FR2946266A1 - PROCESS FOR THE PREPARATION OF A HYDROCOMPATIBLE COMPOSITION OF NANOCRYSTAL (S) OXIDE (S) OXIDES AND HYDROCOMPATIBLE COMPOSITION OBTAINED - Google Patents

PROCESS FOR THE PREPARATION OF A HYDROCOMPATIBLE COMPOSITION OF NANOCRYSTAL (S) OXIDE (S) OXIDES AND HYDROCOMPATIBLE COMPOSITION OBTAINED Download PDF

Info

Publication number
FR2946266A1
FR2946266A1 FR0902736A FR0902736A FR2946266A1 FR 2946266 A1 FR2946266 A1 FR 2946266A1 FR 0902736 A FR0902736 A FR 0902736A FR 0902736 A FR0902736 A FR 0902736A FR 2946266 A1 FR2946266 A1 FR 2946266A1
Authority
FR
France
Prior art keywords
nanocrystals
group
ligand
oxide
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0902736A
Other languages
French (fr)
Other versions
FR2946266B1 (en
Inventor
Myrtil Kahn
Gauffre Fabienne Guirardel
Garcia Javier Rubio
Christophe Mingotaud
Bruno Chaudret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR0902736A priority Critical patent/FR2946266B1/en
Priority to KR1020127000404A priority patent/KR101782851B1/en
Priority to PCT/FR2010/051103 priority patent/WO2010139910A1/en
Priority to EP10734790.8A priority patent/EP2438013B1/en
Priority to US13/376,222 priority patent/US9162900B2/en
Publication of FR2946266A1 publication Critical patent/FR2946266A1/en
Application granted granted Critical
Publication of FR2946266B1 publication Critical patent/FR2946266B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/02Germanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/39Particle morphology extending in three dimensions parallelepiped-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

L'invention concerne un procédé de préparation d'une composition de nanocristaux d'oxyde(s) métallique(s) à partir d'au moins un précurseur organométallique un milieu solvant aprotique en présence d'au moins un ligand PEG, comprenant une chaîne carbonée dont au moins une extrémité est fonctionnalisée par un groupe de coordination comprenant au moins un hétéroatome, et présentant au moins un groupement [-OCH CH ] , de façon à être soluble à la fois dans ledit milieu solvant aprotique et dans l'eau. L'invention s'étend à une composition hydrocompatible et organocompatible de nanocristaux d'oxyde(s) métallique(s) ainsi obtenue.The invention relates to a method for preparing a composition of metal oxide nanocrystals from at least one organometallic precursor and an aprotic solvent medium in the presence of at least one PEG ligand, comprising a chain at least one end of which is functionalized by a coordination group comprising at least one heteroatom, and having at least one [-OCH CH] group, so as to be soluble both in said aprotic solvent medium and in water. The invention extends to a hydrocompatible and organocompatible composition of nanocrystals of metal oxide (s) thus obtained.

Description

PROCÉDÉ DE PRÉPARATION D'UNE COMPOSITION HYDROCOMPATIBLE DE NANOCRISTAUX D'OXYDE(S) MÉTALLIQUE(S) ET COMPOSITION HYDROCOMPATIBLE OBTENUE L'invention concerne un procédé de préparation d'une composition de nanoparticules, dites nanocristaux d'oxyde(s) métallique(s), d'au moins un oxyde métallique à l'état cristallin, à partir d'au moins un précurseur organométallique en milieu solvant aprotique et en présence d'au moins un ligand choisi dans le groupe des composés organiques présentant au moins une chaîne carbonée et solubles dans ledit milieu solvant aprotique. Elle s'étend à une composition de nanoparticules, dites nanocristaux d'oxyde(s) métallique(s), ainsi obtenue. Dans tout le texte, on adopte la terminologie suivante : - nanoparticule : toute particule quelle que soit sa forme, présentant au moins une largeur et une épaisseur toutes deux inférieures à 100nm, typiquement comprises entre lnm et 20nm ; - nanocristaux d'oxyde(s) métallique(s) : nanoparticules constituées d'au moins un composé choisi parmi les oxydes métalliques à l'état cristallin, chaque nanoparticule possédant la structure du(des) oxyde(s) métallique(s), c'est-à-dire étant formée d'atomes de métal(aux) et d'oxygène liés entre eux comme dans les oxydes métalliques massiques ; - précurseur organométallique : toute molécule ou composé de coordination contenant au moins un groupement organique lié à au moins un atome métallique (métal de transition ou composé des groupes principaux, à savoir notamment le zinc, le cadmium, le bore, l'aluminium, le gallium, l'indium, le thallium, le germanium, l'étain, le titane, le zirconium, l'hafnium, les lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), le scandium, l'yttrium, le silicium, le bismuth et les autres métaux de transition) par un atome de carbone ou un hétéroatome (choisi notamment parmi N, P, As, Si, S, Se, Te), de ce groupement organique ; - précurseur organométallique spontanément réactif à l'oxydation : précurseur organométallique qui se transforme de manière exothermique en un oxyde dans lequel l'atome métallique a un degré d'oxydation supérieur ou égal à 1 alors qu'il est mis en présence d'au moins un oxydant (tel que l'eau, l'oxygène, l'air ambiant...) ; - oxydant : tout agent permettant la transformation d'un précurseur en un oxyde par une réaction chimique d'oxydation ; - chaîne carbonée : toute chaîne aliphatique, saturée ou non saturée, normale ou ramifiée, substituée ou non, pouvant comprendre des hétéroatomes ; - milieu solvant aprotique : toute composition qui n'est pas protogène, ne présente pas d'atome d'hydrogène apte à former des liaisons hydrogène, et dans laquelle l'eau pouvant être présente à l'état de traces ne fait pas office d'agent solvant ; une telle composition est apte à former une solution liquide lorsqu'elle est placée au contact d'au moins un composé tel qu'un précurseur organométallique ; elle peut se présenter à l'état initialement liquide, ou au contraire ne passer à l'état liquide qu'après contact avec le(les) composé(s) à solubiliser ; elle peut être simple, c'est-à-dire formée d'un seul composé, ou au contraire complexe et renfermer plusieurs composés ; en particulier, elle peut renfermer non seulement un ou plusieurs composé(s) faisant office d'agent solvant, mais aussi tout autre composé non consommé par la réaction de formation des nanocristaux métalliques -notamment dans une réaction d'oxydation- sensiblement neutre vis-à-vis de la dissolution du(des) précurseur(s) organométallique(s), et jouant un rôle ou non dans la réaction de formation des nanocristaux métalliques -notamment dans une réaction d'oxydation- ; un tel milieu solvant aprotique est en particulier non aqueux ; - solution colloïdale : toute composition liquide limpide de nanoparticules solides dispersées dans un liquide ; une solution colloïdale liquide présente de nombreuses propriétés d'une solution liquide vraie mais pas toutes, les nanoparticules restant à l'état solide ; on parle aussi parfois de suspension ou de dispersion colloïdale ; - composition hydrocompatible de nanoparticules : toute composition de nanoparticules susceptibles d'être dispersées au moins en milieu aqueux, notamment toute composition susceptible de former une solution colloïdale (dispersion liquide) en milieu aqueux ; - composition organocompatible de nanoparticules : toute composition de nanoparticules susceptibles d'être dispersées dans au moins un milieu organique -notamment non aqueux- protique ou aprotique, notamment toute composition susceptible de former une solution colloïdale (dispersion liquide) avec au moins un tel milieu liquide organique -notamment non aqueux- protique ou aprotique, - groupe de coordination : tout groupement chimique susceptible de former une liaison covalente, dative, hydrogène ou électrostatique avec les atomes de métaux, les ions métalliques, l'oxygène et les oxydes métalliques. WO 2004/092069 décrit un procédé de préparation de nanoparticules d'au moins un oxyde métallique cristallin, dans lequel on choisit au moins un précurseur organométallique spontanément réactif à l'oxydation, on réalise une solution liquide de chaque précurseur organométallique dans un milieu solvant non aqueux en présence d'au moins un ligand soluble dans ledit milieu solvant, et on met cette solution liquide en contact avec au moins un oxydant dans des conditions réactionnelles adaptées pour entraîner directement la production de nanocristaux d'oxyde(s) métallique(s). Ce procédé donne satisfaction et permet de contrôler la forme, la taille des nanoparticules et leurs propriétés. Par ailleurs, la thèse de Carole Pages, Université Toulouse III-Paul Sabatier UFRPCA Laboratoire de Chimie de Coordination, 17 décembre 2007 pages 120 à 149 montre l'importance des chaînes alkyle non ramifiées des ligands et du rôle prépondérant des interactions faibles telles que les interactions électrostatiques, de Van der Waals, et hydrogène dans le processus d'organisation des nanoparticules dans le solvant. Comme le montre en particulier cette thèse, il est considéré que les ligands qui doivent être utilisés pour la préparation de telles nanoparticules doivent impérativement présenter une chaîne alkyle aliphatique. Ainsi, aucune composition de nanocristaux d'oxyde(s) métallique(s) par un tel procédé en simple solution dans un milieu solvant aprotique n'a pu être obtenue en présence d'un ligand ne présentant pas une telle chaîne alkyle aliphatique. The invention relates to a process for the preparation of a composition of nanoparticles, called nanocrystals of metal oxide (s) (s). The invention relates to a method for preparing a composition of nanoparticles, called nanocrystals of metal oxide (s) (s). ), at least one metal oxide in the crystalline state, from at least one organometallic precursor in an aprotic solvent medium and in the presence of at least one ligand selected from the group of organic compounds having at least one carbon chain and soluble in said aprotic solvent medium. It extends to a composition of nanoparticles, called nanocrystals of metal oxide (s), thus obtained. Throughout the text, we adopt the following terminology: nanoparticle: any particle whatever its shape, having at least a width and a thickness both less than 100 nm, typically between 1 nm and 20 nm; nanocrystals of metal oxide (s): nanoparticles consisting of at least one compound chosen from metal oxides in the crystalline state, each nanoparticle having the structure of the metal oxide (s), that is to say being formed of metal atoms (aux) and oxygen bonded together as in the mass metal oxides; organometallic precursor: any molecule or coordination compound containing at least one organic group bonded to at least one metal atom (transition metal or composed of the main groups, namely in particular zinc, cadmium, boron, aluminum, gallium, indium, thallium, germanium, tin, titanium, zirconium, hafnium, lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm , Yb, Lu), scandium, yttrium, silicon, bismuth and the other transition metals) by a carbon atom or a heteroatom (chosen in particular from N, P, As, Si, S, Se, Te ), of this organic group; organometallic precursor spontaneously reactive with oxidation: an organometallic precursor which is transformed exothermically into an oxide in which the metal atom has a degree of oxidation greater than or equal to 1 while it is in the presence of at least one an oxidant (such as water, oxygen, ambient air ...); oxidant: any agent allowing the transformation of a precursor into an oxide by a chemical oxidation reaction; - carbon chain: any aliphatic chain, saturated or unsaturated, normal or branched, substituted or unsubstituted, which may include heteroatoms; aprotic solvent medium: any composition which is not protogenic, does not have a hydrogen atom capable of forming hydrogen bonds, and in which the water which may be present in trace amounts does not act as a solvent agent; such a composition is capable of forming a liquid solution when placed in contact with at least one compound such as an organometallic precursor; it may be in the initially liquid state, or on the contrary go into the liquid state only after contact with the compound (s) to be solubilized; it may be simple, that is to say formed of a single compound, or on the contrary complex and contain several compounds; in particular, it may contain not only one or more compound (s) acting as a solvent agent, but also any other compound not consumed by the formation reaction of the metal nanocrystals-especially in a substantially neutral oxidation reaction- with respect to the dissolution of the organometallic precursor (s), and playing a role or not in the formation reaction of the metal nanocrystals -particularly in an oxidation reaction-; such an aprotic solvent medium is in particular non-aqueous; colloidal solution: any clear liquid composition of solid nanoparticles dispersed in a liquid; a liquid colloidal solution has many properties of a true liquid solution but not all, the nanoparticles remaining in the solid state; sometimes referred to as colloidal suspension or dispersion; hydrocompatible composition of nanoparticles: any composition of nanoparticles capable of being dispersed at least in an aqueous medium, in particular any composition capable of forming a colloidal solution (liquid dispersion) in an aqueous medium; organocompatible composition of nanoparticles: any composition of nanoparticles capable of being dispersed in at least one organic medium-in particular non-aqueous-protic or aprotic, in particular any composition capable of forming a colloidal solution (liquid dispersion) with at least one such liquid medium organic -particularly non-aqueous-protic or aprotic, - coordination group: any chemical group capable of forming a covalent, dative, hydrogen or electrostatic bond with metal atoms, metal ions, oxygen and metal oxides. WO 2004/092069 discloses a process for preparing nanoparticles of at least one crystalline metal oxide, in which at least one organometallic precursor that is spontaneously reactive with oxidation is chosen, a liquid solution of each organometallic precursor is prepared in a non-solvent medium aqueous solution in the presence of at least one soluble ligand in said solvent medium, and this liquid solution is brought into contact with at least one oxidant under suitable reaction conditions to directly produce the nanocrystals of metal oxide (s) . This process is satisfactory and makes it possible to control the shape, the size of the nanoparticles and their properties. In addition, the thesis of Carole Pages, University Toulouse III Paul Sabatier UFRPCA Laboratory of Chemistry Coordination, December 17, 2007 pages 120 to 149 shows the importance of the unbranched alkyl chains of the ligands and the preponderant role of weak interactions such as the electrostatic interactions, Van der Waals, and hydrogen in the process of organizing nanoparticles in the solvent. As this thesis shows in particular, it is considered that the ligands which must be used for the preparation of such nanoparticles must imperatively have an aliphatic alkyl chain. Thus, no composition of nanocrystals of metal oxide (s) by such a process in simple solution in an aprotic solvent medium could be obtained in the presence of a ligand not exhibiting such an aliphatic alkyl chain.

