ces informations par les fournisseurs de ces différents gaz. Le dispositif d'alimentation en combustible gazeux doit donc tenir compte des variations des caractéristiques du gaz, par rapport aux valeurs de référence choisies qui sont, dans le cas présent, la valeur supérieure des pouvoirs calorifiques inférieurs donnés et la valeur inférieure des températures données, c'est-à-dire le gaz le plus riche donné à la température la plus basse donnée. On considère dans la suite de la description que la turbine fonctionne pendant une telle phase, c'est-à-dire pendant une phase de démarrage ou d'arrêt. Le dispositif d'alimentation 8 comprend, à cet effet, une unité de contrôle électronique 19. L'unité de contrôle 19 permet d'une part de déterminer la quantité de combustible gazeux à délivrer à la chambre de combustion en commandant le pourcentage d'ouverture d'au moins l'une des vannes 18 et la pression du combustible gazeux au niveau de ladite vanne 18, et d'autre part d'adapter les commandes de pression et d'ouverture en fonction des caractéristiques du combustible gazeux, notamment son indice de Wobbe et sa température, afin de corriger l'écart entre les caractéristiques réelles du combustible gazeux alimentant la chambre de combustion et les valeurs de référence choisies qui sont, dans le cas présent, la valeur supérieure des pouvoirs calorifiques inférieurs donnés et la valeur inférieure des températures données. De plus, l'unité de contrôle 19 permet également de contrôler les vannes 16 et 18, par exemple leur ouverture et fermeture, ou bien encore leur pourcentage d'ouverture. Les vannes 16 et 18 sont contrôlées par la commande d'alimentation délivrée par l'unité de contrôle 19. L'unité de contrôle 19 peut donc délivrer à la chambre de combustion, la quantité de combustible gazeux déterminée, par l'intermédiaire de la vanne 16 (qui contrôle la pression du combustible gazeux en amont des vannes 18) et/ou par l'intermédiaire du pourcentage d'ouverture d'au moins l'une des vannes 18. The gaseous fuel supply device 8 aims to determine and control the amount of gaseous fuel delivered to the combustion chamber, in particular to allow the gas turbine to operate under conditions of high reliability and efficiency. In particular, the feed device 8 is able to take into account variations in intrinsic characteristics of the gaseous fuel coming from the supply network. Indeed, the gaseous fuel can vary over time, including the type of gas and the composition. This variation of the gaseous fuel causes a change in the characteristics of the fuel, in particular its lower heating value (LPI), its temperature and its density, which are characteristics having an impact on the combustion of said gas and thus on the operation of the turbine. Thus, during the startup or shutdown phases of the turbine, it is important to control the energy delivered by the combustion chamber to the turbine, that is to say the energy delivered by the combustion of the gaseous fuel . In the remainder of the description, it is considered that the gaseous fuel may be composed of several given gases, whose lower heating capacities and temperatures are different. This information can be known, for example, by measuring the characteristics of these different gases or by communication of this information by the suppliers of these different gases. The device for supplying gaseous fuel must therefore take into account variations in the characteristics of the gas, with respect to the selected reference values which are, in the present case, the higher value of the given lower heating values and the lower value of the given temperatures, that is, the richest gas given at the lowest temperature given. It is considered in the following description that the turbine operates during such a phase, that is to say during a start or stop phase. The supply device 8 comprises, for this purpose, an electronic control unit 19. The control unit 19 makes it possible on the one hand to determine the quantity of gaseous fuel to be delivered to the combustion chamber by controlling the percentage of opening at least one of the valves 18 and the gaseous fuel pressure at said valve 18, and secondly to adapt the pressure and opening controls according to the characteristics of the gaseous fuel, in particular its Wobbe index and its temperature, in order to correct the difference between the actual characteristics of the gaseous fuel supplying the combustion chamber and the selected reference values which are, in the present case, the higher value of the lower calorific values given and the value lower temperatures given. In addition, the control unit 19 also controls the valves 16 and 18, for example their opening and closing, or their percentage of opening. The valves 16 and 18 are controlled by the supply control supplied by the control unit 19. The control unit 19 can therefore deliver to the combustion chamber the quantity of gaseous fuel determined, via the valve 16 (which controls the pressure of the gaseous fuel upstream of the valves 18) and / or through the opening percentage of at least one of the valves 18.

Pour déterminer la commande d'au moins l'une des vannes 18 et/ou de la vanne 16, l'unité de contrôle 19 reçoit des informations relatives au combustible gazeux alimentant la chambre de combustion et relatives au fonctionnement de la turbine. Ainsi, l'unité de contrôle 19 reçoit en entrée la vitesse de rotation de la turbine, fournie par un moyen de mesure (non représenté), la température du combustible gazeux délivrée par un capteur de température 20 monté entre la vanne d'isolation 15 et la vanne de régulation 16, et des caractéristiques du combustible gazeux (par exemple l'indice de Wobbe) par un moyen de mesure 21 (par exemple de l'indice de Wobbe) monté en amont de la vanne d'isolation 15. L'unité de contrôle 19 peut également recevoir les données fournies par un capteur de pression 22, monté entre la vanne de régulation et les lignes d'alimentation 17. En particulier, l'unité de contrôle 19 peut vérifier, à partir de la pression mesurée par le capteur 22 si la commande de la vanne de régulation 16 permet bien d'obtenir la pression de combustible gazeux voulue. On considère dans la suite de la description que la régulation du pourcentage d'ouverture sera faite sur une seule vanne 18 lors des phases de démarrage ou d'arrêt de la turbine à gaz, les deux autres vannes 18 étant maintenues fermées pendant ces périodes. To determine the control of at least one of the valves 18 and / or the valve 16, the control unit 19 receives information relating to the gaseous fuel supplying the combustion chamber and relating to the operation of the turbine. Thus, the control unit 19 receives as input the speed of rotation of the turbine, provided by a measuring means (not shown), the temperature of the gaseous fuel delivered by a temperature sensor 20 mounted between the isolation valve 15 and the control valve 16, and characteristics of the gaseous fuel (for example the Wobbe index) by a measuring means 21 (for example of the Wobbe index) mounted upstream of the isolation valve 15. control unit 19 can also receive the data provided by a pressure sensor 22, mounted between the control valve and the supply lines 17. In particular, the control unit 19 can check, from the measured pressure by the sensor 22 if the control of the control valve 16 makes it possible to obtain the desired gas fuel pressure. It will be considered in the rest of the description that the regulation of the opening percentage will be made on a single valve 18 during the starting or stopping phases of the gas turbine, the other two valves 18 being kept closed during these periods.

