ES2832528A1 - METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE (Machine-translation by Google Translate, not legally binding) - Google Patents

METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2832528A1
ES2832528A1 ES201931095A ES201931095A ES2832528A1 ES 2832528 A1 ES2832528 A1 ES 2832528A1 ES 201931095 A ES201931095 A ES 201931095A ES 201931095 A ES201931095 A ES 201931095A ES 2832528 A1 ES2832528 A1 ES 2832528A1
Authority
ES
Spain
Prior art keywords
iii
iron
rro
deh
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201931095A
Other languages
Spanish (es)
Other versions
ES2832528B2 (en
Inventor
Cortés Patricia Horcajada
Fernández Pablo Salcedo
Macías Sara Rojas
Vilela Sergio Manuel Felipe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fundacion Imdea Energia
Original Assignee
Fundacion Imdea Energia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Imdea Energia filed Critical Fundacion Imdea Energia
Priority to ES201931095A priority Critical patent/ES2832528B2/en
Publication of ES2832528A1 publication Critical patent/ES2832528A1/en
Application granted granted Critical
Publication of ES2832528B2 publication Critical patent/ES2832528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/005Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3839Polyphosphonic acids
    • C07F9/3843Polyphosphonic acids containing no further substituents than -PO3H2 groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4021Esters of aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/94Bismuth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

The present invention refers to a metal-organic network (MOF) comprising the general formula (I): {IMAGE-01} where: M is a metal selected from a transition metal and from the p block. m = 1-10 Or is it a coordinating oxygen, p = 0-20 X is a counterion, q = 0-10 L is a pyrene ligand of general formula (II): {IMAGE-02} where: R1 = R3 = R4 = R6 selected from H and phosphonate; R2 = R5 selected from H and phosphonate, where R1 = R3 = R4 = R6 {IMAGE-03} R2 = R5 r = 1-10. The present invention further relates to the process for the synthesis of the MOF of the present invention, and to the use thereof. (Machine-translation by Google Translate, not legally binding)

Description

DESCRIPCIÓNDESCRIPTION

REDES METAL-ORGÁNICAS A BASE DE PIRENO-FOSFONATOMETAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE

Campo de la invenciónField of the invention

La presente invención se encuadra en el campo general de ciencia de materiales y en particular se refiere a una familia de polímeros de coordinación cristalinos o redes metalorgánicas (MOFs; por sus siglas en inglés Metal-Organic Frameworks) a base del ligando no tóxico pireno-fosfonato y al procedimiento de obtención de dichos polímeros de corrdinación critalinos o MOFs.The present invention falls within the general field of materials science and in particular refers to a family of crystalline coordination polymers or metal-organic networks (MOFs; Metal-Organic Frameworks) based on the non-toxic ligand pyrene- phosphonate and the process for obtaining said critaline corrdination polymers or MOFs.

Estado de la técnicaState of the art

Las redes metal-orgánicas (MOFs; por sus siglas en inglés Metal-Organic Frameworks), son un nuevo tipo de polímeros de coordinación cristalinos sintéticos constituidos por unidades inorgánicas (iones, clústeres, cadenas, etc.) enlazados a ligandos orgánicos polidentados (carboxilatos, azolatos, fosfonatos, etc.) que actúan como espaciadores, de tal forma que se genera una red potencialmente porosa.Metal-Organic Frameworks (MOFs) are a new type of synthetic crystalline coordination polymers made up of inorganic units (ions, clusters, chains, etc.) linked to polydentate organic ligands (carboxylates , azolates, phosphonates, etc.) that act as spacers, in such a way that a potentially porous network is generated.

En los últimos años, ha habido un crecimiento exponencial en la síntesis de nuevas estructuras tipo MOF y en el estudio de sus aplicaciones en campos diversos (e.j. procesos de separación, almacenamiento, catálisis heterogénea, sensores, biomedicina, etc.) (A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Nat. Rev. Mater., 2016, 1, 15018.).In recent years, there has been an exponential growth in the synthesis of new MOF-like structures and in the study of their applications in various fields ( eg processes of separation, storage, heterogeneous catalysis, sensors, biomedicine, etc.) (AJ Howarth, Y. Liu, P. Li, Z. Li, TC Wang, JT Hupp and OK Farha, Nat. Rev. Mater., 2016, 1, 15018.).

