FR2897721A3 - Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face - Google Patents

Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face Download PDF

Info

Publication number
FR2897721A3
FR2897721A3 FR0650572A FR0650572A FR2897721A3 FR 2897721 A3 FR2897721 A3 FR 2897721A3 FR 0650572 A FR0650572 A FR 0650572A FR 0650572 A FR0650572 A FR 0650572A FR 2897721 A3 FR2897721 A3 FR 2897721A3
Authority
FR
France
Prior art keywords
channels
cathode
face
anode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0650572A
Other languages
French (fr)
Inventor
Anna Maria Morgante
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0650572A priority Critical patent/FR2897721A3/en
Publication of FR2897721A3 publication Critical patent/FR2897721A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Fuel cell has two electrochemical cells each comprises an assembly formed by a electrolyte, an anode and a cathode, where the electrolyte is interposed between the anode and the cathode. The assembly is interposed between two bipolar plates (4, 5) which comprise anodic and cathodic distribution channels (17, 18). The channels are not situated face to face, where one of the channels is situated opposite to an interchannel space (14) and has dimension higher than or equal to the dimension of the space.

Description

PLAQUE BIPOLAIRE POUR PILE A COMBUSTIBLEBIPOLAR PLATE FOR FUEL CELL

L'invention concerne le domaine des piles à combustibles. La pile à combustible apparaît de plus en plus comme le convertisseur d'énergie le plus propre et le plus efficace pour convertir l'énergie chimique en une énergie directement utilisable sous forme électrique et thermique. Son principe de fonctionnement est simple : il s'agit d'une combustion électrochimique et contrôlée d'hydrogène et d'oxygène, avec production simultanée d'électricité, io d'eau et de chaleur, selon la réaction chimique : H2 + %02 H2O Cette réaction s'opère au sein d'une structure d'un empilement 1 de cellules électrochimiques 2, 3 de la pile représentée à la figure 1. Ces cellules 2, 3 sont connectées en série, de façon à atteindre la 15 tension de fonctionnement de la chaîne de traction du véhicule. Chacune des cellules 2, 3 comprend deux électrodes, dont une anode 7 et une cathode 8, auxquelles sont apportés un comburant et un combustible, qui restent séparées par une membrane échangeuse d'ions faisant office d'électrolyte 9. La membrane 9 20 échangeuse d'ions peut être formée d'un électrolyte 9 solide polymère et sépare le compartiment de l'anode 7, où se produit l'oxydation du combustible, tel que l'hydrogène, du compartiment de la cathode 8, où le comburant, tel que l'oxygène de l'air, est réduit. L'électricité produite par la pile à combustible se 25 décompose en plusieurs étapes. Il y a d'abord une consommation de l'hydrogène pour former des protons et des électrons à l'anode 7 selon la réaction suivante : H2 * 2H+ + 2e- Les protons et les électrons sont ensuite transférés 30 respectivement par l'électrolyte 9 et par les plaques bipolaires 4 ou 5. Un circuit extérieur 10 comprenant un moteur électrique 11 permet la circulation des électrons formés à l'anode 7 jusqu'à la cathode 8 où ils sont consommés. L'oxygène de l'air est enfin combiné avec les -2 protons et les électrons à la cathode 8 pour former de l'eau selon la réaction suivante : 02+2H++2e- * Hep Chaque cellule 2, 3 d'un empilement d'une pile à combustible est ainsi constituée d'un ensemble central comprenant la membrane 9, positionnée entre les deux électrodes 7, 8, cet ensemble 6 étant lui-même placé entre deux flasques, appelées plaques bipolaires 4, 5. Ces plaques 4, 5 ont, en particulier, pour fonction d'amener au contact de l'ensemble 6 réunissant la membrane 9 et les électrodes io 7, 8 d'un côté le carburant, par exemple de l'hydrogène, et de l'autre côté le comburant, par exemple l'oxygène de l'air. Pour ce faire, des canaux de distribution 17, 18 sont prévus sur toute la face des plaques polaires en contact avec la membrane 9. Dans la suite de la description, le canal de distribution situé du côté de l'anode 7 est 15 appelé canal anodique 17 et le canal de distribution du côté de la cathode 8 est appelé canal cathodique 18. Chaque canal de distribution 17, 18 possède une entrée par laquelle pénètre le comburant ou le carburant, par exemple sous la forme gazeuse sèche ou humide, et une sortie par laquelle sont évacués les gaz 20 neutres, l'eau générée par la réaction d'oxydo-réduction dans le côté air et l'humidité résiduelle de l'hydrogène de son côté. Généralement, les canaux de distribution 17, 18 sont gravés ou emboutis de façon à ce que les canaux anodiques 17 et les canaux cathodiques 18 coïncident d'un côté et de l'autre de 25 l'ensemble 6. Les réactifs arrivant par les canaux pénètrent à travers l'ensemble 6 pour réagir au niveau de la membrane 9. La densité de courant est généralement supérieure dans les zones de l'ensemble 6 correspondant aux canaux 17, 18. En d'autres termes, la réaction chimique se réalise face aux canaux 17, 18, où les réactifs arrivent 30 directement. La densité de courant n'est donc pas homogène sur la membrane 9. Différentes solutions ont été proposées de façon à essayer d'homogénéiser la distribution de densité de courant. Par exemple, le brevet US2005/0064263 propose une pile à combustible dont les -3 canaux anodiques et cathodiques sont ondulés et positionnés de telle façon que les espaces entre les canaux cathodiques sont plus petits que ceux des canaux anodiques. Néanmoins, ces