Plus précisément, l'unité de contrôle 19 comprend un moyen de détermination 23 de la commande d'alimentation délivrée aux vannes 16 et 18. La commande d'alimentation peut être par exemple le pourcentage d'ouverture de la vanne de régulation 16, afin de modifier la pression en amont des vannes de contrôle 18, et/ou le débit de combustible gazeux à travers ladite vanne de contrôle 18. La commande d'alimentation peut également être le pourcentage d'ouverture de la vanne de contrôle 18. Dans ce cas, et pour une pression de combustible gazeux constante, il est possible de contrôler le débit de combustible gazeux à travers ladite vanne 18. Enfin, la commande d'alimentation peut être également, comme représenté sur la figure 2, à la fois le pourcentage d'ouverture de la vanne de régulation 16 et de la vanne de contrôle 18 : on contrôle dans ce cas, le débit à travers la vanne 18 par deux grandeurs modifiables. More specifically, the control unit 19 comprises a means 23 for determining the supply control supplied to the valves 16 and 18. The supply control can be, for example, the opening percentage of the control valve 16, in order to to modify the pressure upstream of the control valves 18, and / or the flow of gaseous fuel through said control valve 18. The feed control can also be the opening percentage of the control valve 18. In this case, and for a constant gaseous fuel pressure, it is possible to control the flow of gaseous fuel through said valve 18. Finally, the feed control can also be, as shown in Figure 2, both the percentage opening of the control valve 16 and the control valve 18: in this case, the flow through the valve 18 is controlled by two modifiable quantities.

Le moyen de détermination 23 reçoit en entrée la vitesse de la turbine en temps réel, et connaît les caractéristiques du combustible gazeux de référence, c'est-à-dire le combustible présentant un pouvoir calorifique inférieur sensiblement égal à la plus grande valeur de pouvoir calorifique inférieure donnés, et une température sensiblement égale à la plus petite valeur de température donnée. Ces valeurs sont mémorisées dans le moyen 23. Le moyen de détermination 23 détermine alors la ou les commandes d'alimentation, c'est-à-dire soit le pourcentage d'ouverture de la vanne 16 déterminant la pression en amont des vannes 18, soit le pourcentage d'ouverture de la vanne 18, qui permettent d'obtenir un débit calorifique voulu, ledit débit calorifique voulu étant déterminé en considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la plus grande valeur de pouvoir calorifique inférieure donnés, et présente une température sensiblement égale à la plus petite valeur de température donnée. La commande d'alimentation peut ensuite être corrigée et ajustée soit en modifiant la pression soit le pourcentage d'ouverture de la vanne 18, en fonction de paramètres (indice de Wobbe du gaz et/ou température du gaz alimentant la chambre de combustion) mesurés sur la ligne d'acheminement. Par exemple, pour déterminer la pression du combustible gazeux voulue, la relation utilisée par le moyen de détermination 23 peut être une fonction de type affine par rapport à la vitesse de la turbine. A partir de cette pression, il est possible de déterminer le pourcentage d'ouverture de la vanne 18. The determination means 23 receives as input the speed of the turbine in real time, and knows the characteristics of the gaseous reference fuel, that is to say the fuel having a lower heating value substantially equal to the largest value of power. lower calorific value, and a temperature substantially equal to the smallest given temperature value. These values are stored in the means 23. The determination means 23 then determines the supply control (s), that is to say the percentage of opening of the valve 16 determining the pressure upstream of the valves 18. the percentage of opening of the valve 18, which make it possible to obtain a desired heat flow rate, said desired heat flow rate being determined by considering that the gaseous fuel has a lower heating value substantially equal to the greater value of the lower calorific value given , and has a temperature substantially equal to the smallest given temperature value. The feed control can then be corrected and adjusted either by changing the pressure or the opening percentage of the valve 18, depending on parameters (Wobbe index of the gas and / or temperature of the gas supplying the combustion chamber) measured. on the routing line. For example, to determine the desired gaseous fuel pressure, the relationship used by the determining means 23 may be an affine type function with respect to the speed of the turbine. From this pressure, it is possible to determine the opening percentage of the valve 18.

