FR2856405A1 - BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICIZED CEREAL MATERIALS, MANUFACTURING METHOD THEREOF AND USES THEREOF - Google Patents

BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICIZED CEREAL MATERIALS, MANUFACTURING METHOD THEREOF AND USES THEREOF Download PDF

Info

Publication number
FR2856405A1
FR2856405A1 FR0307505A FR0307505A FR2856405A1 FR 2856405 A1 FR2856405 A1 FR 2856405A1 FR 0307505 A FR0307505 A FR 0307505A FR 0307505 A FR0307505 A FR 0307505A FR 2856405 A1 FR2856405 A1 FR 2856405A1
Authority
FR
France
Prior art keywords
cereal
polymer
biodegradable
viscosity
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0307505A
Other languages
French (fr)
Other versions
FR2856405B1 (en
Inventor
Laurent Massacrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbiolice SAS
Original Assignee
Ulice SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulice SA filed Critical Ulice SA
Priority to FR0307505A priority Critical patent/FR2856405B1/en
Priority to PCT/FR2004/001539 priority patent/WO2004113433A1/en
Priority to EP04767395A priority patent/EP1636308A1/en
Publication of FR2856405A1 publication Critical patent/FR2856405A1/en
Application granted granted Critical
Publication of FR2856405B1 publication Critical patent/FR2856405B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H99/00Subject matter not provided for in other groups of this subclass, e.g. flours, kernels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L99/00Compositions of natural macromolecular compounds or of derivatives thereof not provided for in groups C08L89/00 - C08L97/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2399/00Characterised by the use of natural macromolecular compounds or of derivatives thereof not provided for in groups C08J2301/00 - C08J2307/00 or C08J2389/00 - C08J2397/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

La présente invention concerne un matériau biodégradable comprenant un mélange d'au moins un polymère avec au moins une charge céréalière et éventuellement un ou plusieurs additifs acceptables caractérisé en ce que le polymère et la charge céréalière sont proches par leurs propriétés rhéologiques et thermiques. La présente invention concerne également l'utilisation dudit matériau biodégradable et un procédé pour compatibiliser une matière céréalière avec un polymère.The present invention relates to a biodegradable material comprising a mixture of at least one polymer with at least one cereal filler and optionally one or more acceptable additives, characterized in that the polymer and the cereal filler are close by their rheological and thermal properties. The present invention also relates to the use of said biodegradable material and to a process for compatibilizing a cereal material with a polymer.

Description

MATERIAU BIODEGRADABLE A BASE DE POLYMERES ETBIODEGRADABLE MATERIAL BASED ON POLYMERS AND

DE MATIERES CEREALIERES PLASTIFIEES, SON PROCEDE DE FABRICATION ET SES UTILISATIONS.  OF PLASTICIZED CEREAL MATERIALS, MANUFACTURING METHOD THEREOF AND USES THEREOF.

La présente invention se rapporte au domaine de la biodégradabilité des matières plastiques et concerne la mise au point de matériaux composites à base de polymères et de matières céréalières plastifiées (également appelées charges céréalières). Ces matériaux biodégradables sont 10 destinés à se substituer aux plastiques synthétiques utilisés dans de nombreux domaines d'activité comme la cosmétologie, la pharmacie, l'agroalimentaire ou l'agriculture, par exemple en tant que produit d'emballage.  The present invention relates to the field of biodegradability of plastics and relates to the development of composite materials based on polymers and plasticized cereal materials (also called cereal fillers). These biodegradable materials are intended to replace synthetic plastics used in many fields of activity such as cosmetology, pharmacy, food or agriculture, for example as a packaging product.

On connaît dans l'art antérieur des matériaux biodégradables susceptibles d'être substitués aux matières plastiques synthétiques. Par "biodégradable", on entend dans le cadre de la présente invention toute dégradation 20 biologique, physique et/ou chimique, au niveau moléculaire, des substances par l'action de facteurs environnementaux (en particulier des enzymes issues des processus de métabolisme des microorganismes).  Biodegradable materials capable of being substituted for synthetic plastics are known in the prior art. By "biodegradable" is meant in the context of the present invention any biological, physical and / or chemical degradation, at the molecular level, of substances by the action of environmental factors (in particular enzymes derived from the metabolism processes of microorganisms ).

On peut citer tout d'abord des matériaux 25 biodégradables issus d'un mélange entre un polymère et un amidon modifié en surface, décrits par exemple dans les brevets US No. 1 485 833, et No. 1 487 050, No. 4 021 388, No. 4 125 495 et le brevet européen No. 45 621. Cette modification chimique de l'état de surface de l'amidon 30 permet de créer des fonctions éthers ou esters ou de rendre la surface de l'amidon hydrophobe.  Mention may first be made of biodegradable materials derived from a mixture between a polymer and a surface-modified starch, described for example in US Pat. Nos. 1,485,833, and No. 1,487,050, No. 4,021 388, No. 4 125 495 and European patent No. 45 621. This chemical modification of the surface state of the starch 30 makes it possible to create ether or ester functions or to make the surface of the starch hydrophobic.

Il a également été proposé des matériaux formés d'un polymère et d'un amidon déstructuré c'est-à-dire ayant subi un pré-traitement spécifique par un agent déstructurant comme l'urée, les hydroxydes de métaux 5 alcalins ou alcalino-terreux, comme décrit dans les brevets européens No. 437 589, No. 437 561 et No. 758 669, ou l'eau comme décrit dans le brevet US No. 5 095 054.  There have also been proposed materials formed from a polymer and a destructured starch, that is to say having undergone a specific pretreatment with a destructuring agent such as urea, hydroxides of alkali or alkaline metal earthy, as described in European Patent Nos. 437,589, No. 437,561 and No. 758,669, or water as described in US Patent No. 5,095,054.

L'invention décrite dans le brevet européen No. 535 994 n'utilise pas le terme d'amidon déstructuré mais celui de 10 gélatinisé dans la mesure o l'amidon est chauffé à 40 C en présence d'eau, de 1 à 45% en poids, pendant un temps assez long pour faire éclater les granules d'amidon.  The invention described in European patent No. 535 994 does not use the term destructured starch but that of gelatinized 10 insofar as the starch is heated to 40 ° C. in the presence of water, from 1 to 45% by weight, for a time long enough to burst the starch granules.

Des méthodes d'obtention de matériaux biodégradables constitués d'amidon, de polymères autre que 15 le polypropylène et d'additifs ont aussi été décrites. Ces additifs peuvent être des composés chimiques insaturés comme le caoutchouc naturel ou des élastomères comme décrit dans le brevet européen No. 363 383, ou des matières végétales comme la farine de bois ou de la 20 cellulose comme décrit dans le brevet européen No. 652 910, ou encore un plastifiant comme des polyols, du glycérol et/ou ses dérivés diglycérol, polyglycérol - du chlorure de calcium ou des éthers comme décrit dans les brevets européens No. 473 726, No. 575 349 et US No. 5 393 25 804. Parmi les polymères envisagés, on peut citer le poly(éthylène/vinylalcool) et le poly(éthylène/acide acrylique proposés dans les brevets européens No. 400 532, No. 413 798 et No. 436 689, ou des copolymères aliphatiques et des polyesters comme proposé dans le 30 brevet européen No. 539 541, ou encore du polyéthylène basse densité comme proposé dans la demande de brevet PCT No. WO 9115542 et le brevet US 5 162 392.  Methods of obtaining biodegradable materials consisting of starch, polymers other than polypropylene and additives have also been described. These additives can be unsaturated chemical compounds such as natural rubber or elastomers as described in European Patent No. 363,383, or vegetable materials such as wood flour or cellulose as described in European Patent No. 652,910 , or a plasticizer such as polyols, glycerol and / or its diglycerol derivatives, polyglycerol - calcium chloride or ethers as described in European patents No. 473 726, No. 575 349 and US No. 5 393 25 804 Among the polymers envisaged, mention may be made of poly (ethylene / vinyl alcohol) and poly (ethylene / acrylic acid proposed in European patents No. 400 532, No. 413 798 and No. 436 689, or aliphatic copolymers and polyesters as proposed in European patent No. 539 541, or also low density polyethylene as proposed in PCT patent application No. WO 9115542 and US patent 5,162,392.

Il a enfin été envisagé de préparer des matériaux biodégradables à partir d'amidon mélangé à des 5 polymères modifiés chimiquement afin de pouvoir réagir avec les groupements hydroxyles de l'amidon et créer ainsi des liaisons entre le polymère et l'amidon. Ces techniques sont décrites par exemple dans les brevets européens No. 554 939 et No. 640 110.  Finally, it has been envisaged to prepare biodegradable materials from starch mixed with chemically modified polymers in order to be able to react with the hydroxyl groups of the starch and thus create bonds between the polymer and the starch. These techniques are described for example in European patents No. 554 939 and No. 640 110.

L'état de la technique connaît également des matériaux biodégradables à base de polymère et de farine céréalière. Ce matériau objet de la demande de brevet internationale PCT publiée le 16 mars 2000 sous le numéro 15 WO00/14154 se distingue des matériaux biodégradables de l'état de la technique de par le fait qu'il est obtenu à partir de farine céréalière et non d'amidon et que ladite farine céréalière ne subit aucun traitement tel qu'une gélatinisation totale, une déstructuration de la surface 20 des amidons ou une modification de cette surface.  The state of the art also knows biodegradable materials based on polymer and cereal flour. This material which is the subject of the international PCT patent application published on March 16, 2000 under the number 15 WO00 / 14154 is distinguished from the biodegradable materials of the prior art by the fact that it is obtained from cereal flour and not of starch and that said cereal flour does not undergo any treatment such as total gelatinization, destructuring of the surface of the starches or a modification of this surface.

Le procédé décrit dans la demande de brevet internationale WO 00/14154 consiste à mélanger ensemble, dans une première étape, la farine céréalière et le polymère. Cette première étape est appelée " le 25 compoundage " et est généralement réalisée par extrusion bi-vis, en présence de divers agents compatibilisants ou non.  The process described in international patent application WO 00/14154 consists in mixing together, in a first step, the cereal flour and the polymer. This first step is called "compounding" and is generally carried out by twin-screw extrusion, in the presence of various compatibilizing agents or not.

La Demanderesse développe d'ailleurs une gamme de produits basés sur ce concept, dénommés FIBERPLAST . 30 Par exemple, en chargeant du polypropylène (PP) avec de la farine de maïs, il est possible d'obtenir des matériaux aux propriétés nouvelles (Tableau 1). Le nom " Fiberplast PP X " signifie un matériau contenant du polypropylène et X % en poids total de farine de maïs et obtenu selon le procédé objet de la demande de brevet internationale WO 00/14154.  The Applicant also develops a range of products based on this concept, called FIBERPLAST. For example, by loading polypropylene (PP) with corn flour, it is possible to obtain materials with novel properties (Table 1). The name "Fiberplast PP X" means a material containing polypropylene and X% by total weight of corn flour and obtained according to the process which is the subject of international patent application WO 00/14154.

Tableau 1Table 1

Matières Norme PP Fiberplast PP Fiberplast PP Fiberplast PP 30 50 Contrainte max (MPa) NF T 51-034 22 20 14 10,8 Module d'Young (MPa) NF T 51-001 1440 1820 2100 Choc Charpy NF T 51-035 (kJ/m2) éprouvette non 17 15,4 7,1 4,6 entaillée Melting Flow Index NF T 51-016 21,4 15,6 7,3 4,1 (200 C 2.16 kg) Densité méthode B 0,905 0,91 1,08 1,10 On constate que, d'une manière générale, les charges végétales diminuent la résistance mécanique du 10 matériau (a max) mais augmentent fortement la rigidité (module d'Young) ce qui signifie que le produit fini aura une meilleure tenue dimensionnelle au détriment de sa résistance. Il en découle que toutes les applications de la plasturgie ne sont pas possibles, notamment la 15 formation de films plastiques par extrusion gonflage qui mène à des caractéristiques défavorables du produit.  Materials Standard PP Fiberplast PP Fiberplast PP Fiberplast PP 30 50 Max stress (MPa) NF T 51-034 22 20 14 10.8 Young's modulus (MPa) NF T 51-001 1440 1820 2100 Choc Charpy NF T 51-035 ( kJ / m2) test piece no 17 15.4 7.1 4.6 notched Melting Flow Index NF T 51-016 21.4 15.6 7.3 4.1 (200 C 2.16 kg) Density method B 0.905 0.91 1.08 1.10 It is found that, in general, the vegetable loads decrease the mechanical resistance of the material (a max) but strongly increase the rigidity (Young's modulus) which means that the finished product will have a better dimensional resistance at the expense of its strength. It follows that not all plastics applications are possible, in particular the formation of plastic films by inflation extrusion which leads to unfavorable characteristics of the product.

Les autres inconvénients dans le procédé objet de la demande de brevet internationale WO 00/14154 est l'étape de compoundage: elle fige la formulation, élève le coût et fait subir au produit céréalier des contraintes thermiques et physiques défavorables. De plus, le mélange obtenu à l'étape de compoundage n'est pas homogène et 5 présente des amalgames ou grumeaux. Lorsque le matériau biodégradable ainsi obtenu est utilisé pour réaliser un film plastique, la présence de tels amalgames ou grumeaux entraîne une discontinuité de la matière, ne permettant pas la réalisation du film dans des conditions 10 industrielles, surtout pour des proportions de matière céréalière supérieures à 20%. De plus, la réalisation de pièces plastiques par les méthodes habituelles de la plasturgie, notamment l'injection ou l'extrusion, soufflage et calandrage, conduit à des produits 15 irréguliers et d'autant plus épais que la charge céréalière augmente.  The other drawbacks in the process which is the subject of international patent application WO 00/14154 is the compounding step: it freezes the formulation, raises the cost and subjects the cereal product to unfavorable thermal and physical stresses. In addition, the mixture obtained in the compounding step is not homogeneous and has amalgams or lumps. When the biodegradable material thus obtained is used to make a plastic film, the presence of such amalgams or lumps results in a discontinuity of the material, not allowing the film to be produced under industrial conditions, especially for proportions of cereal material greater than 20%. In addition, the production of plastic parts by the usual methods of plastics processing, in particular injection or extrusion, blowing and calendering, leads to irregular products and even thicker as the cereal load increases.