agencements ne suffisent pas à améliorer considérablement les performances de la pile à combustible. Afin de pallier ces inconvénients, l'invention a pour objet d'améliorer les performances d'une pile à combustible. L'invention a aussi pour objet d'homogénéiser la distribution de la densité de courant sur la surface de la cellule d'une pile à io combustible. A cet effet, l'invention propose une pile à combustible comprenant au moins une membrane échangeuse d'ions, interposée entre une anode et une cathode, cet ensemble étant lui-même interposé entre deux plaques bipolaires qui comportent des canaux 15 de distribution anodiques et cathodiques, caractérisé en ce que les canaux anodiques et les canaux cathodiques ne sont pas situés face à face. Selon d'autres caractéristiques de l'invention, un canal est situé en face d'un espace intercanal.  The invention relates to the field of fuel cells. The fuel cell is increasingly emerging as the cleanest and most efficient energy converter for converting chemical energy into energy that can be used directly in electrical and thermal form. Its operating principle is simple: it is an electrochemical and controlled combustion of hydrogen and oxygen, with simultaneous production of electricity, water and heat, according to the chemical reaction: H2 +% 02 H2O This reaction takes place within a structure of a stack 1 of electrochemical cells 2, 3 of the cell shown in FIG. 1. These cells 2, 3 are connected in series, so as to reach the voltage of operation of the vehicle power train. Each of the cells 2, 3 comprises two electrodes, including an anode 7 and a cathode 8, to which are added an oxidant and a fuel, which remain separated by an ion exchange membrane acting as electrolyte 9. The exchanger membrane 9 of ions can be formed of a solid polymer electrolyte 9 and separates the compartment of the anode 7, where the oxidation of the fuel, such as hydrogen, the compartment of the cathode 8, where the oxidizer, such as that the oxygen of the air, is reduced. The electricity produced by the fuel cell is broken down into several stages. First there is a consumption of hydrogen to form protons and electrons at the anode 7 according to the following reaction: H2 * 2H + + 2e- The protons and the electrons are then transferred by the electrolyte 9 and by the bipolar plates 4 or 5. An external circuit 10 comprising an electric motor 11 allows the flow of the electrons formed at the anode 7 to the cathode 8 where they are consumed. The oxygen of the air is finally combined with the -2 protons and the electrons at the cathode 8 to form water according to the following reaction: O 2 + 2H ++ 2e- * Hep Each cell 2, 3 of a The stack of a fuel cell thus consists of a central assembly comprising the membrane 9, positioned between the two electrodes 7, 8, this assembly 6 being itself placed between two flanges, called bipolar plates 4, 5. These plates 4, 5 have, in particular, the function of bringing into contact with the assembly 6 joining the membrane 9 and the electrodes 7, 8 on one side the fuel, for example hydrogen, and the other the oxidant side, for example the oxygen of the air. To do this, distribution channels 17, 18 are provided on the entire face of the pole plates in contact with the membrane 9. In the following description, the distribution channel located on the side of the anode 7 is called channel anode 17 and the distribution channel on the cathode side 8 is called cathode channel 18. Each distribution channel 17, 18 has an inlet through which the oxidant or the fuel enters, for example in the gaseous dry or wet form, and The outlet through which are evacuated the neutral gases, the water generated by the oxidation-reduction reaction in the air side and the residual moisture of the hydrogen on its side. Generally, the distribution channels 17, 18 are etched or stamped so that the anode channels 17 and the cathode channels 18 coincide on one side and the other of the assembly 6. The reagents arriving through the channels penetrate through the assembly 6 to react at the level of the membrane 9. The current density is generally higher in the areas of the assembly 6 corresponding to the channels 17, 18. In other words, the chemical reaction is carried out in the face at channels 17, 18, where reagents arrive directly. The current density is therefore not homogeneous on the membrane 9. Various solutions have been proposed so as to try to homogenize the current density distribution. For example, patent US2005 / 0064263 proposes a fuel cell whose -3 anode and cathode channels are corrugated and positioned in such a way that the spaces between the cathode channels are smaller than those of the anode channels. Nevertheless, these arrangements are not sufficient to significantly improve the performance of the fuel cell. In order to overcome these drawbacks, the object of the invention is to improve the performance of a fuel cell. The object of the invention is also to homogenize the distribution of the current density on the surface of the cell of a fuel cell. For this purpose, the invention proposes a fuel cell comprising at least one ion exchange membrane, interposed between an anode and a cathode, this assembly being itself interposed between two bipolar plates which comprise anodic distribution channels and cathodic, characterized in that the anode channels and the cathode channels are not located face to face. According to other features of the invention, a channel is located opposite an interchannel space.