Ce procédé connu est applicable à tout composé métallique pour lequel il existe un précurseur organométallique spontanément réactif à l'oxydation susceptible d'être solubilisé dans un milieu solvant aprotique, ou à toute combinaison de tels composés métalliques. Ainsi, parmi ces composés métalliques, on peut citer : le zinc, le cadmium, le bore, l'aluminium, le gallium, l'indium, le thallium, le germanium, l'étain, le titane, le zirconium, l'hafnium, les lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), le scandium, l'yttrium, le silicium, le bismuth et les autres métaux de transition. Dans les nanocristaux métalliques obtenus, chaque composé métallique est au moins partiellement oxydé, en général totalement oxydé (bien qu'il reste possible que certaines nanoparticules présentent un coeur métallique à l'état non oxydé). Tous ces procédés connus de synthèse de nanocristaux d'oxyde(s) métallique(s) à partir de précurseurs organométalliques en milieu solvant aprotique présentent l'inconvénient de produire des compositions de nanocristaux métalliques qui sont organocompatibles, mais qui ne sont par contre pas hydrocompatibles. À ce titre il est à noter que bien que la présence de traces d'eau dans le milieu solvant soit connue pour pouvoir jouer un rôle dans le cadre de la réaction d'oxydation (cf. Size- and Shape-Control of Crystalline Zinc Oxide Nanoparticles : A New Organometallic Synthetic Method , Myrtil L. Kahn et al.,Adv. Func. Mater. 2005, 15, No. 3, mars), la présence d'une quantité importante et non contrôlée d'eau est strictement incompatible avec la réalisation d'une réaction de décomposition d'organométallique(s). En effet, dans le domaine technique des organométalliques, l'eau est considérée systématiquement comme nuisible, voire dangereuse. Plus particulièrement, dans le cas d'une réaction d'oxydation à partir d'un précurseur organométallique, il est considéré que la présence d'une quantité importante et non contrôlée d'eau dans le milieu aurait nécessairement pour conséquence à tout le moins de perturber considérablement, voire d'empêcher le fonctionnement de la réaction. En effet, on sait que toute présence incontrôlée d'eau conduit immanquablement à la formation des hydroxydes métalliques (décompositions destructives et exothermiques du type de Zerewitinoff) et est destructrice et nuisible dans le cadre de la préparation et de l'utilisation des composés organométalliques. Au demeurant, les réactions en présence d'organométalliques sont le plus souvent réalisées en présence d'un piège à eau de façon à travailler en atmosphère sèche. This known method is applicable to any metal compound for which there exists an organometallic precursor spontaneously reactive to oxidation capable of being solubilized in an aprotic solvent medium, or to any combination of such metal compounds. Thus, among these metal compounds, mention may be made of: zinc, cadmium, boron, aluminum, gallium, indium, thallium, germanium, tin, titanium, zirconium, hafnium , the lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), scandium, yttrium, silicon, bismuth and the other transition metals. In the metal nanocrystals obtained, each metal compound is at least partially oxidized, generally completely oxidized (although it is possible that some nanoparticles have a metal core in the non-oxidized state). All these known processes for synthesizing metal oxide nanocrystals from organometallic precursors in an aprotic solvent medium have the disadvantage of producing compositions of metal nanocrystals which are organocompatible but which are not hydrocompatible. . As such it should be noted that although the presence of traces of water in the solvent medium is known to be able to play a role in the context of the oxidation reaction (see Size and Shape Control of Crystalline Zinc Oxide). Nanoparticles: A New Organometallic Synthetic Method, Myrtil L. Kahn et al., Adv Func Mater 2005, 15, No. 3, March), the presence of a large and uncontrolled amount of water is strictly incompatible with performing an organometallic decomposition reaction (s). Indeed, in the technical field of organometallics, water is systematically considered as harmful, even dangerous. More particularly, in the case of an oxidation reaction from an organometallic precursor, it is considered that the presence of a large and uncontrolled amount of water in the medium would necessarily result in at least considerably disturb or even prevent the reaction from working. Indeed, it is known that any uncontrolled presence of water inevitably leads to the formation of metal hydroxides (destructive and exothermic decompositions of the Zerewitinoff type) and is destructive and harmful in the context of the preparation and use of organometallic compounds. Moreover, the reactions in the presence of organometallic are most often carried out in the presence of a water trap so as to work in a dry atmosphere.

Cela est d'autant plus vrai dans le cas d'une réaction d'oxydation telle que mentionnée dans WO2004/092069 pour laquelle une quantité importante et non contrôlée d'eau viendrait de surcroît nécessairement perturber le fonctionnement de la réaction d'oxydation elle-même. Ainsi, il est hors de question de réaliser ce type de réaction en présence d'une quantité non contrôlée d'eau, ou même en présence d'un composé hydrophile susceptible d'introduire de l'eau en quantité importante et non contrôlée dans le milieu réactionnel. Or, il serait utile de permettre l'obtention de telles compositions de nanocristaux métalliques qui soient hydrocompatibles, et plus particulièrement à la fois organocompatibles et hydrocompatibles, c'est-à-dire qui puissent être dispersées à la fois et selon les besoins dans les milieux aprotiques - notamment organiques non aqueux-, et dans les milieux protiques -notamment l'eau et les milieux aqueux-. En particulier l'obtention de telles compositions hydrocompatibles est importante pour permettre leur utilisation dans de nombreuses applications, notamment dans les milieux physiologiques, à titre thérapeutique, et dans toutes les applications pour lesquelles on cherche à éviter l'emploi de solvants organiques qui sont des composés organiques volatils (COV) toxiques et/ou polluants dont l'usage doit être limité, voire supprimé, compte tenu des règles de respect de l'environnement. Différents procédés ont déjà été proposés pour permettre de 30 rendre hydrocompatibles des compositions de nanocristaux métalliques initialement non hydrocompatibles. Une première approche consiste à échanger les ligands hydrophobes par des ligands analogues mais présentant des groupes hydrophiles tels que des polymères dérivés de PEG (thiol-PEG, amino-PEG, carboxy-PEG). Cette approche nécessite cependant une deuxième étape relativement complexe et dont le rendement n'est pas très bon. Une deuxième approche consiste à incorporer dans la composition obtenue des ligands amphiphiles susceptibles d'interagir avec les ligands hydrophobes issus de la préparation des nanoparticules, sans remplacer ces ligands hydrophobes, en formant des structures de bicouches autour des nanoparticules. Les compositions obtenues avec cette approche peuvent présenter une certaine toxicité (par libération de composés amphiphiles), et une stabilité mal contrôlée, ce qui est un inconvénient notamment dans les applications biologiques et thérapeutiques. This is all the more true in the case of an oxidation reaction as mentioned in WO2004 / 092069 for which a large and uncontrolled quantity of water would additionally necessarily disrupt the operation of the oxidation reaction itself. even. Thus, it is out of the question to carry out this type of reaction in the presence of an uncontrolled quantity of water, or even in the presence of a hydrophilic compound capable of introducing water in a large and uncontrolled quantity into the water. reaction medium. However, it would be useful to allow obtaining such metal nanocrystal compositions that are hydrocompatible, and more particularly both organocompatible and hydrocompatible, that is to say that can be dispersed both and as needed in the aprotic media - especially organic non-aqueous-, and in protic media -including water and aqueous media-. In particular, obtaining such hydrocompatible compositions is important for their use in many applications, particularly in physiological media, for therapeutic purposes, and in all the applications for which it is sought to avoid the use of organic solvents which are volatile organic compounds (VOCs) and / or pollutants whose use should be limited or even eliminated, taking into account the rules of respect for the environment. Various methods have already been proposed to make initially non-hydrocompatible metallic nanocrystal compositions hydrocompatible. A first approach consists in exchanging the hydrophobic ligands by analog ligands but having hydrophilic groups such as polymers derived from PEG (thiol-PEG, amino-PEG, carboxy-PEG). However, this approach requires a relatively complex second step that is not very efficient. A second approach consists in incorporating in the composition obtained amphiphilic ligands capable of interacting with the hydrophobic ligands resulting from the preparation of the nanoparticles, without replacing these hydrophobic ligands, by forming bilayer structures around the nanoparticles. The compositions obtained with this approach may exhibit some toxicity (by release of amphiphilic compounds), and poorly controlled stability, which is a disadvantage particularly in biological and therapeutic applications.

Dans certains cas très spécifiques, une autre approche peut consister à choisir pour réaliser la préparation des nanoparticules un ligand présentant à l'une des extrémités de la chaîne alkyle aliphatique, un groupement permettant ultérieurement de réaliser des réactions chimiques pour le greffage d'un groupe hydrophile. Mais, là encore, une étape supplémentaire est nécessaire, et cette approche n'est possible que dans des cas très particuliers, peu utiles en pratique. En outre, ces différentes approches présentent aussi le plus souvent l'inconvénient que les compositions de nanoparticules modifiées pour être hydrocompatibles ne sont plus, ultérieurement, organocompatibles dans des conditions satisfaisantes. In some very specific cases, another approach may consist in choosing to carry out the preparation of the nanoparticles a ligand having at one end of the aliphatic alkyl chain, a group which subsequently makes it possible to carry out chemical reactions for the grafting of a group. hydrophilic. But here again, an additional step is necessary, and this approach is possible only in very particular cases, which are of little use in practice. In addition, these different approaches also most often have the disadvantage that the compositions of nanoparticles modified to be hydrocompatible are no longer, subsequently, organocompatible under satisfactory conditions.

L'invention vise donc à pallier ces inconvénients et à proposer un procédé permettant d'obtenir par un procédé de synthèse en milieu solvant aprotique directement en une seule étape, une composition de nanocristaux d'oxyde(s) métallique(s) qui soit hydrocompatible, ce qui, jusqu'à maintenant, était considéré comme parfaitement impossible. Plus particulièrement, l'invention vise à proposer un tel procédé permettant d'obtenir une telle composition qui soit à la fois hydrocompatible et organocompatible. Plus particulièrement l'invention vise à proposer un procédé permettant d'obtenir une composition de nanocristaux d'oxyde(s) métallique(s) se présentant sous forme de solution colloïdale et ce quel que soit le milieu solvant, organique ou aqueux, et dont les propriétés (notamment des propriétés de photoluminescence) restent inchangées en milieu aqueux. Elle vise également à proposer un tel procédé qui soit simple, rapide, facile à maîtriser, notamment puisse être effectué par synthèse en milieu solvant aprotique directement en une seule étape, et qui puisse faire l'objet d'ajustements aisés pour l'obtention de caractéristiques souhaitées des nanocristaux, notamment en ce qui concerne leurs formes et leurs dimensions. Plus particulièrement, l'invention vise à proposer un tel procédé permettant d'obtenir des compositions liquides de nanocristaux d'oxyde(s) métallique(s) parfaitement dispersés (non agglomérés) dans un milieu solvant pouvant être organique ou aqueux, ces nanocristaux d'oxyde(s) métallique(s) ayant des formes et dimensions pouvant être contrôlées avec précision et qui sont au moins sensiblement uniformes, c'est-à-dire selon une distribution unimodale, notamment sensiblement homogène (faible dispersion), et pouvant même être monodisperses. Également, l'invention vise à proposer un tel procédé permettant d'obtenir des solutions colloïdales de nanocristaux d'oxyde(s) métallique(s) aussi bien dans un milieu solvant organique que dans un milieu solvant aqueux. L'invention vise également à proposer un tel procédé de préparation qui soit simple, réalisé en une seule étape, sans appareillage complexe, exempt de traitement thermique, ne produisant pas de rejets polluants en quantités importantes, et compatible avec une exploitation à l'échelle industrielle dans des conditions économiques satisfaisantes. L'invention vise également à proposer une composition telle que mentionnée ci-dessus. L'invention vise également à proposer un tel procédé et une 30 telle composition applicables à une grande variété de métaux. The invention therefore aims to overcome these drawbacks and to propose a process which makes it possible to obtain, by a method of synthesis in an aprotic solvent medium directly in a single step, a composition of nanocrystals of metal oxide (s) which is hydrocompatible which, until now, was considered perfectly impossible. More particularly, the invention aims to provide such a method for obtaining such a composition which is both hydrocompatible and organocompatible. More particularly, the invention aims to provide a method for obtaining a composition of nanocrystals of metal oxide (s) in the form of a colloidal solution and whatever the solvent medium, organic or aqueous, and of which the properties (in particular photoluminescence properties) remain unchanged in an aqueous medium. It also aims to propose such a process which is simple, fast, easy to control, in particular can be carried out by synthesis in an aprotic solvent medium directly in a single step, and which can be easily adjusted to obtain desired characteristics of the nanocrystals, particularly as regards their shapes and dimensions. More particularly, the invention aims to provide such a method for obtaining liquid compositions of nanocrystals of metal oxide (s) perfectly dispersed (non-agglomerated) in a solvent medium that can be organic or aqueous, these nanocrystals of metal oxide (s) having shapes and dimensions which can be precisely controlled and which are at least substantially uniform, that is to say in a unimodal distribution, in particular substantially homogeneous (low dispersion), and which can even be to be monodisperse. Also, the invention aims to provide such a method for obtaining colloidal solutions of metal oxide nanocrystals (s) both in an organic solvent medium in an aqueous solvent medium. The invention also aims at providing such a simple preparation method, carried out in a single step, without complex equipment, free from heat treatment, not producing polluting discharges in large quantities, and compatible with a scale operation. in satisfactory economic conditions. The invention also aims at providing a composition as mentioned above. The invention also aims to provide such a process and such a composition applicable to a wide variety of metals.

Pour ce faire, l'invention concerne un procédé de préparation d'une composition de nanoparticules, dites nanocristaux d'oxyde(s) métallique(s), d'au moins un oxyde métallique à l'état cristallin, à partir d'au moins un précurseur organométallique dans lequel : û on réalise une solution liquide d'au moins un précurseur organométallique spontanément réactif à l'oxydation, dans un milieu solvant aprotique en présence d'au moins un ligand organique présentant au moins une chaîne carbonée dont au moins une extrémité est fonctionnalisée par un groupe de coordination comprenant au moins un hétéroatome, et soluble dans ledit milieu solvant aprotique, û on met cette solution liquide en contact avec au moins un oxydant -notamment un gaz oxydant tel que de la vapeur d'eau, ou de l'eau liquide- dans des conditions réactionnelles adaptées pour entraîner directement la formation des nanocristaux d'oxyde(s) métallique(s), caractérisé en ce qu'on choisit : û au moins un ligand, dit ligand PEG, dans le groupe des composés organiques comprenant au moins une chaîne carbonée présentant au moins un groupement [-OCH2CH2],,, n étant un entier supérieur ou égal à 1, et solubles dans l'eau, û ledit milieu solvant aprotique de façon que chaque ligand PEG soit soluble dans ce milieu solvant aprotique, et de façon à obtenir directement en une étape une composition hydrocompatible et organocompatible de nanocristaux d'oxyde(s) métallique(s). L'invention consiste donc de façon générale en un procédé de 25 préparation de nanocristaux métalliques à partir d'au moins un précurseur organométallique dans lequel : û on réalise une solution liquide d'au moins un précurseur organométallique, dans un milieu solvant aprotique en présence d'au moins un composé, dit ligand organique, présentant au moins une chaîne carbonée 30 dont au moins une extrémité est fonctionnalisée par un groupe de coordination comprenant au moins un hétéroatome, et soluble dans ledit milieu solvant aprotique, û on met cette solution liquide en contact avec au moins un réactif dans des conditions réactionnelles adaptées pour entraîner directement la formation des nanocristaux métalliques (en une étape et par décomposition de chaque précurseur organométallique), caractérisé en ce qu'on choisit : û au moins un ligand, dit ligand PEG, dans le groupe des ligands organiques comprenant au moins une chaîne carbonée présentant au moins un groupement [-OCH2CH2],,, n étant un entier supérieur ou égal à 1, et solubles dans l'eau, û ledit milieu solvant aprotique de façon que chaque ligand PEG soit soluble dans ce milieu solvant aprotique, et de façon à obtenir directement en une étape une composition hydrocompatible et organocompatible de nanocristaux métalliques. To this end, the invention relates to a process for the preparation of a composition of nanoparticles, called nanocrystals of metal oxide (s), of at least one metal oxide in the crystalline state, from less an organometallic precursor in which: a liquid solution of at least one organometallic precursor spontaneously reactive to oxidation is produced in an aprotic solvent medium in the presence of at least one organic ligand having at least one carbon chain, at least one one end is functionalized by a coordination group comprising at least one heteroatom, and soluble in said aprotic solvent medium, this liquid solution is brought into contact with at least one oxidant - in particular an oxidizing gas such as water vapor, or liquid water under suitable reaction conditions for directly forming the nanocrystals of metal oxide (s), characterized in that at least a ligand, referred to as PEG ligand, in the group of organic compounds comprising at least one carbon chain having at least one group [-OCH 2 CH 2] n, where n is an integer greater than or equal to 1, and soluble in water, - said aprotic solvent medium so that each PEG ligand is soluble in this aprotic solvent medium, and so as to obtain directly in one step a hydrocompatible and organocompatible composition of metal oxide nanocrystals (s). The invention therefore generally consists of a process for the preparation of metal nanocrystals from at least one organometallic precursor in which: a liquid solution of at least one organometallic precursor is produced in an aprotic solvent medium in the presence of of at least one compound, called organic ligand, having at least one carbon chain, at least one end of which is functionalized by a coordination group comprising at least one heteroatom, and which is soluble in said aprotic solvent medium, this liquid solution being put in contact with at least one reagent under suitable reaction conditions for directly forming the metallic nanocrystals (in one step and by decomposition of each organometallic precursor), characterized in that: at least one ligand, called PEG ligand, is selected , in the group of organic ligands comprising at least one carbon chain having at least at least one group [-OCH2CH2] n being an integer greater than or equal to 1, and soluble in water, said aprotic solvent medium so that each PEG ligand is soluble in this aprotic solvent medium, and so as to directly obtaining in one step a hydrocompatible and organocompatible composition of metallic nanocrystals.