A ce problème technique qualitatif qui limite fortement les utilisations possibles du matériau biodégradable objet de la demande de brevet internationale 20 WO 00/14154, s'ajoute un problème technique quantitatif.  To this qualitative technical problem which strongly limits the possible uses of the biodegradable material which is the subject of international patent application WO 00/14154, is added a quantitative technical problem.

En effet, dans ce matériau biodégradable, il est difficile d'obtenir une proportion en poids de farine céréalière supérieure à 50%. Or, il est évident que des matériaux biodégradables contenant une proportion en farine 25 céréalière supérieure à 50% permettrait de diminuer notamment le coût desdits matériaux.  Indeed, in this biodegradable material, it is difficult to obtain a proportion by weight of cereal flour greater than 50%. Now, it is obvious that biodegradable materials containing a proportion of cereal flour greater than 50% would make it possible in particular to reduce the cost of said materials.

La Demanderesse a postulé que les différents problèmes techniques cités ci-dessus étaient dus au fait 30 que les farines céréalières et les polymères utilisés dans les matériaux biodégradables sont trop éloignés les uns des autres au niveau physico-chimique et qu'ils présentent des propriétés différentes. A titre d'exemple, la farine céréalière est hydrophile alors que les polymères thermoplastiques synthétiques sont en général lipophiles. 5 De même, la taille des particules constituant une farine céréalière est comprise entre 0,1 et 500 gm alors que la taille des polymères utilisables est de l'ordre de 2 à 3 mm. Enfin, les caractéristiques rhéologique et thermique de la farine céréalière et des polymères dans les 10 processus d'extrusion sont trop différentes.  The Applicant has postulated that the various technical problems cited above are due to the fact that the cereal flours and the polymers used in the biodegradable materials are too far apart from each other at the physico-chemical level and that they have different properties. . For example, cereal flour is hydrophilic while synthetic thermoplastic polymers are generally lipophilic. 5 Similarly, the size of the particles constituting a cereal flour is between 0.1 and 500 μm while the size of the polymers which can be used is of the order of 2 to 3 mm. Finally, the rheological and thermal characteristics of cereal flour and polymers in the extrusion processes are too different.

La Demanderesse a fait l'hypothèse que la qualité du mélange entre la farine céréalière et le polymère et sa stabilité en sortie extrudeur monovis et/ou bivis - sont régies par deux lois que sont: - la similitude thermique en phase solide, selon laquelle le mélange homogène de produits incompatibles chimiquement est conditionné par un transfert thermique équivalent en phase solide, permettant une fusion simultanée lors des procédés d'extrusion; - la similitude rhéologique, selon laquelle le mélange de deux produits ne peut se faire que si leur viscosité est similaire à une température donnée.  The Applicant has hypothesized that the quality of the mixture between the cereal flour and the polymer and its stability at the output of a single-screw and / or twin-screw extruder - are governed by two laws which are: - thermal similarity in solid phase, according to which the homogeneous mixture of chemically incompatible products is conditioned by an equivalent heat transfer in solid phase, allowing simultaneous fusion during extrusion processes; - the rheological similarity, according to which the mixing of two products can only be done if their viscosity is similar at a given temperature.

Par conséquent, la Demanderesse, après avoir 25 étudié les comportements rhéologique et thermique des polymères utilisés, a cherché à identifier une transformation de la matière céréalière lui permettant de se rapprocher du point de vue physico-chimique des propriétés desdits polymères auxquels elle est associée 30 dans les matériaux biodégradables.  Consequently, the Applicant, after having studied the rheological and thermal behavior of the polymers used, sought to identify a transformation of the cereal material allowing it to approach from the physico-chemical point of view the properties of said polymers with which it is associated. in biodegradable materials.

Des auteurs ont travaillé sur la réalisation de produits céréaliers, principalement à base d'amidon, et pouvant être utilisé pour l'élaboration de pièces injectées. Ils utilisent alors différents plastifiants, 5 dont l'objectif est d'obtenir une masse fondue d'amidon lors de l'extrusion. Leurs travaux constituent le point de départ des transformations de la matière céréalière envisagées par la Demanderesse.  Authors have worked on the production of cereal products, mainly based on starch, which can be used for the production of injected parts. They then use different plasticizers, 5 the objective of which is to obtain a melt of starch during extrusion. Their work constitutes the starting point for the transformations of the cereal material envisaged by the Applicant.

Les travaux de la Demanderesse ont permis, 10 d'une part, de mettre en parallèle 2 méthodes de caractérisation d'une matière plastique. La première consiste à relever un profil d'indice de fusion (MFI), analyse de routine pour les professionnels de la plasturgie. L'analyse du comportement rhéologique nous a 15 permis de transformer les valeurs MFI (pour Melting Flow Index) en évaluation de la fonction viscosité (équations WLF). La seconde, plus lourde et moins rapide, consiste à transformer la matière en extrusion et à relever les pertes de charge par rhéométrie capillaire. Le traitement des 20 équations de Navier-Stokes pour un fluide incompressible en régime laminaire, permanent et établi, permet d'obtenir les viscosités de la matière en fonction du cisaillement. Les résultats ont montré la convergence des 2 méthodes: il est possible de prédire, à partir d'une mesure MFI, ce que sera 25 la viscosité de la matière en extrusion pour une température, un cisaillement et une pression quelconques.  The work of the Applicant has made it possible, on the one hand, to compare two methods of characterizing a plastic material. The first consists in reading a melting index profile (MFI), a routine analysis for plastics professionals. Analysis of the rheological behavior allowed us to transform the MFI values (for Melting Flow Index) into an evaluation of the viscosity function (WLF equations). The second, heavier and slower, consists of transforming the material into extrusion and recording the pressure drops by capillary rheometry. The treatment of the 20 Navier-Stokes equations for an incompressible fluid in a laminar, permanent and established regime, makes it possible to obtain the viscosities of the material as a function of the shear. The results showed the convergence of the two methods: it is possible to predict, from an MFI measurement, what the viscosity of the material in extrusion will be for any temperature, shear and pressure.

Dans un second temps, la Demanderesse a cherché à préparer une matière céréalière possédant une viscosité similaire à celle du polymère utilisé lors de l'extrusion. 30 Elle a, plus particulièrement, vérifié que par un travail de plastification préalable de la matière céréalière, il est possible, lors de l'extrusion finale, de compatibiliser un polymère à la rhéologie définie avec une matière céréalière adéquate. Le matériau biodégradable ainsi obtenu peut être notamment utilisé pour obtenir industriellement des films biodégradables de 10 /m d'épaisseur et présente des propriétés de biodégradabilité et de résistance remarquables, comme décrit dans les  In a second step, the Applicant sought to prepare a cereal material having a viscosity similar to that of the polymer used during the extrusion. More particularly, it has verified that by prior plasticization of the cereal material, it is possible, during the final extrusion, to compatibilize a polymer with the defined rheology with an adequate cereal material. The biodegradable material thus obtained can be used in particular for industrially obtaining biodegradable films 10 μm thick and has remarkable biodegradability and resistance properties, as described in the

exemples ci-après.examples below.

La présente invention concerne donc un matériau biodégradable comprenant un mélange d'au moins un polymère avec au moins une charge céréalière et éventuellement un 10 ou plusieurs additifs acceptables caractérisé en ce que le polymère et la charge céréalière sont proches par leurs propriétés rhéologiques et thermiques.  The present invention therefore relates to a biodegradable material comprising a mixture of at least one polymer with at least one cereal filler and optionally one or more acceptable additives characterized in that the polymer and the cereal filler are close in their rheological and thermal properties.

Par " charge céréalière ", on entend toute matière céréalière plastifiée au moyen d'un plastifiant.  By "cereal filler" is meant any cereal material plasticized by means of a plasticizer.

Par " matière céréalière ", on entend, dans le cadre de la présente invention, des matières végétales issues de céréales dont les compositions, en fonction des différents ingrédients de base, sont les suivantes (pourcentages pondéraux) : - eau entre 0 et 20%, - composés carbohydratés entre 0 et 85% dont amidon compris entre 0 et 80%, protéines entre 0 et 30%, - acides gras entre 0 et 10%, - minéraux entre 0 et 5%, - fibres entre 0 et 20%.  By "cereal material" is meant, in the context of the present invention, plant materials derived from cereals whose compositions, according to the various basic ingredients, are as follows (weight percentages): - water between 0 and 20% , - carbohydrate compounds between 0 and 85% including starch between 0 and 80%, proteins between 0 and 30%, - fatty acids between 0 and 10%, - minerals between 0 and 5%, - fibers between 0 and 20%.

Par " composés carbohydratés, protéines, acides gras, minéraux et fibres ", on entend les multiples produits et molécules décrits de manière classique par de 30 nombreux auteurs de référence dans le domaine des compositions de matières céréalières. Citons par exemple: "La composition des aliments. Tableaux des valeurs nutritives" - Souci/Fachmann/Kraut 5ième Edition - CRC Press.  By "carbohydrate compounds, proteins, fatty acids, minerals and fibers" is meant the multiple products and molecules conventionally described by many reference authors in the field of cereal material compositions. Let us quote for example: "The composition of food. Tables of nutritive values" - Souci / Fachmann / Kraut 5th Edition - CRC Press.

La demande de brevet internationale WO 5 00/14154 décrit des farines céréalières de blé T55, de blé complet et de mais utilisables dans le cadre de la présente invention.  The international patent application WO 5 00/14154 describes cereal flours of wheat T55, whole wheat and corn usable in the context of the present invention.

Il est possible de modifier la constitution d'une matière céréalière par diverses techniques. On peut 10 citer par exemple le séchage qui permet de réduire l'humidité ou la turboséparation qui permet de séparer une matière céréalière en deux fractions granulométriquement différentes: une plus riche en amidon (grosses particules) et une plus riche en protéines (petites 15 particules). La matière céréalière de mais de l'exemple est une farine obtenue suite au broyage additionnel d'une semoule grossière de maïs. La granulométrie de cette farine de mais est présentée à la figure 5.  It is possible to modify the constitution of a cereal material by various techniques. We can cite for example the drying which makes it possible to reduce the humidity or the turboseparation which makes it possible to separate a cereal material into two fractions which are grain-size different: one richer in starch (large particles) and one richer in protein (small particles). ). The corn grain material of the example is a flour obtained following the additional grinding of a coarse cornmeal. The grain size of this corn flour is presented in Figure 5.

En ce qui concerne l'amidon, qui est un 20 élément important dans une farine, celui-ci est constitué, d'un mélange de deux polymères du glucose: l'amylose et l'amylopectine. Le ratio entre ces deux molécules est différent selon les céréales et les variétés pour une même céréale. De plus, il convient de noter que le ratio 25 amylose/amylopectine peut être modifié par des transformations génétiques utilisant les séquences nucléotidiques des gènes impliqués dans le métabolisme de l'amidon ou par l'utilisation de la variabilité génétique naturelle des espèces végétales.  With regard to starch, which is an important element in a flour, this consists of a mixture of two glucose polymers: amylose and amylopectin. The ratio between these two molecules is different according to cereals and varieties for the same cereal. In addition, it should be noted that the amylose / amylopectin ratio can be modified by genetic transformations using the nucleotide sequences of the genes involved in starch metabolism or by the use of the natural genetic variability of plant species.

Le matériau biodégradable de l'invention est remarquable en ce qu'il comprend la totalité des constituants d'une matière céréalière et non uniquement de l'amidon. Ceci permet en particulier d'éviter toutes les techniques d'extraction de l'amidon mais aussi d'utiliser les propriétés de certains constituants de la matière 5 céréalière, comme la lubrification par les acides gras, l'amélioration de la tenue mécanique et de la flexibilité grâce aux fibres en cellulose, la coloration et l'arôme naturels dus à la destruction partielle des protéines au moment de l'élaboration des matériaux.  The biodegradable material of the invention is remarkable in that it comprises all of the constituents of a cereal material and not only of starch. This makes it possible in particular to avoid all the starch extraction techniques but also to use the properties of certain constituents of the cereal material, such as lubrication by fatty acids, improvement of the mechanical strength and flexibility thanks to the cellulose fibers, the natural coloring and aroma due to the partial destruction of proteins during the development of materials.

Par " polymère ", on entend dans le cadre de la présente invention toute matière plastique et, plus particulièrement, toute matière thermoplastique. Il est avantageusement choisi dans les groupes suivants: - polymères synthétiques: famille des polyoléfines (polyéthylène haute et basse densité, polyprolylène, avec des MFI (melting flow index de 0,1 à 60 sous 2,16 kg et à 230 C), famille des vinyliques (PVC), famille des styréniques (PS standard, expansé ou 20 choc),...  By "polymer" is meant in the context of the present invention any plastic material and, more particularly, any thermoplastic material. It is advantageously chosen from the following groups: - synthetic polymers: family of polyolefins (high and low density polyethylene, polyprolylene, with MFIs (melting flow index from 0.1 to 60 under 2.16 kg and at 230 C), family vinyls (PVC), family of styrenics (standard PS, expanded or impact 20), ...

- polymères biodégradables: famille des acides polylactiques (PLA), famille des copolyester de butanediol, acides adipique et téréphtalique, famille de composites copolyester - amidon, famille des lactones et 25 polycaprolactones,...  - biodegradable polymers: family of polylactic acids (PLA), family of butanediol copolyester, adipic and terephthalic acids, family of copolyester - starch composites, family of lactones and polycaprolactones, ...

