FI91248C - Glass heat treatment method - Google Patents

Glass heat treatment method Download PDF

Info

Publication number
FI91248C
FI91248C FI924251A FI924251A FI91248C FI 91248 C FI91248 C FI 91248C FI 924251 A FI924251 A FI 924251A FI 924251 A FI924251 A FI 924251A FI 91248 C FI91248 C FI 91248C
Authority
FI
Finland
Prior art keywords
glass
glasses
heat
coated
glass sheet
Prior art date
Application number
FI924251A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI91248B (en
FI924251A0 (en
Inventor
Aulis Bertin
Yrjoe Vaelimaeki
Original Assignee
Aulis Bertin
Yrjoe Vaelimaeki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aulis Bertin, Yrjoe Vaelimaeki filed Critical Aulis Bertin
Priority to FI924251A priority Critical patent/FI91248C/en
Publication of FI924251A0 publication Critical patent/FI924251A0/en
Priority to PCT/FI1993/000380 priority patent/WO1994006726A1/en
Priority to AU48207/93A priority patent/AU4820793A/en
Publication of FI91248B publication Critical patent/FI91248B/en
Application granted granted Critical
Publication of FI91248C publication Critical patent/FI91248C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0404Nozzles, blow heads, blowing units or their arrangements, specially adapted for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Description

9124891248

LASIN LAMPOKASITTELYMENETELMA - FORFARANDE FOR VARMEBEHANDLING AV EN GLASSKIVAGLASS LAMP PROCESSING METHOD - FORFARANDE FOR VARMEBEHANDLING AV EN GLASSKIVA

Keksinnon kohteena on lasin låmpokåsittelymenetelmå, jossa lasi-levy låmmitetåån ja jååhdytetåån ilmasuihkuilla.The invention relates to a method of heat treatment of glass in which the glass sheet is heated and cooled by air jets.

5 Kuten yleisesti tunnetaan, lasien ominaisuuksia voidaan muuttaa erilaisilla låmpokåsittelymenetelmillå. Yleisin ja tunnetuin menetelmå on låmmittåå lasilevy kauttaaltaan 580°C...700°C:een, jonka jålkeen lasilevy jååhdytetåån mahdollisimman tehokkaasti ja nopeasti pinnoille suunnatuilla ilmasuihkuilla. Lasilevyn 10 ala- ja ylåpintojen låmpotilat laskevat nopeammin kuin lasin sisåosien. Tåmån seurauksena lasilevyn sisåosat jåhmettyvåt hi-taammin kuin lasilevyn pintaosat. Jååhdytyksen aikana lasilevyn pintalåmpotilat putoavat ja pintakerrokset kutistuvat. Lasilevyn sisåosat eståvåt nopeammin jåhmettyvien pintakerroksien kutistu-15 mista. Koska lasilevyn sisåosa ei ole jåhmettynyt, tapahtuu si- såosassa venymistå. Låmpotilaeirojen vaikutuksesta muodostuu lasilevyn pintakerroksiin puristusjånnitystila ja sisåosiin veto-jånnitystila.5 As is well known, the properties of glasses can be changed by various heat treatment methods. The most common and well-known method is to heat the glass sheet throughout to 580 ° C to 700 ° C, after which the glass sheet is cooled as efficiently and rapidly as possible by air jets directed at the surfaces. The temperatures of the lower and upper surfaces of the glass sheet 10 decrease faster than the inner parts of the glass. As a result, the inner parts of the glass sheet cool down more rapidly than the surface parts of the glass sheet. During cooling, the surface temperatures of the glass sheet fall and the surface layers shrink. The inner parts of the glass sheet prevent shrinkage of the faster-cooling surface layers. Since the inner part of the glass plate is not frozen, elongation occurs in the inner part. As a result of the temperature differences, a compressive stress state is formed in the surface layers of the glass sheet and a tensile stress state in the inner parts.

Lasilevyn pintakerroksien ja sisåosan jånnityssuuntien suu-20 ruusero vaikuttaa lasin lujuuteen. Kun jånnityssuuntien erot ovat riittåvån suuret, saavutetaan turvalaseilta vaadittavat ominaisuudet. Edellå kuvatulla tavalla låmpokåsitellyt lasit tunnetaan karkaistuina turvalaseina. Karkaistu lasi on suorite-tuissa kuormituskokeissa osoittautunut 2,8 kertaa lujemmaksi 25 kuin vastaavan paksuinen float-lasi.The strength of the glass affects the strength of the glass from the surface layers of the glass sheet and the stress directions of the inner part. When the differences in the directions of stress are large enough, the properties required for safety glasses are achieved. Heat-treated glasses as described above are known as tempered safety glasses. Tempered glass has been shown in load tests to be 2.8 times stronger than float glass of a similar thickness.

Karkaistuille turvalaseille on ominaista se, ettå niiden taivu-tuslujuus on kokeissa osattautunut 2,8 ja nopeiden låmpotila-muutosten 3,5 kertaa suuremmaksi sekå iskusitkeys merkittåvåsti paremmaksi kuin tavallisten float-lasien.Tempered safety glasses are characterized by the fact that their flexural strength has been 2.8 times higher in experiments and 3.5 times greater by rapid changes in temperature, and their impact strength is significantly better than that of ordinary float glasses.

22

Karkaistu turvalasi voi rikkoutua kovan ja terån esineen kovasta iskusta. Kun karkaistu turvalasi rikkoutuu, muodostuu pieniå, herneen kokoisia pyoreåhkojå ja kevyitå lasipalasia, jotka ovat ihmiselle vaarattomia.Tempered safety glass can be broken by a hard impact of a hard and sharp object. When tempered safety glass breaks, small, pea-sized circular and light pieces of glass are formed that are harmless to humans.