Contre toute attente, les inventeurs ont constaté avec la plus grande surprise qu'il est en fait possible de préparer directement une composition de tels nanocristaux métalliques -notamment de nanocristaux d'oxyde(s) métallique(s)-en utilisant, à titre de ligand, au moins un ligand PEG et un solvant organique compatible avec chaque ligand PEG. En effet, un tel ligand PEG soluble dans l'eau est nécessairement hydrophile, et, comme tel, était considéré jusqu'à maintenant comme parfaitement nuisible vis-à-vis de la réaction et des précurseurs organométalliques, notamment du fait qu'il a a priori inévitablement pour conséquence d'introduire de l'eau dans le milieu réactionnel. Or, il s'avère qu'il n'en est rien, pour des raisons qui restent à ce jour encore inexpliquées. Unexpectedly, the inventors have found with the greatest surprise that it is in fact possible to directly prepare a composition of such metal nanocrystals-especially metal oxide nanocrystals-using, as a ligand, at least one PEG ligand and an organic solvent compatible with each PEG ligand. Indeed, such a PEG ligand soluble in water is necessarily hydrophilic, and, as such, was considered until now as completely harmful to the reaction and organometallic precursors, in particular because it has inevitably a consequence of introducing water into the reaction medium. However, it turns out that this is not the case, for reasons that remain to this day still unexplained.

De surcroît, les inventeurs ont constaté que ce résultat étonnant peut être obtenu avec une grande variété de ligands PEG, et qu'il suffit en réalité de remplacer la chaîne alkyle aliphatique hydrocarbonée des ligands utilisés dans l'état de la technique, par une chaîne comprenant au moins un groupement [-OCH2CH2]n n étant un entier supérieur ou égal à 1, c'est-à-dire un groupement comprenant au moins un motif oxyéthylène [-OCH2CH2], plus particulièrement un 2946266 io groupement polyoxyéthylène (n étant supérieur à 1). Avantageusement, un ligand PEG selon l'invention est un ligand organique qui comprend non seulement au moins un groupement tel que mentionné ci-dessus, mais également, à titre de groupe de coordination, au moins un 5 groupement choisi parmi les carbonyles, les oxydes d'azote, les alcools, les aminoalcools, les nitriles (en particulier cyano), les thiocyanates, les isothiocyanates, les alcynes, les alcènes, les arènes (ex : le cyclopentadiène), les carbènes, les siloxanes, les acides de Lewis tels que les boranes et les aminoboranes, les phosphines, les oxydes de phosphines, les phosphates, les imines 10 (bases de Schiff), les composés diazo, les amines, les oxydes d'amines, les xanthates (R-OC(S)SR'), les sulfites, les thionyles, les thiosulfates, les sulfates, les éthylène glycols, les éthylène glycols cycliques (éthers couronne), et les cyclodextrines, les époxydes, les éthers linéaires et cycliques. Avantageusement et selon l'invention, on choisit au moins un 15 ligand PEG, dit ligand amino/carboxy PEG, dans le groupe des amines et des acides carboxyliques comprenant au moins une chaîne carbonée présentant au moins un groupement [-OCH2CH2],,, n étant un entier supérieur ou égal à 1, et solubles dans l'eau. D'autres composés organiques peuvent être utilisés à titre de ligand PEG (par exemple thiol-PEG, phosphine-PEG...) selon les applications, et en particulier selon 20 chaque composé métallique concerné. Les ligands PEG tels que les amines et les acides carboxyliques présentant au moins un groupement dérivé de l'oxyéthylène, et plus particulièrement au moins un groupement polyoxyéthylène (lesdits ligands PEG étant dérivés de l'éthylèneglycol, et plus particulièrement du poly(éthylèneglycol) 25 PEG), sont solubles dans la plupart des solvants organiques et dans l'eau. Ainsi, de tels ligands PEG sont d'une part solubles à la fois dans ledit milieu solvant aprotique et dans les milieux aqueux, et d'autre part, de façon totalement inattendue et contrairement à tous les préjugés, malgré leur caractère très hydrophile donc nécessairement hydraté dans une proportion importante et incontrôlée, s'avèrent être 30 compatibles avec l'obtention des nanocristaux métalliques -notamment de 2946266 Il nanocristaux d'oxyde(s) métallique(s)- dans des conditions quasiment identiques aux ligands amines aliphatiques et acides carboxyliques aliphatiques (dotés de chaînes alkyles aliphatiques hydrocarbonées) traditionnellement utilisés. Ainsi, les inventeurs ont pu déterminer que tous les efforts 5 entrepris jusqu'à maintenant pour remplacer les ligands hydrophobes, ou les fonctionnaliser ou les encapsuler dans des tensioactifs, sont en réalité inutiles. En effet, le procédé de préparation peut être mis en oeuvre par contact direct à partir d'au moins un précurseur organométallique en solution liquide dans un milieu solvant aprotique avec au moins un ligand PEG, et notamment un ligand 10 amino/carboxy PEG, apte à être soluble à la fois dans ledit milieu solvant aprotique, et dans l'eau et les milieux aqueux. Ainsi, avantageusement et selon l'invention on choisit au moins un ligand PEG, dit ligand amino/carboxy PEG, dans le groupe des amines et des acides carboxyliques comprenant au moins une chaîne carbonée présentant au 15 moins un groupement [-OCH2CH2]n n étant un entier supérieur ou égal à 1, et solubles dans l'eau. Plus particulièrement, avantageusement et selon l'invention, on choisit au moins un ligand amino/carboxylique PEG parmi les a-aminopoly(éthylèneglycol), les bis-amino-poly(éthylèneglycol), les a-carboxylpoly(éthylèneglycol), les bis-carboxyl-poly(éthylèneglycol), et les a-amino-co- 20 carboxyl-poly(éthylèneglycol). Un tel ligand amino/carboxy PEG utilisé dans un procédé selon l'invention est un dérivé de l'éthylèneglycol ou d'un PEG dont au moins une extrémité est fonctionnalisée par un groupement choisi parmi une amine primaire ù RNH2 et un groupement carboxylique ùR'COOH, c'est-à-dire dont la formule 25 générale (I) est la suivante : R1 [-OCH2CH2]n-OR2 (I) dans laquelle ; ù RI est choisi parmi une amine primaire ùR3NH2, un groupement carboxylique ùR40OOH, un groupement thiol ùR5SH, un groupement 30 phosphine ùR6P(Ph)2, Ph représentant le phényle, R3, R4, R5, et R6 représentant un groupe comprenant au moins une chaîne aliphatique, ù R2 est choisi parmi une chaîne grasse non ramifiée, une amine primaire -R3NH2, un groupement carboxylique -R4COOH, un groupement thiol ùR5SH, un groupement phosphine ùR6P(Ph)2, Ph représentant le phényle, R3, R4, R5, et R6 représentant un groupe comprenant au moins une chaîne aliphatique, ù n est un nombre entier supérieur ou égal à 1. Par ailleurs, avantageusement et selon l'invention, chaque ligand PEG utilisé présente une masse molaire moyenne comprise entre 300 g.mol-1 et 20 000 g.mol-1 -notamment entre 500 g.mol-'et 5000 g.mol-'-. In addition, the inventors have found that this surprising result can be obtained with a large variety of PEG ligands, and that it is actually sufficient to replace the aliphatic alkyl chain hydrocarbon ligands used in the prior art, by a chain comprising at least one group [-OCH 2 CH 2] n n being an integer greater than or equal to 1, that is to say a group comprising at least one oxyethylene unit [-OCH 2 CH 2], more particularly a polyoxyethylene group (n being greater than to 1). Advantageously, a PEG ligand according to the invention is an organic ligand which comprises not only at least one group as mentioned above, but also, as a coordination group, at least one group chosen from carbonyls, oxides and the like. nitrogen, alcohols, amino alcohols, nitriles (in particular cyano), thiocyanates, isothiocyanates, alkynes, alkenes, arenes (eg cyclopentadiene), carbenes, siloxanes, Lewis acids such as boranes and aminoboranes, phosphines, phosphine oxides, phosphates, imines (Schiff bases), diazo compounds, amines, amine oxides, xanthates (R-OC (S) SR sulfites, thionyls, thiosulfates, sulfates, ethylene glycols, cyclic ethylene glycols (crown ethers), and cyclodextrins, epoxides, linear and cyclic ethers. Advantageously and according to the invention, at least one PEG ligand, said amino / carboxy PEG ligand, is chosen from the group of amines and carboxylic acids comprising at least one carbon chain having at least one [-OCH 2 CH 2] - group, n being an integer greater than or equal to 1, and soluble in water. Other organic compounds may be used as PEG ligand (for example thiol-PEG, phosphine-PEG, etc.) depending on the applications, and in particular for each metal compound concerned. PEG ligands such as amines and carboxylic acids having at least one group derived from oxyethylene, and more particularly at least one polyoxyethylene group (said PEG ligands being derived from ethylene glycol, and more particularly poly (ethylene glycol) 25 PEG), are soluble in most organic solvents and in water. Thus, such PEG ligands are on the one hand soluble both in said aprotic solvent medium and in aqueous media, and on the other hand, totally unexpectedly and contrary to all prejudices, despite their very hydrophilic nature, therefore necessarily Hydrated to a large extent and uncontrolled, prove to be compatible with obtaining the metal nanocrystals -in particular 2946266 It nanocrystals of metal oxide (s) - under conditions almost identical to aliphatic amines and carboxylic acid ligands aliphatic (endowed with aliphatic alkyl hydrocarbon chains) traditionally used. Thus, the inventors have been able to determine that all the efforts undertaken so far to replace the hydrophobic ligands, or functionalize them or encapsulate them in surfactants, are in fact useless. Indeed, the preparation process can be carried out by direct contact from at least one organometallic precursor in liquid solution in an aprotic solvent medium with at least one PEG ligand, and in particular an amino / carboxy PEG ligand, suitable to be soluble both in said aprotic solvent medium, and in water and aqueous media. Thus, advantageously and according to the invention, at least one PEG ligand, referred to as an amino / carboxy PEG ligand, is chosen from the group of amines and carboxylic acids comprising at least one carbon chain having at least one group [-OCH 2 CH 2] n n being an integer greater than or equal to 1, and soluble in water. More particularly, advantageously and according to the invention, at least one amino / carboxylic PEG ligand is chosen from α-aminopoly (ethylene glycol), bis-amino-poly (ethylene glycol), α-carboxylpoly (ethylene glycol), bis-amino-poly (ethylene glycol), carboxyl-poly (ethylene glycol), and α-amino-co-carboxyl-poly (ethylene glycol). Such an amino / carboxy PEG ligand used in a process according to the invention is a derivative of ethylene glycol or of a PEG of which at least one end is functionalized with a group chosen from a primary amine RNH 2 and a carboxylic group R '. COOH, i.e., whose general formula (I) is the following: R1 [-OCH2CH2] n-OR2 (I) wherein; wherein R1 is selected from a primary amine R3NH2, a carboxylic group R40OOH, a thiol group R5SH, a phosphine group R6P (Ph) 2, Ph being phenyl, R3, R4, R5, and R6 representing a group comprising at least one Aliphatic chain, R2 is chosen from an unbranched fatty chain, a primary amine -R3NH2, a carboxylic group -R4COOH, a thiol group r5SH, a phosphine group r6P (Ph) 2, Ph representing phenyl, R3, R4, R5 and R6 represents a group comprising at least one aliphatic chain, n is an integer greater than or equal to 1. Furthermore, advantageously and according to the invention, each PEG ligand used has an average molar mass of between 300 gmol. -1 and 20,000 gmol-1-especially between 500 gmol-'and 5000 gmol -'-.