A pesar de las interesantes propiedades que presentan los MOFs, la aplicabilidad real de muchos de estos materiales está limitada por su baja estabilidad en las condiciones de trabajo (i.e. altas temperaturas, humedad, condiciones básicas, ácidas, etc.), (N. C. Burtch, H. Jasuja and K. S. Walton, Chem. Rev., 2014, 114, 10575-10612), su baja reciclabilidad/regeneración, y su potencial toxicidad. Existen múltiples factores que determinan la estabilidad de los MOFs, como por ejemplo las condiciones de trabajo, la naturaleza química de los iones metálicos y ligandos orgánicos que los forman, la geometría de coordinación entre metales y ligandos orgánicos, la hidrofobicidad en la superficie del poro, etc. (S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li and H. -C. Zhou, Adv. Mater., 2018, 30, 1704303). Diferentes estudios relativos a la estabilidad de los MOFs han concluido que la labilidad de los enlaces de coordinación que soportan este tipo de estructuras es la principal responsable de la limitada estabilidad de estos compuestos. Por tanto, el diseño y la correcta selección de los elementos constitutivos (metales y ligandos orgánicos) que van a formar estas estructuras es fundamental para la generación de estructuras estables que tengan una aplicación real en las condiciones de trabajo.Despite the interesting properties that MOFs present, the real applicability of many of these materials is limited by their low stability under working conditions ( ie high temperatures, humidity, basic conditions, acidic, etc.), (NC Burtch, H. Jasuja and KS Walton, Chem. Rev., 2014, 114, 10575-10612), its low recyclability / regeneration, and its potential toxicity. There are multiple factors that determine the stability of MOFs, such as working conditions, the chemical nature of the metal ions and organic ligands that form them, the coordination geometry between metals and organic ligands, the hydrophobicity on the pore surface. , etc. (S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y . Zhang, L. Zhang, Y. Fang, J. Li and H. -C. Zhou, Adv. Mater., 2018, 30, 1704303). Different studies related to the stability of MOFs have concluded that the lability of coordination links that support this type of structure is the main responsible for the limited stability of these compounds. Therefore, the design and correct selection of the constituent elements (metals and organic ligands) that will form these structures is essential for the generation of stable structures that have a real application in working conditions.

Aunque se ha reportado en numerosas ocasiones que ciertos MOFs son estables en diferentes condiciones de trabajo agresivas, lo cierto es que estos trabajos estudian de forma superficial la estabilidad de las estructuras. En este sentido, tan solo se analiza la integridad estructural (i.e. mediante difracción de rayos X tras recuperar el sólido restante de la suspensión). Este procedimiento no analiza la posible liberación de sus componentes al medio durante el contacto con la solución. La gran mayoría de los MOFs reportados hasta la fecha se basan en ligandos tipo carboxilato que pueden hidrolizarse fácilmente. Sin embargo, existen pocas estructuras de MOF basados en ligandos tipo fosfonato que, en general, se asocian a una coordinación más fuerte y así, a estructuras más robustas. A pesar de su potencial, los MOFs basados en ligandos fosfonato están casi inexplorados debido en parte a que su síntesis no es trivial (ligandos poco solubles, dificultad para resolver su estructura, coordinación variada, etc.).Although it has been reported on numerous occasions that certain MOFs are stable in different aggressive working conditions, the truth is that these studies superficially study the stability of the structures. In this sense, only the structural integrity is analyzed ( ie by X-ray diffraction after recovering the remaining solid from the suspension). This procedure does not analyze the possible release of its components to the environment during contact with the solution. The vast majority of MOFs reported to date are based on carboxylate-type ligands that can be easily hydrolyzed. However, there are few MOF structures based on phosphonate-type ligands that, in general, are associated with stronger coordination and thus more robust structures. Despite their potential, MOFs based on phosphonate ligands are almost unexplored due in part to the fact that their synthesis is not trivial (poorly soluble ligands, difficulty in resolving their structure, varied coordination, etc.).