5 Eråånå karkaistun turvalasin mitattavana ominaisuutena on rikot- taessa syntyneiden palojen måårå 50 mm2 x 50 nun2 kokoisella alu-eella seka palojen muoto ja koko. Palojen mååråstå, niiden muo-doista ja suuruuksista voidaan paatella lampokåsittelyn onnistu-minen ja edelleen karkaistun turvalasin taivutuslujuus ja kåyt-10 tåytyminen kuormituksessa. Paloja saa olla tarkastettavalla alu- eella 50 kpl...400 kpl, yksittåisen sirpaleen koko ei saa olla suurempi kuin 3,0 cm, sirpaleen pituus ei saa olla suurempi kuin 75 mm ja niiden reunat eivat saa olla teråviå. Ajoneuvokåyttoon tarkoitettujen karkaistujen lasien tulee testeisså saavuttaa 15 edella mainitut sirpaleiden maåra, suuruus ja muotovaatimukset ennen kuin niistå voidaan kåyttåa nimitysta karkaistu turvalasi.5 In one case, the measurable property of toughened safety glass is the number of pieces produced in the event of an area of 50 mm2 x 50 nun2 and the shape and size of the pieces. The number of pieces, their shapes and sizes can be used to determine the success of the heat treatment and the flexural strength and wear of the further tempered safety glass under load. There must be 50 to 400 pieces in the area to be inspected, the size of a single fragment must not exceed 3.0 cm, the length of the fragment must not exceed 75 mm and their edges must not be sharp. Toughened-glass panes intended for use in vehicles must, in the tests, meet the abovementioned size, size and shape of the fragments before they can be called tempered safety-glass panes.

Lasien karkaisumenetelmå on yleisesti tunnettu ja menetelmå ku-vataan esimerkiksi suomalaisessa patenttijulkaisussa nro 62043. Pinnoitetun lasin karkaisumenetelmåå kuvataan yhdysvaltalaisessa 20 patentissa nro 4 857 094.The method for tempering glasses is well known and is described, for example, in Finnish Patent Publication No. 62043. The method for tempering coated glass is described in U.S. Patent No. 4,857,094.

Kun lasilevyn pintojen puristusjånnitystilan ja sisåosan veto-jannitystilan erot ovat pienemmat kuin karkaistuissa turva-laseissa, lasilla ei saavuteta turvalaseille asetettuja lujuus-, sitkeys-, rikkoutuneiden lasien maåra-, muoto- ja suuruusvaati-25 muksia. Kuitenkin låmpokåsitellyn lasin lujuus on suurempi kuin ennen låmpokåsittelyå. Nåin låmpokåsiteltyå lasia nimitetåån lampositkistetyksi lasiksi. Låmpositkistettyå lasia kåytetåån kun lasilta ei vaadita karkaistujen lasien lujuuksia tai muita ominaisuuksia.When the differences between the compressive stress state of the surfaces of the glass sheet and the tensile stress state of the inner part are smaller than in tempered safety glass, the glass does not meet the strength, toughness, broken glass size, shape and size requirements. However, the strength of the heat-treated glass is higher than before the heat treatment. Glass thus heat-treated is called heat-polished glass. Tempered glass is used when the strength or other properties of tempered glass are not required of the glass.

3 912483,91248

Usein lasilevyille, joiden paksuus on pienempi kuin 4 mm, ja joille tavallisen lasin lujuusominaisuudet eivåt riitå, asete-taan lampositkistetyn lasin lujuus- ja kåyttåytymisvaatimukset.Often, glass sheets with a thickness of less than 4 mm, for which the strength properties of ordinary glass are not in dispute, are subjected to strength and behavior requirements for heat-reinforced glass.

Lampositkistetyn lasilevyn rikkoutuessa muodostuu suuria teråvå-5 reunaisia paloja, jotka osuessaan ihmiseen aiheuttavat vahingoi- tumisvaaran. Lampositkistetyn lasin valmistusta ja ominaisuuksia esitetåån yksityiskohtaisemmin yhdysvaltalaisessa patenttijul-kaisussa nro 4 759 788.If the lamp-glass pane breaks, large pieces with sharp edges are formed, which, if they hit a person, pose a risk of injury. The manufacture and properties of lamp-tempered glass are described in more detail in U.S. Patent No. 4,759,788.

Låmmittåmållå lasilevy noin 700°C:een lasia voidaan muotoilla 10 tunnetuilla tavoilla. Kun lasille on saatu oikea muoto, annetaan lasin hitaasti jaahtyå niin, ettei lasilevyn pintojen ja sisa-osan valille synny niin suuria låmpotilaeroja, jotka aiheuttai-sivat pintakerrosten ja sisåosan valille jånnityseroja. Muotoil-luissa laseissa jånnityserot voivat myohemmin rikkoa lasin it-15 seståån. Muotoilluilla laseilla on tavallisen lasin lu- juusominaisuudet. Niiden lujuutta voidaan lisåtå suorittamalla nopea jaahdytys, jolloin muotoilluilla laseilla saavutetaan kar-kaistun tai lampositkistetyn lasin lujuusominaisuudet. Oikein muotoiltu lasilevyn kestaå enemman kuormitusta kuin tasomainen 20 lasilevy. Lasilevyn muotoilua kuvaillaan yksityiskohtaisemmin esimerkiksi eurooppalaisessa patenttihakemuksessa nro 0 162 264 ja yhdysvaltalaisessa patenttijulkaisuissa nro 3 023 542 ja nro 4 830 649.By heating a glass sheet to about 700 ° C, the glass can be formed in 10 known ways. Once the glass has been properly shaped, the glass is allowed to cool slowly so that there are no large temperature differences between the surfaces of the glass sheet and the interior that would cause stress differences between the surface layers and the interior. In shaped glasses, stress differences can later break the glass IT-15. Shaped glass has the strength properties of ordinary glass. Their strength can be increased by performing rapid cooling, whereby the strength properties of tempered or heat-tempered glass are achieved with shaped glasses. A properly shaped glass sheet can withstand more load than a flat 20 glass sheet. The design of the glass sheet is described in more detail in, for example, European Patent Application No. 0 162 264 and U.S. Patent Publication Nos. 3,023,542 and 4,830,649.