Par " plastifiant " dans le cadre de la présente invention, on entend une molécule naturelle ou synthétique utilisée pour abaisser la température de fusion 30 d'un polymère. Dans le cadre du matériau biodégradable objet de la présente invention, le plastifiant permet de plastifier la matière céréalière. De façon avantageuse, les plastifiants utilisables dans le cadre du matériau biodégradable de l'invention sont choisis dans le groupe constitué par le glycérol et ses dérivés tels que le di ou le polyglycérol, l'huile de ricin, l'huile de lin, l'huile 5 de colza, l'huile de tournesol, l'huile de maïs, les polyols, l'urée, le chlorure de sodium et les mélanges de ceux-ci. Cependant, l'homme du métier est capable d'utiliser tout plastifiant connu dans la mise en oeuvre de la présente invention à la seule condition que le 10 plastifiant utilisé permette d'offrir à la matière céréalière à laquelle il est associé un comportement rhéologique identique à ou du moins très proche de celui du polymère du matériau biodégradable.  By "plasticizer" in the context of the present invention is meant a natural or synthetic molecule used to lower the melting temperature of a polymer. In the context of the biodegradable material which is the subject of the present invention, the plasticizer makes it possible to plasticize the cereal material. Advantageously, the plasticizers which can be used in the context of the biodegradable material of the invention are chosen from the group consisting of glycerol and its derivatives such as di or polyglycerol, castor oil, linseed oil, l rapeseed oil, sunflower oil, corn oil, polyols, urea, sodium chloride and mixtures thereof. However, a person skilled in the art is capable of using any plasticizer known in the implementation of the present invention on the sole condition that the plasticizer used makes it possible to offer the cereal material with which it is associated identical rheological behavior. at or at least very close to that of the polymer of the biodegradable material.

Par " additifs acceptables " dans le cadre de la présente invention, on entend plus particulièrement une molécule naturelle ou synthétique apportant une caractéristique d'apparence au produit, telle que la couleur ou la texture, de rigidité, facilitant les procédés 20 habituels de plasturgie, telle que la lécithine servant de démoulant dans les processus d'injection, ou facilitant la biodégradabilité des polymères, notamment.  By "acceptable additives" in the context of the present invention is meant more particularly a natural or synthetic molecule providing a characteristic of appearance to the product, such as color or texture, of rigidity, facilitating the usual plastics processes, such as lecithin serving as a release agent in the injection process, or facilitating the biodegradability of polymers, in particular.

Les différents essais réalisés par la 25 Demanderesse ont permis de montrer que le taux de plastification de la charge céréalière doit être compris entre 10 et 40%. En effet, lorsque le polymère utilisé est est un copolyester biodégradable et la matière céréalière de la farine de maïs, un taux de plastification par le 30 glycérol compris entre 20 et 30% est avantageusement utilisé, alors que l'utilisation de polycaprolactones comme polymères nécessite d'utiliser un taux de plastification supérieur, centré sur 35 %. L'homme du métier a un enseignement suffisant dans le présent document pour 35 modifier les taux de plastification en fonction des polymères utilisés sans faire preuve d'un effort inventif.  The various tests carried out by the Applicant have made it possible to show that the degree of plasticization of the cereal load must be between 10 and 40%. In fact, when the polymer used is a biodegradable copolyester and the cereal material of corn flour, a degree of plasticization by glycerol of between 20 and 30% is advantageously used, whereas the use of polycaprolactones as polymers requires use a higher plasticization rate, centered on 35%. Those skilled in the art have sufficient teaching in this document to modify the plasticization rates as a function of the polymers used without demonstrating an inventive effort.

La présente invention concerne également l'utilisation d'un matériau biodégradable tel que défini ci-dessus pour la préparation de films plastiques et/ou de pièces plastiques injectées. Par conséquent, la présente 5 invention concerne, d'une part, un film plastique constitué en totalité ou en partie dudit matériau biodégradable et, d'autre part, un objet en plastique injecté constitué en totalité ou en partie dudit matériau biodégradable. A titre d'exemples et de façon non limitative, de tels objets 10 peuvent être des gobelets, bouteilles, pots, ficelles, sachets, tubes, etc....  The present invention also relates to the use of a biodegradable material as defined above for the preparation of plastic films and / or injected plastic parts. Consequently, the present invention relates, on the one hand, to a plastic film made entirely or in part of said biodegradable material and, on the other hand, to an injected plastic object made entirely or in part of said biodegradable material. By way of examples and without limitation, such objects 10 can be cups, bottles, pots, strings, sachets, tubes, etc.

De préférence, le matériau biodégradable objet de la présente invention comprend pour la réalisation de 15 films plastiques: - une teneur en poids de polymère comprise entre 35 et 94% ; - une teneur en poids de charge céréalière comprise entre 5 à 60% et - une teneur en poids d'additifs comprise entre 1 à 5%.  Preferably, for the production of 15 plastic films, the biodegradable material which is the subject of the present invention comprises: a content by weight of polymer of between 35 and 94%; - a content by weight of cereal filler between 5 to 60% and - a content by weight of additives between 1 to 5%.

De préférence, le matériau biodégradable objet de la présente invention comprend pour la réalisation de 25 pièces plastiques injectées: - une teneur en poids de polymère comprise entre 0 et 99% ; - une teneur en poids de charge céréalière comprise entre 0 à 99% et - une teneur en poids d'additifs comprise entre 1 à 5%.  Preferably, for the production of 25 injected plastic parts, the biodegradable material which is the subject of the present invention comprises: a content by weight of polymer of between 0 and 99%; - a content by weight of cereal filler between 0 to 99% and - a content by weight of additives between 1 to 5%.

La présente invention concerne, également, un procédé pour compatibiliser un polymère avec une matière 35 céréalière afin de produire un matériau biodégradable tel que défini ci-dessus. Ledit procédé comprend avantageusement les étapes suivantes: (i) déterminer la viscosité du polymère à une température de travail, (ii) adapter la viscosité de la matière céréalière à celle du polymère déterminée à l'étape (i) à la même température et (iii) vérifier que le polymère et la matière céréalière ainsi adaptée présentent une similitude thermique.  The present invention also relates to a method for compatibilizing a polymer with a cereal material in order to produce a biodegradable material as defined above. Said method advantageously comprises the following steps: (i) determining the viscosity of the polymer at a working temperature, (ii) adapting the viscosity of the cereal material to that of the polymer determined in step (i) at the same temperature and ( iii) verify that the polymer and the cereal material thus adapted have a thermal similarity.

De façon avantageuse, l'étape (i) du présente 10 procédé est réalisée par rhéométrie capillaire. En effet, les travaux de la Demanderesse ont permis de montrer que la viscosité d'un polymère peut être évaluée aussi bien au laboratoire par évaluation de l'indice de fusion qu'au cours du procédé (i. e. mesures réelles) par des 15 enregistrements en ligne des pertes de charge par rhéométrie capillaire.  Advantageously, step (i) of the present process is carried out by capillary rheometry. Indeed, the work of the Applicant has made it possible to show that the viscosity of a polymer can be evaluated both in the laboratory by evaluation of the melt index and during the process (ie actual measurements) by 15 recordings. line pressure drop by capillary rheometry.

L'étape (ii) consiste à plastifier la matière céréalière au moyen d'un plastifiant tel que défini précédemment. L'adaptation de la viscosité de la matière 20 céréalière à celle du polymère peut également être influencée par la granulométrie de ladite matière céréalière et/ou par l'état physique des granules d'amidon dans ladite matière céréalière. Ainsi, avant l'étape de plastification de la matière céréalière une étape de 25 prégélatinisation peut être nécessaire.  Step (ii) consists of plasticizing the cereal material using a plasticizer as defined above. The adaptation of the viscosity of the cereal material to that of the polymer can also be influenced by the particle size of said cereal material and / or by the physical state of the starch granules in said cereal material. Thus, before the step of plasticizing the cereal material, a pregelatinization step may be necessary.

La similitude thermique peut être appréciée à l'étape (iii) en vérifiant que le polymère et le matière céréalière adaptée présentent une fusion simultanée lors des procédés d'extrusion.  The thermal similarity can be assessed in step (iii) by verifying that the polymer and the suitable cereal material exhibit simultaneous melting during the extrusion processes.

La présente invention concerne, en outre, un procédé de préparation d'un matériau biodégradable, d'un film plastique ou d'un objet en plastique injecté tels que définis ci-dessus. De façon avantageuse, un tel procédé comprend une étape préalable de compatibilisation de la matière céréalière avec le polymère selon un procédé pour 5 compatibiliser un polymère avec une matière céréalière tel que défini ci-dessus.  The present invention further relates to a process for preparing a biodegradable material, a plastic film or an injected plastic object as defined above. Advantageously, such a method comprises a preliminary step of compatibilization of the cereal material with the polymer according to a method for compatibilizing a polymer with a cereal material as defined above.

Le procédé de préparation d'un matériau biodégradable, d'un film plastique ou d'un objet en plastique injecté présente au moins une étape additionnelle 10 de réalisation du produit souhaité selon un des procédés habituels de la plasturgie avec mélange de la matière céréalière compatibilisée et du polymère.  The process for the preparation of a biodegradable material, a plastic film or an injected plastic object has at least one additional step 10 for producing the desired product according to one of the usual processes of plastics processing with mixing of the compatibilized cereal material. and polymer.

Le procédé de préparation d'un matériau biodégradable objet de la présente invention est 15 remarquable de par le fait qu'il permet d'éviter l'étape physique de compoundage des procédés de l'état de la technique.  The process for preparing a biodegradable material which is the subject of the present invention is remarkable in that it makes it possible to avoid the physical step of compounding of the processes of the prior art.

D'autres avantages et caractéristiques de 20 l'invention apparaîtront des exemples qui suivent concernant l'étude rhéologique d'un polymère utilisable dans le cadre de la présente invention, la préparation d'une matière céréalière présentant une viscosité comparable à celle dudit polymère et la caractérisation 25 des matériaux ainsi obtenus et qui se réfèrent aux figures en annexe dans lesquelles: - la figure 1 représente l'évolution de la contrainte à la paroi T0 en fonction du cisaillement apparent Y'a (en log-log) ; - la figure 2 représente l'évolution de la viscosité du copolyester biodégradable en fonction du cisaillement réel; la figure 3 représente la comparaison des viscosités expérimentale et calculée du copolyester biodégradable; - la figure 4 représente le rhéogramme du 5 copolyester biodégradable obtenu en couplant les valeurs de MFI obtenues à 150 C sous différentes contraintes aux valeurs relevées en ligne; - la figure 5 présente la granulométrie de la farine de mais utilisée dans la partie expérimentale et 10 obtenue suite au broyage additionnel d'une semoule grossière de mais; - la figure 6 présente un exemple de configuration des vis d'un extrudeur bivis pour préparer une Farine ThermoPlastique (FTP) apte à remplacer jusqu'à 15 50% w/w de copolyester biodégradable; - la figure 7 présente une schématisation du procédé de préparation de la farine thermoplastique; - la figure 8 présente le rhéogramme viscosité - cisaillement de la farine thermoplastique utilisée dans 20 le cadre de la présente invention (croix claires) et comparée à celui d'une farine prégélatinisée au même taux de plastification (croix sombres) ; - la figure 9 représente la viscosité des FTP obtenue à 150 C pour différentes valeurs de cisaillement; 25 - la figure 10 représente l'évaluation de la viscosité globale des FTP obtenue en couplant les valeurs de MFI obtenues à 150 C sous différentes contraintes aux valeurs relevées en ligne; - la figure 11 compare les fonctions viscosités 30 globales du copolyester biodégradable et d'une FTP plastifiée à 22% à 150 oC, sur toute la gamme de cisaillement; - la figure 12 présente la vue selon deux angles (respectivement figure 12A et figure 12B) de la 5 progression thermique mesurée pour du polyéthylène haute densité (courbe noire) et du polyéthylène basse densité (courbe grisée).  Other advantages and characteristics of the invention will appear from the following examples concerning the rheological study of a polymer usable in the context of the present invention, the preparation of a cereal material having a viscosity comparable to that of said polymer and the characterization of the materials thus obtained and which refer to the appended figures in which: - Figure 1 represents the evolution of the stress at the wall T0 as a function of the apparent shear Y'a (in log-log); - Figure 2 shows the evolution of the viscosity of the biodegradable copolyester as a function of the actual shear; FIG. 3 represents the comparison of the experimental and calculated viscosities of the biodegradable copolyester; FIG. 4 represents the rheogram of the biodegradable copolyester obtained by coupling the values of MFI obtained at 150 ° C. under different constraints to the values recorded online; - Figure 5 shows the grain size of the corn flour used in the experimental part and 10 obtained following the additional grinding of a coarse corn semolina; - Figure 6 shows an example of configuration of the screws of a twin-screw extruder to prepare a ThermoPlastic Flour (FTP) capable of replacing up to 15 50% w / w of biodegradable copolyester; - Figure 7 shows a diagram of the process for preparing the thermoplastic flour; FIG. 8 shows the viscosity-shear rheogram of the thermoplastic flour used in the context of the present invention (light crosses) and compared to that of a pregelatinized flour at the same rate of plasticization (dark crosses); - Figure 9 shows the viscosity of FTP obtained at 150 C for different shear values; FIG. 10 represents the evaluation of the overall viscosity of the FTP obtained by coupling the values of MFI obtained at 150 ° C. under different constraints to the values recorded online; FIG. 11 compares the overall viscosity functions of the biodegradable copolyester and of a plasticized FTP at 22% at 150 oC, over the entire shear range; FIG. 12 presents the view from two angles (respectively FIG. 12A and FIG. 12B) of the thermal progression measured for high density polyethylene (black curve) and low density polyethylene (gray curve).