Par exemple, avantageusement et selon l'invention on utilise au moins un ligand amino/carboxylique PEG choisi dans le groupe comprenant : ù le poly(éthylèneglycol) bis(3-propylamine) de formule H2NC3H6[-OCH2CH2]n-OC3H6NH2, et ayant une masse molaire de l'ordre de 1500 g.mol-1, ù le poly(éthylèneglycol) bis(2-éthylamine) de formule H2NC2H4[-OCH2CH2]n-OC2H4NH2, et ayant une masse molaire de l'ordre de 3000 g.mol-' à 10 000 g.mor', ù le a-(2-éthylamine)-méthoxy(éthylèneglycol) de formule H3C[-OCH2CH2]n-OC2H4NH2, et ayant une masse molaire de l'ordre de 750 g.mol-', ù le poly(éthylèneglycol)dioïque de formule HOOC-CH2[-OCH2CH2]n-OùCH2-COOH, et ayant une masse molaire de l'ordre de 600 g.mol-1, ù le méthyléther-poly(éthylèneglycol)oïque de formule H3C[-OCH2CH2]n-OùCH2-COOH, et ayant une masse molaire de l'ordre de 3000 g.mol-'. 25 De préférence, dans un procédé selon l'invention, on utilise une quantité de ligand(s) PEG équimolaire à celle des atomes de métal du(des) précurseur(s). Autrement dit, on utilise une quantité stoechiométrique de ligand(s) PEG par rapport aux atomes de métal correspondants du(des) précurseur(s). Avantageusement et selon l'invention, on choisit au moins un 30 ligand non volatil à la température réactionnelle, faisant office de dispersant de la 20 composition produite dans le milieu solvant aprotique. Ainsi, les nanocristaux d'oxyde(s) se trouvent spontanément à l'état dispersé (colloïde) dans la composition finale. Dans un procédé selon l'invention, on choisit et on adapte les conditions réactionnelles de façon à obtenir directement la formation des nanocristaux, par décomposition de chaque précurseur organométallique. Les conditions réactionnelles choisies comprennent notamment : le choix du milieu solvant aprotique ; le choix du(des) ligand(s) ; les concentrations initiales ; la température réactionnelle ; la pression réactionnelle, le choix de l'oxydant. Le procédé de l'invention consiste ainsi à réaliser une réaction chimique d'oxydation directe et de décomposition d'au moins un précurseur organométallique en solution liquide. Il se distingue des procédés sol-gel notamment en ce que l'on réalise l'oxydation directe du(des) précurseur(s) spontanément réactif(s), qui n'est(ne sont) pas un(des) alcoolate(s), dans un milieu non aqueux, sans catalyseur (tel qu'un acide minéral ou une base minérale), sans passer par une étape d'hydrolyse contrôlée entraînant la formation d'hydroxydes formant un gel (polymère inorganique), et ne nécessitant pas d'étape ultérieure de calcination pour obtenir les oxydes à l'état cristallin. Dans un procédé selon l'invention, on obtient en effet les nanocristaux d'oxyde(s) métallique(s) par la seule mise en contact de la solution liquide avec un milieu oxydant, sans étape ultérieure, notamment sans étape de calcination. On peut laisser la solution liquide en présence du(des) ligand(s) PEG reposer à l'abri de tout oxydant pendant une durée prédéterminée avant de réaliser l'oxydation. Cette durée peut être par exemple de plusieurs heures, notamment de l'ordre de 10h à 20h. For example, advantageously and according to the invention is used at least one amino / carboxylic PEG ligand chosen from the group comprising: poly (ethylene glycol) bis (3-propylamine) of formula H 2 NC 3 H 6 [-OCH 2 CH 2] n-OC 3 H 6 NH 2, and a molar mass of the order of 1500 gmol-1, poly (ethylene glycol) bis (2-ethylamine) of formula H 2 NC 2 H 4 [-OCH 2 CH 2] n-OC 2 H 4 NH 2, and having a molar mass of about 3000 g 10 to 10 g / mol, α- (2-ethylamine) -methoxy (ethylene glycol) of the formula H 3 C [-OCH 2 CH 2] n-OC 2 H 4 NH 2, and having a molecular weight of the order of 750 g. poly (ethylene glycol) dioic acid of formula HOOC-CH 2 [-OCH 2 CH 2] n-WhereCH 2 -COOH, and having a molar mass of the order of 600 g / mol-1, methyl ether-poly (ethylene glycol) ) oic of formula H3C [-OCH2CH2] n-WhereCH2-COOH, and having a molar mass of the order of 3000 g.mol- '. Preferably, in a process according to the invention, an amount of PEG ligand (s) equimolar to that of the metal atoms of the precursor (s) is used. In other words, a stoichiometric amount of PEG ligand (s) is used relative to the corresponding metal atoms of the precursor (s). Advantageously and according to the invention, at least one nonvolatile ligand is chosen at the reaction temperature, which acts as a dispersant of the composition produced in the aprotic solvent medium. Thus, the nanocrystals of oxide (s) are spontaneously in the dispersed state (colloid) in the final composition. In a process according to the invention, the reaction conditions are chosen and adapted so as to obtain directly the formation of the nanocrystals, by decomposition of each organometallic precursor. The reaction conditions chosen include: the choice of the aprotic solvent medium; the choice of ligand (s); initial concentrations; the reaction temperature; the reaction pressure, the choice of the oxidant. The method of the invention thus consists in carrying out a direct oxidation and decomposition chemical reaction of at least one organometallic precursor in a liquid solution. It differs from the sol-gel processes, especially in that the direct oxidation of the spontaneously reactive precursor (s) is carried out, which is (are) not an alcoholate (s). ), in a non-aqueous medium, without a catalyst (such as a mineral acid or a mineral base), without going through a controlled hydrolysis step resulting in the formation of hydroxides forming a gel (inorganic polymer), and not requiring subsequent calcination step to obtain the oxides in the crystalline state. In a process according to the invention, the nanocrystals of metal oxide (s) are obtained by the only contacting of the liquid solution with an oxidizing medium, without a subsequent step, in particular without a calcination step. The liquid solution can be left in the presence of the PEG ligand (s) to remain safe from any oxidant for a predetermined time before carrying out the oxidation. This duration can be for example several hours, in particular of the order of 10h to 20h.

Les nanocristaux d'oxyde(s) métallique(s) obtenus selon l'invention peuvent être globalement sphériques (dimensions isotropes) ou au contraire présenter une anisotropie de forme, c'est-à-dire en particulier être allongés en forme de fils. Avantageusement et selon l'invention, les nanocristaux d'oxyde(s) métallique(s) sont des nanoparticules globalement sphériques de dimension moyenne comprise entre 1 nm et 5 nm. En variante, avantageusement et selon l'invention, les nanocristaux d'oxyde(s) métallique(s) sont des nanoparticules allongées présentant une dimension transversale moyenne comprise entre 1 nm et 7 nm. Avantageusement et selon l'invention, on choisit au moins une base et au moins un acide à titre de ligands PEG. Avantageusement et selon l'invention, on utilise au moins une amine à titre de base, notamment une amine primaire telle que mentionnée ci-dessus, et au moins un acide carboxylique. L'utilisation d'un couple acide/base, permet notamment d'obtenir des supercristaux de nanocristaux, c'est-à-dire une organisation des nanocristaux en un réseau solide similaire à un réseau cristallin. Les proportions molaires d'acide, de base, et de précurseur peuvent varier. Des supercristaux de nanocristaux de ZnO ont été obtenus par exemple dans le THF avec les proportions molaires acide/base/précurseur de 0,5/1/1 ; 1/0,5/1 ; et 1/1/1. Dans un procédé sur l'invention, ledit milieu solvant aprotique comprend au moins un solvant qui est choisi de façon à permettre d'une part la dissolution de chaque précurseur organométallique, d'autre part celle de chaque ligand PEG utilisé, et le déroulement de la réaction d'oxydation pour l'obtention des nanocristaux d'oxyde(s) métallique(s). Avantageusement et selon l'invention ledit milieu solvant aprotique comprend un solvant choisi parmi le THF, le toluène, l'anisole, et le dichlorométhane. Avantageusement et selon l'invention, le milieu solvant aprotique est non aqueux et non alcoolique, c'est-à-dire est en outre exempt de composé présentant des fonctions hydroxyles réactives, de façon à éviter toute formation d'hydroxyde. En particulier, le milieu solvant aprotique est avantageusement exempt (aux traces près) d'eau et de fonctions alcool, et donc est exempt de composé alcool (primaire, secondaire ou tertiaire). Dans un procédé selon l'invention, ledit milieu solvant aprotique comprend au moins deux composés distincts. En particulier, avantageusement et selon l'invention, ledit milieu solvant aprotique comprend au moins un ligand PEG et au moins un composé volatil dans les conditions réactionnelles s'évaporant au fur et à mesure de l'oxydation. Ainsi, dans un mode particulier de réalisation de l'invention, ledit milieu solvant aprotique est choisi de façon à présenter une phase liquide volatile au fur et à mesure de la réaction d'oxydation, de sorte que les nanocristaux obtenus se présentent, en fin de réaction, sous la forme d'une poudre. Ainsi, avantageusement et selon l'invention ledit milieu solvant aprotique comprend au moins un ligand PEG et au moins un composé liquide volatil dans les conditions réactionnelles, ledit composé liquide volatile étant choisi pour s'évaporer au fur et à mesure de la formation des nanocristaux, et de façon à obtenir directement les nanocristaux sous forme d'une poudre. De plus, les inventeurs ont constaté que ledit milieu solvant aprotique et sa structure permettent de contrôler la taille, la forme et la distribution en taille des nanocristaux. Par ailleurs, avantageusement et selon l'invention on réalise la production des nanocristaux à pression ambiante et à une température comprise entre 0°C et 200°C -notamment à température ambiante-. Dans la majorité des cas, on peut réaliser l'oxydation à pression ambiante et à une température inférieure à 50°C -notamment à température ambiante-. Ainsi, le procédé selon l'invention est d'une extrême simplicité. The nanocrystals of metal oxide (s) obtained according to the invention can be globally spherical (isotropic dimensions) or on the contrary present an anisotropy shape, that is to say in particular be elongated son-shaped. Advantageously and according to the invention, the nanocrystals of metal oxide (s) are globally spherical nanoparticles of average size between 1 nm and 5 nm. In a variant, advantageously and according to the invention, the nanocrystals of metal oxide (s) are elongated nanoparticles having a mean transverse dimension of between 1 nm and 7 nm. Advantageously and according to the invention, at least one base and at least one acid is chosen as PEG ligands. Advantageously and according to the invention, at least one amine is used as a base, in particular a primary amine as mentioned above, and at least one carboxylic acid. The use of an acid / base pair makes it possible in particular to obtain supercrystals of nanocrystals, that is to say an organization of the nanocrystals in a solid network similar to a crystal lattice. The molar proportions of acid, base, and precursor may vary. Supercrystals of ZnO nanocrystals have been obtained, for example, in THF with the acid / base / precursor molar proportions of 0.5 / 1/1; 1 / 0.5 / 1; and 1/1/1. In a method of the invention, said aprotic solvent medium comprises at least one solvent which is chosen so as to allow on the one hand the dissolution of each organometallic precursor, on the other hand that of each PEG ligand used, and the progress of the oxidation reaction for obtaining the nanocrystals of metal oxide (s). Advantageously and according to the invention, said aprotic solvent medium comprises a solvent chosen from THF, toluene, anisole, and dichloromethane. Advantageously and according to the invention, the aprotic solvent medium is non-aqueous and non-alcoholic, that is to say is further free of compounds having reactive hydroxyl functions, so as to avoid any formation of hydroxide. In particular, the aprotic solvent medium is advantageously free (with traces) of water and alcohol functions, and therefore is free of alcohol compound (primary, secondary or tertiary). In a process according to the invention, said aprotic solvent medium comprises at least two distinct compounds. In particular, advantageously and according to the invention, said aprotic solvent medium comprises at least one PEG ligand and at least one volatile compound under the reaction conditions evaporating as the oxidation progresses. Thus, in a particular embodiment of the invention, said aprotic solvent medium is chosen so as to present a volatile liquid phase as the oxidation reaction proceeds, so that the nanocrystals obtained are presented, in the end of reaction, in the form of a powder. Thus, advantageously and according to the invention, said aprotic solvent medium comprises at least one PEG ligand and at least one volatile liquid compound under the reaction conditions, said volatile liquid compound being chosen to evaporate as and when the nanocrystals are formed. , and so as to directly obtain the nanocrystals in the form of a powder. In addition, the inventors have found that said aprotic solvent medium and its structure make it possible to control the size, the shape and the size distribution of the nanocrystals. Furthermore, advantageously and according to the invention, the nanocrystals are produced at ambient pressure and at a temperature of between 0 ° C. and 200 ° C., in particular at room temperature. In the majority of cases, the oxidation can be carried out at ambient pressure and at a temperature of less than 50 ° C., in particular at room temperature. Thus, the method according to the invention is extremely simple.

Avantageusement et selon l'invention, de préférence et lorsque cela est possible, on choisit chaque précurseur de telle sorte que chaque résidu d'oxydation formé à partir de ce précurseur soit volatil dans les conditions réactionnelles. Ainsi, dans un procédé selon l'invention, la réaction d'oxydation ne produit que des nanocristaux solides d'oxyde(s) métallique(s) et un(des) résidu(s) organique(s) volatil(s). Avec un milieu solvant volatil, et lorsque le(les) résidu(s) d'oxydation est(sont) volatil(s), la composition résultant de la réaction d'oxydation est solide. Elle peut être reprise dans un autre milieu solvant, y compris aqueux, et forme alors une solution colloïdale liquide. Cela étant rien n'empêche, en variante, de choisir un précurseur dont les résidus d'oxydation ne sont pas volatils dans les conditions réactionnelles. Compte tenu de ce qui précède, le procédé selon l'invention peut être mis en oeuvre avec tous les éléments pour lesquels il existe un précurseur organométallique spontanément réactif à l'oxydation et pouvant être placé en solution liquide dans un milieu solvant aprotique compatible avec la solubilisation, en quantité suffisante, d'au moins un ligand PEG. Parmi ces éléments, on peut citer : le zinc, le fer, le cobalt, le cadmium, le bore, l'aluminium, le gallium, l'indium, le thallium, le germanium, l'étain, le titane, le zirconium, l'hafnium, les lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), le scandium, l'yttrium, le silicium, le bismuth et les autres métaux de transition. A titre d'exemples de précurseurs organométalliques spontanément réactifs à l'oxydation pouvant être utilisés dans un procédé selon l'invention, on peut citer les composés complexes de coordination comprenant au moins l'un des éléments suscités et au moins un groupement choisi parmi : les amidures, les alkyles, les aryles, les cyclopentadienyles, les oléfines, les polyoléfines, les alcynes, les alcynines, les silyles. Avantageusement et selon l'invention, pour la préparation d'une composition hydrocompatible de nanocristaux d'oxyde de zinc, on choisit le dicyclohexyl de zinc Zn(C6H11)2, communément désigné ZnCy2 à titre de précurseur. En présence d'au moins un ligand PEG en proportion équimolaire avec ce précurseur dans le THF et en réalisant l'oxydation par l'air à température ambiante, on a obtenu un échantillon homogène de nanocristaux dispersés d'oxyde de zinc cristallin (phase zincite) de dimension moyenne entre 1 nm et 10 nm et ayant une distribution de taille étroite. Ces nanocristaux de semi-conducteur sont en outre photoluminescents. De tels nanocristaux solubles aussi bien en milieu aqueux qu'en milieu organique présentent un intérêt industriel pratique considérable. Avantageusement et selon l'invention, pour la préparation d'une composition hydrocompatible de nanocristaux d'oxyde de cobalt, on utilise le bis-bis-triméthyl-silylamidure de cobalt Co[N(Si(CH3)3)2]2 à titre de précurseur organométallique. Avantageusement et selon l'invention, pour la préparation d'une composition hydrocompatible de nanocristaux d'oxyde de fer, on utilise le bisbis-triméthyl-silylamidure de fer Fe[N(Si(CH3)3)2]2 à titre de précurseur organométallique. Advantageously and according to the invention, preferably and where possible, each precursor is chosen such that each oxidation residue formed from this precursor is volatile under the reaction conditions. Thus, in a process according to the invention, the oxidation reaction produces only solid nanocrystals of metal oxide (s) and volatile organic residue (s). With a volatile solvent medium, and when the oxidation residue (s) is (are) volatile, the composition resulting from the oxidation reaction is solid. It can be taken up in another solvent medium, including aqueous, and then forms a liquid colloidal solution. That being so, nothing prevents, alternatively, choosing a precursor whose oxidation residues are not volatile under the reaction conditions. In view of the foregoing, the process according to the invention can be carried out with all the elements for which there exists an organometallic precursor spontaneously reactive with oxidation and which can be placed in liquid solution in an aprotic solvent medium compatible with the solubilizing, in sufficient quantity, at least one PEG ligand. These elements include: zinc, iron, cobalt, cadmium, boron, aluminum, gallium, indium, thallium, germanium, tin, titanium, zirconium, hafnium, lanthanides (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), scandium, yttrium, silicon, bismuth and other metals of transition. As examples of organometallic precursors spontaneously reactive to oxidation that can be used in a process according to the invention, mention may be made of complex coordination compounds comprising at least one of the elements evoked and at least one group chosen from: amides, alkyls, aryls, cyclopentadienyls, olefins, polyolefins, alkynes, alkynines, silyls. Advantageously and according to the invention, for the preparation of a hydrocompatible composition of zinc oxide nanocrystals, zinc dicyclohexyl Zn (C6H11) 2, commonly designated ZnCy2, is chosen as a precursor. In the presence of at least one PEG ligand in equimolar ratio with this precursor in THF and carrying out oxidation by air at room temperature, a homogeneous sample of crystalline zinc oxide dispersed nanocrystals (zincite phase) was obtained. ) of average size between 1 nm and 10 nm and having a narrow size distribution. These semiconductor nanocrystals are also photoluminescent. Such soluble nanocrystals both in aqueous medium and in organic medium have a considerable practical industrial interest. Advantageously and according to the invention, for the preparation of a hydrocompatible composition of cobalt oxide nanocrystals, cobalt bis-bis-trimethylsilylamide Co [N (Si (CH 3) 3) 2] 2 is used as the organometallic precursor. Advantageously and according to the invention, for the preparation of a hydrocompatible composition of iron oxide nanocrystals, Fe [N (Si (CH 3) 3) 2] 2 bisbis-trimethylsilylamidide of iron is used as a precursor organometallic.