Por otro lado, la seguridad de este tipo de materiales sintéticos para los humanos y el medioambiente es un motivo de preocupación. En el mercado europeo existen más de 100000 sustancias químicas, con las que se fabrican un millón de preparados. Sin embargo, no se dispone de ninguna información toxicológica de relevancia de más del 75% de estas sustancias, haciendo poco seguro, o incluso peligroso, su uso. Existe un vacío de información en lo que se refiere a la toxicidad y seguridad del uso de los MOFs (J. Baraibar Fentares, H. Olsson and B. Sokull-Klüttgen, JRC Scientific and Technical Reports: Eur. List Notified Chem Substances Elincs, 2009). Los potenciales efectos tóxicos de los MOF se deben fundamentalmente a la presencia de ciertos iones metálicos y grupos funcionales en su estructura. Además de estos factores, el tamaño de partícula, geometría, carga y el disolvente utilizado en la síntesis pueden contribuir a su toxicidad (como en otros materiales, los MOFs nanométricos tendrían una naturaleza más invasiva). En particular, entre los iones metálicos utilizados en la síntesis de MOFs, hay un gran número de ellos asociados a una elevada toxicidad. Con el fin de evaluar la toxicidad de una sustancia es normal considerar su dosis letal media LD50, que se define como la cantidad de un compuesto que es capaz de provocar la muerte a la mitad de los miembros de una población. Basándonos en el valor de LD50 para la administración oral en ratas (utilizado como modelo animal), los valores encontrados para ciertos metales constitutivos de los MOFs son: Cd2+ LD50 (cloruro) = 250 mg/Kg; Gd3+ LD50 (clorato) = 80 mg/Kg; Ni2+ LD50 (sulfato) = 46 mg/Kg; Co2+ LD50 (cloruro) = 42 mg/Kg. Por lo tanto, sería interesante utilizar metales con un elevado valor de LD50 en la síntesis de nuevas estructuras tipo MOF para evitar su toxicidad. Por otro lado, aunque los ligandos orgánicos contribuyen de la misma manera que los iones metálicos en la bioseguridad de los MOFs, su toxicidad es generalmente desconocida. Del gran número de ligandos posibles, tan solo se conoce la toxicidad de una decena de ellos (LD50 (2-metilimidazol) = 1400 mg/Kg, LD50 (ácido tereftálico) = 5000 mg/Kg).On the other hand, the safety of this type of synthetic materials for humans and the environment is a matter of concern. There are more than 100,000 chemical substances on the European market, with which a million preparations are manufactured. However, no relevant toxicological information is available for more than 75% of these substances, making their use unsafe, or even dangerous. There is an information gap regarding the toxicity and safety of the use of MOFs (J. Baraibar Fentares, H. Olsson and B. Sokull-Klüttgen, JRC Scientific and Technical Reports: Eur. List Notified Chem Substances Elincs, 2009). The potential toxic effects of MOFs are mainly due to the presence of certain metal ions and functional groups in their structure. In addition to these factors, the particle size, geometry, charge and the solvent used in the synthesis can contribute to its toxicity (as in other materials, nanometric MOFs would have a more invasive nature). In particular, among the metal ions used in the synthesis of MOFs, there are a large number of them associated with high toxicity. In order to evaluate the toxicity of a substance, it is normal to consider its mean lethal dose LD 50 , which is defined as the amount of a compound that is capable of causing death in half the members of a population. Based on the LD 50 value for oral administration in rats (used as an animal model), the values found for certain constituent metals of MOFs are: Cd2 + LD 50 (chloride) = 250 mg / Kg; Gd3 + LD 50 (chlorate) = 80 mg / Kg; Ni2 + LD 50 (sulfate) = 46 mg / Kg; Co2 + LD 50 (chloride) = 42 mg / Kg. Therefore, it would be interesting to use metals with a high LD 50 value in the synthesis of new MOF-like structures to avoid their toxicity. On the other hand, although organic ligands contribute in the same way as metal ions in the biosafety of MOFs, their toxicity is generally unknown. Of the large number of possible ligands, only a dozen of them are known to be toxic (LD 50 (2-methylimidazole) = 1400 mg / Kg, LD 50 (terephthalic acid) = 5000 mg / Kg).

Existe pues, la necesidad de proporcionar nuevos MOFs que presenten una elevada estabilidad química, una baja toxicidad y que puedan reciclarse y/o regenerarse.There is thus a need to provide new MOFs that have high chemical stability, low toxicity and can be recycled and / or regenerated.