Tarvittaessa voidaan karkaistut ja låmpositkistetyt lasit norma-25 lisoida suorittamalla lasilevyn lammitys ja jaahdyttamållå lam- mitetty lasilevy niin hitaasti, ettei pintakerrosten ja sisaosan valille synny lujuutta lisaåvåå jånnityseroa. Normalisoidulla lasilevylla on samat luujuus-, låmmonkesto- ja iskusit-keysominaisuudet kuin lasilla ennen låmpokasittelyå. Nailla la-30 seilla ei saavuteta karkaistuille ja lampositkistetyille laseil- le asetettuja lujuus- ja låmpotilan eron kestovaatimuksia.If necessary, tempered and heat-tempered glass Norma-25 can be added by heating the glass sheet and cooling the heated glass sheet so slowly that there is no stress difference between the surface layers and the inner part that increases strength. A normalized glass sheet has the same strength, heat resistance and impact key properties as glass before heat treatment. The required strength and temperature resistance durability requirements for tempered and heat-compacted glasses are not met with these la-30.

44

Karkaistuja ja låmpositkistettyjå laseja kåytetåån olosuhteissa, joissa oletetaan laseihin kohdistuvan sellaisia rasituksia, jot-ka saattaisivat rikkoa tavalliset lasit. Karkaistuja turvalaseja kåytetåån silloin, kun lasien rikkoutumisesta aiheutuisi vahin-5 goittumisen riski.Tempered and thermally tempered glasses are used in conditions where it is assumed that the glasses will be subjected to stresses that could break ordinary glasses. Toughened safety glass is used when there is a risk of damage if the glass breaks.

Kåyttoolosuhteet ja arkkitehtisuunnittelu asettavat laseille usein vaatimuksia, joiden saavuttamiseksi tavalliset lasit tulee pinnoittaa esimerkiksi låmposåteitå heijastavilla metalli-, me-tallioksidi- tai niiden yhdistelmåpinnoitteilla toivotun ominai-10 suuden saavuttamiseksi. Yleensa pinnoitetut lasit on tarkoitettu heijastamaan auringon låmposåteilyå tai huonetilan pitkåaaltois-ta låmposåteilyå. Lasien pinnoituksella saadaan tarvittaessa vårillisiå laseja, joita kåytetåån etenkin rakennusten jul-kisivuissa esteettisen vaikutelman synnyttåmiseksi.The conditions of use and the architectural design often impose requirements on the glasses, in order to achieve which ordinary glasses must be coated with, for example, metal, metal oxide or a combination of them reflecting heat radiation in order to achieve the desired property. Generally, coated glasses are designed to reflect solar thermal radiation or long-wave thermal radiation from a room. If necessary, the glass is coated with colored glass, which is used especially in the facades of buildings to create an aesthetic impression.

15 Yhdistamallå metalli- ja metallioksidipinnoitteita tarkoituksen mukaisissa kerrospaksuuksissa ja jårjestyksesså pinnoitettu lasi kykenee heijastamaan auringon lamposåteilyå ja huonetilan pitkå-aaltoista låmposåteilyå. Pinnoitetuilla laseilla, joiden eri-tyisenå ominaisuutena on heijastaa pitkåaaltoista låmposåteilyå, 20 tunnetaan kauppanimellå low-emissivity-lasi, jolla on suurempi låmmonvastus ja alhaisempi låmmonlåpåisykerroin kuin tavanomai-silla laseilla. Nåitå pinnoitetun lasin ominaisuuksia kåytetåån våhentåmåån energian kulkua lasien låpi.15 By combining metal and metal oxide coatings in appropriate layer thicknesses and sequences, coated glass is able to reflect solar thermal radiation and long-wave thermal radiation in the room. Coated glasses, which have the special property of reflecting long-wave heat radiation, are known under the trade name low-emissivity glass, which has a higher heat resistance and a lower heat transfer coefficient than conventional glasses. These coated glass properties are used to reduce the flow of energy through the glass.

Low-emissivity-laseilla pintakerroksen elektronirakenne sisåltåå 25 vapaita ja liikkuvia elektroneja, jonka seurauksena low-emissi- vity-lasien pintakerros johtaa såhkoå. Toisaalta edellå mainit-tua ominaisuutta voidaan kåyttåå kååntåen hyvåksi såhkolåmmit-teisisså laseissa, joissa low-emissivity-pinnoitekerros toimii resistiivisenå vastuksena. Kun low-emissivity-lasin vastakkaiset 30 reunat varustetaan elektrodeilla ja kytketåån jånnitelåhteeseen, såhkovirta kulkee pinnoitekerroksessa ja lasi låmpenee.In low-emissivity glasses, the electronic structure of the surface layer contains 25 free and moving electrons, as a result of which the surface layer of low-emissivity glasses conducts electricity. On the other hand, the above-mentioned property can be exploited in reverse in heated glasses in which the low-emissivity coating layer acts as a resistive resistor. When the opposite edges of the low-emissivity glass are provided with electrodes and connected to a voltage source, an electric current flows in the coating layer and the glass heats up.

5 912485,91248

Englantilaisissa patenttihakemuksissa, UK Patent Application, nro:t 2 116 590, 2 134 444, 2 156 339 ja 2 209 176, europpalai-sissa patenttihakemuksissa, European Patent Appilacation, nro:t 0 275 662, 0 283 923 ja 0 301 755 sekå yhdysvaltalaisissa paten-5 teissa, United States Patent, nro:t 4 239 379, 4 462 883 ja 4 707 383 kuvataan yksityiskohtaisemmin pinnoitettujen lasien valmistusmenetelmåt, pinnoitetuissa laseissa kaytettavåt materi-aalit ja niiden kerrosrakenteet sekå ominaisuudet.In British Patent Applications, UK Patent Application Nos. 2,116,590, 2,134,444, 2,156,339 and 2,209,176, in European Patent Applications, European Patent Appilations Nos. 0 275 662, 0 283 923 and 0 301 755 U.S. Pat. Nos. 4,239,379, 4,462,883 and 4,707,383 describe in more detail methods of making coated glasses, the materials used in the coated glasses and their layered structures, and properties.