Avantageusement et selon l'invention, pour la préparation d'une composition hydrocompatible de nanocristaux d'oxyde d'étain, on choisit le bis bis diméthylamidure d'étain [Sn(N(CH3)2)2]2 à titre de précurseur organométallique. Avantageusement et selon l'invention, pour la préparation 15 d'une composition hydrocompatible de nanocristaux d'oxyde d'indium, on choisit le triméthyle d'indium In(CH3)3. Avantageusement et selon l'invention, pour la préparation d'une composition hydrocompatible d'un oxyde métallique mixte on choisit au moins deux précurseurs distincts dans le groupe formé parmi le dicyclohexyl de 20 zinc Zn(C6H11)2, le bis-bis-triméthyl-silylamidure de cobalt Co[N(Si(CH3)3)2]2, le bis-bis-triméthyl-silylamidure de fer Fe[N(Si(CH3)3)2]2, le bis bis diméthylamidure d'étain [Sn(N(CH3)2)2]2, le triméthyle d'indium In(CH3)3. Ces exemples ne sont pas limitatifs, d'autres précurseurs pouvant aussi bien être utilisés. 25 Avantageusement et selon l'invention, on utilise au moins un oxydant choisi parmi le dioxygène, la vapeur d'eau, l'eau liquide, les oxydants organiques, les autres oxydants non organiques. A titre d'oxydants organiques, on peut citer par exemple les hydroperoxydes organiques et les oxydes d'amines tels que l'oxyde de 30 triméthylamine. A titre d'oxydants non organiques, on peut citer par exemple le peroxyde d'hydrogène, l'oxyde de phosphore, l'oxyde de soufre, le dioxyde d'azote, l'ozone, le bioxyde de chlore, et les complexes métalliques porteurs d'au moins un atome d'oxygène (par exemple les complexes métal-peroxydes, les complexes métal-oxydes, les complexes métal-hydroperoxydes, les complexes métal- superoxydes, ...). Avantageusement et selon l'invention, on réalise l'oxydation sans agitation de la solution liquide. Les traces d'eau que cette solution liquide peut renfermer peuvent faire office d'oxydant. La solution liquide est aussi mise au contact de l'air atmosphérique. En particulier, dans un mode de réalisation avantageux et selon l'invention, on utilise un agent solvant volatil, au moins un précurseur organométallique formant un résidu d'oxydation volatil, et on laisse la solution liquide au contact de l'air ambiant sans agitation. L'agent solvant s'évapore au fur et à mesure que l'air oxyde le précurseur en solution, et le résidu d'oxydation autre que l'oxyde métallique s'évapore. En réalité, il est possible que l'oxydation soit due aux seules traces d'eau solubilisées en provenance de l'agent solvant volatil de départ et de l'air ambiant (toujours humide). Il reste en final une composition solide d'oxyde métallique (avec éventuellement chaque ligand à la surface des nanocristaux). D'autres oxydants que les traces d'eau solubilisées et/ou l'air ambiant peuvent être utilisés, notamment la vapeur d'eau, l'eau liquide, le dioxygène pur... Néanmoins, c'est un avantage du procédé de l'invention que de permettre la production spontanée de nanocristaux d'oxyde(s) cristallin(s) par simple mise au contact avec l'air ambiant. L'invention permet d'obtenir une composition hydrocompatible et organocompatible de nanocristaux d'au moins un oxyde métallique se présentant sous forme d'une poudre ou d'une solution colloïdale, et ayant des formes et des dimensions correspondant à une distribution unimodale. Avec un procédé selon l'invention il est possible d'obtenir de façon sélective, reproductible et quantitative, l'oxyde métallique cristallin à l'état de nanocristaux parfaitement dispersés (non agglomérés), hydrocompatibles, et ayant des formes et dimensions au moins sensiblement uniformes, c'est-à-dire selon une distribution unimodale, notamment sensiblement homogène (faible dispersion), et pouvant même être monodisperses. L'invention s'étend à une composition obtenue par un procédé selon l'invention. Ainsi, l'invention concerne une composition de nanoparticules, dites nanocristaux d'oxyde(s) métallique(s), d'au moins un oxyde métallique à l'état cristallin, caractérisée en ce qu'elle comprend au moins un ligand, dit ligand PEG, choisi dans le groupe des composés organiques comprenant au moins une chaîne carbonée présentant au moins un groupement [-OCH2CH2],,, n étant un entier supérieur ou égal à 1, et solubles dans l'eau, de sorte que cette composition de nanocristaux est hydrocompatible (et également organocompatible). Avantageusement une composition selon l'invention est une dispersion des nanocristaux qui se présente sous forme d'une solution colloïdale aqueuse. Advantageously and according to the invention, for the preparation of a hydrocompatible composition of tin oxide nanocrystals, tin bis bis dimethylamide is chosen [Sn (N (CH 3) 2) 2] 2 as an organometallic precursor. . Advantageously and according to the invention, for the preparation of a hydrocompatible composition of indium oxide nanocrystals, the indium trimethyl In (CH 3) 3 is chosen. Advantageously and according to the invention, for the preparation of a hydrocompatible composition of a mixed metal oxide, at least two distinct precursors are selected from the group formed from zinc dicyclohexyl Zn (C6H11) 2, bis-bis-trimethyl -silylamidide of cobalt Co [N (Si (CH 3) 3) 2] 2, iron bis-bis-trimethyl silylamide Fe [N (Si (CH 3) 3) 2] 2, bis bis dimethyl tinamide [ Sn (N (CH 3) 2) 2] 2, indium trimethyl In (CH 3) 3. These examples are not limiting, other precursors may be used as well. Advantageously and according to the invention, at least one oxidant chosen from oxygen, water vapor, liquid water, organic oxidants and other inorganic oxidants is used. As organic oxidants, mention may be made, for example, of organic hydroperoxides and amine oxides such as trimethylamine oxide. Non-organic oxidants that may be mentioned include, for example, hydrogen peroxide, phosphorus oxide, sulfur oxide, nitrogen dioxide, ozone, chlorine dioxide, and metal complexes. carriers of at least one oxygen atom (for example metal-peroxide complexes, metal-oxide complexes, metal-hydroperoxide complexes, metal-superoxide complexes, etc.). Advantageously and according to the invention, oxidation is carried out without stirring of the liquid solution. Traces of water that this liquid solution may contain may act as an oxidant. The liquid solution is also brought into contact with atmospheric air. In particular, in one advantageous embodiment and according to the invention, a volatile solvent agent is used, at least one organometallic precursor forming a volatile oxidation residue, and the liquid solution is left in contact with the ambient air without stirring. . The solvent agent evaporates as air oxidizes the precursor in solution, and the oxidation residue other than the metal oxide evaporates. In fact, it is possible that the oxidation is due to the solubilized water traces from the starting volatile solvent agent and the ambient air (always wet). Finally, there remains a solid metal oxide composition (with possibly each ligand on the surface of the nanocrystals). Other oxidants that solubilized water traces and / or ambient air can be used, including water vapor, liquid water, pure oxygen ... Nevertheless, it is an advantage of the process of the invention that to allow the spontaneous production of crystalline oxide nanocrystals (s) by simple contact with the ambient air. The invention makes it possible to obtain a hydrocompatible and organocompatible composition of nanocrystals of at least one metal oxide in the form of a powder or of a colloidal solution, and having shapes and dimensions corresponding to a unimodal distribution. With a process according to the invention it is possible to selectively, reproducibly and quantitatively obtain the crystalline metal oxide in the form of perfectly dispersed (non-agglomerated), hydrocompatible nanocrystals, and having at least substantially uniform, that is to say in a unimodal distribution, including substantially homogeneous (low dispersion), and may even be monodisperse. The invention extends to a composition obtained by a process according to the invention. Thus, the invention relates to a composition of nanoparticles, called nanocrystals of metal oxide (s), of at least one metal oxide in the crystalline state, characterized in that it comprises at least one ligand, said PEG ligand chosen from the group of organic compounds comprising at least one carbon chain having at least one [-OCH 2 CH 2] n group, n being an integer greater than or equal to 1, and soluble in water, so that this composition nanocrystals is hydrocompatible (and also organocompatible). Advantageously, a composition according to the invention is a dispersion of nanocrystals which is in the form of an aqueous colloidal solution.

Dans une composition sur l'invention, les nanocristaux métalliques sont choisis dans le groupe formé des nanocristaux d'oxyde de zinc, des nanocristaux d'oxyde de cobalt, des nanocristaux d'oxyde de fer, des nanocristaux d'oxyde mixte de fer et de cobalt, des nanocristaux d'oxyde d'indium, des nanocristaux d'oxyde d'étain, des nanocristaux d'oxyde mixte d'indium et d'étain. In a composition of the invention, the metal nanocrystals are chosen from the group consisting of zinc oxide nanocrystals, cobalt oxide nanocrystals, iron oxide nanocrystals, and mixed iron oxide nanocrystals. cobalt, indium oxide nanocrystals, tin oxide nanocrystals, nanocrystals of mixed indium tin oxide.

Ces exemples ne sont pas limitatifs et d'autres nanocristaux d'oxyde(s) métallique(s) peuvent être obtenus conformément à l'invention. Avantageusement et selon l'invention, les nanocristaux d'oxyde(s) métallique(s) sont des nanoparticules globalement sphériques de dimension moyenne comprise entre 1 nm et 5 nm. En variante, avantageusement et selon l'invention, les nanocristaux d'oxyde(s) métallique(s) présentent une anisotropie de forme (ils ne sont pas sphériques). Avantageusement et selon l'invention, les nanocristaux d'oxyde(s) métallique(s) ont une forme allongée avec une largeur moyenne inférieure à 50 nm et une longueur moyenne supérieure à deux fois la largeur moyenne. Avantageusement et selon l'invention, les nanocristaux d'oxyde(s) métallique(s) présentent une largeur moyenne comprise entre 1 nm et 7 nm et une longueur moyenne comprise entre 10 nm et 20 nm. L'invention concerne en outre un procédé et une composition caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après. These examples are not limiting and other nanocrystals of metal oxide (s) can be obtained according to the invention. Advantageously and according to the invention, the nanocrystals of metal oxide (s) are globally spherical nanoparticles of average size between 1 nm and 5 nm. Alternatively, advantageously and according to the invention, the nanocrystals of metal oxide (s) have an anisotropy shape (they are not spherical). Advantageously and according to the invention, the nanocrystals of metal oxide (s) have an elongate shape with an average width of less than 50 nm and an average length greater than twice the average width. Advantageously and according to the invention, the nanocrystals of metal oxide (s) have an average width of between 1 nm and 7 nm and an average length of between 10 nm and 20 nm. The invention further relates to a method and a composition characterized in combination by all or some of the characteristics mentioned above or below.

D'autres buts, caractéristiques et avantages de l'invention apparaissent à la lecture des exemples suivants et des figures 1 à 15 annexées qui représentent des vues microscopiques et des spectres d'absorption de compositions selon l'invention obtenues dans les exemples. Protocole général : Une solution liquide du(des) ligand(s) PEG dans 6 ml de milieu solvant aprotique préalablement séché (de sorte qu'une quantité résiduelle d'eau de l'ordre de 50 ppm (mesurée par titration Karl-Fisher) est présente dans ledit milieu solvant aprotique) est préparée sous atmosphère d'argon. La concentration en ligand(s) PEG dans cette solution est de 0,021 mol.L"I, 0,042 mol.L'', ou 0,084 mon-1. La solution est agitée sous ultrasons à température ambiante pendant une demi-heure de façon à obtenir une solution transparente. Ensuite, une quantité de 0,25 mmol d'au moins un précurseur organométallique est ajoutée. La concentration en précurseur peut être modifiée en fonction de la taille des nanocristaux souhaitée comme enseigné dans WO2004/092069. Other objects, characteristics and advantages of the invention appear on reading the following examples and of the appended FIGS. 1 to 15 which represent microscopic views and absorption spectra of compositions according to the invention obtained in the examples. General protocol: A liquid solution of the PEG ligand (s) in 6 ml of aprotic solvent medium previously dried (so that a residual quantity of water of the order of 50 ppm (measured by Karl-Fisher titration) is present in said aprotic solvent medium) is prepared under an argon atmosphere. The concentration of ligand (s) PEG in this solution is 0.021 mol.L "I, 0.042 mol.L", or 0.084 mon-1 .The solution is stirred under ultrasound at room temperature for half an hour so as to Then, a quantity of 0.25 mmol of at least one organometallic precursor is added The precursor concentration may be varied depending on the size of the desired nanocrystals as taught in WO2004 / 092069.

On obtient une solution transparente. La solution est ensuite placée au contact de l'air ambiant et de l'humidité ambiante. Elle reste en contact avec l'air et l'humidité ambiante pendant une durée d, par exemple de l'ordre de quatre jours, qui correspond généralement au temps nécessaire pour l'évaporation totale du solvant, lorsque celui-ci est suffisamment volatil à température ambiante. A transparent solution is obtained. The solution is then placed in contact with the ambient air and the ambient humidity. It remains in contact with the air and the ambient humidity for a period d, for example of the order of four days, which generally corresponds to the time required for the total evaporation of the solvent, when it is sufficiently volatile at ambient temperature.