L'unité de contrôle 19 peut comprendre un premier moyen de correction 24. Le premier moyen de correction 24 reçoit en entrée les commandes d'alimentation déterminées par le moyen 23, et la température du combustible gazeux mesurée par le capteur de température 20. A partir de la température du combustible gazeux, le premier moyen 24 détermine un premier facteur de correction à appliquer aux commandes d'alimentation reçues du moyen de détermination 23. Ainsi, lorsque la commande d'alimentation n'est destinée qu'à la vanne 18, un facteur de correction A' appliqué sur la commande d'alimentation destinée au pourcentage d'ouverture de la 1 mesurée vanne de contrôle 18 peut être de la forme : AI= - Tmémorisée où Tmesurée est la température mesurée par le capteur 20, et Tmémorisée est la température sensiblement égale à la plus petite valeur de température mémorisée dans le moyen 23. The control unit 19 may comprise a first correction means 24. The first correction means 24 receives as input the supply commands determined by the means 23, and the temperature of the gaseous fuel measured by the temperature sensor 20. from the temperature of the gaseous fuel, the first means 24 determines a first correction factor to be applied to the supply controls received from the determination means 23. Thus, when the supply control is only intended for the valve 18 , a correction factor A 'applied to the feed control for the opening percentage of the 1 measured control valve 18 may be of the form: AI = - T memorized where Tmesurea is the temperature measured by the sensor 20, and Temorized is the temperature substantially equal to the smallest temperature value stored in the means 23.

De même, lorsque la commande d'alimentation n'est destinée qu'à la vanne 16, un facteur de correction A" appliqué sur la commande d'alimentation destinée à la vanne de contrôle 16 peut être A- ? = m T esurée C . mémorisée mémorisée C2mesurée 2 de la forme : avec: mémorisée 2 j\ kmémorisée + 1 kmémorisée + 1 on C2 mémorisée 1 0.4839 2 1 ( k mesurée 2 mesurée 0.4839) ` kmesurée + 1 A kmesurée + 1 ) k _Cpmémorisée mémorisée Cvmémorisée C2 mesurée kmesurée -1 k _ Cpmesurée mesurée Cvmesurée Cpmémorisée : la chaleur spécifique du gaz considéré par le où : moyen de détermination 23, Cvmémorisée : la capacité de chaleur spécifique du gaz considéré par le moyen de détermination 23, Cpmesurée : la chaleur spécifique du gaz alimentant la chambre de combustion, Cvmesurée : la capacité de chaleur spécifique du gaz alimentant la chambre de combustion. En multipliant la commande d'alimentation délivrée par le moyen de détermination 23 par le facteur de correction A' ou A" ou une combinaison des deux, on obtient alors des commandes d'alimentation corrigées qui correspondent plus aux caractéristiques réelles de température du combustible gazeux alimentant la chambre de combustion. Le facteur de correction en fonction de la température peut être appliqué sur la commande d'alimentation destinée à la vanne de contrôle 18 uniquement (facteur A'), sur la commande d'alimentation destinée à la vanne de régulation 16 uniquement (facteur A"), ou sur les commandes d'alimentations destinées aux deux vannes. Dans ce dernier cas, les facteurs de correction sont pondérés par des facteurs multiplicatifs, par exemple a et (1-a) où a est compris entre 0 et 1, tels que la somme des facteurs multiplicatifs soit égale à 1. Ainsi, les corrections appliquées aux deux vannes peuvent être respectivement a*A' et (1-a)*A". On retrouve, pour a égal à 1 ou 0, les commandes appliquées à la vanne de contrôle 18 uniquement ou à la vanne de régulation 16 uniquement. Similarly, when the supply control is only for the valve 16, a correction factor A "applied to the supply control for the control valve 16 may be A-? = M T esured C stored memorized C2measure 2 of the form: with: stored 2 i \ vm + 1 km stored + 1 on C2 stored 1 0.4839 2 1 (k measured 2 measured 0.4839) `kmeasured + 1Ameasured + 1) k_C stored memorized Cvmemorized C2 measured The measured heat of the gas considered by the measured gas: the specific heat of the gas considered by the means of determination 23, Cmemorized: the specific heat capacity of the gas considered by the determination means 23, Cmeasured: the specific heat of the gas supplying the gas the combustion chamber, the meter: the specific heat capacity of the gas supplying the combustion chamber, multiplying the supply control delivered by the determination means 23 by the the correction factor A 'or A "or a combination of the two, corrected supply commands are then obtained which correspond more to the actual temperature characteristics of the gaseous fuel supplying the combustion chamber. The correction factor as a function of temperature can be applied to the supply control for the control valve 18 only (factor A '), on the supply control for the control valve 16 only (factor A " ), or on the supply controls for both valves In the latter case, the correction factors are weighted by multiplicative factors, for example a and (1-a) where a is between 0 and 1, such that the sum of the multiplicative factors is equal to 1. Thus, the corrections applied to the two valves can be respectively a * A 'and (1-a) * A ". We find, for a equal to 1 or 0, the commands applied to the control valve 18 only or to the control valve 16 only.