Pinnoitettujen lasien låmpokåsittelystå aiheutuvia suurimpia 10 epåkohtia ovat lasien kaareutuminen prosessin aikana. Lasilevyn kaareutumisen eråånå merkittåvånå tekijånå ovat reunojen ja kes-kiosan sekå pinnoittamattoman ja pinnoitetun lasipintojen låmpo-tilaerot, jotka aiheutuvat pinnoitetun ja pinnoittamattomien la-siosien erilaisista ominaisuuksista heijastaa låmposåteitå. Kun 15 saman lasilevyn alueet låmpenevåt ja jååhtyvåt låmpokåsittely- prosessissa eri tavoilla ja nopeuksilla, syntyy reunojen ja kes-kiosan vålillå jånnityseroja, jotka poikkeuttavat lasilevyn osat tasosta. Poikkeamat nåhdåån selvinå ja håiritsevinå optisina håirioinå.The top 10 disadvantages of heat treatment of coated glass are the curvature of the glass during the process. One significant factor in the curvature of a glass sheet is the temperature differences between the edges and the center as well as the uncoated and coated glass surfaces due to the different properties of the coated and uncoated glass parts to reflect heat radiation. As the areas of the same 15 glass sheets heat up and cool in the heat treatment process in different ways and at different speeds, stress differences arise between the edges and the central part, which deviate the parts of the glass sheet from the plane. Deviations are seen as clear and disturbing optical disturbances.

20 Erityisen selvåsti optiset håiriot ovat havaittavissa lasilevyn reuna-alueilla. Vårillisisså ja peilimåisesti heijastavissa låm-pokåsitellyisså pinnoitetuissa laseissa reuna-alueiden optiset håiriot ovat selvåsti havaittavissa. Epåkohta on erityisen on-gelmallinen sellaisissa laseissa, joiden emissiviteetti on al-25 haisempi kuin tavallisten lasien ja ongelman merkitys kasvaa low-emissivity-pinnoitetuissa laseissa, joiden ε<0,25.20 Particularly clearly, optical interference is observed in the edge areas of the glass plate. In colored and mirror-reflecting heat-treated coated glasses, the optical disturbances of the edge areas are clearly noticeable. The disadvantage is particularly problematic in glasses with an emissivity lower than that of ordinary glasses and the importance of the problem increases in low-emissivity coated glasses with ε <0.25.

Lasien pintakerroksien emissiviteettien ja niiden erojen vaiku-tusta låmpokåsittelyprosessin låmmitys- ja jååhdytysvaiheiden aikana tapahtuvaan låmmonsiirtoon voidaan kuvata såteilylåmmon 6 siirtokertoimen avulla. Såteilylånunonsiirtokerroin tulee ymmår-tåå jatkuvasti låmpotilan funktiona olevana suureena, jota kåy-tetåån lasien ominaisuuksien vertailuissa. Kun tarkastelulåmpo-tilat kohoavat, pintojen emissiviteetit suurenevat kullekin pin-5 noitemateriaalille ominaisella tavalla. Såteilylammonsiirtoker- toimen laskentakaava huonelåmpotilassa on hs = 4·σ·Τ3·(1/ει+1/ε2-1)~1 hs = såteilylånunonsiirtokerroin (W/Km2) 10 σ = Stefanin-Boltzmanin vakio (5,67*10_s W/m2(°K)4) T = keskilåmpotila (°K) ε = såteilyn vaikutuksessa olevien pintojen emissiviteetit Såteilylånunonsiirtokerroin on merkittåvåsti riippuvainen vallit-sevista låmpotiloista. Kokemuksen mukaan låmposåteilyn vuorovai-15 kutuksessa olevien pintojen låmpotilaeron kasvassa 100°K normaa- lista huonelåmpotilasta, laskentakaavassa pintojen emissiviteet-tien vaikutuksien huomioivan nimittåjån arvo kasvaa 1,6 kertai-seksi ja såteilylåmmonsiirtokertoimen arvo kasvaa viisinkertai-seksi. Tavallisten float-lasien såteilylåmmonsiirtokerroin on 20 viisi kertaa suurempi kuin low-emmissivity-pinnoitettujen lasi en. Lasipintojen emissiviteettien vaikutusta niiden luovuttamaan låmmitystehoon kuvaa laskentakaava Φ = ε·σ·(Tp4-Ts4) Φ = lasipinnan luovuttama låmpovirta (w/m2) 25 ε = pinnan emissiviteetti σ = Stefannin-Boltzmannin Vakio (5,67*10-8 W/m2(°K)4 Tp = lasin pintalåmpotila (°K)The effect of the emissivities of the glass surface layers and their differences on the heat transfer during the heating and cooling steps of the heat treatment process can be described by means of the transfer coefficient of the radiant heat 6. The radiation transfer coefficient should be continuously measured as a function of temperature, which is used in comparisons of glass properties. As the viewing temperatures increase, the emissivities of the surfaces increase in a manner specific to each pin-5 weft material. The formula for calculating the radiation transfer factor at room temperature is hs = 4 · σ · Τ3 · (1 / ει + 1 / ε2-1) ~ 1 hs = radiation transfer coefficient (W / Km2) 10 σ = Stefan-Boltzman constant (5.67 * 10s m2 (° K) 4) T = average temperature (° K) ε = emissivities of surfaces exposed to radiation The radiation transfer coefficient is significantly dependent on the prevailing temperatures. According to experience, as the temperature difference of the surfaces interacting with thermal radiation increases from 100 ° K to normal room temperature, in the calculation formula the value of the denominator taking into account the effects of surface emissivity increases 1.6 times and the value of the radiation heat transfer coefficient increases fivefold. The radiative heat transfer coefficient of ordinary float glasses is 20 to five times higher than that of low-emmissivity coated glasses. The effect of the emissivities of glass surfaces on the heating power they give is described by the calculation formula Φ = ε · σ · (Tp4-Ts4) Φ = heat flux given by the glass surface (w / m2) 25 ε = surface emissivity σ = Stefannin-Boltzmann Constant (5.67 * 10-8 W / m2 (° K) 4 Tp = glass surface temperature (° K)

Ts = vastasåtelylåmpotila (°K) 7 91248Ts = counter-control temperature (° K) 7 91248

Kun float-lasien pintakerrosten emissiviteetti on 0,84 ja low-emissivity-pinnoitettujen 0,05...0,25, float-lasien ja pinnoi-tettujen lasien pinnoittamattomien pintojen luovuttama låmpomaa-rå on neljå-kuusikertaa suuretnpi kuin pinnoitetun pinnan. Taman 5 seurauksena pinnoitettujen lasien pintakerrosten låmpotilat eroavat merkittavåsti toisistaan, joka huomioidaan jååhdyttåvien ilmasuihkujen suunnittelussa ja lasilevyn kaareutuminen voidaan estaa.When the emissivity of the surface layers of float glasses is 0.84 and that of low-emissivity-coated 0.05 to 0.25, the amount of heat given off by the uncoated surfaces of float glasses and coated glasses is four to six times greater than that of the coated surface. As a result, the temperature conditions of the surface layers of the coated glasses differ significantly from each other, which is taken into account in the design of the cooling air jets and the curvature of the glass sheet can be prevented.