Dans le cas où le solvant n'est pas complètement évaporé au bout de quelques jours, on constate que des nanocristaux d'oxyde(s) métallique(s) sont formés. Lorsque le solvant est suffisamment volatil, et est totalement évaporé, une composition solide correspondant à un échantillon de nanocristaux d'oxyde(s) métallique(s) est obtenue. Cette composition solide peut être dispersée dans un solvant approprié, organique ou aqueux, généralement jusqu'à des concentrations variant entre 1 mg.mL"1 et 3 mg.mL-1. Dans le cas particulier de ZnO, lorsque le milieu solvant aprotique réactionnel n'est pas assez volatil pour être complètement évaporé, la formation des nanocristaux peut être vérifiée en irradiant sous UV (X = 312 nm) la solution qui devient luminescente. D'une façon générale, toutes les solutions liquides colloïdales obtenues de ZnO présentent des propriétés de luminescence. Lorsqu'un échantillon solide est obtenu, la diffraction sur poudre de cet échantillon permet de vérifier la phase cristalline obtenue. Dans le cas de ZnO, le diffractogramme obtenu correspond à du ZnO en phase zincite hexagonale ayant le groupe d'espace P63 mc. Des pics de diffraction additionnels correspondent à des espèces organiques. Ces espèces ont été caractérisées par RMN en solution et correspondent au(x) ligand(s) présent(s) à la surface des particules. Dans le cas des solutions liquides colloïdales, la diffraction électronique des échantillons déposés sur grille de microscopie, permet de vérifier la cristallinité des nanocristaux. Dans tous les exemples, des nanocristaux ont été obtenus. Ces grilles de microscopie sont préparées en déposant une goutte de la solution liquide colloïdale sur la grille. L'utilisation de la microscopie électronique à transmission, TEM, permet également d'observer la taille, la forme et l'homogénéité des nanocristaux formés. Dans tous les exemples, des solutions colloïdales ont pu être obtenues aussi bien dans différents milieux solvant organiques et dans l'eau, la couleur de chaque solution colloïdale correspondant à celle de chaque oxyde métallique considéré. Dans le cas de l'oxyde de zinc, l'état de surface de ces nanocristaux a été étudié par RMN en solution et la présence du (des) ligand(s) introduit(s) dans le milieu réactionnel a été constatée. Les nanocristaux synthétisés par cette méthode forment des entités se comportant comme tout produit chimique classique et possèdent par exemple une concentration à saturation pour laquelle l'on passe d'une solution colloïdale à une suspension turbide. Cette concentration est intrinsèque à chaque système. Dans toute la suite, et sur les figures, les abréviations suivantes sont utilisées : û BisAmPEG10000: le poly(éthylèneglycol) bis(2-éthylamine) de formule H2NC2H4[-OCH2CH2]n-OC2H4NH2, et ayant une masse molaire de l'ordre de 10 000 g.mol-1, û BisAmPEG1500 : le poly(éthylèneglycol) bis(3-propylamine) de formule H2NC3H6[-OCH2CH2]n-OC3H6NH2, et ayant une masse molaire de l'ordre de 1500 g.mol"1, û MonoAmPEGMn : le a-(2-éthylamine)-méthoxy(éthylèneglycol) de formule H3C[-OCH2CH2]ä-OC2H4NH2, et ayant une masse molaire de l'ordre de 10 Mn, û BisAcPEGMn : le poly(éthylèneglycol)dioïque de formule HOOCCH2[-OCH2CH2]n-OûCH2-COOH, et ayant une masse molaire de l'ordre de Mn, û MonoAcPEGMn : le méthyléther-poly(éthylèneglycol)oïque de formule H3C[-OCH2CH2]ä-OûCH2-COOH, et ayant une masse molaire de l'ordre 15 de Mn, - Zn(Cy)2 : le dicyclohexyle de zinc Zn(C6H11)2, - Co(TMSA) : Co[N(Si(CH3)3)2]2,le bis-bis-triméthyl-silylamidure de cobalt û Fe(TMSA) : le bis-bis-triméthyl-silylamidure de fer 20 Fe[N(Si(CH3)3)2]2, Sn(TMSA) : le bis-bis-diméthylamidure d'étain [Sn(N(CH3)2)2]2, In(Me)3 : le triméthyle d'indium In(CH3)3. EXEMPLE 1 : Dans cet exemple, on prépare des nanocristaux d'oxyde de 25 zinc ZnO selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration CC du ligand BisAmPEG1500 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 57,9 mg et une concentration de 0,042 mon-1. Cinq solutions ont été préparées avec des valeurs de Cf égales 30 respectivement à 0,0021 mon-1 (0,05 eq) ; 0,0042 mo1.L-1 (0,10 eq) ; 0,021 mon-1 (0,5 eq) ; 0,042 mol.L-' (1 eq) ; et 0,084 mon-1 (2 eq). La figure 1 est une vue de microscopie électronique en transmission de la solution colloïdale obtenue après réaction dans le THF avec Cf =0,084 mon-1. Les nanocristaux peuvent être dispersés dans l'eau, après évaporation du THF, à raison de 1 mg de nanocristaux pour 1 ml d'eau distillée, le mélange étant soumis aux ultrasons pendant 15 minutes. La figure 2 est une vue de microscopie électronique en transmission d'une solution colloïdale aqueuse obtenue après cette re-dispersion dans l'eau des nanocristaux. Les nanocristaux obtenus se présentent sous forme de nanoparticules globalement sphériques (dimensions isotropes) dont la dimension moyenne est la suivante : pour Cf= 0,05 eq (0,0021 mon-1) : 7,0 2,7 nm pour Cf= 0,10 eq (0,0042 mon-1) : 5,3 1,5 nm pour Cf= 0,5 eq (0,021 mol.L-1) : 4,7 1,3 nm pour Cf= 1,0 eq (0,042 mol.L-l) : 4,3 1,5 nm pour Cf= 2,0 eq (0,084 mon-1) : 3,9 0,8 nm Les nanocristaux sont photoluminescent avec une bande d'émission centrée sur kem sous excitation lumineuse avec une longueur d'onde 20 d'excitation Xex conformément au tableau ci-après : x Xem 280 nm à 360 nm 580 nm (jaune) 360 nm à 380 nm 460 nm et 580 nm (blanc) 380 nm à 420 nm 460 nm (bleu) Le spectre d'absorption des nanocristaux obtenus représenté figure 13 confirme, ainsi que les analyses aux rayons X qui ont été effectuées, qu'il s'agit bien d'oxyde de zinc. 25 EXEMPLE 2 : 10 15 Dans cet exemple, on prépare des nanocristaux d'oxyde de zinc selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration de 0,042 mol.L"1 du ligand BisAmPEG10000 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 57,9 mg et une concentration de 0,042 mol.L-1. La figure 3 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la dimension moyenne est de 3,9 0,9 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 1. EXEMPLE 3 : Dans cet exemple, on prépare des nanocristaux d'oxyde de zinc selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration de 0,0042 mon-1 du ligand BisAcPEG600 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 57,9 mg et une concentration de 0,042 mol.L-1. La figure 4 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la dimension moyenne est de 3,8 1,7 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils sont photoluminescents et présentent une longueur d'onde d'émission Xm de 580 nm sous excitation lumineuse de longueur d'onde 2X entre 280 nm et 380 nm. EXEMPLE 4 : Dans cet exemple, on prépare des nanocristaux d'oxyde de zinc selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration de 0,0084 mon-1 du ligand BisAmPEG1500 et de 0,0042 mon-1 du ligand BisAcPEG600 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 57,9 mg et une concentration de 0,042 mo1.L"'. La figure 5 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la dimension moyenne est de 3,5 1,0 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 1. EXEMPLE 5 : Dans cet exemple, on prépare des nanocristaux d'oxyde de zinc selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration de 0,084 mol.L"' du ligand MonoAmPEG750 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 15 57,9 mg et une concentration de 0,042 mol.L"'. La figure 6 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc présentant une anisotropie de forme (nanobâtonnets) 20 ayant globalement les dimensions suivantes : diamètre : 4,9 1,9 nm ; longueur : 16,4 6,9 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 1. 25 EXEMPLE 6: Dans cet exemple, on prépare des nanocristaux d'oxyde de zinc selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration de 0,084 mon-' du ligand MonoAcPEG3000 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 30 57,9 mg et une concentration de 0,042 mol.L"'. 10 La figure 7 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la dimension moyenne est de 4,2 1,7 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 3. EXEMPLE 7 : Dans cet exemple, on prépare des nanocristaux d'oxyde de zinc selon le protocole mentionné ci-dessus dans 6 ml de THF préalablement déshydraté en présence d'une concentration de 0,0168 mon-' du ligand MonoAmPEG750 et de 0,084 mon-1 du ligand MonoAcPEG3000 et en utilisant le précurseur Zn(Cy)2 à raison de 0,25 mmol soit 57,9 mg et une concentration de 0,042 mon-1. In the case where the solvent is not completely evaporated after a few days, it is found that nanocrystals of metal oxide (s) are formed. When the solvent is sufficiently volatile, and is completely evaporated, a solid composition corresponding to a sample of metal oxide nanocrystals (s) is obtained. This solid composition can be dispersed in a suitable organic or aqueous solvent, generally up to concentrations ranging from 1 mg.mL "1 to 3 mg.mL-1 In the particular case of ZnO, when the reaction aprotic solvent medium is not volatile enough to be completely evaporated, the formation of the nanocrystals can be verified by irradiating under UV (X = 312 nm) the solution which becomes luminescent.In general, all the colloidal liquid solutions obtained from ZnO exhibit luminescence properties When a solid sample is obtained, the diffraction on powder of this sample makes it possible to verify the crystalline phase obtained In the case of ZnO, the diffractogram obtained corresponds to ZnO in hexagonal zincite phase having the space group P63 mc Additional diffraction peaks correspond to organic species These species have been characterized by NMR in solution and correspond to (x) l igand (s) present on the surface of the particles. In the case of colloidal liquid solutions, the electron diffraction of the samples deposited on a microscopy grid makes it possible to verify the crystallinity of the nanocrystals. In all the examples, nanocrystals have been obtained. These microscopy grids are prepared by depositing a drop of the colloidal liquid solution on the grid. The use of transmission electron microscopy, TEM, also makes it possible to observe the size, the shape and the homogeneity of the nanocrystals formed. In all the examples, colloidal solutions could be obtained both in different organic solvent media and in water, the color of each colloidal solution corresponding to that of each metal oxide considered. In the case of zinc oxide, the surface state of these nanocrystals has been studied by NMR in solution and the presence of the ligand (s) introduced into the reaction medium has been observed. The nanocrystals synthesized by this method form entities behaving like any conventional chemical and have for example a saturation concentration for which one passes from a colloidal solution to a turbid suspension. This concentration is intrinsic to each system. In the following, and in the figures, the following abbreviations are used: BisAmPEG10000: poly (ethylene glycol) bis (2-ethylamine) of formula H 2 NC 2 H 4 [-OCH 2 CH 2] n-OC 2 H 4 NH 2, and having a molar mass of the order of 10,000 gmol-1, BisAmPEG1500: poly (ethylene glycol) bis (3-propylamine) of formula H 2 NC 3 H 6 [-OCH 2 CH 2] n-OC 3 H 6 NH 2, and having a molar mass of the order of 1500 g / mol -1 MonoAmPEGMn: α- (2-ethylamine) -methoxy (ethylene glycol) of formula H3C [-OCH2CH2] ä-OC2H4NH2, and having a molar mass of the order of 10 Mn, BisAcPEGMn: poly (ethylene glycol) dioic acid of formula HOOCCH 2 [-OCH 2 CH 2] n -OCH 2 -COOH, and having a molar mass of the order of Mn, - MonoAcPEGMn: methylether-poly (ethylene glycol) oic of formula H3C [-OCH2CH2] -OCH2-COOH, and having a molar mass of the order of Mn, - Zn (Cy) 2: zinc dicyclohexyl Zn (C6H11) 2, - Co (TMSA): Co [N (Si (CH3) 3) 2] 2, cobalt bis-bis-trimethylsilylamidide (TMSA): bis-bis-trimime Fe [N (Si (CH 3) 3) 2] 2, Sn (TMSA): tin bis-bis-dimethylamide [Sn (N (CH 3) 2) 2] 2, In (Me) ) 3: trimethyl indium In (CH3) 3. EXAMPLE 1 In this example, ZnO2 zinc oxide nanocrystals were prepared according to the protocol mentioned above in 6 ml of THF previously dehydrated in the presence of a CC concentration of BisAmPEG1500 ligand and using the Zn precursor (Cy ) 2 at the rate of 0.25 mmol or 57.9 mg and a concentration of 0.042 mon-1. Five solutions were prepared with Cf values equal to 0.0021 my-1 (0.05 eq), respectively; 0.0042 mo.L-1 (0.10 eq); 0.021 my-1 (0.5 eq); 0.042 mol.L- '(1 eq); and 0.084 mon-1 (2 eq). FIG. 1 is a transmission electron microscopy view of the colloidal solution obtained after reaction in THF with Cf = 0.084 mon-1. The nanocrystals can be dispersed in water, after evaporation of the THF, at the rate of 1 mg of nanocrystals per 1 ml of distilled water, the mixture being subjected to ultrasound for 15 minutes. FIG. 2 is a transmission electron microscopy view of an aqueous colloidal solution obtained after this re-dispersion in the water of the nanocrystals. The nanocrystals obtained are in the form of globally spherical nanoparticles (isotropic dimensions) whose average dimension is as follows: for Cf = 0.05 eq (0.0021 m-1): 7.0 2.7 nm for Cf = 0 10 eq (0.0042 mon-1): 5.3 1.5 nm for Cf = 0.5 eq (0.021 mol.L-1): 4.7 1.3 nm for Cf = 1.0 eq ( 0.042 mol.Ll): 4.3 1.5 nm for Cf = 2.0 eq (0.084 mon-1): 3.9 0.8 nm The nanocrystals are photoluminescent with an emission band centered on kem under light excitation with an Xex excitation wavelength in accordance with the following table: X X 280 nm at 360 nm 580 nm (yellow) 360 nm at 380 nm 460 nm and 580 nm (white) 380 nm at 420 nm 460 nm (blue) The absorption spectrum of the nanocrystals obtained shown in FIG. 13 confirms, as well as the X-ray analyzes that have been carried out, that it is indeed zinc oxide. EXAMPLE 2 In this example, zinc oxide nanocrystals according to the above-mentioned protocol are prepared in 6 ml of previously dehydrated THF in the presence of a concentration of 0.042 mol.l -1 of BisAmPEG10000 ligand and using the precursor Zn (Cy) 2 at 0.25 mmol or 57.9 mg and a concentration of 0.042 mol.L-1 Figure 3 is a transmission electron microscope view showing the nanocrystals obtained. obtained in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions) with an average size of 3.9 0.9 nm, which can be dispersed in water to form an aqueous colloidal solution. same photoluminescence properties as those obtained in Example 1. EXAMPLE 3 In this example, zinc oxide nanocrystals are prepared according to the protocol mentioned above in 6 ml of THF previously dehydrated in the presence of a concentration of 0.0042 my-1 of the ligand BisAcPEG600 and using the precursor Zn (Cy) 2 at 0.25 mmol or 57.9 mg and a concentration of 0.042 mol.L-1. FIG. 4 is a transmission electron microscope view showing the nanocrystals obtained. The nanocrystals obtained are in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions) whose mean dimension is 3.8 1.7 nm. They can be dispersed in water to form an aqueous colloidal solution. They are photoluminescent and have an emission wavelength λm of 580 nm under light excitation of wavelength 2 × between 280 nm and 380 nm. EXAMPLE 4 In this example, zinc oxide nanocrystals according to the protocol mentioned above are prepared in 6 ml of THF previously dehydrated in the presence of a concentration of 0.0084 mole-1 of the BisAmPEG1500 ligand and of 0, 0042 mon-1 of the BisAcPEG600 ligand and using the Zn (Cy) 2 precursor at 0.25 mmol or 57.9 mg and a concentration of 0.042 mol / l. "Figure 5 is an electron microscopic view of The nanocrystals obtained are in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions) with an average dimension of 3.5 1.0 nm and can be dispersed in water to form an aqueous colloidal solution They have the same photoluminescence properties as those obtained in Example 1. EXAMPLE 5 In this example, zinc oxide nanocrystals are prepared according to the protocol mentioned above in 6 ml of THF beforehand. It is dehydrated in the presence of a concentration of 0.084 mol.L "of the MonoAmPEG750 ligand and using the Zn (Cy) 2 precursor at 0.25 mmol or 57.9 mg and a concentration of 0.042 mol.L". . FIG. 6 is a transmission electron microscope view showing the nanocrystals obtained. The nanocrystals obtained are in the form of nanoparticles of zinc oxide having an anisotropy of shape (nanocots) having generally the following dimensions: diameter: 4.9 1.9 nm; length: 16.4 6.9 nm. They can be dispersed in water to form an aqueous colloidal solution. They have the same photoluminescence properties as those obtained in Example 1. EXAMPLE 6 In this example, zinc oxide nanocrystals are prepared according to the protocol mentioned above in 6 ml of THF previously dehydrated in the presence of a concentration of 0.084 mM of the MonoAcPEG3000 ligand and using the Zn (Cy) 2 precursor at 0.25 mmol or 57.9 mg and a concentration of 0.042 mol.L ". a transmission electron microscopy view showing the nanocrystals obtained The nanocrystals obtained are in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions), the mean dimension of which is 4.2 1.7 nm. in water to form an aqueous colloidal solution They have the same photoluminescence properties as those obtained in Example 3. EXAMPLE 7 In this example, zinc oxide nanocrystals are prepared according to protocol mentioned above in 6 ml of THF previously dehydrated in the presence of a concentration of 0.0168 μM MonoAmPEG750 ligand and 0.084 mon-1 MonoAcPEG3000 ligand and using the Zn (Cy) 2 precursor at a rate of 0.25 mmol or 57.9 mg and a concentration of 0.042 mon-1.