L'unité de contrôle 19 peut également comprendre un deuxième moyen de correction 25. Le deuxième moyen de correction 25 reçoit en entrée les commandes d'alimentation corrigées par le premier moyen de correction 24, et l'indice de Wobbe du combustible gazeux mesuré par le capteur 21. A partir de l'indice de Wobbe du combustible gazeux, le deuxième moyen 25 détermine un facteur de correction à appliquer aux commandes d'alimentation corrigées reçues du moyen de correction 24. Ainsi, un facteur de correction B appliqué sur la commande d'alimentation destinée à la vanne de contrôle 18 ou à la vanne de régulation 16, peut être de la forme : B= Wlmémor`sé WI mesuré où Wlmesurée est l'indice de Wobbe mesuré par le capteur 21, et Wlmémorisée est l'indice de Wobbe du gaz considéré par le moyen de détermination 23. En multipliant la commande d'alimentation délivrée par le premier moyen de correction 24 par le facteur de correction B'=B ou B"=B, on obtient alors une commande d'alimentation corrigée qui correspond plus aux caractéristiques réelles du combustible gazeux alimentant la chambre de combustion. Le facteur de correction peut être appliqué sur la commande d'alimentation destinée au pourcentage d'ouverture de la vanne de régulation 16 uniquement (facteur B"), sur la commande d'alimentation destinée à l'ouverture de la vanne de contrôle 18 uniquement (facteur B'), ou sur les commandes d'alimentations destinées aux deux vannes. Dans ce dernier cas, les facteurs de correction sont pondérés par des facteurs multiplicatifs, par exemple (3 et (1-(3) où (3 est compris entre 0 et 1, tels que la somme des facteurs multiplicatifs soit égale à 1. Ainsi, les corrections appliquées aux deux vannes peuvent être respectivement R*B' et (1-(3)*B". On retrouve, pour (3 égal à 1 ou 0, les commandes appliquées à la vanne de contrôle 18 uniquement ou à la vanne de régulation 16 uniquement Ainsi, avec les deux moyens de correction 24 et 25, la commande d'alimentation issue du moyen de détermination 23 et destinée à l'ouverture de la vanne 18 est multipliée par les facteur A' et B', ou la commande d'alimentation issue du moyen de détermination 23 et destinée à la vanne 16 est multipliée par les facteur A" et B", ou les deux commandes d'alimentation des vannes 18 et 16 sont multipliées respectivement par a*A' et R*B', et par (1-a)*A" et (1- (3)*B". La figure 3 représente un synoptique 30 d'un procédé d'alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage ou d'arrêt. Le procédé commence par une étape 31 pendant laquelle la vitesse de la turbine est mesurée. Puis, dans une étape 32, on détermine la commande du pourcentage d'ouverture de la vanne de régulation 16, c'est-à-dire la pression d'alimentation de la chambre de combustion, en considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la plus grande valeur de pouvoir calorifique inférieure donnés, et présente une température sensiblement égale à la plus petite valeur de température donnée. Dans une étape 33, on mesure la température du combustible gazeux alimentant effectivement la chambre de combustion, puis, dans une étape 34, on calcule le facteur de correction basé sur la température du combustible gazeux, par exemple en fonction de l'écart entre la température mesurée et la température du gaz considéré à l'étape 32. Dans une étape 35, on calcule le facteur de correction A" à appliquer sur la commande de la vanne de régulation 16 pour tenir compte de la température du combustible gazeux alimentant la chambre de combustion. De même, dans une étape 36, on mesure l'indice de Wobbe du combustible gazeux alimentant effectivement la chambre de combustion, puis, dans une étape 37, on calcule le facteur de correction basé sur l'indice de Wobbe du combustible gazeux, par exemple en fonction de l'écart entre l'indice de Wobbe mesuré et l'indice de Wobbe du gaz considéré à l'étape 32. Dans une étape 38, on calcule le facteur de correction B" à appliquer sur la commande de la vanne de régulation 16 pour tenir compte de l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion. On applique, dans une étape 39, les facteur de correction (1-a)*A" et (1-(3)*B" au pourcentage d'ouverture de la vanne de régulation 16, et on applique ladite commande corrigée à la vanne de régulation 16, lors d'une étape 40, pour alimenter la chambre de combustion avec le combustible gazeux. Par ailleurs, il est également possible de déterminer et corriger la commande de la vanne de contrôle 18. Ainsi, dans une étape 41, on détermine le pourcentage d'ouverture de la vanne de contrôle 18, notamment à partir du pourcentage d'ouverture de la vanne de régulation 16 déterminé à l'étape 32, c'est-à-dire à partir des paramètres de conception du dispositif. Puis, dans une étape 42, on applique les facteur de correction a*A' et R*B' au pourcentage d'ouverture de la vanne de contrôle 18, et on applique ladite commande corrigée à la vanne de contrôle 18, lors d'une étape 43, pour alimenter la chambre de combustion avec le combustible gazeux. La figure 4 représente un exemple 40 de modèle de commande d'alimentation en combustible gazeux d'une turbine à gaz, pendant une phase de démarrage. Le modèle, en trait plein sur la figure, présente une première partie pour une vitesse de turbine inférieure à Vl, durant laquelle la turbine est entraînée par un moteur électrique. Puis, dans une seconde partie pour une vitesse de turbine comprise entre V1 et V2, le modèle comprend une étape dite de démarrage durant laquelle le débit de combustible gazeux présente une première valeur Dl. Dans une troisième partie, pour une vitesse de turbine comprise entre V2 et V3, le modèle comprend une étape dite de réchauffage durant laquelle le débit de combustible gazeux présente une deuxième valeur D2 inférieure à Dl. Dans une quatrième partie, pour une vitesse de turbine comprise entre V3 et V4, le modèle comprend une étape dite d'accélération durant laquelle le débit de combustible gazeux augmente de la valeur D2 à une valeur D3 supérieure à Dl et correspondant au fonctionnement en continue de la turbine à gaz. Le modèle 40 correspond au débit souhaité (et donc à la commande d'alimentation voulue) lorsque la chambre de combustion est alimentée par un gaz présentant un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données. Cependant, pour adapter la commande d'alimentation aux caractéristiques réelles du combustible gazeux, la commande d'alimentation correspondant