Vaikeammin poistettavissa oleva kåyristymista lisååva ja låmpo-10 kasittelyn tulosta heikentavå tekijå on lasilevyjen reuna-alu- eilla ilmajaahdytyksen aikana tapahtuva elektronien kato. Lasilevyn pintaan suunnatut ilmasuihkut irroittavat pinnasta elekt-roneja, joiden vaikutus kumuloituu levyn reuna-alueilla. Erityi-sesti elektronien kato esintyy sellaisissa pinnoitetuissa la-15 seissa, joissa vapaiden elektronien tiheys on suuri ja joissa elektronit eivåt ole kiinnittyneet pysyvåsti pinoitekerroksen atomin uloimmalle elektronikehålle. Niissa vapaat elektronit siirtyvat helposti pinnoituksen takia lisåttyjen ilmavirtauksien mukana maadoittuen ympåroivien johtavien materiaalien vålityk-20 sella. Elektronien siirtymistå lisåa låmpotilan nousu, jolloin elektronien tiheys ja liikkuvuus kasvaa, joiden seurauksena elektronikuoren ja elektronin våliset kiinnittymisvoimat heik-kenevat.The more difficult to remove factor that increases curvature and weakens the result of heat-10 treatment is the loss of electrons during the cooling of the glass sheets during air cooling. Air jets directed at the surface of the glass plate remove electrons from the surface, the effect of which accumulates in the edge areas of the plate. In particular, electron loss occurs in coated la-15s where the density of free electrons is high and where the electrons are not permanently attached to the outermost electron ring of the atom of the stacking layer. In them, free electrons are easily transferred due to the increased airflows due to the coating, grounding through the surrounding conductive materials. The transfer of electrons is increased by an increase in temperature, which increases the density and mobility of electrons, as a result of which the adhesion forces between the electron shell and the electron weaken.

Yleensa låmpokasiteltavåvien lasilevyjen kannatus ja siirto ta-25 pahtuu eriståvastå pintamateriaalista valmistujen kuljetustelo- jen avulla. Lasilevy on låmpokasittelyprosessin aikana eristetty muista materiaaleista, jotka voisivat luovuttaa vastaavan maaran uusia elektrodeja ilmavirtauksen kanssa menettyjen tilalle. La-silevyyn syntyy elektronin menetyksien vaikutuksesta useiden 30 kilovolttien suuruisia positiivisiå varauksia, jotka usein lasi- levyå kosketettaessa purkautuvat ihmiskehon valityksella.In general, the support and transfer of heat-treated glass sheets ta-25 takes place by means of transport rollers made of insulating surface material. During the heat treatment process, the glass sheet is isolated from other materials that could give off a new amount of new electrodes to replace those lost with the air flow. As a result of the loss of electrons, positive charges of several 30 kilovolts are generated in the glass plate, which are often discharged by contact with the glass body upon contact with the glass plate.

88

Kun low-enunisivity-pinnoitettujen lasien reuna-alueiden elekt-ronitiheydet våhenevåt, pinnoitettujen lasien ominaisuudet heik-kenevåt tålla alueella. Tåmå merkitsee sitå, ettå low-emissivi-ty-pinnoitettujen lasien kyky heijastaa pitkåaaltoista låm-5 posåteilyå heikkenee ja lasien låmmonvastus alenee, jonka seu- rauksena låmmonsiirtyminen lasien låpi kasvaa ja kiinteistojen låmmitysenergian kåytto lisååntyy. Reuna-alueiden elektronien kato on erityisen haitallista siinåkin mielesså, ettå ikkuna-laseilta vaaditaan lasilevyn reunojen kylmåsiltojen haitallisten 10 vaikutusten poistamiseksi hyvåå låmmoneristystå.As the electron densities of the edge regions of low-enunisivity-coated glasses decrease, the properties of the coated glasses deteriorate in this region. This means that the ability of low-emissivity-coated glasses to reflect long-wave heat-5 deposition decreases and the thermal resistance of the glasses decreases, as a result of which the heat transfer through the glasses increases and the use of heating energy in the properties increases. The loss of electrons in the edge areas is particularly detrimental in the sense that window panes are required to have good thermal insulation in order to eliminate the detrimental effects of cold bridges on the edges of the glass sheet.

Såhkolåmmitteisisså pinnoitetuissa laseissa reuna-alueiden elektronien kato suurentaa tåmån alueen pintavastusta. Reuna-alueen pintavastuksen suureneminen lisåå paikallisesti låmmitys-tehoa, joka havaitaan haitallisina lasin keskustan ja reuna-alu-15 eiden låmpotilaeroina. Kuumentuneet såhkolåmmitteisten lasilevy- jen reuna-alueet rasittaa virransyottoelektrodeja, eristys-lasielementtien hermeettisesti sulkevien massojen tiiviyttå ja tiivisteiden toimivuutta.In electrically heated coated glasses, the loss of electrons in the edge regions increases the surface resistance of this region. The increase in the surface resistance of the edge area increases the heating effect locally, which is observed as detrimental temperature differences between the center of the glass and the edge areas. The heated edge areas of the electrically heated glass sheets stress the current collection electrodes, the sealing of the hermetically sealing masses of the insulating glass elements and the functionality of the seals.