La figure 8 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc présentant une anisotropie de forme (nanobâtonnets) ayant globalement les dimensions suivantes : diamètre : 3,7 1,1 nm ; longueur : 7,6 2,3 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 1. EXEMPLE 8 : Cet exemple est identique à l'exemple 1, en remplaçant le THF par l'anisole. La figure 9 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la répartition granulométrique est de 1,5 0,5 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 1. EXEMPLE 9 : Cet exemple est identique à l'exemple 1, en remplaçant le 5 THF par le toluène. La figure 10 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la répartition granulométrique est de 1,8 0,4 nm. Ils peuvent être dispersés dans 10 l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes propriétés de photoluminescence que ceux obtenus à l'exemple 1. EXEMPLE 10 : Cet exemple est identique à l'exemple 1, en remplaçant le THF par le dichlorométhane. La figure 11 est une vue de microscopie électronique 15 en transmission représentant les nanocristaux obtenus. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde de zinc globalement sphériques (dimensions isotropes) dont la répartition granulométrique est de 4,0 1,1 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Ils présentent les mêmes 20 propriétés de photoluminescence que ceux obtenus à l'exemple 1. EXEMPLE 11 : Cet exemple est identique à l'exemple 1, en remplaçant le précurseur de zinc par 0,022 mon-1 de Co(TMSA) de façon à obtenir une composition de nanocristaux d'oxyde de cobalt Co3O4. 25 On obtient une solution colloïdale de couleur marron correspondant à celle de l'oxyde de cobalt. Les nanocristaux obtenus peuvent ensuite être dispersés dans l'eau pour former une solution colloïdale aqueuse. EXEMPLE 12 : Cet exemple est identique à l'exemple 11, en remplaçant le 30 précurseur de cobalt par 0,022 mon-1 de Fe(TMSA) de façon à obtenir une composition de nanocristaux d'oxyde de fer sous forme de maghémite y-Fe2O3. On obtient une solution colloïdale de couleur marron correspondant à celle de l'oxyde de fer. Les nanocristaux obtenus peuvent ensuite être dispersés dans l'eau pour former une solution colloïdale aqueuse. EXEMPLE 13 : Cet exemple est identique à l'exemple 11, en remplaçant le précurseur de cobalt par 0,022 mon"' de Co(TMSA) et 0,044 mon-1 de Fe(TMSA), et en présence de 0,066 mon-1 de ligand BisAmPEG1500 de façon à obtenir une composition de nanocristaux d'oxyde mixte de ferrite de cobalt CoFe2O4. On obtient une solution colloïdale de couleur marron correspondant à celle de l'oxyde mixte. Les nanocristaux obtenus peuvent ensuite être dispersés dans l'eau pour former une solution colloïdale aqueuse. EXEMPLE 14 : 15 Cet exemple est identique à l'exemple 1, en remplaçant le précurseur de zinc par 0,042 mon-1 de In(Me)3 et en présence de 0,042 mon-1 de ligand BisAmPEG1500. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde d'indium In2O3 globalement sphériques (dimensions 20 isotropes) dont la dimension moyenne est de l'ordre de 8 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. La figure 12 est une vue de microscopie électronique en transmission représentant les nanocristaux obtenus. Le spectre d'absorption des nanocristaux obtenus représenté 25 figure 14 confirme, ainsi que les analyses aux rayons X qui ont été effectuées, qu'il s'agit bien d'oxyde d'indium In2O3. EXEMPLE 15 : Cet exemple est identique à l'exemple 1, en remplaçant le précurseur de zinc par 0,021 mon-1 de Sn(TMSA) et en présence de 0,021 mon-1 30 de ligand BisAmPEG1500. l0 Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde d'étain SnO2 globalement sphériques (dimensions isotropes) dont la dimension moyenne est d'environ 2 nm. Ils peuvent être dispersés dans l'eau pour former une solution colloïdale aqueuse. Figure 8 is a transmission electron microscope view showing the obtained nanocrystals. The nanocrystals obtained are in the form of nanoparticles of zinc oxide having a shape anisotropy (nanobagged) having generally the following dimensions: diameter: 3.7 1.1 nm; length: 7.6 2.3 nm. They can be dispersed in water to form an aqueous colloidal solution. They have the same photoluminescence properties as those obtained in Example 1. EXAMPLE 8 This example is identical to Example 1, replacing THF with anisole. FIG. 9 is a transmission electron microscope view showing the nanocrystals obtained. The nanocrystals obtained are in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions) whose particle size distribution is 1.5 0.5 nm. They can be dispersed in water to form an aqueous colloidal solution. They have the same photoluminescence properties as those obtained in Example 1. EXAMPLE 9 This example is identical to Example 1, replacing the THF with toluene. Figure 10 is a transmission electron microscope view showing the obtained nanocrystals. The nanocrystals obtained are in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions) whose particle size distribution is 1.8 0.4 nm. They can be dispersed in water to form an aqueous colloidal solution. They have the same photoluminescence properties as those obtained in Example 1. EXAMPLE 10 This example is identical to Example 1, replacing the THF with dichloromethane. Figure 11 is a transmission electron microscope view showing the obtained nanocrystals. The nanocrystals obtained are in the form of globally spherical zinc oxide nanoparticles (isotropic dimensions) whose particle size distribution is 4.0 1.1 nm. They can be dispersed in water to form an aqueous colloidal solution. They exhibit the same photoluminescence properties as those obtained in Example 1. EXAMPLE 11 This example is identical to Example 1, replacing the zinc precursor with 0.022 mon-1 Co (TMSA) so as to obtain a composition of Co3O4 cobalt oxide nanocrystals. A colloidal solution of brown color corresponding to that of cobalt oxide is obtained. The nanocrystals obtained can then be dispersed in water to form an aqueous colloidal solution. EXAMPLE 12 This example is identical to Example 11, replacing the cobalt precursor with 0.022 mon-1 Fe (TMSA) so as to obtain a composition of iron oxide nanocrystals in the form of y-Fe 2 O 3 maghemite. . A colloidal solution of brown color corresponding to that of the iron oxide is obtained. The nanocrystals obtained can then be dispersed in water to form an aqueous colloidal solution. EXAMPLE 13 This example is identical to Example 11, replacing the cobalt precursor with 0.022 μM Co (TMSA) and 0.044 μM-1 Fe (TMSA), and in the presence of 0.066 μM -1 ligand. BisAmPEG1500 in order to obtain a composition of CoFe2O4 cobalt ferrite mixed oxide nanocrystals A brown-colored colloidal solution corresponding to that of the mixed oxide is obtained The nanocrystals obtained can then be dispersed in water to form a EXAMPLE 14: This example is identical to Example 1, replacing the zinc precursor with 0.042 mon-1 of In (Me) 3 and in the presence of 0.042 mon-1 of BisAmPEG1500 ligand. They are in the form of globally spherical indium oxide nanoparticles (isotropic dimensions) whose mean dimension is of the order of 8 nm and which can be dispersed in water to form an aqueous colloidal solution. 12 is a view of mic transmission electron microscopy representing the nanocrystals obtained. The absorption spectrum of the obtained nanocrystals shown in FIG. 14 confirms, as well as the X-ray analyzes which have been carried out, that it is indeed indium oxide In2O3. EXAMPLE 15 This example is identical to Example 1, replacing the zinc precursor with 0.021 mon-1 Sn (TMSA) and in the presence of 0.021 mon-1 BisAmPEG1500 ligand. The nanocrystals obtained are in the form of generally spherical SnO2 tin oxide nanoparticles (isotropic dimensions) whose mean dimension is approximately 2 nm. They can be dispersed in water to form an aqueous colloidal solution.

Le spectre d'absorption des nanocristaux obtenus représenté figure 15 confirme, ainsi que les analyses aux rayons X qui ont été effectuées, qu'il s'agit bien d'oxyde d'étain SnO2. EXEMPLE 16 : Cet exemple est identique à l'exemple 1, en remplaçant le 10 précurseur de zinc par 0,024 mol.L-' de In(Me)3 et 0,012 mol.L'' de Sn(TMSA) en présence de 0,036 mol.L"' de ligand BisAmPEG1500. Les nanocristaux obtenus se présentent sous forme de nanoparticules d'oxyde mixte d'indium et d'étain globalement sphériques (dimensions isotropes) dont la dimension moyenne est d'environ 2 nm. Ils peuvent 15 être dispersés dans l'eau pour former une solution colloïdale aqueuse. The absorption spectrum of the nanocrystals obtained represented in FIG. 15 confirms, as well as the X-ray analyzes that have been carried out, that it is indeed tin oxide SnO 2. EXAMPLE 16 This example is identical to Example 1, replacing the zinc precursor by 0.024 mol.L- 'of In (Me) 3 and 0.012 mol.L' 'of Sn (TMSA) in the presence of 0.036 mol. The nanocrystals obtained are in the form of globally spherical indium and tin mixed oxide nanoparticles (isotropic dimensions) having an average size of about 2 nm and can be dispersed. in water to form an aqueous colloidal solution.

Claims (1)