20 Selon d'autres caractéristiques de l'invention, la dimension d'un canal est sensiblement supérieure ou égale à la dimension d'un espace intercanal. Selon d'autres caractéristiques de l'invention, la dimension d'un espace intercanal et la dimension d'un canal sont sensiblement 25 identiques. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description d'exemples de réalisation en référence aux figures annexées. La figure 1 représente schématiquement une pile à 30 combustible de l'état de la technique. La figure 2 représente une vue en coupe longitudinale d'une pile à combustible selon un premier mode de réalisation de l'invention. -4 La figure 3 représente une vue en coupe longitudinale d'une pile à combustible selon un second mode de réalisation de l'invention. Dans la description qui suit, nous prendrons à titre non limitatif une orientation longitudinale, verticale et transversale indiquée par le trièdre L, V, T des figures 1 à 3. Des éléments identiques ou analogues sont désignés par les mêmes chiffres de référence. Dans l'état de la technique, telle que représentée à la figure io 1, une pile à combustible a été décrite précédemment. Telle que représentée aux figures 2 et 3, une pile à combustible comprend, de la même façon que dans l'état de la technique, deux cellules électrochimiques 2, 3. Chaque cellule 2, 3 comprend un ensemble formé par une anode 7, une cathode 8 et un 15 électrolyte 9 situé entre l'anode 7 et la cathode 8. L'ensemble formé par l'anode 7, l'électrolyte 9 et la cathode 8 est placé entre deux plaques bipolaires 4, 5 dans lesquelles circulent les réactifs de la réaction d'oxydo-réduction via les canaux de distribution 17, 18. L'invention propose d'agencer les canaux anodiques 17 et 20 les canaux cathodiques 18 de telle manière qu'ils soient décalés les uns par rapport aux autres dans une vue en coupe selon l'axe longitudinal L. En d'autres termes, les canaux anodiques 17 et les canaux cathodiques 18 ne sont pas agencés face à face dans une vue en coupe selon l'axe longitudinal L.According to other features of the invention, the dimension of a channel is substantially greater than or equal to the size of an interchannel space. According to other features of the invention, the size of an interchannel space and the dimension of a channel are substantially the same. Other features and advantages of the invention will appear on reading the description of exemplary embodiments with reference to the appended figures. Figure 1 schematically shows a fuel cell of the state of the art. Figure 2 shows a longitudinal sectional view of a fuel cell according to a first embodiment of the invention. Figure 3 shows a longitudinal sectional view of a fuel cell according to a second embodiment of the invention. In the following description, we will take a non-limiting longitudinal orientation, vertical and transverse indicated by the trihedron L, V, T of Figures 1 to 3. Identical elements or the like are designated by the same reference numerals. In the state of the art, as shown in FIG. 1, a fuel cell has been described previously. As shown in FIGS. 2 and 3, a fuel cell comprises, in the same way as in the state of the art, two electrochemical cells 2, 3. Each cell 2, 3 comprises an assembly formed by an anode 7, a cathode 8 and an electrolyte 9 located between the anode 7 and the cathode 8. The assembly formed by the anode 7, the electrolyte 9 and the cathode 8 is placed between two bipolar plates 4, 5 in which the reagents circulate. of the oxidation-reduction reaction via the distribution channels 17, 18. The invention proposes to arrange the anode channels 17 and 20 the cathode channels 18 so that they are offset with respect to each other in a sectional view along the longitudinal axis L. In other words, the anode channels 17 and the cathode channels 18 are not arranged face to face in a sectional view along the longitudinal axis L.