Varsinkin karkaistuissa low-emissivity-pinnoitetuissa turva-20 laseissa reuna-alueiden elektronien kato aiheuttaa lujuuden muu- toksia reunan ja levyn keskiosien vålillå. Suoritetuissa siruko-keissa on havaittu reuna-alueiden palakoon pienentyneen, joka tulkitaan levyn reunaosien ja keskustan vålisenå haitallisena lujuuserona. Erityisen merkittåvånå ongelmana tåmå koetaan kar-25 kaistuissa turvalaseissa, joille on asetettu lujuusvaatimuksia.Especially in tempered low-emissivity-coated safety glass, the loss of electrons in the edge areas causes changes in strength between the edge and the center of the plate. A decrease in the piece size of the edge areas has been observed in the chip chips performed, which is interpreted as a harmful difference in strength between the edge parts of the plate and the center. This is perceived as a particularly significant problem in tempered safety glass, for which strength requirements have been set.

Pinnoitetuissa låmpokåsitellyisså laseissa reuna- ja keskialuei-den merkittåvåt lujuuserot heikentåvåt karkaistujen, låmposit-kistettyjen ja muotoiltujen lasien lujuuksia rajoittaen turval-lisuussyistå niiden kåyttoå. Ongelmaan on kehitetty ratkaisuja, 30 jotka eivåt takaa riittåvån vielå hyvåå lopputulosta.In coated heat-treated glass, significant differences in the strength of the edge and center areas weaken the strengths of tempered, heat-tempered and shaped glass, limiting their use for safety reasons. Solutions have been developed to the problem, 30 which do not guarantee a sufficiently good outcome.

9 912489 91248

Keksinnon mukaisella pinnoitettujen lasien låmpokåsittely-menetelmållå saadaan aikaan parannus edellå esitetyisså epakoh-dissa. Tåmån toteuttamiseksi keksinnon mukaiselle lasien låmpo-kåsittelymenetelmalle on tunnusomaista se, mitå on esitetty pa-' 5 tenttivaatimuksen 1 tunnusmerkkiosassa.The heat treatment method of the coated glasses according to the invention provides an improvement in the above-mentioned drawbacks. To achieve this, the method of heat treatment of glasses according to the invention is characterized by what is set forth in the characterizing part of claim 1.

Keksinnon mukaisen pinnoitettujen lasien låmpokasittelymenetel-mån tarkeimpåna etuna voidaan pitaå sitå, etta lasilevyjen reu-na- ja keskialueiden fysikaaliset erot våhenevåt. Låmpokåsitel-tyjen lasien reuna- ja keskialuiden lujuuksilla ei ole eroja, 10 lasilevyjen itsestaan kåyristyminen våhenee, optiset epåkohdat poistuvat, pinnoitettujen lasien reuna-aluiden emissiviteetit ja sahkoiset ominaisuudet eivat eroa keskialueista. Keksinnon mukaisella lasilevyjen låmpokåsittelymenetelmållå valmistettujen lasien toivotut ja vaaditut ominaisuudet eivat muutu. Tåma on 15 merkittåvå turvallisuutta lisååva tekijå. Lisaksi lasilevyjen optiset epakohdat kyetaan poistamaan.The most important advantage of the heat treatment method of the coated glasses according to the invention is that the physical differences between the edge and center areas of the glass sheets are reduced. There are no differences in the strengths of the edge and center regions of the heat-treated glass, the curvature of the glass sheets itself is reduced, the optical disadvantages are eliminated, the emissivities and electrical properties of the edge regions of the coated glass do not differ from the center regions. The desired and required properties of the glasses produced by the heat treatment method of glass sheets according to the invention do not change. This is a major factor in increasing safety. In addition, the optical imperfections of the glass sheets can be removed.

Lasilevyn låmpokåsittelymenetelmåå selvitetaan yksityiskohtai-sesti seuraaviin piirustuksiin viittaamalla:The heat treatment method of a glass sheet will be explained in detail with reference to the following drawings:

Kuvio 1. Esittaa kaavamaisesti pinnoitettuun lasiin kohdistettu-20 ja ilmasuihkuja, jotka irroittavat pinnoista elektrone- ja, jotka maadottoituvat ja lesilevystå tulee positii-visti varautunut.Figure 1. Schematically shows air-directed and air jets directed at coated glass, which remove electrons from the surfaces, which are grounded, and the bridle plate becomes positively charged.

Kuvio 2. Esittåå kaavamaisesti lasilevyn pintaan kohdistettuja jååhdytyssuihkuja, jotka sisåltåvåt vapaasti liikkuvia 25 elektroneja, jotka kumoavat lasilevyn positiivisen va- rauksen korvaamalla menetetyt elektronit.Figure 2. Schematically shows cooling jets directed at the surface of a glass sheet containing free-moving electrons which cancel out the positive charge on the glass sheet by replacing lost electrons.

Kuva 3. Esittaa lasilevyn låmpokåsittelyprosessia, jossa keksinnon mukaisesti tuodaan lasilevya lammittavien ja jååhdyttåvien suihkujen mukana vapaita elektroneja, 30 jotka kumoavat positiiviset varaukset.Figure 3. Shows a heat treatment process of a glass sheet, in which, according to the invention, free electrons are introduced with the jets heating and cooling the glass sheet, which cancel out the positive charges.

1010

Kuvio 1. esittåa kaaviomaisesti lasilevyå 1. jonka kummatkin puolet on pinnoitettu metalli-, metallioksidi-, puolijohdeoksi-di- ja/tai niiden yhdistelmåpinnoitteella 2. Lasilevyå liikute-taan telojen 3. påållå, joiden pintakerrokset on tehty eristå-5 våstå materiaalista 4. Suuttimien 5. kautta puhalletaan lasile- vyn pintoihin suunnattuja låmmitys- ja/tai jååhdytyssuihkuja 6. Suihkut irroittavat pinnoitetuista pinnoista elektrodeja 7. Osa irronneista elektroneista siirtyy lasilevyn keskialueelle kumo-ten positiivisen varauksen 8. Lasilevyn reuna-alueella pinnoi-10 teatomeista irtaantuneet elektronit 9. maadottuvat laitteen 10.Figure 1 schematically shows a glass plate 1. both sides of which are coated with a metal, metal oxide, semiconductor oxide and / or a combination coating thereof 2. The glass plate is moved on rollers 3. the surface layers of which are made of insulating material 4. Nozzles 5 are used to blow heating and / or cooling jets directed at the surfaces of the glass sheet 6. The jets detach electrodes from the coated surfaces 7. Some of the detached electrons move to the center of the glass sheet, canceling the positive charge 8. At the edge of the glass sheet grounding device 10.

osien vålityksellå maapotentiaaliin, jolloin lasilevyn pintaan jåa positiivinen varaus 8.through the parts to the ground potential, leaving a positive charge on the surface of the glass plate 8.