REVENDICATIONS1/ - Procédé de préparation d'une composition de nanoparticules, dites nanocristaux d'oxyde(s) métallique(s), d'au moins un oxyde métallique à l'état cristallin, à partir d'au moins un précurseur organométallique 5 dans lequel : û on réalise une solution liquide d'au moins un précurseur organométallique spontanément réactif à l'oxydation, dans un milieu solvant aprotique en présence d'au moins un composé, dit ligand organique, présentant au moins une chaîne carbonée dont au moins une extrémité est fonctionnalisée par un 10 groupe de coordination comprenant au moins un hétéroatome, et soluble dans ledit milieu solvant aprotique, û on met cette solution liquide en contact avec au moins un oxydant dans des conditions réactionnelles adaptées pour entraîner directement la formation des nanocristaux d'oxyde(s) métallique(s), caractérisé en ce qu'on choisit : û au moins un ligand, dit ligand PEG, dans le groupe des ligands organiques comprenant au moins une chaîne carbonée présentant au moins un groupement [-OCH2CH2],,, n étant un entier supérieur ou égal à 1, et solubles dans l'eau, û ledit milieu solvant aprotique de façon que chaque ligand PEG soit soluble dans ce milieu solvant aprotique, et de façon à obtenir directement en une étape une composition hydrocompatible et organocompatible de nanocristaux d'oxyde(s) métallique(s). 2/ - Procédé selon la revendication 1, caractérisé en ce qu'on utilise au moins un ligand PEG répondant à la formule générale (I) suivante : R' [-OCH2CH2]ä-OR2 (I) dans laquelle ; R' est choisi parmi une amine primaire ûR3NH2, un 30 groupement carboxylique ûR40OOH, un groupement thiol ûR5SH, un groupement 15 20 25phosphine ûR6P(Ph)2, Ph représentant le phényle, R3, R4, R5, et R6 représentant un groupe comprenant au moins une chaîne aliphatique, û R2 est choisi parmi une chaîne grasse non ramifiée, une amine primaire ûR3NH2, un groupement carboxylique ûR4COOH, un groupement thiol ûR5SH, un groupement phosphine ûR6P(Ph)2, Ph représentant le phényle, R3, R4, R5, et R6 représentant un groupe comprenant au moins une chaîne aliphatique, û n est un nombre entier supérieur ou égal à 1. 3/ - Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que chaque ligand PEG présente une masse molaire moyenne comprise entre 300 g.mol-1 et 20 000 g.mol-1 -notamment entre 500 g.mol-1 et 5000 g.mol-'-. 4/ - Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on choisit au moins un ligand PEG, dit ligand amino/carboxy PEG, dans le groupe des amines et des acides carboxyliques comprenant au moins une chaîne carbonée présentant au moins un groupement [-OCH2CH2]n, n étant un entier supérieur ou égal à 1, et solubles dans l'eau. 5/ - Procédé selon la revendication 4, caractérisé en ce qu'on choisit au moins un ligand amino/carboxylique PEG parmi les a-aminopoly(éthylèneglycol), les bis-amino-poly(éthylèneglycol), les a-carboxyl- poly(éthylèneglycol), les bis-carboxyl-poly(éthylèneglycol), et les a-amino-wcarboxyl-poly(éthylèneglycol). 6/ - Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on utilise au moins un ligand amino/carboxylique PEG choisi dans le groupe comprenant : û le poly(éthylèneglycol) bis(3-propylamine) de formule H2NC3H6[-OCH2CH2]ä-OC3H6NH2, et ayant une masse molaire de l'ordre de 1500 g.mol-1, û le poly(éthylèneglycol) bis(2-éthylamine) de formule H2NC2H4[-OCH2CH2]n-OC2H4NH2, et ayant une masse molaire de l'ordre de 3000 30 g.mol-1 à 10 000 g.mol"',û le a-(2-éthylamine)-méthoxy(éthylèneglycol) de formule H3C[-OCH2CH2]n-OC2H4NH2, et ayant une masse molaire de l'ordre de 750 g.mol"1, û le poly(éthylèneglycol)dioïque de formule HOOC-CH2[-OCH2CH2]n-OûCH2-COOH, et ayant une masse molaire de l'ordre de 600 g.mol-1, û le méthyléther-poly(éthylèneglycol)oïque de formule H3C[-OCH2CH2]n-OûCH2-COOH, et ayant une masse molaire de l'ordre de 3000 g.mol-l. 7/ - Procédé selon l'une des revendications 1 à 6, caractérisé en ce que ledit milieu solvant aprotique comprend un solvant choisi 10 parmi le THF, le toluène, l'anisole, et le dichlorométhane. 8/ - Procédé selon l'une des revendications 1 à 7, caractérisé en ce que ledit milieu solvant aprotique comprend au moins un ligand PEG et au moins un composé liquide volatil dans les conditions réactionnelles, ledit composé liquide volatil étant choisi pour s'évaporer au fur et à mesure de la 15 formation des nanocristaux, et de façon à obtenir directement les nanocristaux sous forme d'une poudre. 9/ - Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on réalise la production des nanocristaux à pression ambiante et à une température comprise entre 0°C et 200°C -notamment à température 20 ambiante-. 10/ - Composition de nanoparticules, dites nanocristaux d'oxyde(s) métallique(s), d'au moins un oxyde métallique à l'état cristallin, caractérisée en ce qu'elle comprend au moins un ligand, dit ligand PEG, choisi dans le groupe des composés organiques comprenant au moins une chaîne carbonée 25 présentant au moins un groupement [-OCH2CH2]n, n étant un entier supérieur ou égal à 1, et solubles dans l'eau, de sorte que cette composition de nanocristaux est hydrocompatible. 11 / - Composition selon la revendication 10, caractérisée en ce qu'il s'agit d'une solution colloïdale aqueuse. 30 12/ - Composition selon l'une des revendications 10 ou 11,caractérisée en ce que les nanocristaux d'oxyde(s) métallique(s) sont des nanoparticules globalement sphériques de dimension moyenne comprise entre 1 nm et 5 nm. 13/ - Composition selon l'une des revendications 10 ou 11, caractérisée en ce que les nanocristaux d'oxyde(s) métallique(s) sont des nanoparticules allongées présentant une dimension transversale moyenne comprise entre 1 nm et 7 nm. 14/ - Composition selon l'une des revendications 10 à 13, caractérisée en ce que les nanocristaux d'oxyde(s) métallique(s) sont choisis dans le groupe formé des nanocristaux d'oxyde de zinc, des nanocristaux d'oxyde de cobalt, des nanocristaux d'oxyde de fer, des nanocristaux d'oxyde mixte de fer et de cobalt, des nanocristaux d'oxyde d'indium, des nanocristaux d'oxyde d'étain, des nanocristaux d'oxyde mixte d'indium et d'étain. CLAIMS 1 / - Process for preparing a composition of nanoparticles, called nanocrystals of metal oxide (s), of at least one metal oxide in the crystalline state, starting from at least one organometallic precursor 5 in which: a liquid solution of at least one organometallic precursor spontaneously reactive with oxidation is produced in an aprotic solvent medium in the presence of at least one compound, called organic ligand, having at least one carbon chain, at least one of which The end is functionalized by a coordination group comprising at least one heteroatom, and soluble in said aprotic solvent medium, this liquid solution is brought into contact with at least one oxidant under suitable reaction conditions to directly drive the formation of the nanocrystals. metal oxide (s), characterized in that one chooses: at least one ligand, said PEG ligand, in the group of organic ligands comprising at least one carbon chain having at least one [-OCH 2 CH 2] n group, n being an integer greater than or equal to 1, and soluble in water, said aprotic solvent medium so that each PEG ligand is soluble in this medium aprotic solvent, and so as to obtain directly in one step a hydrocompatible and organocompatible composition of nanocrystals of metal oxide (s). 2 / - Process according to claim 1, characterized in that at least one PEG ligand corresponding to the following general formula (I) is used: R '[-OCH 2 CH 2] n-OR 2 (I) in which; R 'is selected from a primary amine R3NH2, a carboxylic group R4000H, a thiol group R5SH, a phosphine group R6P (Ph) 2, Ph being phenyl, R3, R4, R5 and R6 representing a group comprising less than one aliphatic chain, R2 is selected from an unbranched fatty chain, a primary amine R3NH2, a carboxylic group R4COOH, a thiol group R5SH, a phosphine group R6P (Ph) 2, Ph representing phenyl, R3, R4, R5. , and R6 represents a group comprising at least one aliphatic chain, n is an integer greater than or equal to 1. 3 / - Method according to one of claims 1 or 2, characterized in that each PEG ligand has a molar mass average of between 300 g.mol -1 and 20 000 g mol -1, in particular between 500 g mol -1 and 5000 g mol -1. 4 / - Method according to one of claims 1 to 3, characterized in that at least one PEG ligand, said amino ligand / carboxy PEG, in the group of amines and carboxylic acids comprising at least one carbon chain having at least one group [-OCH2CH2] n, n being an integer greater than or equal to 1, and soluble in water. 5 / - Method according to claim 4, characterized in that at least one amino / carboxylic PEG ligand is selected from α-aminopoly (ethylene glycol), bis-amino-poly (ethylene glycol), α-carboxyl-poly ( ethylene glycol), bis-carboxyl-poly (ethylene glycol), and α-amino-4-carboxy-poly (ethylene glycol). 6 / - Method according to one of claims 1 to 5, characterized in that at least one amino / carboxylic ligand PEG chosen from the group comprising: poly (ethylene glycol) bis (3-propylamine) of formula H 2 NC 3 H 6 [-OCH 2 CH 2] 3-OC 3 H 6 NH 2, and having a molar mass of the order of 1500 g / mol-1, poly (ethylene glycol) bis (2-ethylamine) of formula H 2 NC 2 H 4 [-OCH 2 CH 2] n-OC 2 H 4 NH 2, and having a molar mass of the order of 3000 g / ml to 10 000 g / mol, α- (2-ethylamine) -methoxy (ethylene glycol) of formula H 3 C [-OCH 2 CH 2] n-OC 2 H 4 NH 2, and having a molar mass of the order of 750 g.mol -1, the poly (ethylene glycol) dioic acid of formula HOOC-CH 2 [-OCH 2 CH 2] n -O 2 CH 2 -COOH, and having a molar mass of the order of 600 g methyl ether-poly (ethylene glycol) oic acid of formula H3C [-OCH2CH2] n -O2CH2-COOH, and having a molar mass of the order of 3000 gmol-1. 7 / - Method according to one of claims 1 to 6, characterized in that said aprotic solvent medium comprises a solvent selected from THF, toluene, anisole, and dichloromethane. 8 / - Method according to one of claims 1 to 7, characterized in that said aprotic solvent medium comprises at least one PEG ligand and at least one volatile liquid compound under the reaction conditions, said volatile liquid compound being chosen to evaporate as the nanocrystals are formed, and so as to obtain the nanocrystals directly in the form of a powder. 9 / - Method according to one of claims 1 to 8, characterized in that the production of the nanocrystals at ambient pressure and at a temperature between 0 ° C and 200 ° C-especially at room temperature-. 10 / - Composition of nanoparticles, called nanocrystals of metal oxide (s), of at least one metal oxide in the crystalline state, characterized in that it comprises at least one ligand, called PEG ligand, chosen in the group of organic compounds comprising at least one carbon chain having at least one [-OCH 2 CH 2] n group, n being an integer greater than or equal to 1, and soluble in water, so that this nanocrystal composition is hydrocompatible . 11 / - Composition according to claim 10, characterized in that it is an aqueous colloidal solution. 12 / - Composition according to one of claims 10 or 11, characterized in that the nanocrystals of oxide (s) metal (s) are globally spherical nanoparticles of average size between 1 nm and 5 nm. 13 / - Composition according to one of claims 10 or 11, characterized in that the nanocrystals of metal oxide (s) are elongated nanoparticles having a mean transverse dimension between 1 nm and 7 nm. 14 / - Composition according to one of claims 10 to 13, characterized in that the nanocrystals of oxide (s) metal (s) are selected from the group consisting of zinc oxide nanocrystals, nanocrystals of oxide of cobalt, iron oxide nanocrystals, mixed iron and cobalt oxide nanocrystals, indium oxide nanocrystals, tin oxide nanocrystals, indium mixed oxide nanocrystals, and tin.
FR0902736A 2009-06-05 2009-06-05 PROCESS FOR PREPARING A HYDROCOMPATIBLE COMPOSITION OF NANOCRISTALS OF METALLIC OXIDE (S) AND HYDROCOMPATIBLE COMPOSITION OBTAINED Expired - Fee Related FR2946266B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR0902736A FR2946266B1 (en) 2009-06-05 2009-06-05 PROCESS FOR PREPARING A HYDROCOMPATIBLE COMPOSITION OF NANOCRISTALS OF METALLIC OXIDE (S) AND HYDROCOMPATIBLE COMPOSITION OBTAINED
KR1020127000404A KR101782851B1 (en) 2009-06-05 2010-06-04 Method for preparing a water-compatible composition of metal oxide nanocrystals
PCT/FR2010/051103 WO2010139910A1 (en) 2009-06-05 2010-06-04 Method for preparing a water-compatible composition of metal oxide nanocrystals
EP10734790.8A EP2438013B1 (en) 2009-06-05 2010-06-04 Method for preparing a water-compatible composition of metal oxide nanocrystals
US13/376,222 US9162900B2 (en) 2009-06-05 2010-06-04 Method for preparing a water-compatible composition of metal oxide nanocrystals and the water-compatible composition obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0902736A FR2946266B1 (en) 2009-06-05 2009-06-05 PROCESS FOR PREPARING A HYDROCOMPATIBLE COMPOSITION OF NANOCRISTALS OF METALLIC OXIDE (S) AND HYDROCOMPATIBLE COMPOSITION OBTAINED

Publications (2)

Publication Number Publication Date
FR2946266A1 true FR2946266A1 (en) 2010-12-10
FR2946266B1 FR2946266B1 (en) 2020-10-30

Family

ID=41558175

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0902736A Expired - Fee Related FR2946266B1 (en) 2009-06-05 2009-06-05 PROCESS FOR PREPARING A HYDROCOMPATIBLE COMPOSITION OF NANOCRISTALS OF METALLIC OXIDE (S) AND HYDROCOMPATIBLE COMPOSITION OBTAINED

Country Status (5)

Country Link
US (1) US9162900B2 (en)
EP (1) EP2438013B1 (en)
KR (1) KR101782851B1 (en)
FR (1) FR2946266B1 (en)
WO (1) WO2010139910A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583511A (en) * 2012-02-14 2012-07-18 吕冠环 Nanometer tin oxide compositely doped with ytterbium, bismuth, indium and antimony and preparation method thereof
CN102616748B (en) * 2012-04-11 2013-10-23 吉林大学 Method for preparing nanometer metallic oxide by bulk metallic oxide
US10351580B2 (en) * 2017-02-17 2019-07-16 The Regents Of The University Of California Acene-based transmitter molecules for photon upconversion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014011A1 (en) * 2001-08-10 2003-02-20 Korea Research Institute Of Chemical Technology Solvothermal preparation of metal oxide nanoparticles
FR2853307A1 (en) * 2003-04-07 2004-10-08 Centre Nat Rech Scient Preparing uniformly shaped and sized metal oxide nanoparticles, by spontaneous oxidation of selected organometallic precursors in non-aqueous solvent
EP1775575A1 (en) * 2004-07-16 2007-04-18 FUJIFILM Corporation Fluorescence detecting method
US20080134836A1 (en) * 2006-12-12 2008-06-12 Brooks Christopher J Preparation of iron-titanium nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014011A1 (en) * 2001-08-10 2003-02-20 Korea Research Institute Of Chemical Technology Solvothermal preparation of metal oxide nanoparticles
FR2853307A1 (en) * 2003-04-07 2004-10-08 Centre Nat Rech Scient Preparing uniformly shaped and sized metal oxide nanoparticles, by spontaneous oxidation of selected organometallic precursors in non-aqueous solvent
EP1775575A1 (en) * 2004-07-16 2007-04-18 FUJIFILM Corporation Fluorescence detecting method
US20080134836A1 (en) * 2006-12-12 2008-06-12 Brooks Christopher J Preparation of iron-titanium nanoparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUI HONG, NICHOLAS O. FISCHER, TODD EMRICK, AND VINCENT M. ROTELLO: "Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications", CHEM. MATER., vol. 17, 5 August 2005 (2005-08-05), pages 4617 - 4621, XP002568620 *
WILLIAM W. YU, EMMANUEL CHANG, JOSHUA C. FALKNER, JUNYAN ZHANG,ALI M. AL-SOMALI, CHRISTIE M. SAYES, JUDAH JOHNS ET AL.: "Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers", J. AM. CHEM. SOC., vol. 129, 20 February 2007 (2007-02-20), pages 2871 - 2879, XP002568619 *

Also Published As

Publication number Publication date
KR20120029462A (en) 2012-03-26
US9162900B2 (en) 2015-10-20
EP2438013B1 (en) 2019-11-13
EP2438013A1 (en) 2012-04-11
FR2946266B1 (en) 2020-10-30
WO2010139910A1 (en) 2010-12-09
US20120161076A1 (en) 2012-06-28
KR101782851B1 (en) 2017-10-23
WO2010139910A8 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
EP2437878B1 (en) Method for preparing an organic-compatible and water-compatible composition of metal nanocrystals, and resulting composition
EP1971454B1 (en) Synthesis of particles in dendritic structures
EP1622832B1 (en) Method for the preparation of a composition of nanoparticles of at least one crystalline metal oxide
Li et al. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers
RU2548083C2 (en) Method of modifying carbon nanomaterials
EP2438013B1 (en) Method for preparing a water-compatible composition of metal oxide nanocrystals
EP3013747B1 (en) Method for preparing a composition comprising functionalised mineral particles and corresponding composition
EP2651828B1 (en) Process for preparing a compostion of mixed particles containing elements from columns 13 and 15
EP2112211A1 (en) Particle of silica comprising an organolanthanide compound, preparation method and uses
FR2926473A1 (en) COATED AND FUNCTIONALIZED PARTICLES, POLYMER CONTAINING THEM, PROCESS FOR PREPARING THEM AND USES THEREOF
Zhu et al. Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin (IV) catalytic carbonization of ethanolamine
EP2794481B1 (en) Process for preparing a magnetic talcous composition, and magnetic talcous composition
Chandra Saikia et al. Template-Less and Surfactant-Less Synthesis of CeO2 Nanostructures for Catalytic Application in Ipso-hydroxylation of Aryl Boronic Acids and the aza-Michael Reaction
JP5604835B2 (en) Semiconductor nanoparticles and manufacturing method thereof
FR2862631A1 (en) Producing rare earth metal oxide powders, e.g. useful as luminescent or colored pigments or catalyst supports, comprises heating nitrate precursors in a polar organic solvent
CN113874324A (en) Preparation method of zinc oxide nanoparticles, zinc oxide nanoparticles obtained by method and application of zinc oxide nanoparticles
Xiao et al. Formation and characterization of two-dimensional arrays of silver oxide nanoparticles under Langmuir monolayers of n-hexadecyl dihydrogen phosphate
WO2005003028A2 (en) Calcium phosphate particles and production thereof

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 12

ST Notification of lapse

Effective date: 20220205