- la figure 13 présente la visualisation spatio-temporelle comparative entre le polyester et des 10 FTP à 10 % et 40 % de glycérol; - la figure 14 présente la visualisation spatio-temporelle comparative entre une FTP à 30% d'huile de maïs (courbe noire), du polyester (courbe gris clair) et du polyéthylene basse densité (courbe gris sombre) ; - la figure 15 représente les propriétés mécaniques des films de 12 gm obtenus à partir des FTP. La figure 15A présente l'évolution des caractéristiques mécaniques longitudinales des films en fonction du % de FTP et la figure 15B l'évolution des caractéristiques 20 mécaniques transversales des films en fonction du % de FTP.  - Figure 13 shows the comparative space-time visualization between polyester and 10 FTP 10% and 40% glycerol; - Figure 14 shows the comparative spatio-temporal visualization between a FTP at 30% corn oil (black curve), polyester (light gray curve) and low density polyethylene (dark gray curve); - Figure 15 shows the mechanical properties of the 12 gm films obtained from FTP. FIG. 15A shows the evolution of the longitudinal mechanical characteristics of the films as a function of the% of FTP and FIG. 15B shows the evolution of the transverse mechanical characteristics of the films as a function of the% of FTP.

I. Etude rhéoloqique de la matière plastique à charger.  I. Rheological study of the plastic to be loaded.

Le polymère choisi pour la présente étude est un copolyester biodégradable.  The polymer chosen for the present study is a biodegradable copolyester.

L'étude rhéologique de cette matière plastique se décompose en 2 phases: au laboratoire, avec l'évaluation de la 30 fonction viscosité à partir de l'indice de fusion, - sur le procédé, par des enregistrements en ligne des pertes de charge par rhéométrie capillaire.  The rheological study of this plastic material is broken down into 2 phases: in the laboratory, with the evaluation of the viscosity function from the melt index, - on the process, by online recordings of the pressure drops by capillary rheometry.

La convergence de ces 2 approches sera ensuite vérifiée.  The convergence of these 2 approaches will then be checked.

1.1. L'étude au laboratoire.1.1. Study in the laboratory.

I.l.1. Approche théorique.I.l.1. Theoretical approach.

On utilise un appareil permettant de contrôler l'indice de fusion des matières plastiques: le MFI. Il 10 s'agit d'un simple rhéomètre capillaire, dont les dimensions sont normalisées (DIN 53735). Il faut donc relier les valeurs MFI (g/lomin) à des valeurs de viscosités.  We use a device to control the melt index of plastics: the MFI. It is a simple capillary rheometer, the dimensions of which are standardized (DIN 53735). It is therefore necessary to relate the MFI values (g / lomin) to viscosity values.

On calcule d'abord la viscosité représentative: * V MFI ? = avec V M RD p(T*)  The representative viscosity is first calculated: * V MFI? = with V M RD p (T *)

-- RD- RD

T = R0.F avecF = M.g 8.Rz.L d'o : 7(* ,T,PHyd)= Ce point peut être considéré comme point 20 opératoire de la fonction viscosité universelle, et l'on peut alors évaluer cette fonction car: _lim () = ( 0 (T avec 70:viscositéderéférence ?-0 Si l'on veut connaître la viscosité à une autre température et sous une autre pression hydrostatique, on fait intervenir les facteurs de changement de température et de pression avec les formules WLF (Williams, Landel et Ferry) : * 8.86.(T-TSp) 8.86.(T -T) 8.86.(T-TS) 1016 (* 101.6+(T-T) S p q0 (T,P)= o(T).10 P o: T* = température MFI (en C) Ts = Tg + 50 C (Tg = -80 oC à lBar) T = température (en C) Tsp = Ts + 0,02 P (P en Bars) r 11zZI * a *2a Et: 77(y,T, P)= 0(T, P). 1 + A1.(0 (T, P).y) +A2 (TP).) o : y = Cisaillement quelconque (s-1) Al = l,386E-2 A2 = 1,462E-3 a = 0, 36 On obtient ainsi la viscosité en Pa.s.  T = R0.F with F = Mg 8.Rz.L of o: 7 (*, T, PHyd) = This point can be considered as the operating point of the universal viscosity function, and we can then evaluate this function because: _lim () = (0 (T with 70: reference viscosity? -0 If we want to know the viscosity at another temperature and under another hydrostatic pressure, we bring in the factors of temperature and pressure change with the WLF formulas (Williams, Landel and Ferry): * 8.86. (T-TSp) 8.86. (T -T) 8.86. (T-TS) 1016 (* 101.6+ (TT) S p q0 (T, P) = o (T). 10 P o: T * = MFI temperature (in C) Ts = Tg + 50 C (Tg = -80 oC at lBar) T = temperature (in C) Tsp = Ts + 0.02 P (P in Bars) r 11zZI * a * 2a Et: 77 (y, T, P) = 0 (T, P). 1 + A1. (0 (T, P) .y) + A2 (TP).) O: y = Any shear (s-1) Al = 1.386E-2 A2 = 1.462E-3 a = 0.36 This gives the viscosity in Pa.s.

1.1.2. Résultats expérimentaux.1.1.2. Experimental results.

Les valeurs MFI du copolyester biodégradable ont été mesurées à différentes températures et sont 20 regroupées dans le tableau 2 ci-après (valeur moyenne de 10 mesures et étendue (%-)).  The MFI values of the biodegradable copolyester were measured at different temperatures and are collated in Table 2 below (average value of 10 measurements and range (% -)).

Tableau 2Table 2

Température T* Masse (kg) MFI (g/lomin) Etendue (%) ( OC) 2,16 0,33 3,0 2,16 1,53 15,6 2,16 3,05 10,6 2,16 4,82 8,9 L'utilisation de la méthode précédente permet 5 de calculer les viscosités aux différentes températures, sous leur contrainte spécifique. Le tableau 3 ci-dessous présente ces résultats:  Temperature T * Mass (kg) MFI (g / lomin) Range (%) (OC) 2.16 0.33 3.0 2.16 1.53 15.6 2.16 3.05 10.6 2.16 4.82 8.9 The use of the preceding method makes it possible to calculate the viscosities at the various temperatures, under their specific constraint. Table 3 below presents these results:

Tableau 3Table 3

MFI T* p (T*) (g/10min) (OC) (g/cm3) (S-z) (Pa) T*) (Pa.s) 0,33 130 1,23 0,39 15211 3,96E+04 1,53 150 1,22 1,82 15211 8,43E+03 3,05 170 1,20 3,68 15211 4,17E+03 4,82 190 1,18 5,90 15211 2,61E+03 On vérifie graphiquement (nomogramme d'évaluation rapide de la fonction viscosité) la cohérence des résultats calculés.  MFI T * p (T *) (g / 10min) (OC) (g / cm3) (Sz) (Pa) T *) (Pa.s) 0.33 130 1.23 0.39 15211 3.96E + 04 1.53 150 1.22 1.82 15211 8.43E + 03 3.05 170 1.20 3.68 15211 4.17E + 03 4.82 190 1.18 5.90 15211 2.61E + 03 On checks graphically (rapid viscosity assessment nomogram) the consistency of the calculated results.

Cette méthodologie nous a permis d'évaluer la fonction viscosité du copolyester biodégradable à partir 15 des valeurs MFI. Cela reste cependant une évaluation, puisque les coefficients de régression utilisés sont ceux de la fonction viscosité universelle. Il reste à voir si les valeurs de viscosité relevées en ligne à partir des pertes de charges convergent vers les mêmes valeurs.  This methodology allowed us to assess the viscosity function of the biodegradable copolyester from the MFI values. However, this remains an evaluation, since the regression coefficients used are those of the universal viscosity function. It remains to be seen whether the viscosity values recorded online from the pressure drops converge towards the same values.

1.2. Enregistrement en ligne: rhéométrie capillaire.  1.2. Online registration: capillary rheometry.

1.2.1. Approche théorique.1.2.1. Theoretical approach.

La technique de rhéométrie capillaire consiste 10 à mesurer en continu la viscosité d'une phase fondue en sortie d'extrudeuse bi-vis à travers uncapillaire en fonction des paramètres d'entrée: température, vitesse de vis, débit.  The capillary rheometry technique consists in continuously measuring the viscosity of a molten phase at the outlet of a twin-screw extruder through a capillary as a function of the input parameters: temperature, screw speed, flow rate.

Le produit s'écoule dans un capillaire de 15 longueur L = 65 mm et de diamètre D = 6 mm (L/D>10), avec un débit volumique Qv. Les pertes de charges AP sont mesurées dans ce capillaire par 2 capteurs de pression (amont et aval).  The product flows into a capillary of length L = 65 mm and of diameter D = 6 mm (L / D> 10), with a volume flow rate Qv. The pressure drops AP are measured in this capillary by 2 pressure sensors (upstream and downstream).

En partant des équations de conservation de la 20 quantité de mouvement: p- =- grad p + ;.Au (équationdeNavier - Stokes) Il est possible sous certaines hypothèses de 25 calculer: _D.AP - la contrainte à la paroi (Pa) : w =4L - le cisaillement apparent (s-') : va 32.Qv z.D3 Alors: = (en Pa.s) Ya Y Les produits pseudoplastiques ne sont pas newtoniens: leur viscosité dépend du cisaillement et leur comportement rhéologique peut être évalué par la loi d'Ostwald: (m-1) y= Ky (fluide rhéo-fluidifiant) o : K: indice de consistance (Pa.sm) m: indice de pseudoplasticité (m<l) Ainsi, à partir du taux de cisaillement apparent newtonien ya, on utilise la correction de Rabinowitch pour tenir compte de la modification des profils de vitesses: 15 (3m+l1) Yr.-Ya 4m La viscosité réelle est donc: 4m AP.z.D4 3m + 1 128.Qv.L Les hypothèses initiales pour cette étude sont: un écoulement permanent établi, - un fluide incompressible (p = cte, divu=0), 25 - un régime laminaire (Re<2000).  Starting from the momentum conservation equations: p- = - grad p +; .Au (Navier-Stokes equation) It is possible under certain hypotheses to calculate: _D.AP - the wall stress (Pa) : w = 4L - the apparent shear (s- '): va 32.Qv z.D3 Then: = (in Pa.s) Ya Y The pseudoplastic products are not Newtonian: their viscosity depends on the shear and their rheological behavior can be evaluated by Ostwald's law: (m-1) y = Ky (rheo-fluidizing fluid) o: K: consistency index (Pa.sm) m: pseudoplasticity index (m <l) Thus, from the Newtonian apparent shear rate ya, we use Rabinowitch correction to take into account the modification of the velocity profiles: 15 (3m + l1) Yr.-Ya 4m The real viscosity is therefore: 4m AP.z.D4 3m + 1 128.Qv.L The initial hypotheses for this study are: an established permanent flow, - an incompressible fluid (p = cte, divu = 0), 25 - a laminar regime (Re <2000).

1.2.2. Résultats expérimentaux.1.2.2. Experimental results.

Le tableau 4 présente les enregistrements de pertes de charge (bars) pour une gamme de débit massique de 30 20 à 60 kg/h, 2 vitesses de vis, et une température de 150 C (lots 05.09.02) :  Table 4 presents the pressure drop records (bars) for a mass flow range of 30 20 to 60 kg / h, 2 screw speeds, and a temperature of 150 C (lots 05.09.02):

Tableau 4Table 4

Débit poudre (kg/h) AP (bars) 20 30 40 60 Vvis 100 39 48 54 67 (rpm> 130 34 53 64 La figure 1 représente l'évolution de la contrainte à la paroi Ad en fonction du cisaillement 5 apparent 7o (en log-log). Les pentes indiquent les indices de pseudoplasticité m. Ainsi, l'indice de pseudoplasticité à 100 rpm est de 0,4872 et à 160 rpm de 0,5827.  Powder flow rate (kg / h) AP (bars) 20 30 40 60 Vvis 100 39 48 54 67 (rpm> 130 34 53 64 Figure 1 represents the evolution of the stress at the wall Ad as a function of the apparent shear 5 7o ( The log indicates the pseudoplasticity indices m. Thus, the pseudoplasticity index at 100 rpm is 0.4872 and at 160 rpm 0.5827.

En corrigeant le cisaillement par le facteur Rabinowitch, on peut alors tracer l'évolution de la 10 viscosité du copolyester biodégradable en fonction du cisaillement réel (Figure 2).  By correcting the shear with the Rabinowitch factor, it is then possible to plot the evolution of the viscosity of the biodegradable copolyester as a function of the real shear (FIG. 2).

Le comportement du copolyester biodégradable est bien pseudoplastique: diminution de la viscosité avec le cisaillement. Le comportement différentiel dû à la 15 vitesse de vis peut s'expliquer par une légère dépolymérisation aux hautes vitesses: la différence s'estompe avec le cisaillement.  The behavior of the biodegradable copolyester is very pseudoplastic: decrease in viscosity with shear. The differential behavior due to the screw speed can be explained by a slight depolymerization at high speeds: the difference fades with shearing.

Avec un nombre de Reynolds très inférieur à 100, l'hypothèse initiale sur la nature laminaire du régime 20 d'écoulement est validée.  With a Reynolds number much less than 100, the initial hypothesis on the laminar nature of the flow regime is validated.

1.3. Comparaison des deux approches.  1.3. Comparison of the two approaches.

Il s'agit maintenant de comparer les mesures au laboratoire faites pour des cisaillements faibles 25 (inférieurs à 6 s-) et les mesures réelles effectuées sur le capillaire (gamme de cisaillement entre 200 et 800 s-1).  It is now a question of comparing the laboratory measurements made for weak shears (less than 6 s) and the real measurements made on the capillary (shear range between 200 and 800 s-1).