Kuvio 2. esittåa keksinnon mukaista tilannetta, jossa låmmitys-tai jååhdytyssuhkuit sisåltåvåt ylimååråisiå elektroneja 11., 15 jotka tulevat siirtyvien elektronien 7. ja 9. tilalle.Figure 2 shows a situation according to the invention in which the heating or cooling jets contain additional electrons 11, 15 which replace the moving electrons 7 and 9.

Kuviossa 3. esitetåån kaavamaisesti keksinnon mukainen låmpokå-sittelymenetelmån kulku, jossa ilmasuihkuputkistoon 13. on si-joitettu elektroneja tuottava ionisaattori 12. Lasilevyn ylå- ja alapintojen jakoputkistoon 14. sijoitetut lasin kulkusuuntaan 20 nåhden poikittaisiin suihkuputkiin 15. on sijoitettu virtauksia ohjaavat suuttimet 5.Fig. 3 schematically shows the course of the heat treatment method according to the invention, in which an electron-generating ionizer 12 is placed in the air jet pipe 13. Electron generating ion pipes 12 placed in the glass pipe upper and lower surface distribution pipes 14 are arranged in jets 15

Keksinnon mukaisesså lasilevyjen låmpokåsittelymenetelmåsså låm-mittåvien tai jååhdyttåvien ilmasuihkujen 6. nopeudet ovat hyvin suuria. Kun suihkut 6. osuvat lasilevyn 1. pinnoitettuihin pin-25 toihin 2, joiden vapaiden elektronien tiheys on suuri, suihkut irroittavat elektroneja 7., joista osa 9. maadodoittu laittei-den 10. vålityksellå. Lasilevyn pintoihin 2. syntyy positiivinen varaus 8. Lasilevyn keskialueella tapahtuu elektronien 7. siir-tymistå pinnan osasta toiseen. Lammittåvåt ja/tai jååhdyttåvåt 30 suihkut irroittavat osan lasilevyn reuna-alueiden vapaasti liik- kuvista elektroneista 9., jotka maadoittuvat pintoihin 10.In the heat treatment method for glass sheets according to the invention, the velocities of the air jets measuring or cooling 6. are very high. When the jets 6. hit the coated surfaces 2 of the glass sheet 1, which have a high free electron density, the jets release electrons 7, some of which are grounded via the devices 10. A positive charge 8 is created on the surfaces of the glass plate. 2. In the central region of the glass plate, electrons 7. move from one part of the surface to another. The heating and / or cooling jets 30 release some of the freely moving electrons 9 in the edge areas of the glass sheet, which are grounded to the surfaces 10.

91248 η Tåsså keksinnon mukaisessa lasilevyjen låmpokåsittelymenetelmåå kuvaavassa esimerkisså negatiivivisia varauksia 11. tuottava ionisaattori on sijoitettu suihkuputkistoon 13. Ionisaattori 12.91248 η In this example illustrating the heat treatment method of glass sheets according to the invention, the ionizer generating negative charges 11 is placed in the jet piping 13. The ionizer 12.

' on sijoitettavissa vaihtoehtoisesti jakoputkiston muihinkin 5 osiin 14. ja 15. tai suuttimiin 5. Ionisaattori 12. on mahdol- lista sijoittaa myos lasipintojen vålittomåån låheisyyteen. Tår-keintå keksinnon mukaisessa menetelmåsså on, ettå suihkujen 6. mukana menetetyt elektronit 9. korvataan ionisaattorissa tuote-tuilla elektroneilla 11., joita positiivinen varaus 8. vetåa 10 puoleensa ja lasien pinta muuttuu varauksettomaksi. Varauksetto- man lasilevyn 1. kaikkien alueiden pintaosien 2. låmmonsiirto-ja såhkoiset ominaisuudet såilyvat keksinnon mukaisessa menetelmåsså låmpokåsittelyprosessin aikana.Alternatively, it can be placed in other parts 14 and 15 of the manifold 5 or in the nozzles 5. It is also possible to place the ionizer 12. in the immediate vicinity of the glass surfaces. The most important thing in the method according to the invention is that the electrons 9 lost with the jets 6. are replaced by electrons 11 produced in the ionizer, which are attracted by the positive charge 8 and the surface of the glasses becomes uncharged. The heat transfer and electrical properties of the surface parts of all areas of the uncharged glass sheet 1. are retained in the method according to the invention during the heat treatment process.

Keksinnon mukaisella menetelmållå tuotettujen låmpokåsiteltyjen 15 levyjen reuna-alueiden optiset vååristymåt ja kåyristymiset ovat oleellisesti våhentyneet, såhkoiset ja låmposåteilyn heijas-tusominaisuudet ovat såilyneet tai parantuneet, lasilevyjen reu-na- ja keskialuiden vålillå ei ole lujuuseroja ja låmpokåsitel-lysså lasilevysså ei ole turvallisuusriskiå.The optical distortions and curvatures of the edge areas of the heat-treated plates 15 produced by the method of the invention have been substantially reduced, the electrical and reflection properties of the heat radiation have been maintained or improved,

20 Erityisesti on huomattava, ettå keksinnon mukaista låmpokåsitte- lymenetelmåå voidaan kåyttåå muidenkin materiaalien yhteydesså kuin lasilevyjen. Keksinnon mukaisessa menetelmåsså korvataan elektronien menetykset vastaavalla måårållå uusia negatiivisiå varauksia. Tarvittaessa voidaan prosessi jårjeståå niin, ettå 25 kåsiteltåvåt pinnat tulevat negatiivisesti varautuneiksi. Lisåk- si on huomattava, ettå keksinnon mukaista lasien låmpokåsittely-menetelmåå on esitetty vain yhteen kåyttoesimerkkiin viitaten, jossa suihkut låmmittåvåt ja/tai jååhdyttåvåt tuotetta. Keksin-t6å voidaan kåyttåå puhallettaessa erilaisia kaasuja tai hoyry-30 jå, joilla on samanlaiset vaikutukset kuin on kuvattu tåsså esi- tyksesså.In particular, it should be noted that the heat treatment method according to the invention can also be used in connection with materials other than glass sheets. In the method according to the invention, the losses of electrons are replaced by a corresponding amount of new negative charges. If necessary, the process can be arranged so that the surfaces to be treated become negatively charged. In addition, it should be noted that the method of heat treatment of glasses according to the invention has been presented with reference to only one use example in which the jets heat and / or cool the product. The invention can be used to blow various gases or vapors having similar effects to those described in this presentation.