25 Selon un premier mode de réalisation de l'invention, tel que représenté à la figure 2, chaque canal anodique 17 est positionné face à un espace situé entre deux canaux cathodiques, appelé espace intercanal 14. De la même façon, chaque canal cathodique 18 est positionné face à un espace intercanal 14. Tel que représenté 30 à la figure 2, l'épaisseur d'un canal anodique 17, l'épaisseur d'un canal cathodique 18 et la distance entre deux canaux anodiques 17 ou cathodiques 18 correspondant à l'intercanal 14 sont sensiblement égales. -5 Selon un second mode de réalisation de l'invention, tel que représenté à la figure 3, l'épaisseur d'un canal anodique 17, l'épaisseur d'un canal cathodique 18 sont sensiblement égales et plus grandes que la distance entre deux canaux anodiques 17 ou cathodiques 18 correspondant à l'intercanal 14. Dans ce cas, un canal anodique 17 est situé face à un intercanal 14 et une partie de deux canaux cathodiques 18. De la même façon, un canal cathodique 18 est situé face à un intercanal 14 et une partie de deux canaux anodiques 17. io L'invention permet ainsi de mieux répartir l'utilisation de la surface de la membrane 9. De cette façon, la réaction d'oxydoréduction est plus uniforme sur la membrane 9 ce qui a pour effet d'homogénéiser la production de la densité de courant sur la membrane 9. Ainsi, la distribution de la densité de courant et la 15 distribution de puissance thermique dégagée par la réaction sont plus homogènes sur les plaques bipolaires. Par ailleurs, la production d'eau est elle aussi plus uniforme ce qui facilite son évacuation. 20According to a first embodiment of the invention, as represented in FIG. 2, each anode channel 17 is positioned facing a space situated between two cathode channels, called interchannel space 14. In the same way, each cathode channel 18 is positioned opposite an interchannel space 14. As shown in FIG. 2, the thickness of an anode channel 17, the thickness of a cathode channel 18 and the distance between two anodic channels 17 or cathodic channels 18 corresponding to intercanal 14 are substantially equal. According to a second embodiment of the invention, as represented in FIG. 3, the thickness of an anode channel 17 and the thickness of a cathode channel 18 are substantially equal and larger than the distance between two anodic channels 17 or cathodic 18 corresponding to the intercanal 14. In this case, an anode channel 17 is located opposite an intercanal 14 and a portion of two cathode channels 18. Similarly, a cathode channel 18 is located face The invention thus makes it possible to better distribute the use of the surface of the membrane 9. In this way, the oxidation-reduction reaction is more uniform on the membrane 9. which has the effect of homogenizing the production of the current density on the membrane 9. Thus, the distribution of the current density and the thermal power distribution released by the reaction are more homogeneous on the bipolar plates. In addition, the production of water is also more uniform which facilitates its evacuation. 20