au modèle 40 peut être corrigée en fonction de la température et de l'indice de Wobbe du combustible gazeux. On obtient alors un débit correspondant à la courbe en pointillés 41 qui présente des valeurs Dl' et D2' supérieures aux valeurs Dl et D2. De même, la vitesse V3' est supérieure à la vitesse V3. The control unit 19 may also comprise a second correction means 25. The second correction means 25 receives as input the supply commands corrected by the first correction means 24, and the Wobbe index of the gaseous fuel measured by the sensor 21. From the Wobbe index of the gaseous fuel, the second means 25 determines a correction factor to be applied to the corrected power commands received from the correction means 24. Thus, a correction factor B applied to the the feed control for the control valve 18 or the control valve 16 may be of the form: B = WI measured WI measured where Wmeasurea is the Wobbe index measured by the sensor 21, and Wlemorized is the Wobbe index of the gas considered by the determining means 23. By multiplying the supply control delivered by the first correction means 24 by the correction factor B '= B or B "= B, we obtain then corrected power control which more corresponds to the actual characteristics of the gaseous fuel supplying the combustion chamber. The correction factor can be applied to the supply control for the opening percentage of the control valve 16 only (factor B "), on the supply control for opening the control valve 18 only (Factor B '), or on the supply controls for both valves In the latter case, the correction factors are weighted by multiplicative factors, for example (3 and (1- (3) where (3 is included between 0 and 1, such that the sum of the multiplicative factors is equal to 1. Thus, the corrections applied to the two valves can be respectively R * B 'and (1- (3) * B ". at 1 or 0, the commands applied to the control valve 18 only or to the control valve 16 only Thus, with the two correction means 24 and 25, the supply control from the determination means 23 and intended for the opening of the valve 18 is multiplied by the factor A ' and B ', or the feed control from the determining means 23 and intended for the valve 16 is multiplied by the factors A "and B", or the two feed commands of the valves 18 and 16 are multiplied respectively by a * A 'and R * B', and by (1-a) * A "and (1- (3) * B". FIG. 3 is a block diagram of a method of supplying gaseous fuel to a gas turbine during a start-up or shutdown phase. The process begins with a step 31 during which the speed of the turbine is measured. Then, in a step 32, it determines the control of the opening percentage of the control valve 16, that is to say the supply pressure of the combustion chamber, considering that the gaseous fuel has a power lower calorific substantially equal to the largest value of lower calorific value given, and has a temperature substantially equal to the smallest given temperature value. In a step 33, the temperature of the gaseous fuel actually supplying the combustion chamber is measured, then, in a step 34, the correction factor based on the temperature of the gaseous fuel is calculated, for example as a function of the difference between the measured temperature and the temperature of the gas considered in step 32. In a step 35, the correction factor A "to be applied to the control of the control valve 16 is calculated to take into account the temperature of the gaseous fuel supplying the chamber Similarly, in a step 36, the Wobbe index of the gaseous fuel actually supplying the combustion chamber is measured, then, in a step 37, the correction factor based on the fuel Wobbe index is calculated. gaseous, for example as a function of the difference between the measured Wobbe index and the Wobbe index of the gas considered in step 32. In a step 38, the correction factor B "to be applied is calculated on the control of the control valve 16 to take into account the Wobbe index of the gaseous fuel supplying the combustion chamber. In step 39, the correction factor (1-a) * A "and (1- (3) * B" is applied to the opening percentage of the regulating valve 16, and said corrected command is applied to the a control valve 16, during a step 40, for supplying the combustion chamber with the gaseous fuel, and it is also possible to determine and correct the control of the control valve 18. Thus, in a step 41, the percentage of opening of the control valve 18 is determined, in particular from the opening percentage of the control valve 16 determined in step 32, that is to say from the design parameters of the device Then, in a step 42, the correction factor a * A 'and R * B' are applied to the opening percentage of the control valve 18, and said corrected control is applied to the control valve 18, when a step 43 for supplying the combustion chamber with the gaseous fuel, FIG. Example 40 of the gaseous fuel supply control model of a gas turbine, during a startup phase. The model, solid line in the figure, has a first portion for a turbine speed less than Vl, during which the turbine is driven by an electric motor. Then, in a second part for a turbine speed between V1 and V2, the model comprises a so-called start-up step during which the flow of gaseous fuel has a first value D1. In a third part, for a turbine speed between V2 and V3, the model comprises a so-called heating step during which the gaseous fuel flow has a second value D2 less than D1. In a fourth part, for a turbine speed between V3 and V4, the model comprises a so-called acceleration step during which the gaseous fuel flow increases from the value D2 to a value D3 greater than D1 and corresponding to the continuous operation. of the gas turbine. The model 40 corresponds to the desired flow rate (and therefore to the desired feed control) when the combustion chamber is fed with a gas having a heating value less than substantially the upper value of the given lower heating values and a temperature substantially equal to the lower value of the given temperatures. However, to adapt the power control to the actual characteristics of the gaseous fuel, the power control corresponding to the model 40 can be corrected according to the temperature and Wobbe index of the gaseous fuel. There is then obtained a flow corresponding to the dashed curve 41 which has values Dl 'and D2' greater than the values D1 and D2. Similarly, the speed V3 'is greater than the speed V3.