La figure 3 montre que la viscosité du copolyester biodégradable change peu pour une vitesse de vis comprise entre 100 et 130 rpm, à cisaillement 30 équivalent. En utilisant les relations WLF, il est possible de calculer les viscosités théoriques correspondant aux cisaillements rencontrés en extrusion (Tableau 5).  FIG. 3 shows that the viscosity of the biodegradable copolyester changes little for a screw speed of between 100 and 130 rpm, at equivalent shear. Using the WLF relations, it is possible to calculate the theoretical viscosities corresponding to the shears encountered in extrusion (Table 5).

Tableau 5Table 5

Cisaillement Viscosité Viscosité CV (%) (S) exp. calculée.  Shear Viscosity Viscosity CV (%) (S) exp. calculated.

(Pa.s) (Pa.s) 264 340 375 10,4 397 279 283 1,4 530 235 231 1,5 794 195 175 10,4 247 318 393 23,6 494 248 243 2,0 741 200 183 8,4 On constate que les résultats sont très similaires, ce qui signifie que l'évaluation de la viscosité avec les équations WLF pour des cisaillements, des températures et des pressions quelconques, convergent avec les relevés de pertes de charge sur la ligne. La 10 méthode est très fiable pour des cisaillements supérieurs à s-l, i.e. des débits supérieurs à 20 kg/h. Pour des valeurs inférieures, il existe probablement des fluctuations de remplissage de l'extrudeur, expliquant des résultats un peu différents entre les 2 méthodes.  (Pa.s) (Pa.s) 264 340 375 10.4 397 279 283 1.4 530 235 231 1.5 794 195 175 10.4 247 318 393 23.6 494 248 243 2.0 741 200 183 8 , 4 We note that the results are very similar, which means that the evaluation of the viscosity with the WLF equations for any shear, temperatures and pressures, converge with the readings of pressure drops on the line. The method is very reliable for shears greater than s-1, i.e. flow rates greater than 20 kg / h. For lower values, there are probably fluctuations in the filling of the extruder, explaining slightly different results between the 2 methods.

1.4. Détermination de la fonction viscosité qlobale du copolyester biodégradable.  1.4. Determination of the overall viscosity function of the biodegradable copolyester.

Nous avons vu qu'il est maintenant possible de déterminer de façon convergente, par mesures expérimentales 20 et par calcul, la viscosité du copolyester biodégradable aux bas et haut cisaillements. Une régression linéaire en coordonnées log-log nous permet d'évaluer les 2 coefficients de la fonction viscosité du copolyester biodégradable, selon le modèle d'Ostwald. Pour cela, 25 plusieurs mesures de MFI à 150 C sous différentes contraintes ont été effectuées et sont regroupées dans le tableau 6.  We have seen that it is now possible to determine convergently, by experimental measurements and by calculation, the viscosity of the biodegradable copolyester at low and high shears. A linear regression in log-log coordinates allows us to evaluate the 2 coefficients of the viscosity function of the biodegradable copolyester, according to the Ostwald model. For this, several measurements of MFI at 150 ° C. under different constraints were carried out and are grouped in Table 6.

Tableau 6Table 6

MFI (g/10min) M (kg) (s-') (Pa.s) 1,53 2,16 1,82 2,83E+03 6,95 5 8,28 9,78E+02 11,38 7,16 13,57 7,10E+02 25,21 12,16 30,05 4,05E+02 Ces valeurs, couplées à celles relevées en ligne, nous permettent de présenter le rhéogramme suivant pour le copolyester biodégradable à 150 C. Le rhéogramme ainsi obtenu est présenté à la figure 4.  MFI (g / 10min) M (kg) (s- ') (Pa.s) 1.53 2.16 1.82 2.83E + 03 6.95 5 8.28 9.78E + 02 11.38 7 , 16 13.57 7.10E + 02 25.21 12.16 30.05 4.05E + 02 These values, coupled with those noted online, allow us to present the following rheogram for the biodegradable copolyester at 150 C. The the rheogram thus obtained is presented in FIG. 4.

La figure 4 montre bien un comportement 10 rhéofluidifiant du copolyester biodégradable et une adéquation correcte entre les mesures MFI et celles en ligne, en terme de continuité de viscosité. La fonction viscosité du copolyester biodégradable répond à : -0.678 = 17685y avecm=0.322 1.5. Conclusion.  FIG. 4 clearly shows the shear thinning behavior of the biodegradable copolyester and a correct adequacy between the MFI measurements and those in line, in terms of viscosity continuity. The viscosity function of the biodegradable copolyester responds to: -0.678 = 17685y with m = 0.322 1.5. Conclusion.

Cette étude nous a permis de mettre en parallèle 2 méthodes de caractérisation d'une matière 20 plastique.  This study allowed us to compare two methods for characterizing a plastic material.

La première consiste à relever un profil d'indice de fusion (MFI), analyse de routine pour les professionnels de la plasturgie. L'analyse du comportement rhéologique nous a permis de transformer les valeurs MFI en 25 évaluation de la fonction viscosité (équations WLF).  The first consists in reading a melting index profile (MFI), a routine analysis for plastics professionals. Analysis of the rheological behavior allowed us to transform the MFI values into an evaluation of the viscosity function (WLF equations).

La seconde, plus lourde et moins rapide, consiste à transformer la matière en extrusion et à relever les pertes de charge par rhéométrie capillaire. Le traitement des équations de Navier-Stokes pour un fluide 30 incompressible en régime laminaire, permanent et établi, permet d'obtenir les viscosités de la matière en fonction du cisaillement.  The second, heavier and slower, consists of transforming the material into extrusion and recording the pressure drops by capillary rheometry. The processing of the Navier-Stokes equations for an incompressible fluid in laminar, permanent and established regime, makes it possible to obtain the viscosities of the material as a function of the shear.

Les résultats montrent la convergence des 2 méthodes. Il est possible de prédire, à partir d'une mesure 5 MFI, ce que sera la viscosité de la matière en extrusion pour une température, un cisaillement et une pression quelconque.  The results show the convergence of the 2 methods. It is possible to predict, from a 5 MFI measurement, what the viscosity of the material in extrusion will be for any temperature, shear and pressure.

La même démarche va maintenant être appliquée à la matière céréalière transformée. Il s'agira de produire 10 une matière végétale de viscosité similaire au plastique à charger, dans une gamme de cisaillement défini.  The same approach will now be applied to the processed cereal material. This will involve producing a plant material of viscosity similar to the plastic to be loaded, within a defined shear range.

II. Préparation d'une matière céréalière possédant une viscosité comparable à celle du copolyester 15 biodégradable.  II. Preparation of a cereal material having a viscosity comparable to that of the biodegradable copolyester.

L'étude complète de la viscosité du copolyester biodégradable a été réalisée par 2 méthodes d'analyse (MFI et rhéométrie capillaire), et il a été conclu à la convergence de ces 2 méthodes. L'objectif est maintenant 20 de préparer une matière céréalière possédant une viscosité similaire lors de l'extrusion.  The complete study of the viscosity of the biodegradable copolyester was carried out by 2 analysis methods (MFI and capillary rheometry), and it was concluded that these 2 methods converged. The objective now is to prepare a cereal material having a similar viscosity during extrusion.

La Demanderesse s'est demandé si, par un travail de plastification préalable de la farine, il est possible, lors de l'extrusion finale, de compatibiliser 25 une matière thermoplastique à la rhéologie définie avec une charge céréalière adéquate. Nous qualifierons dans la suite ces charges céréalières par Farine ThermoPlastique (FTP) L'exposé suivant va répondre à cette question en précisant les conditions opératoires.  The Applicant wondered whether, by prior plasticization of the flour, it is possible, during the final extrusion, to make a thermoplastic material compatible with the defined rheology with an adequate cereal load. We will qualify these cereal loads in the following by ThermoPlastic Flour (FTP) The following presentation will answer this question by specifying the operating conditions.

II.1. Obtention des FTP.II.1. Obtaining FTP.

Le plastifiant le plus répandu qu'est le glycérol (ou propanetriol) a été utilisé afin de plastifier la farine céréalière choisie i.e. la farine de mais telle que détaillée à la figure 6.  The most common plasticizer, glycerol (or propanetriol), was used to plasticize the selected cereal flour, i.e. corn flour, as detailed in Figure 6.

II.1.1. Extrusion bi-vis.II.1.1. Twin screw extrusion.

L'objectif est de réaliser un mélange homogène farine de mais - glycérol en extrusion bi-vis. Les 10 propriétés de ce mélange seront analysées par la suite.  The objective is to achieve a homogeneous mixture of corn flour - glycerol in twin-screw extrusion. The 10 properties of this mixture will be analyzed below.

a. Confiquration de l'extrudeur.at. Confusion of the extruder.

L'extrudeur utilisé est constitué par deux vis corotatives placées dans des fourreaux entourés par des 15 éléments chauffants. Cette machine permet entre autre de mélanger et de fondre différents constituants grâce à un apport thermique induit par un chauffage et par un cisaillement mécanique.  The extruder used consists of two co-rotating screws placed in sheaths surrounded by heating elements. This machine allows among other things to mix and melt different constituents thanks to a thermal contribution induced by heating and by mechanical shearing.

Le travail mécanique est fourni par des 20 éléments de vis modulaires que l'on positionne sur les 2 arbres: l'ensemble des éléments est appelé " configuration ", et est caractéristique de l'objectif à atteindre.  Mechanical work is provided by 20 modular screw elements which are positioned on the 2 shafts: all the elements are called "configuration", and are characteristic of the objective to be achieved.

Par exemple, dans le cas o l'on souhaite 25 préparer une matière céréalière apte à remplacer jusqu'à 50% w/w de copolyester biodégradable pour la réalisation de films plastiques très fins (10 gm à 20 gm), on utilise la configuration détaillée dans la figure 6, couplée à un profil de chauffe spécifique.  For example, in the case where it is desired to prepare a cereal material capable of replacing up to 50% w / w of biodegradable copolyester for the production of very fine plastic films (10 gm to 20 gm), the configuration is used. detailed in Figure 6, coupled with a specific heating profile.

De même, la taille des particules de farine est importante: elle conditionne l'échange thermique. Pour le même exemple (films fins), la distribution granulométrique de la farine de mais utilisée est présentée sur la figure 5.  Likewise, the size of the flour particles is important: it conditions the heat exchange. For the same example (fine films), the particle size distribution of the corn flour used is presented in Figure 5.

Les conditions d'extrusion sont telles que l'on a une Energie Mécanique Spécifique (SME) de 100 à 300 5 W.h/kg et une température comprise entre 80 et 160 C pour la matière en sortie de filière.  The extrusion conditions are such that there is a Specific Mechanical Energy (SME) of 100 to 300 5 W.h / kg and a temperature between 80 and 160 C for the material leaving the die.

A la sortie de l'extrudeur, des joncs de 3 mm de diamètre sont obtenus et transportés sur bandes de refroidissement avant d'être coupés. Les granulés sont 10 stockés en sacs étanches. Le schéma process est présenté à la figure 7. Nous remarquerons une relative compacité du procédé, avantage non négligeable au niveau industriel: pas de séchage postextrusion, mais un simple refroidissement.  At the exit of the extruder, rods of 3 mm in diameter are obtained and transported on cooling strips before being cut. The granules are stored in sealed bags. The process diagram is presented in Figure 7. We will note a relative compactness of the process, a significant advantage at the industrial level: no post-extrusion drying, but simple cooling.

b. Caractérisation rhéologique des FTP.  b. Rheological characterization of FTP.

Il est nécessaire de comprendre ce qui se passe dans l'extrudeur lorsque la farine est plastifiée. Pour cela, le capillaire de rhéométrie est monté à la place de 20 la filière et l'évolution de la viscosité du fondu est suivie.  It is necessary to understand what happens in the extruder when the flour is plasticized. For this, the rheometry capillary is mounted in place of the die and the evolution of the viscosity of the melt is monitored.

Les pertes de charges sont relevées pour 3 débits de farine, 2 niveau de plastification et 1 vitesse de vis (125 rpm) ; la température de la matière en sortie 25 de capillaire est stabilisée entre 145 et 150 OC. Les résultats sont présentés dans le tableau 7 ci-après.  The pressure drops are noted for 3 flour flow rates, 2 plasticization levels and 1 screw speed (125 rpm); the temperature of the material at the outlet of the capillary is stabilized between 145 and 150 OC. The results are presented in Table 7 below.

Tableau 7Table 7

Débit poudre (kg/h) A P (Bars) 23,9 27,8 33,8 Plastification = 22 % 80 81 86 Plastification = 30 % 41 44 48 En utilisant une démarche similaire à celle du 30 copolyester biodégradable, il est possible de déterminer le rhéogramme viscosité - cisaillement présenté à la figure 8.  Powder flow rate (kg / h) AP (Bars) 23.9 27.8 33.8 Plasticization = 22% 80 81 86 Plasticization = 30% 41 44 48 Using an approach similar to that of the biodegradable copolyester, it is possible to determine the viscosity-shear rheogram presented in Figure 8.

Sous certaines conditions, la viscosité des FTP est relativement similaire à celle du polymère à charger.  Under certain conditions, the viscosity of the FTP is relatively similar to that of the polymer to be loaded.

Or, le respect de la similarité de viscosité des fondus dans l'extrudeur permettra en partie un mélange homogène.  However, respecting the similarity of viscosity of the fuses in the extruder will in part allow a homogeneous mixture.