Claims (4)

REVENDICATIONS 1. Pile à combustible comprenant au moins une membrane échangeuse d'ions (9), interposée entre une anode (7) et une cathode (8), cet ensemble étant lui-même interposé entre deux plaques bipolaires (4, 5) qui comportent des canaux de distribution anodiques (17) et cathodiques (18) caractérisée en ce que les canaux anodiques (17) et les canaux cathodiques (18) ne sont pas situés face à face. i0  A fuel cell comprising at least one ion exchange membrane (9) interposed between an anode (7) and a cathode (8), this assembly being itself interposed between two bipolar plates (4, 5) which comprise anodic (17) and cathodic (18) distribution channels characterized in that the anode channels (17) and the cathode channels (18) are not located face to face. i0 2. Pile à combustible selon la revendication 1, caractérisée en ce qu'un canal (17, 18) est situé en face d'un espace intercanal (14).  2. Fuel cell according to claim 1, characterized in that a channel (17, 18) is located opposite an interchanal space (14). 3. Pile à combustible selon la revendication 2, caractérisée en ce que 15 la dimension d'un canal (17, 18) est sensiblement supérieure ou égale à la dimension d'un espace intercanal (14).  3. Fuel cell according to claim 2, characterized in that the dimension of a channel (17, 18) is substantially greater than or equal to the size of an interchannel space (14). 4. Pile à combustible selon l'une des revendications précédentes, caractérisée en ce que la dimension d'un espace intercanal (14) et la 20 dimension d'un canal (17, 18) sont sensiblement identiques.  4. Fuel cell according to one of the preceding claims, characterized in that the dimension of an interchannel space (14) and the dimension of a channel (17, 18) are substantially identical.
FR0650572A 2006-02-20 2006-02-20 Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face Withdrawn FR2897721A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0650572A FR2897721A3 (en) 2006-02-20 2006-02-20 Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0650572A FR2897721A3 (en) 2006-02-20 2006-02-20 Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face

Publications (1)

Publication Number Publication Date
FR2897721A3 true FR2897721A3 (en) 2007-08-24

Family

ID=37056491

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0650572A Withdrawn FR2897721A3 (en) 2006-02-20 2006-02-20 Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face

Country Status (1)

Country Link
FR (1) FR2897721A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616685A (en) * 2018-12-11 2019-04-12 中国科学院大连化学物理研究所 A kind of fuel cell bipolar plate structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013449A2 (en) * 1999-08-16 2001-02-22 Alliedsignal Inc. Fuel cell and bipolar plate for use with same
US6403246B1 (en) * 1998-09-30 2002-06-11 Aisin Takaoka Co., Ltd. Fuel cell and separator for fuel cell
US20020150807A1 (en) * 2001-04-16 2002-10-17 Asia Pacific Fuel Cell Technologies, Ltd. Bipolar plate for a fuel cell
US20040161658A1 (en) * 2003-02-13 2004-08-19 Seiji Mizuno Separator passage structure of fuel cell
WO2005018033A1 (en) * 2003-08-15 2005-02-24 Hydrogenics Corporation Flow field plate arrangement
WO2005060032A1 (en) * 2003-12-15 2005-06-30 Helion Power supply plate for a coplanar circuit fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403246B1 (en) * 1998-09-30 2002-06-11 Aisin Takaoka Co., Ltd. Fuel cell and separator for fuel cell
WO2001013449A2 (en) * 1999-08-16 2001-02-22 Alliedsignal Inc. Fuel cell and bipolar plate for use with same
US20020150807A1 (en) * 2001-04-16 2002-10-17 Asia Pacific Fuel Cell Technologies, Ltd. Bipolar plate for a fuel cell
US20040161658A1 (en) * 2003-02-13 2004-08-19 Seiji Mizuno Separator passage structure of fuel cell
WO2005018033A1 (en) * 2003-08-15 2005-02-24 Hydrogenics Corporation Flow field plate arrangement
WO2005060032A1 (en) * 2003-12-15 2005-06-30 Helion Power supply plate for a coplanar circuit fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616685A (en) * 2018-12-11 2019-04-12 中国科学院大连化学物理研究所 A kind of fuel cell bipolar plate structure