Dans la description, on a considéré une commande d'alimentation contrôlant à la fois la vanne de régulation 16 et la vanne de contrôle 18. Cependant, il est également possible de déterminer la commande d'alimentation et les facteurs de correction pour un mode de réalisation dans lequel seule la vanne de régulation 16 est commandée (c'est-à-dire la pression du combustible gazeux) ou dans lequel seule la vanne de contrôle 18 est commandée (c'est-à-dire le pourcentage d'ouverture de la vanne 18). Dans ces cas, les corrections sont affectées entièrement à la commande d'alimentation considérée. In the description, a power control controlling both the control valve 16 and the control valve 18 has been considered. However, it is also possible to determine the power control and the correction factors for a control mode. wherein only the control valve 16 is controlled (i.e. the gaseous fuel pressure) or in which only the control valve 18 is controlled (i.e., the opening percentage of the valve 18). In these cases, the corrections are assigned entirely to the power control considered.

On obtient ainsi une commande d'alimentation limitant l'impact des variations de caractéristiques du combustible gazeux sur le fonctionnement de la turbine à gaz, pendant les phases de démarrage et d'arrêt. Par ailleurs, il est également possible d'ajuster la commande d'alimentation aux caractéristiques réelles du combustible gazeux, en corrigeant la commande d'alimentation en fonction de mesures effectuées sur le combustible gazeux, afin d'obtenir un fonctionnement optimum de la turbine à gaz en fonction du combustible gazeux l'alimentant. Thus, a feed control is obtained which limits the impact of the variations in the characteristics of the gaseous fuel on the operation of the gas turbine, during the start and stop phases. Furthermore, it is also possible to adjust the power control to the actual characteristics of the gaseous fuel, by correcting the power control based on measurements made on the gaseous fuel, in order to obtain optimum operation of the turbine. gas depending on the gaseous fuel feeding it.

Claims (10)

REVENDICATIONS1. Procédé (30) de démarrage ou d'arrêt d'une turbine à gaz (1) comprenant au moins une chambre de combustion (6) alimentée, selon une ou plusieurs commandes d'alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés, procédé dans lequel : - on mesure la vitesse de la turbine (31), - on détermine la ou les commandes d'alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle de référence considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, - on mesure la température (33) et/ou l'indice de Wobbe (36) du combustible gazeux alimentant la chambre de combustion et - on corrige (39, 42) au moins une de la ou des commandes d'alimentation, en fonction de la température et/ou de l'indice de Wobbe mesurés du combustible gazeux alimentant la chambre de combustion. REVENDICATIONS1. Method (30) for starting or stopping a gas turbine (1) comprising at least one combustion chamber (6) fed, according to one or more feed controls, with a gaseous fuel that may comprise one or more gases different data, said gases each having a lower heating value and a given temperature, in which process: - the speed of the turbine (31) is measured, - the supply control (s) is determined as a function of a given heat rate. from a reference model considering that the gaseous fuel has a lower heating value substantially equal to the higher value of the given lower heating values and a temperature substantially equal to the lower value of the given temperatures, - the temperature is measured (33) and / or the Wobbe index (36) of the gaseous fuel supplying the combustion chamber and - corrects (39, 42) at least one of the feeding, depending on the measured temperature and / or Wobbe index of the gaseous fuel supplying the combustion chamber. 2. Procédé selon la revendication 1 dans lequel la turbine à gaz comprend un moyen de régulation (16) de la pression du combustible gazeux alimentant la chambre de combustion, et dans lequel une des commandes d'alimentation est la commande du moyen de régulation de la pression. 2. The method of claim 1 wherein the gas turbine comprises a means (16) for regulating the pressure of the gaseous fuel supplying the combustion chamber, and wherein one of the supply controls is the control of the control means of pressure. 3. Procédé selon la revendication 2 dans lequel la turbine à gaz comprend une vanne (18) d'alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion (6) étant proportionnel au pourcentage d'ouverture de la vanne, et dans lequel une des commandes d'alimentation est le pourcentage d'ouverture de la vanne (18). 3. Method according to claim 2 wherein the gas turbine comprises a valve (18) for supplying the gaseous fuel combustion chamber, mounted downstream of the regulating means, the flow of gaseous fuel supplying the combustion chamber ( 6) being proportional to the opening percentage of the valve, and wherein one of the supply controls is the opening percentage of the valve (18). 4. Procédé selon la revendication 3 dans lequel la vanne d'alimentation (18) est une vanne de type sonique. 4. The method of claim 3 wherein the supply valve (18) is a sonic type valve. 5. Procédé selon l'une des revendications 1 à 4 dans lequel plusieurs commandes d'alimentation sont corrigées en fonction de la température du combustible gazeux alimentant la chambre de combustion, et dans lequel on pondère les corrections des commandes d'alimentation par des facteurs multiplicatifs, la somme des facteurs multiplicatifs étant égale à 1, et/ou dans lequel plusieurs commandes d'alimentation sont corrigées en fonction de l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion, et dans lequel on pondère les corrections des commandes d'alimentation par des facteurs multiplicatifs, la somme des facteurs multiplicatifs étant égale à 1. 