Claims (7)

1. Forfarande for behandling av gas som blåses vid uppvårming och kylning av glasskivor vid vilket olågenheterna fororsakade 5 av elektroner som blåsningarna losgjort från giasens ytor elimi- neras genom ett forfarande som kånnnetecknat av att strålarna (6) som beror glasskivan (1) innehåller negativa laddningar (11).1. A method of treating gas blown upon heating and cooling of glass sheets, wherein the inaccuracies caused by electrons which the blows detached from the surfaces of the gases are eliminated by a method characterized by the rays (6) touching the glass sheet (1) charges (11). 2. Forfarande enligt patentkrav 1, kånnetecknat av att en anordning (12) som alstrar negativa laddningar har an-bragts i någon del (5, 13, 14, och 15) av anordningen som alstrar och styr uppvårmande och avkylande strålar (6).A method according to claim 1, characterized in that a device (12) generating negative charges has been placed in some part (5, 13, 14, and 15) of the device which generates and controls heating and cooling rays (6). 3. Forfarande enligt patentkrav 1 eller 2, kånneteck nat av att den negativa laddningar alstrande anordninger (12) har anbragts mellan glasskivan (1) och ett munstycke (5).3. A method according to claim 1 or 2, characterized in that the negative charges generating devices (12) have been arranged between the glass plate (1) and a nozzle (5). 4. Forfarande enligt något av patentkraven 1-3, kånne- 20 tecknat av att de strålar (6) alstrande och styrande anordningarna (5, 13, 14 och 15) har isolerats från jordpoten-tialen.4. A method according to any one of claims 1-3, characterized in that the jets (6) generating and controlling the devices (5, 13, 14 and 15) have been isolated from the earth potential. 5. Forfarande enligt något av patentkraven 1-4, k å η n e - 25 tecknat av att anordningen (3) som transporterar glas skivan (1) har isolerats från jordpotentialen.5. A method according to any one of claims 1-4, characterized in that the device (3) carrying the glass plate (1) has been isolated from the earth potential. 6. Forfarande enligt något av patentkraven 1-5, kånnetecknat av att den negativa laddningar alstrande anord- 30 ningen (12) står inte i kontakt med glasskivan (1).Method according to any one of claims 1-5, characterized in that the negative charges generating device (12) do not contact the glass plate (1). 7. Forfarande enligt något patentkrav 1-5, kånnetecknat av att glasskivan (1) år av elektrisk isolerande material .Process according to any of claims 1-5, characterized in that the glass sheet (1) is made of electrically insulating material.
FI924251A 1992-09-23 1992-09-23 Glass heat treatment method FI91248C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI924251A FI91248C (en) 1992-09-23 1992-09-23 Glass heat treatment method
PCT/FI1993/000380 WO1994006726A1 (en) 1992-09-23 1993-09-22 Method and apparatus for heat treating glass
AU48207/93A AU4820793A (en) 1992-09-23 1993-09-22 Method and apparatus for heat treating glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI924251A FI91248C (en) 1992-09-23 1992-09-23 Glass heat treatment method
FI924251 1992-09-23

Publications (3)

Publication Number Publication Date
FI924251A0 FI924251A0 (en) 1992-09-23
FI91248B FI91248B (en) 1994-02-28
FI91248C true FI91248C (en) 1994-06-10

Family

ID=8535910

Family Applications (1)

Application Number Title Priority Date Filing Date
FI924251A FI91248C (en) 1992-09-23 1992-09-23 Glass heat treatment method

Country Status (3)

Country Link
AU (1) AU4820793A (en)
FI (1) FI91248C (en)
WO (1) WO1994006726A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906195A (en) * 2016-04-14 2016-08-31 南通德瑞森复合材料有限公司 Glass fiber reinforced plastic production cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002546C2 (en) * 1990-01-29 1994-07-14 Wsp Ingenieurgesellschaft Fuer High-convection gas jet nozzle section for flat material guided over rollers, and method for their operation

Also Published As

Publication number Publication date
AU4820793A (en) 1994-04-12
FI91248B (en) 1994-02-28
FI924251A0 (en) 1992-09-23
WO1994006726A1 (en) 1994-03-31

Similar Documents

Publication Publication Date Title
US11890835B2 (en) Lamination of electrochromic device to glass substrates
JP5155873B2 (en) Sheet glass strengthening apparatus and method
CN108025939A (en) The vehicle glass of heat enhancing
JPH08225943A (en) Annealed low-emissivity coating
FI91247B (en) Procedure for the pre-treatment of coated glass for heat treatment
EP3281922A1 (en) Glass sheet and method for manufacturing same
FI91248C (en) Glass heat treatment method
CN108602708A (en) The photochromic glass and relevant system and method that heat is strengthened
US20230295037A1 (en) Fire Rated Glass Unit
Rantala Heat transfer phenomena in float glass heat treatment processes
JPS6335581B2 (en)
JPH11145495A (en) Glass substrate for solar cells and manufacture thereof
US20200369562A1 (en) Method for producing a printed, coated panel
JP3836652B2 (en) Tempered glass manufacturing equipment
JP2007169102A (en) Fire-retardant glass
CN106277853A (en) Laminated glass
JPH11130454A (en) Tempered glass plate having protective cover on peripheral part thereof
US20180222155A1 (en) Thermally insulating glass laminates with a non-uniform coating layer and a plurality of sealed cavities of gas molecules
JP2003012332A (en) Wired glass
BR112020010252A2 (en) coated substrate, light transmitting laminate, and method for coating a substrate
Biller Investigation of Fired Bubble Structure‐Wet and Dry

Legal Events

Date Code Title Description
BB Publication of examined application
MM Patent lapsed