Similar Documents

Publication Publication Date Title
EP3183379A1 (en) Method for high-temperature electrolysis or co-electrolysis, method for producing electricity by means of an sofc fuel cell, and associated interconnectors, reactors and operating methods
FR2997562A1 (en) BIPOLAR PLATE FOR FUEL CELL
EP3092672B1 (en) Flow-guiding plate for a fuel cell
FR3038916A1 (en) METHODS OF (CO) ELECTROLYSIS OF WATER (SOEC) OR PRODUCTION OF HIGH TEMPERATURE ELECTRICITY WITH INTEGRATED EXCHANGERS AS REACTOR STACK (EHT) OR FUEL CELL (SOFC) )
FR3023981A1 (en) BIPOLAR PLATE FOR ELECTROCHEMICAL REACTOR HAVING A COMPACT AND LOW DIFFERENTIAL PRESSURE REGION
EP3005454B1 (en) Fuel cell system
EP2692009A1 (en) Fuel cell comprising a proton-exchange membrane, having an increased service life
FR2897721A3 (en) Fuel cell e.g. energy converter, for vehicle, has electrochemical cells each comprising assembly formed by electrolyte, anode and cathode and interposed between bipolar plates having channels which are not situated face to face
FR2997561A1 (en) BIPOLAR PLATE FOR FUEL CELL
JP3673252B2 (en) Fuel cell stack
WO2016042268A1 (en) Fluid flow guide plate for electrochemical reactor, and assembly comprising said plate
EP3195391A1 (en) Fuel cell for detecting a pollutant
KR100633464B1 (en) Manufacturing method and Polymer electrolyte fuel cell and the stack
EP3092671B1 (en) Flow-guiding plate for a fuel cell
EP3809504A1 (en) Bipolar plate for fuel cell
EP2729980B1 (en) Separator plate having intermediate gas injection means, fuel cell and process for supplying gas
FR3079676A1 (en) BIPOLAR PLATE WITH ONDULATED CHANNELS
KR100556814B1 (en) Stack of fuel cell
EP1501144B1 (en) Fuel cell with high active surface
FR3109473A1 (en) Bipolar plate of fuel cell with advanced heat transfer fluid circuit
FR2844922A1 (en) Fuel cell with different distribution of fuel to the cathode and to the anode, uses porous layer to distribute fuel to anode and network of grooves on inner face of cathode to distribute fuel over cathode
FR3092203A1 (en) BIPOLAR PLATE FOR HOMOGENIZING THE COOLANT TEMPERATURE
FR3128063A1 (en) Isolation device configured to be mounted in a fluid circulation chimney of a fuel cell and method of isolation
FR2863104A1 (en) Fuel cell e.g. solid oxide fuel cell, for motor vehicle, has periphery cooling channel along lateral sides of basic cells and central cooling channel perpendicularly crossing basic cells to cool central zone of basic cells
FR2836283A1 (en) Fuel cell for electric motor vehicle has cells each with anode, cathode and electrolyte between two bipolar cells, and some cells having phase change material

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20071030