5. Method according to one of claims 1 to 4 wherein a plurality of feed commands are corrected according to the temperature of the gaseous fuel supplying the combustion chamber, and in which the weighting of the feed controls is weighted by factors. multiplicative, the sum of the multiplicative factors being equal to 1, and / or in which several feed commands are corrected according to the Wobbe index of the gaseous fuel supplying the combustion chamber, and in which the corrections of the orders are weighted multiplicative factors, the sum of the multiplicative factors being equal to 1. 6. Dispositif (8) de démarrage ou d'arrêt d'une turbine à gaz (1) comprenant une chambre de combustion (6) apte à être alimentée, selon une ou plusieurs commandes d'alimentation, par un combustible gazeux pouvant comprendre un ou plusieurs gaz différents donnés, lesdits gaz présentant chacun un pouvoir calorifique inférieur et une température donnés, dans lequel le dispositif comprend : - un moyen de mesure de la vitesse de la turbine, - un moyen de détermination (23) apte à recevoir en entrée la vitesse de la turbine mesurée par le moyen de mesure et apte à délivrer, en sortie, la ou les commandes d'alimentation en fonction d'un débit calorifique déterminé à partir d'un modèle considérant que le combustible gazeux présente un pouvoir calorifique inférieur sensiblement égal à la valeur supérieure des pouvoirs calorifiques inférieurs donnés et une température sensiblement égale à la valeur inférieure des températures données, - un moyen de mesure de la température et/ou de l'indice de Wobbe du combustible gazeux alimentant la chambre de combustion et - un moyen de correction (24, 25), apte à recevoir en entrée la ou les commandes d'alimentation déterminées par le moyen de détermination et la température et/ou l'indice de Wobbe mesurés par le moyen de mesure, et apte à délivrer en sortie la ou les commandesd'alimentation corrigées en fonction de la température et/ou de l'indice de Wobbe. 6. Device (8) for starting or stopping a gas turbine (1) comprising a combustion chamber (6) capable of being fed, according to one or more feed controls, with a gaseous fuel which may comprise a or several different gases given, said gases each having a lower heating value and a given temperature, wherein the device comprises: - a means for measuring the speed of the turbine, - a determination means (23) adapted to receive as input the speed of the turbine measured by the measuring means and capable of delivering, at the outlet, the supply control or controls according to a heat flow rate determined from a model considering that the gaseous fuel has a lower heating value; substantially equal to the higher value of the lower heating values given and a temperature substantially equal to the lower value of the given temperatures, - a measuring means of the temperature and / or the Wobbe index of the gaseous fuel supplying the combustion chamber and - correction means (24, 25) adapted to receive as input the supply control or controls determined by the determination means and the temperature and / or the Wobbe index measured by the measuring means, and able to output the corrected power control (s) as a function of the temperature and / or the Wobbe index. 7. Dispositif selon la revendication 6 dans lequel la turbine à gaz comprend un moyen de régulation (16) de la pression du combustible gazeux alimentant la chambre de combustion et dans lequel une des commandes d'alimentation est la commande du moyen de régulation de la pression. 7. Device according to claim 6 wherein the gas turbine comprises a means (16) for regulating the pressure of the gaseous fuel supplying the combustion chamber and wherein one of the supply controls is the control of the control means of the pressure. 8. Dispositif selon la revendication 7 dans lequel dans lequel la turbine à gaz comprend une vanne (18) d'alimentation de la chambre de combustion en combustible gazeux, montée en aval du moyen de régulation, le débit de combustible gazeux alimentant la chambre de combustion (6) étant proportionnel au pourcentage d'ouverture de la vanne, et dans lequel une des commandes d'alimentation est le pourcentage d'ouverture de la vanne (18). 8. Device according to claim 7 wherein wherein the gas turbine comprises a valve (18) for supplying the gaseous fuel combustion chamber, mounted downstream of the regulating means, the flow of gaseous fuel supplying the chamber of combustion (6) being proportional to the opening percentage of the valve, and wherein one of the supply controls is the opening percentage of the valve (18). 9. Dispositif selon la revendication 8 dans lequel la vanne d'alimentation (18) est une vanne de type sonique. 9. Device according to claim 8 wherein the supply valve (18) is a sonic type valve. 10. Turbine à gaz comprenant un dispositif (8) de démarrage ou d'arrêt selon l'une des revendications 6 à 9. 10. Gas turbine comprising a device (8) for starting or stopping according to one of claims 6 to 9.
FR1054657A 2010-06-11 2010-06-11 METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE Active FR2961261B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1054657A FR2961261B1 (en) 2010-06-11 2010-06-11 METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE
CN201180030834.1A CN102947572B (en) 2010-06-11 2011-06-10 Start or stop the method and apparatus of gas-turbine unit
PCT/EP2011/059701 WO2011154528A1 (en) 2010-06-11 2011-06-10 Method and device for starting or stopping a gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1054657A FR2961261B1 (en) 2010-06-11 2010-06-11 METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE

Publications (2)

Publication Number Publication Date
FR2961261A1 true FR2961261A1 (en) 2011-12-16
FR2961261B1 FR2961261B1 (en) 2017-12-22

Family

ID=43530073

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1054657A Active FR2961261B1 (en) 2010-06-11 2010-06-11 METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE

Country Status (3)

Country Link
CN (1) CN102947572B (en)
FR (1) FR2961261B1 (en)
WO (1) WO2011154528A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170524A (en) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd Gas turbine starting and stopping device
EP2762687A1 (en) 2013-02-01 2014-08-06 Siemens Aktiengesellschaft Method for starting a combustion system
EP2770182B1 (en) 2013-02-25 2015-10-14 Alstom Technology Ltd Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine and gas turbine
CN114017185B (en) * 2021-10-11 2022-11-29 广东粤电新会发电有限公司 Nitrogen-filled air resistance leakage-preventing system for natural gas adjusting pipeline of gas turbine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052315A2 (en) * 1999-02-26 2000-09-08 Alliedsignal Inc. Variable fuel heating value adaptive control for gas turbine engines
DE102006008483A1 (en) * 2005-09-14 2007-03-22 Mitsubishi Heavy Industries, Ltd. Combustion control device for gas turbine, has fuel flow rate-control valve position-instruction adjusting unit to estimate instruction values based on which fuel supply to fuel injectors is controlled by controlling valve opening levels
US20080115482A1 (en) * 2006-11-16 2008-05-22 Siemens Power Generation, Inc. Integrated Fuel Gas Characterization System
US7472540B2 (en) * 2003-10-13 2009-01-06 Siemens Aktiengesellschaft Method and device for compensating variations in fuel composition in a gas turbine system
DE102008002941A1 (en) * 2007-08-01 2009-02-05 General Electric Co. Wobbe control and improved operability through in-line fuel conversion
EP2085577A1 (en) * 2008-02-04 2009-08-05 Nuovo Pignone S.P.A. Method for the start-up of a gas turbine
WO2010061646A1 (en) * 2008-11-28 2010-06-03 三菱重工業株式会社 Gas turbine controller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082092A (en) * 1998-04-08 2000-07-04 General Electric Co. Combustion dynamics control for variable fuel gas composition and temperature based on gas control valve feedback
US7481061B2 (en) 2005-11-10 2009-01-27 Siemens Energy, Inc. Fuel control for starting a gas turbine engine
US7565805B2 (en) * 2005-11-22 2009-07-28 General Electric Company Method for operating gas turbine engine systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052315A2 (en) * 1999-02-26 2000-09-08 Alliedsignal Inc. Variable fuel heating value adaptive control for gas turbine engines
US7472540B2 (en) * 2003-10-13 2009-01-06 Siemens Aktiengesellschaft Method and device for compensating variations in fuel composition in a gas turbine system
DE102006008483A1 (en) * 2005-09-14 2007-03-22 Mitsubishi Heavy Industries, Ltd. Combustion control device for gas turbine, has fuel flow rate-control valve position-instruction adjusting unit to estimate instruction values based on which fuel supply to fuel injectors is controlled by controlling valve opening levels
US20080115482A1 (en) * 2006-11-16 2008-05-22 Siemens Power Generation, Inc. Integrated Fuel Gas Characterization System
DE102008002941A1 (en) * 2007-08-01 2009-02-05 General Electric Co. Wobbe control and improved operability through in-line fuel conversion
EP2085577A1 (en) * 2008-02-04 2009-08-05 Nuovo Pignone S.P.A. Method for the start-up of a gas turbine
WO2010061646A1 (en) * 2008-11-28 2010-06-03 三菱重工業株式会社 Gas turbine controller

Also Published As

Publication number Publication date
WO2011154528A1 (en) 2011-12-15
FR2961261B1 (en) 2017-12-22
CN102947572A (en) 2013-02-27
CN102947572B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
EP2441937B1 (en) Apparatus and method for purging a liquid fuel injection system in a gas turbine.
EP1672269B1 (en) Installation for supplying gaseous fuel to an energy producing unit of a ship for transportation of liquid gas
FR3068114B1 (en) FLUID SUPPLY SYSTEM FOR TURBOMACHINE, COMPRISING A VARIABLE CYLINDER PUMP FOLLOWED BY A FLUID DOSER
EP0091852B1 (en) Regulation process of a liquid rocket's propellant mixture ratio
US20120036863A1 (en) Method, apparatus and system for delivery of wide range of turbine fuels for combustion
EP1348620A1 (en) Arrangement for supplying gaseous fuel to a power plant in a LNG ship
EP2609313B1 (en) Method for optimizing the control of a free turbine powerplant for an aircraft, and controller for implementing same
FR2919673A1 (en) ASSISTANCE AND RELIEF FOR THE ELECTRIC DRIVE OF A FUEL PUMP IN A TURBOMOTEUR
FR2965586A1 (en) METHOD AND DEVICE FOR STARTING GAS TURBINE
FR2930969A1 (en) PROPORTIONAL CONTROL OF FUEL PRESSURE AMPLITUDE IN GAS TURBINES
CA3140074A1 (en) Method for regulating the acceleration of a turbomachine
FR2961259A1 (en) METHOD FOR CONTROLLING FUEL FOR STARTING A GAS TURBINE ENGINE
FR2961261A1 (en) METHOD AND DEVICE FOR STARTING OR STOPPING A GAS TURBINE
EP3994349B1 (en) Turbogenerator with simplified regulating system for an aircraft
FR2951228A1 (en) Method for managing heat exchange between fluids e.g. fuel, in turbomachine e.g. dual flow gas turbine engine of airplane, involves adjusting thermal transfer towards fuel to obtain temperature of fuel injected into combustion chamber
FR3018561A1 (en) METHOD FOR MONITORING THE OPERATION OF VALVES OF A GAS TURBINE GAS SUPPLY DEVICE
WO2023011900A1 (en) System for conditioning fuel for supplying an aircraft turbomachine, aircraft and method of use
FR2921461A1 (en) Gas e.g. combustible gas, rate regulating device for e.g. gas-fired boiler, has sensor with pressure tap connected to chamber for determining gas rate in pipe, and valve placed in upstream of another tap to interrupt gas in another pipe
EP1072772B1 (en) Fuel cell power generating module comprising means for controlling the fuel cell pressure
FR2962490A1 (en) DEVICE FOR EXTINGUISHING GAS LEAKS IN A GAS FUEL SUPPLYING DEVICE OF A GAS TURBINE AND METHOD THEREOF
WO2024084168A1 (en) System for supplying hydrogen to a turbine engine, and device for regulating such a hydrogen supply system
FR2960914A1 (en) Method for regulating flow of fuel to be injected into combustion chamber of turbomachine of aeroplane, involves correcting setpoint position of metering valve based on difference between measurement value and set point
FR3071276A1 (en) DEVICE AND METHOD FOR SUPPLYING GAS WITH METHANE INDEX OPTIMIZED BY AT LEAST ONE THERMAL MOTOR, IN PARTICULAR A LIQUEFIED GAS TRANSPORT SHIP
EP2306085B1 (en) Burner with pressurized air and liquid fuel with modulation of the comburent / fuel ratio
FR2980237A1 (en) Method for checking proper closure of oil pressurizing valve in aircraft turboshaft engine oil circuit, involves comparing measured time with nominal time, and stating valve defective closure when measured time is greater than nominal time

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15