Ainsi, la compatibilisation d'un polymère X et d'une charge céréalière, doit respecter le protocole suivant: - déterminer par rhéométrie capillaire la 10 viscosité du polymère à charger dans l'extrudeur à une température de travail, - adapter la viscosité des fondus céréaliers à celle du polymère à charger à la même température: rôle du plastifiant, de la granulométrie, de l'état physique des 15 granules d'amidon, du ratio amylose/amylopectine et de la composition de la farine, du procédé d'extrusion.  Thus, the compatibilization of a polymer X and a cereal load, must comply with the following protocol: - determine by capillary rheometry the viscosity of the polymer to be loaded into the extruder at a working temperature, - adapt the viscosity of the fuses cereals to that of the polymer to be loaded at the same temperature: role of the plasticizer, the grain size, the physical state of the starch granules, the amylose / amylopectin ratio and the composition of the flour, the extrusion process .

Pour l'état granulaire, le rhéogramme d'une FTP réalisée avec une farine de mais prégélatinisée comparé 20 avec celui d'un fondu obtenu avec la farine de mais non prégélatinisée au même niveau de plastification (22 %) et à la même température (150 C) est tel que présenté à la figure 8.  For the granular state, the rheogram of an FTP made with a pregelatinized corn flour compared with that of a melt obtained with non-pregelatinized corn flour at the same level of plasticization (22%) and at the same temperature ( 150 C) is as shown in Figure 8.

Ce fondu à partir d'une farine de mais 25 prégélatinisée, de par ces caractéristiques rhéologiques, ne permet pas un mélange suffisamment homogène avec le copolyester biodégradable, pour la réalisation de films très fins (10 à 15 gm). Sa rhéologie sera plus adaptée à une matière plastique plus " dure ", type HDPE.  This melt from a pregelatinized corn flour, by virtue of these rheological characteristics, does not allow a sufficiently homogeneous mixture with the biodegradable copolyester, for the production of very fine films (10 to 15 gm). Its rheology will be more suited to a more "hard" plastic material, HDPE type.

Ainsi, la similitude rhéologique permet de maîtriser et d'adapter la viscosité des FTP en fonction du polymère à charger.  Thus, the rheological similarity makes it possible to control and adapt the viscosity of the FTP depending on the polymer to be loaded.

On constate cependant que la caractérisation et 35 l'adaptation de la viscosité ne se fait pas de façon aisée.  However, it can be seen that the characterization and adaptation of the viscosity is not easy.

En effet, elles nécessitent des mesures directes sur l'extrudeur. Il serait intéressant de voir si l'on peut utiliser la loi rhéologique universelle (équations WLF) pour les produits FTP.  Indeed, they require direct measurements on the extruder. It would be interesting to see if we can use the universal rheological law (WLF equations) for FTP products.

II.1.2. Caractérisation au laboratoire de la viscosité des FTP.  II.1.2. Characterization in the laboratory of the viscosity of FTP.

En reprenant une méthodologie similaire au thermoplastique, on va utiliser une mesure MFI et la transformer en viscosité. On verra ensuite la cohérence de ces mesures par rapport aux enregistrements de pertes de 10 charge sur l'extrudeur.  Using a methodology similar to thermoplastic, we will use an MFI measurement and transform it into viscosity. We will then see the consistency of these measurements with respect to the pressure drop records on the extruder.

a. Caractérisation rhéologique du fondu.  at. Rheological characterization of the fade.

Des mesures MFI sont effectuées à 150 C sous différentes contraintes. Les données sont rassemblées dans 15 le tableau 8 ci-dessous (FTP plastifié à 22%).  MFI measurements are carried out at 150 ° C. under different constraints. The data are collated in Table 8 below (22% plasticized FTP).

Tableau 8Table 8

MFI Masse Cisaillement Viscosité (g/10 min) (kg) (s-l) (Pa.s) 0,22 12,16 0,23 376000 0,39 15 0,39 261000 1,48 17,16 1,53 78800 La figure 9 synthétise ces données. Le comportement est nettement rhéofluidifiant, conformément à 20 ce qui a été trouvé par rhéométrie capillaire. Maintenant, il s'agit de tester la continuité des 2 lois rhéologiques (MFI et rhéométrie capillaire) pour les FTP.  MFI Mass Shear Viscosity (g / 10 min) (kg) (sl) (Pa.s) 0.22 12.16 0.23 376,000 0.39 15 0.39 261,000 1.48 17.16 1.53 78,800 La Figure 9 summarizes these data. The behavior is clearly shear thinning, in accordance with what has been found by capillary rheometry. Now, it is a question of testing the continuity of the 2 rheological laws (MFI and capillary rheometry) for FTP.

b. Continuité de la loi rhéologique sur une 25 large qamme de cisaillement.  b. Continuity of the rheological law over a wide range of shear.

L'alignement des mesures faites par MFI avec celles par rhéométrie capillaire a été réalisé pour voir si une loi continue sur toute la gamme de cisaillement pouvait être obtenue. Les données sont présentées sur la figure 10 (matières FTP à 150 C plastifiées à 22%).  The alignment of the measurements made by MFI with those by capillary rheometry was carried out to see if a continuous law over the whole shear range could be obtained. The data are presented in Figure 10 (FTP materials at 150 C plasticized to 22%).

On constate une très bonne continuité des 2 lois, preuve de la validité des équations WLF pour les 5 matières FTP. Leur comportement est bien thermoplastique, ce qui permet une compatibilisation avec un polymère plastique.  There is a very good continuity of the 2 laws, proof of the validity of the WLF equations for the 5 FTP subjects. Their behavior is indeed thermoplastic, which allows compatibilization with a plastic polymer.

Ainsi, par une mesure indirecte (MFI) à bas cisaillement, il est possible pour une matière céréalière 10 FTP, de prédire son comportement rhéologique en extrusion pour un cisaillement et une température quelconques. Les avantages immédiats sont un gain de temps et de matière, et la possibilité de contrôle en ligne d'une production par une mesure différée.  Thus, by indirect measurement (MFI) at low shear, it is possible for a cereal material 10 FTP, to predict its rheological behavior in extrusion for any shear and temperature. The immediate advantages are a saving of time and material, and the possibility of online control of a production by a deferred measurement.

II.1.3. Comparaison viscosité du copolyester biodégradable et des FTP.  II.1.3. Comparison viscosity of biodegradable copolyester and FTP.

La figure 11 compare les fonctions viscosités globales du copolyester biodégradable et d'une FTP 20 plastifiée à 22% à 150 C, sur toute la gamme de cisaillement.  FIG. 11 compares the overall viscosity functions of the biodegradable copolyester and of an FTP 20 plasticized to 22% at 150 ° C., over the whole shear range.

On constate que pour des cisaillements supérieurs à 500 s-, les viscosités des 2 produits sont proches, ce qui permet un mélange homogène.  It is noted that for shears greater than 500 s -, the viscosities of the 2 products are close, which allows a homogeneous mixture.

Des FTP plastifiés entre 20 et 30 % sont utilisables pour la réalisation de films fins (15 um) avec le copolyester biodégradable. D'autres pourcentages sont à l'étude avec d'autres polymères: par exemple, la compatibilisation des FTP avec les polycaprolactones (PCL) 30 nécessite un niveau de plastification centré autour de 35%.  Plasticized FTP between 20 and 30% can be used to make thin films (15 µm) with the biodegradable copolyester. Other percentages are being studied with other polymers: for example, the compatibilization of FTP with polycaprolactones (PCL) 30 requires a level of plasticization centered around 35%.

III. Similitude thermique des produits FTP.  III. Thermal similarity of FTP products.

La première partie de l'étude consistait à étudier le comportement rhéologique d'une matière 5 plastique et à préparer une matière céréalière compatible avec le polymère à charger. Dans cette étude, ne sont prises en compte que les phases fondues. Or, comme indiqué au paragraphe I.l.l.a, sont utilisés des granulés solides obtenus à partir des produits FTP. La caractérisation du 10 passage solide - phase fondue, qui intervient dans le procédé d'extrusion, est donc nécessaire: elle implique la mise en équation du transfert thermique en régime transitoire.  The first part of the study consisted in studying the rheological behavior of a plastic material and in preparing a cereal material compatible with the polymer to be loaded. In this study, only the melted phases are taken into account. However, as indicated in paragraph I.l.l.a, solid granules obtained from FTP products are used. The characterization of the solid passage - molten phase, which is involved in the extrusion process, is therefore necessary: it involves the equation of the heat transfer in transient regime.

III.1. Introduction au transfert thermique.  III.1. Introduction to heat transfer.

Considérons une barre métallique à une température TO. A t=0, on applique à une extrémité de la barre une température Tl (> TO), et on regarde comment évolue l'augmentation de température à l'autre extrémité 20 de la barre. Cette image introduit bien le problème à résoudre.  Consider a metal bar at a temperature TO. At t = 0, a temperature Tl (> TO) is applied to one end of the bar, and we look at how the temperature increase evolves at the other end of the bar. This image introduces the problem to be solved.

En effet, la rhéologie des phases fondues a tout d'abord été étudiée. Il faut maintenant comprendre comment se fait le passage vers la phase fondue, et voir 25 notamment si les vitesses de montée en température sont équivalentes dans les FTP et le polymère. Sans une similitude thermique satisfaisante, les phases fondues ne se développeront pas en même temps et le mélange ne pourra pas être homogène. L'homogénéité du mélange implique donc 30 bien 2 phénomènes physiques distincts: - une similitude thermique assurant un transfert thermique équivalent et un passage coordonné vers la fusion, - une similitude rhéologique permettant le mélange des phases fondues.  In fact, the rheology of the molten phases was first studied. It is now necessary to understand how the transition to the molten phase takes place, and to see in particular whether the rates of temperature rise are equivalent in the FTP and the polymer. Without a satisfactory thermal similarity, the molten phases will not develop at the same time and the mixture cannot be homogeneous. The homogeneity of the mixture therefore implies well 2 distinct physical phenomena: - a thermal similarity ensuring an equivalent heat transfer and a coordinated passage towards fusion, - a rheological similarity allowing the mixing of the molten phases.

Répondre à la question précédente, c'est résoudre pour les matériaux concernés, l'équation de Laplace ou équation de la chaleur. Pour des raisons de 10 simplification, et de part la géométrie sphérique des particules solides sur lesquelles vont se dérouler l'étude, nous considérerons une seule dimension.  To answer the previous question is to solve for the materials concerned, the Laplace equation or heat equation. For reasons of simplification, and due to the spherical geometry of the solid particles on which the study will take place, we will consider only one dimension.

Si l'on note K (m2/s), la diffusivité thermique du matériau, l'équation de la chaleur à une dimension 15 s'écrit: K2T =T  If we note K (m2 / s), the thermal diffusivity of the material, the one-dimensional heat equation is written: K2T = T

K-- aX2K-- aX2

Il s'agit d'une équation aux dérivées partielles du second ordre reliant la température T, le 20 temps t et la position x. La résolution d'une telle équation nécessite l'emploi d'un logiciel de calcul formel: MAPLE V. Ceci va nous permettre de savoir à quelle vitesse progresse le flux thermique dans le matériau, de connaître la température exacte à un endroit 25 et à un temps particuliers.  It is a second order partial differential equation relating the temperature T, the time t and the position x. The resolution of such an equation requires the use of a formal calculation software: MAPLE V. This will allow us to know how fast the heat flux in the material is progressing, to know the exact temperature at a location 25 and at a particular time.

III.2. Modélisation du transfert dans le polymère et les FTP.  III.2. Modeling of transfer in the polymer and the FTP.

III.2.1 Caractéristiques des matériaux.  III.2.1 Characteristics of materials.

Il est nécessaire de déterminer la diffusivité 5 thermique K du polymère et des FTP. Pour cela, 3 paramètres doivent être connus sur les matériaux solides (granulés), car:  It is necessary to determine the thermal diffusivity K of the polymer and of the FTPs. For this, 3 parameters must be known on solid materials (granules), because:

K p.CpK p.Cp

o X: conductivité thermique (W/m. C) 10 p: masse volumique (kg/m3) Cp: chaleur massique spécifique (J/kg. C) Des données expérimentales fondamentales sont disponibles dans " Auslegung von extrusionwerkzeugen. 15 Wortberg, J., Junk, PB., Diesker, A. Kolloquium desIKV, Aachen. - 1978 ". Par exemple, on trouve classiquement les valeurs données dans le tableau 9 ci-dessous pour un polymère tel que du polyéthylène:  o X: thermal conductivity (W / m. C) 10 p: density (kg / m3) Cp: specific mass heat (J / kg. C) Basic experimental data are available in "Auslegung von extrusionwerkzeugen. 15 Wortberg, J ., Junk, PB., Diesker, A. Kolloquium desIKV, Aachen. - 1978 ". For example, the values given in Table 9 below are conventionally found for a polymer such as polyethylene:

Tableau 9Table 9

BDPE HDPEBDPE HDPE

Min. Max. Min. Max.Min. Max. Min. Max.

2 ( W/m. C) 0.25 0.35 0.35 0.50 p (kg/ nm3) 920 940 940 970 Cp(J/kg. C) 1.7 1.9 1.8 2.0 K (m2/s)*107 1.4 2.24 1.80 2.96 En prenant les 2 valeurs extrêmes de diffusivité thermique (1,4.10-7 et 2,96.10-7 m2/s), il est possible de comparer l'évolution des températures au sein d'une billette de résine (diamètre bille 2 mm).  2 (W / m. C) 0.25 0.35 0.35 0.50 p (kg / nm3) 920 940 940 970 Cp (J / kg. C) 1.7 1.9 1.8 2.0 K (m2 / s) * 107 1.4 2.24 1.80 2.96 Taking the 2 extreme values of thermal diffusivity (1.4.10-7 and 2.96.10-7 m2 / s), it is possible to compare the evolution of temperatures within a resin billet (ball diameter 2 mm).

L'échelle des temps est 180 secondes. Tétha est une température adimensionnelle et représente l'écart à la température finale: T-T1 T0-T1 La figure 12 présente la vue selon deux angles (respectivement figure 12A et figure 12B) de la progression thermique mesurée pour du polyéthylène haute densité (courbe noire) et du polyéthylène basse densité (courbe grisée). Ainsi, on évalue mieux la différence de 15 comportement thermique entre les 2 produits: le flux thermique progresse plus lentement dans le polyéthylène basse densité, l'écart à la température finale étant en moyenne plus grand. C'est aussi ce que nous indique la valeur de diffusivité thermique. 20 III.2.2 Etude du polyester biodégradable et des FTP.  The time scale is 180 seconds. Tétha is an adimensional temperature and represents the difference to the final temperature: T-T1 T0-T1 Figure 12 presents the view from two angles (respectively Figure 12A and Figure 12B) of the thermal progression measured for high density polyethylene (curve black) and low density polyethylene (gray curve). Thus, the difference in thermal behavior between the two products is better evaluated: the heat flux progresses more slowly in low density polyethylene, the difference at the final temperature being on average greater. This is also what the thermal diffusivity value tells us. 20 III.2.2 Study of biodegradable polyester and FTP.

Les analyses thermiques conduites sur le polyester aboutissent aux résultats présenté dans le 25 tableau 10 ci-dessous.  The thermal analyzes carried out on the polyester lead to the results presented in Table 10 below.

Tableau 10Table 10

Polyester biodégradable X( w/m. oC) 0,19 p(kg/m3) 1,25 Cp (J/kg. C) 1,8 K (m2/s)*108 8,15 Pour respecter la similitude thermique, il faut donc développer une FTP ayant une diffusivité thermique proche de 8,15.10-3 m'/s.  Biodegradable polyester X (w / m. OC) 0.19 p (kg / m3) 1.25 Cp (J / kg. C) 1.8 K (m2 / s) * 108 8.15 To respect the thermal similarity, it is therefore necessary to develop an FTP having a thermal diffusivity close to 8,15.10-3 m '/ s.

L'évolution de la diffusivité thermique d'une FTP avec des taux croissants de glycérol est présentée dans le tableau 11 ci-dessous.  The evolution of the thermal diffusivity of an FTP with increasing glycerol levels is presented in Table 11 below.

Tableau 11Table 11

Glycérol Farine FTP 10 % FTP 20% FTP 30 % FTP 40 % X(W/m. C) 0,29 0,17 0, 182 0,194 0,206 0,218 Cp(J/kg C) 2,38 1,53 1,615 1,7 1,785 1,87 p(kg/ m) 1,256 1,45 1,4306 1,4112 1,3918 1,3724 K (m2/s) 108 9,7 7,6 7,8 8,1 8,3 8, 5 La visualisation spatio-temporelle comparative entre le polyester et des FTP à 10 % et 40 % de glycérol conduit aux résultats présentés à la figure 13.  Glycerol Flour FTP 10% FTP 20% FTP 30% FTP 40% X (W / m. C) 0.29 0.17 0, 182 0.194 0.206 0.218 Cp (J / kg C) 2.38 1.53 1.615 1, 7 1.785 1.87 p (kg / m) 1.256 1.45 1.4306 1.4112 1.3918 1.3724 K (m2 / s) 108 9.7 7.6 7.8 8.1 8.3 8 , 5 The comparative spatio-temporal visualization between polyester and 10% and 40% glycerol FTP results in the results presented in FIG. 13.

On constate que les flux thermiques sont très 15 proches, la diffusivité thermique du polyester étant intermédiaire entre une FTP à 10 % et une autre à 40 % de glycérol. Combiné avec l'étude rhéologique, il est possible de valider une plastification proche de 27 % en glycérol pour la réalisation de film plastique avec le polyester. Le respect des 2 similitudes est donc un critère technique essentiel.  It is found that the heat fluxes are very close, the thermal diffusivity of the polyester being intermediate between a 10% FTP and another 40% glycerol. Combined with the rheological study, it is possible to validate a plasticization close to 27% in glycerol for the production of plastic film with polyester. Respect for the 2 similarities is therefore an essential technical criterion.

D'autres FTP sont réalisables avec différents plastifiants: di et polyglycérol, ester de glycérol, 5 huiles végétales (maïs, colza, ricin,.. .). Sans considération des contraintes rhéologiques, nous pouvons comparer le flux thermique d'une FTP à 30% d'huile de maïs avec du polyéthylène basse densité et du polyester. Le résultat de cette étude est présenté à la figure 14.  Other FTP can be carried out with different plasticizers: di and polyglycerol, glycerol ester, 5 vegetable oils (corn, rapeseed, castor, etc.). Regardless of the rheological constraints, we can compare the thermal flux of an FTP at 30% corn oil with low density polyethylene and polyester. The result of this study is presented in Figure 14.

Les courbes obtenues pour la FTP à 30% d'huile de maïs et pour le polyéthylène basse densité sont très proches. Par conséquent, la compatibilité thermique entre ces deux composants est plus proche que celle observée entre une FTP à 30% d'huile de maïs et le polyester.  The curves obtained for FTP at 30% corn oil and for low density polyethylene are very similar. Therefore, the thermal compatibility between these two components is closer than that observed between a 30% FTP of corn oil and polyester.

Ainsi, connaissant les propriétés thermiques de la résine plastique à charger, et par un choix judicieux du plastifiant, il est possible de respecter les 2 contraintes " procédé " que sont identités thermique et rhéologique.  Thus, knowing the thermal properties of the plastic resin to be loaded, and by a judicious choice of the plasticizer, it is possible to comply with the 2 "process" constraints that are thermal and rheological identities.

III.3. Conclusion.III.3. Conclusion.

Le choix du glycérol comme plastifiant se révèle donc comme particulièrement adapté pour compatibiliser une farine céréalière avec le polyester.  The choice of glycerol as plasticizer therefore appears to be particularly suitable for compatibilizing a cereal flour with polyester.

Nous avons vu qu'une FTP à 27 % de glycérol permettait d'atteindre une similitude comportementale d'écoulement (rhéologie) et une gestion de transfert thermique efficace (fusion simultanée entre le polyester et la FTP).  We have seen that an FTP with 27% glycerol allows to achieve a behavioral similarity of flow (rheology) and an efficient thermal transfer management (simultaneous fusion between polyester and FTP).

Par analogie, il est maintenant possible de calquer ce raisonnement pour développer d'autres FTP, avec différents plastifiants, compatibles avec d'autres plastiques biodégradables ou non.  By analogy, it is now possible to copy this reasoning to develop other FTPs, with different plasticizers, compatible with other biodegradable plastics or not.

IV. Propriétés mécaniques.IV. Mechanical properties.

On caractérisera les FTP, puis des produits de seconde transformation réalisés à partir de FTP.  We will characterize the FTP, then secondary transformation products made from FTP.

IV.1. Caractérisation mécanique des FTP.  IV.1. Mechanical characterization of FTP.

Les mesures sont faites avec un appareil LLOYD LR5K, en mode traction: précharge 0,1 N, vitesse traction 10 100 mm/min, sur des joncs de 4 +/- 0, 1 mm de diamètre, pour une longueur de base d'éprouvette de 80 mm.  The measurements are made with a LLOYD LR5K device, in traction mode: preload 0.1 N, traction speed 10 100 mm / min, on rods of 4 +/- 0.1 mm in diameter, for a base length of 80 mm test tube.

La caractérisation porte sur 3 niveaux de plastification au glycérol; les résultats sont regroupés dans le tableau 12 ci-après.  The characterization relates to 3 levels of glycerol plasticization; the results are collated in table 12 below.

Tableau 12Table 12

Plastification (M%) a22 27 30 a max (MPa) 11.5 ± 0.5 4.8 +/- 0.4 4.2 +/0.4 a rupt (MPa) 10.5 +/- 0.5 4.6 ± 0.4 3.9 +/- 0.4 % allongt rupt 22 +/3 32 /± 4 60 +/- 10 E (MPa) 350 +/- 50 130 +/- 25 118+/-30 D'une façon générale, on constate que l'augmentation de la plastification diminue le module d'Young, donc la rigidité du matériau, ainsi que la 20 contrainte, mais augmente nettement la plasticité (allongement). Viscosité et plasticité évoluent dans le même sens pour le paramètre plastification.  Lamination (M%) a22 27 30 a max (MPa) 11.5 ± 0.5 4.8 +/- 0.4 4.2 + / 0.4 at break (MPa) 10.5 +/- 0.5 4.6 ± 0.4 3.9 +/- 0.4% elongation break 22 + / 3 32 / ± 4 60 +/- 10 E (MPa) 350 +/- 50 130 +/- 25 118 +/- 30 In general, we note that the increase in plasticization decreases the Young's modulus, therefore the rigidity of the material, as well as the stress, but markedly increases the plasticity (elongation). Viscosity and plasticity evolve in the same direction for the plasticization parameter.

IV.2. Caractérisation mécanique des films.  IV.2. Mechanical characterization of films.

IV.2.1. A la traction.IV.2.1. Tensile.

Les mesures sont faites avec un appareil LLOYD LR5K, en mode traction: précharge 0,1N, vitesse traction 5 100 mm/min, pour une longueur de base d'éprouvette de 80 mm et une largeur de 20 mm.  The measurements are made with an LLOYD LR5K device, in traction mode: 0.1N preload, traction speed 5 100 mm / min, for a base length of test piece of 80 mm and a width of 20 mm.

Les résultats sur un film de 12 gm avec des taux de charge de 30 à 50 % sont présentés sur les figures 15A et 15B (paramètres gonflage identiques, notamment taux 10 de gonflage).  The results on a 12 gm film with loading rates of 30 to 50% are presented in FIGS. 15A and 15B (identical inflation parameters, in particular inflation rate).

On remarque une certaine linéarité décroissante des propriétés mécaniques: l'incorporation de FTP diminue l'allongement et la résistance à la traction des films (u max), entraînant une fragilité du matériau. Or, on sait 15 que la biodégradation d'un film est corrélée à la dégradation des propriétés mécaniques. On pourrait alors envisager d'estimer la durabilité d'un film à partir de ses propriétés mécaniques initiales.  There is a certain decreasing linearity of the mechanical properties: the incorporation of FTP reduces the elongation and the tensile strength of the films (u max), leading to a brittleness of the material. However, it is known that the biodegradation of a film is correlated with the degradation of mechanical properties. We could then consider estimating the durability of a film from its initial mechanical properties.

IV.2.1. Autres caractéristiques.IV.2.1. Other features.

Deux autres tests sont utilisés pour caractériser le film obtenu: le test Elmendorf (résistance au déchirement - NF T54-141) et le dart-test (résistance au choc par la méthode du poinçon tombant en 25 chute libre NF T54-109) Le tableau 13 présente les résultats observés sur un film à 12 gm chargé à 40% de FTP.  Two other tests are used to characterize the film obtained: the Elmendorf test (tear resistance - NF T54-141) and the dart-test (impact resistance by the punch method falling in free fall NF T54-109) The table 13 presents the results observed on a 12 gm film loaded with 40% FTP.

Tableau 13Table 13

Dart-test (g) Déchirure longitudinale (cN) Déchirure transversale (cN) 60 225 On retrouve une résistance plus marquée dans le sens transversal, directement liée à l'extrusion secondaire (gonflage) : traction importante en longitudinal (sens de l'écoulement), et moins de contrainte en transversal (faible taux de gonflage).  Dart-test (g) Longitudinal tear (cN) Transversal tear (cN) 60 225 There is more marked resistance in the transverse direction, directly linked to the secondary extrusion (inflation): significant longitudinal traction (direction of flow ), and less transverse stress (low inflation rate).

Claims (16)

REVENDICATIONS 1) Matériau biodégradable comprenant un mélange d'au moins un polymère avec au moins une charge céréalière 5 et éventuellement un ou plusieurs additifs acceptables caractérisé en ce que le polymère et la charge céréalière sont proches par leurs propriétés rhéologiques et thermiques.  1) Biodegradable material comprising a mixture of at least one polymer with at least one cereal filler 5 and optionally one or more acceptable additives characterized in that the polymer and the cereal filler are close by their rheological and thermal properties. 2) Matériau biodégradable selon la revendication 1, caractérisé en ce que ladite charge céréalière est une matière céréalière plastifiée au moyen d'un plastifiant.  2) Biodegradable material according to claim 1, characterized in that said cereal load is a plasticized cereal material by means of a plasticizer. 3) Matériau selon l'une quelconque des revendications 2, caractérisé en ce que ledit plastifiant est choisi dans le groupe constitué par le glycérol et ses dérivés, l'huile de ricin, l'huile de lin, l'huile de colza, l'huile de tournesol, l'huile de mais, les polyols, 20 l'urée, le chlorure de sodium et les mélanges de ceux-ci.  3) Material according to any one of claims 2, characterized in that said plasticizer is chosen from the group consisting of glycerol and its derivatives, castor oil, linseed oil, rapeseed oil, l sunflower oil, corn oil, polyols, urea, sodium chloride and mixtures thereof. 4) Matériau selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit polymère est choisi parmi les polymères synthétiques et les 25 polymères biodégradables.  4) Material according to any one of claims 1 to 3, characterized in that said polymer is chosen from synthetic polymers and biodegradable polymers. 5) Matériau selon l'une quelconque des revendications précédente, caractérisé en ce qu'il comprend une charge céréalière dont le taux de plastification est 30 compris entre 10 et 40%.  5) Material according to any one of the preceding claims, characterized in that it comprises a cereal filler whose plasticization rate is between 10 and 40%. 6) Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend: - une teneur en poids de polymère comprise entre 35 et 94% ; - une teneur en poids de charge céréalière comprise entre 5 à 60% et - une teneur en poids d'additifs comprise entre 1 à 5%.  6) Material according to any one of the preceding claims, characterized in that it comprises: - a content by weight of polymer of between 35 and 94%; - a content by weight of cereal filler between 5 to 60% and - a content by weight of additives between 1 to 5%. 7) Matériau selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend: - une teneur en poids de polymère comprise entre 0 et 99% ; - une teneur en poids de charge céréalière comprise entre 0 à 99% et - une teneur en poids d'additifs comprise entre 15 1 à 5%.  7) Material according to any one of claims 1 to 5, characterized in that it comprises: - a content by weight of polymer between 0 and 99%; - a content by weight of cereal filler between 0 to 99% and - a content by weight of additives between 15 1 to 5%. 8) Utilisation d'un matériau biodégradable selon l'une quelconque des revendications 1 à 6, pour la préparation de films plastiques. 20  8) Use of a biodegradable material according to any one of claims 1 to 6, for the preparation of plastic films. 20 9) Utilisation d'un matériau biodégradable selon l'une quelconque des revendications 1 à 5 ou 7 pour la préparation de pièces plastiques injectées.9) Use of a biodegradable material according to any one of claims 1 to 5 or 7 for the preparation of injected plastic parts. 10) Film plastique constitué en totalité ou en partie d'un matériau biodégradable selon l'une quelconque  10) Plastic film made entirely or in part of a biodegradable material according to any one des revendications 1 à 6.of claims 1 to 6. 11) Objet en plastique injecté constitué en 30 totalité ou en partie d'un matériau biodégradable selon  11) Injected plastic object made wholly or in part of a biodegradable material according to l'une quelconque des revendications 1 à 5 ou 7.  any one of claims 1 to 5 or 7. 12) Procédé pour compatibiliser une matière céréalière avec un polymère, caractérisé en ce que ledit 35 procédé comprend les étapes suivantes: (i) déterminer la viscosité du polymère à une température de travail, (ii) adapter la viscosité de la matière céréalière à celle du polymère déterminée à l'étape (i) à la même température, (iii) vérifier que le polymère et la matière 5 céréalière ainsi adaptée présentent une similitude thermique.  12) Method for compatibilizing a cereal material with a polymer, characterized in that said method comprises the following steps: (i) determining the viscosity of the polymer at a working temperature, (ii) adapting the viscosity of the cereal material to that of the polymer determined in step (i) at the same temperature, (iii) verify that the polymer and the cereal material thus adapted have a thermal similarity. 13) Procédé selon la revendication 12, caractérisé en ce que ladite étape (i) est réalisée par 10 rhéométrie capillaire.  13) Method according to claim 12, characterized in that said step (i) is carried out by capillary rheometry. 14) Procédé selon l'une quelconque des revendications 12 ou 13, caractérisé en ce que ladite étape (ii) consiste à plastifier la matière céréalière au 15 moyen d'un plastifiant.  14) Method according to any one of claims 12 or 13, characterized in that said step (ii) consists in plasticizing the cereal material by means of a plasticizer. 15) Procédé selon l'une quelconque des revendications 12 à 14, caractérisé en ce que la similitude thermique est appréciée à l'étape (iii) en 20 vérifiant que le polymère et la matière céréalière adaptée présentent une fusion simultanée lors des procédés d'extrusion.  15) Method according to any one of claims 12 to 14, characterized in that the thermal similarity is assessed in step (iii) by verifying that the polymer and the suitable cereal material have a simultaneous melting during the processes of extrusion. 16) Procédé pour préparer un matériau 25 biodégradable selon l'une quelconque des revendications 1 à 7, un film plastique selon la revendication 10 ou un objet en plastique injecté selon la revendication 11 comprenant une étape préalable de compatibilisation de la matière céréalière avec le polymère selon l'une quelconque des 30 revendications 12 à 15.  16) Process for preparing a biodegradable material according to any one of claims 1 to 7, a plastic film according to claim 10 or an injected plastic object according to claim 11 comprising a preliminary step of compatibilization of the cereal material with the polymer according to any of claims 30 to 15.
FR0307505A 2003-06-20 2003-06-20 BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICATED CEREAL MATERIALS, METHOD FOR MANUFACTURING THE SAME AND USES THEREOF Expired - Fee Related FR2856405B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0307505A FR2856405B1 (en) 2003-06-20 2003-06-20 BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICATED CEREAL MATERIALS, METHOD FOR MANUFACTURING THE SAME AND USES THEREOF
PCT/FR2004/001539 WO2004113433A1 (en) 2003-06-20 2004-06-18 Biodegradable material based on polymers and plasticized grain products, method for the production thereof, and uses of the same
EP04767395A EP1636308A1 (en) 2003-06-20 2004-06-18 Biodegradable material based on polymers and plasticized grain products, method for the production thereof, and uses of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0307505A FR2856405B1 (en) 2003-06-20 2003-06-20 BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICATED CEREAL MATERIALS, METHOD FOR MANUFACTURING THE SAME AND USES THEREOF

Publications (2)

Publication Number Publication Date
FR2856405A1 true FR2856405A1 (en) 2004-12-24
FR2856405B1 FR2856405B1 (en) 2006-02-17

Family

ID=33484617

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0307505A Expired - Fee Related FR2856405B1 (en) 2003-06-20 2003-06-20 BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICATED CEREAL MATERIALS, METHOD FOR MANUFACTURING THE SAME AND USES THEREOF

Country Status (3)

Country Link
EP (1) EP1636308A1 (en)
FR (1) FR2856405B1 (en)
WO (1) WO2004113433A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITAN20090016A1 (en) * 2009-04-20 2010-10-21 Biolog S R L BIODEGRADABLE PLASTIC MATERIAL
WO2011001128A1 (en) 2009-07-03 2011-01-06 Ulice Method for producing a biodegradable material
ITMI20091357A1 (en) * 2009-07-29 2011-01-30 Biolog S R L COUPLING PROCESS AND MATERIAL MATCHED OBTAINED THROUGH THIS PROCESS
WO2019043134A1 (en) 2017-08-31 2019-03-07 Carbiolice Biodegradable polyester article comprising enzymes
WO2021148666A1 (en) 2020-01-24 2021-07-29 Carbiolice Use of an enzyme mixture to improve the mechanical properties of an article comprising said enzyme mixture and a biodegradable polymer
WO2021148665A1 (en) 2020-01-24 2021-07-29 Carbiolice Method for preparing an enzyme masterbatch
WO2023001872A1 (en) 2021-07-20 2023-01-26 Carbiolice Method for preparing an enzyme masterbatch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947830B1 (en) * 2009-07-13 2011-08-19 Valagro Carbone Renouvelable Poitou Charentes COMPOSITION, PROCESS FOR PREPARING AND USE TO IMPROVE FLUIDITY AND TEMPERATURE RESISTANCE OF COMPOSITE MATERIALS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1269187A (en) * 1988-12-14 1990-05-15 Alphons D. Beshay Polymer composites based cellulose - iii
US5279658A (en) * 1991-09-19 1994-01-18 David Aung Composition suitable for forming into shaped articles, process for preparing the composition, process for preparing shaped articles using the composition, and shaped articles so-formed
US5739244A (en) * 1994-03-23 1998-04-14 Fisk; Donald Polymer composition containing prime starch
DE19802718A1 (en) * 1998-01-24 1999-07-29 Hubert Loick Vnr Gmbh Biodegradable thermoplastic polymer blends, useful for the production of films, injection moldings, e.g. bottles, disposable trays and dishes etc.
US6176915B1 (en) * 1995-04-14 2001-01-23 Standard Starch, L.L.C. Sorghum meal-based biodegradable formulations, shaped products made therefrom, and methods of making said shaped products
DE20115911U1 (en) * 2001-09-27 2002-02-28 Ckt Kunststoffverarbeitungstec Thermoplastic with organic fillers
WO2003006545A1 (en) * 2001-07-13 2003-01-23 Biorepla Corporation Biodegradable plastic composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1269187A (en) * 1988-12-14 1990-05-15 Alphons D. Beshay Polymer composites based cellulose - iii
US5279658A (en) * 1991-09-19 1994-01-18 David Aung Composition suitable for forming into shaped articles, process for preparing the composition, process for preparing shaped articles using the composition, and shaped articles so-formed
US5739244A (en) * 1994-03-23 1998-04-14 Fisk; Donald Polymer composition containing prime starch
US6176915B1 (en) * 1995-04-14 2001-01-23 Standard Starch, L.L.C. Sorghum meal-based biodegradable formulations, shaped products made therefrom, and methods of making said shaped products
DE19802718A1 (en) * 1998-01-24 1999-07-29 Hubert Loick Vnr Gmbh Biodegradable thermoplastic polymer blends, useful for the production of films, injection moldings, e.g. bottles, disposable trays and dishes etc.
WO2003006545A1 (en) * 2001-07-13 2003-01-23 Biorepla Corporation Biodegradable plastic composition
DE20115911U1 (en) * 2001-09-27 2002-02-28 Ckt Kunststoffverarbeitungstec Thermoplastic with organic fillers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITAN20090016A1 (en) * 2009-04-20 2010-10-21 Biolog S R L BIODEGRADABLE PLASTIC MATERIAL
EP2253658A1 (en) 2009-04-20 2010-11-24 Errepi S.r.l. Biodegradable plastic material
WO2011001128A1 (en) 2009-07-03 2011-01-06 Ulice Method for producing a biodegradable material
FR2947557A1 (en) * 2009-07-03 2011-01-07 Ulice PROCESS FOR PRODUCING BIODEGRADABLE MATERIAL
ITMI20091357A1 (en) * 2009-07-29 2011-01-30 Biolog S R L COUPLING PROCESS AND MATERIAL MATCHED OBTAINED THROUGH THIS PROCESS
WO2019043134A1 (en) 2017-08-31 2019-03-07 Carbiolice Biodegradable polyester article comprising enzymes
WO2021148666A1 (en) 2020-01-24 2021-07-29 Carbiolice Use of an enzyme mixture to improve the mechanical properties of an article comprising said enzyme mixture and a biodegradable polymer
WO2021148665A1 (en) 2020-01-24 2021-07-29 Carbiolice Method for preparing an enzyme masterbatch
FR3106591A1 (en) 2020-01-24 2021-07-30 Carbiolice USE OF AN ENZYME MIXTURE TO IMPROVE THE MECHANICAL PROPERTIES OF AN ARTICLE CONTAINING THE ENZYME MIXTURE AND A BIODEGRADABLE POLYMER
FR3106592A1 (en) 2020-01-24 2021-07-30 Carbiolice Process for the Preparation of an Enzyme Masterbatch
WO2023001872A1 (en) 2021-07-20 2023-01-26 Carbiolice Method for preparing an enzyme masterbatch
FR3125533A1 (en) 2021-07-20 2023-01-27 Carbiolice Process for the Preparation of an Enzyme Masterbatch

Also Published As

Publication number Publication date
FR2856405B1 (en) 2006-02-17
WO2004113433A1 (en) 2004-12-29
EP1636308A1 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
EP2310447B1 (en) Process for preparing compositions based on a starchy component and on a synthetic polymer
Schwach et al. Starch‐based biodegradable blends: morphology and interface properties
Olivato et al. Citric acid and maleic anhydride as compatibilizers in starch/poly (butylene adipate-co-terephthalate) blends by one-step reactive extrusion
CN1027726C (en) Shaped articles made from pre-processed starch
Ma et al. Urea and formamide as a mixed plasticizer for thermoplastic wheat flour
US11168203B2 (en) Thermoplastic starch
CA2712818A1 (en) Thermoplastic compositions based on soluble starch and method for preparing such compositions
CA2712898A1 (en) Method for preparing thermoplastic compositions based on plasticized starch and resulting compositions
EP2596051B1 (en) Casein and/or caseinate thermoplastic granule, composition, and method for producing same
FR2856405A1 (en) BIODEGRADABLE MATERIAL BASED ON POLYMERS AND PLASTICIZED CEREAL MATERIALS, MANUFACTURING METHOD THEREOF AND USES THEREOF
e Moraes et al. Starch, cellulose acetate and polyester biodegradable sheets: Effect of composition and processing conditions
JP2023518333A (en) Compostable biodegradable substrate of soil plant matter and method of making same
WO2016079414A1 (en) Composition of polyester and thermoplastic starch, having improved mechanical properties
EP1112319B1 (en) Biodegradable material based on polymer and cereal flour, method for making same and uses
WO2008003671A2 (en) Biodegradable film
EP2449032A1 (en) Method for producing a biodegradable material
EP3513779A1 (en) Cosmetic composition including biodegradable thermoplastic polymer particles, cosmetic use of said particles and cosmetic treatment method
Lopes et al. Production of thermoplastic starch and poly (butylene adipate-co-terephthalate) films assisted by solid-state shear pulverization
Dimonie et al. Some aspects conditioning the achieving of filaments for 3D printing from physical modified corn starch
US20220064411A1 (en) Compound or film containing thermoplastic starch and a thermoplastic polymer
FR2940297A1 (en) Preparing calibrated plastic composite agroaggregate comprises introducing sulfite salt solution in extrusion device filled with vegetable protein material and water, adjusting amount of water, and subjecting to pressure
EP1848583B1 (en) At least partially biodegradable multilayered material and corresponding production method
Tynski et al. Properties of biodegradable films based on thermoplastic starch and poly (butylene succinate) with plant oil additives
JP6246521B2 (en) Biodegradable resin composition and method for producing the same
BE1030773B1 (en) COMPOSITIONS FOR FORMING THERMOPLASTIC STARCH AND THEIR USES

Legal Events

Date Code Title Description
TP Transmission of property

Owner name: LIMAGRAIN CEREALES INGREDIENTS SA, FR

Effective date: 20131002

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15

TP Transmission of property

Owner name: CARBIOLICE, FR

Effective date: 20170801

PLFP Fee payment

Year of fee payment: 16

ST Notification of lapse

Effective date: 20200206