Breve descripción de la invenciónBrief description of the invention

La presente invención soluciona los problemas descritos en el estado de la técnica ya que proporciona un material de tipo red metal-orgánica (MOF) muy estable, reciclable y que presenta una nula o baja toxicidad potencial. En concreto, proporciona un compuesto altamente estable basado en el ligando no tóxico pireno-fosfonato Figura 19)The present invention solves the problems described in the state of the art since it provides a material of the metal-organic network type (MOF) that is very stable, recyclable and that has zero or low potential toxicity. Specifically, it provides a highly stable compound based on the non-toxic pyrene-phosphonate ligand Figure 19)

Así pues, en un primer aspecto, la presente invención se refiere a un material de tipo red metal-orgánica (MOF) (de aquí en adelante, MOF de la presente invención) que comprende la fórmula general (I):Thus, in a first aspect, the present invention refers to a metal-organic network (MOF) type material (hereinafter, MOF of the present invention) comprising the general formula (I):

[MmOpXqLr][MmOpXqLr]

(I)(I)

donde:where:

M es un metal seleccionado de entre un metal de transición y del bloque p. Preferentemente, M es un metal seleccionado de entre Ti, Zr, Bi, Cu, Fe, Zn y V,M is a metal selected from a transition metal and from the p block. Preferably, M is a metal selected from Ti, Zr, Bi, Cu, Fe, Zn and V,

M=1-10M = 1-10

O es un oxígeno coordinante, que forma parte de la unidad inorgánica, en el caso de que hubieraOr it is a coordinating oxygen, which is part of the inorganic unit, in the event that there is

p= 0-20p = 0-20

X es un contraión. Preferentemente, X es un contraión seleccionado de entre O2-, OH-, F-, Cl-, Br-, I-, SO4-2, NO3 -, ClO4-, acetato, formiato, X is a counterion. Preferably, X is a counter ion selected from O2-, OH-, F-, Cl-, Br-, I-, SO 4-2 , NO 3 -, ClO4-, acetate, formate,

q= 0-10q = 0-10

L es un ligando pireno de fórmula general (II):L is a pyrene ligand of general formula (II):

Figure imgf000006_0001
Figure imgf000006_0001

donde:where:

R1=R3=R4=R6 seleccionados de entre H y fosfonato;R 1 = R 3 = R 4 = R 6 selected from H and phosphonate;

R2=R5 seleccionados de entre H y fosfonato,R 2 = R 5 selected from H and phosphonate,

donde R1=R3=R4=R6 * R2=R5where R1 = R3 = R4 = R6 * R2 = R5

r=1-10r = 1-10

En la presente invención por “metal de transición” se refiere a la definición dada por la “Unión Internacional de Química Pura y Aplicada”, más conocida por sus siglas en inglés IUPAC que, define un metal de transición como cualquier elemento cuyo átomo tiene una subcapa d (subnivel de energía) incompleta o que puede dar lugar a cationes.In the present invention, "transition metal" refers to the definition given by the "International Union of Pure and Applied Chemistry", better known by its acronym in English IUPAC, which defines a transition metal as any element whose atom has an subshell d (energy sublevel) incomplete or that can give rise to cations.

En la presente invención por “metal del bloque p” se refiere a aluminio (Al), galio (Ga), indio (In), estaño (Sn), talio (Tl), plomo (Pb), y bismuto (Bi).In the present invention, "p-block metal" refers to aluminum (Al), gallium (Ga), indium (In), tin (Sn), thallium (Tl), lead (Pb), and bismuth (Bi).

En la presente invención por “oxígeno coordinante” se refiere a un oxígeno, que, sin ser parte del ligando, está unido a distintos cationes de la unidad inorgánica, formando parte de la misma(clúster, cadena, plano, estructura 3D), uniendo estos cationes entre sí.In the present invention, "coordinating oxygen" refers to an oxygen, which, without being part of the ligand, is bound to different cations of the inorganic unit, forming part of it (cluster, chain, plane, 3D structure), joining these cations to each other.

En la presente invención por “contraión” se refiere a cualquier ion que, en la fórmula (I), acompaña a una especie iónica manteniendo la electroneutralidad de la misma.In the present invention, "counterion" refers to any ion that, in formula (I), accompanies an ionic species while maintaining its electroneutrality.

En una realización particular, el MOF de la presente invención, comprende una formula general (I), donde:In a particular embodiment, the MOF of the present invention comprises a general formula (I), where:

M es Zr,M is Zr,

m= 4,m = 4,

p= 0,p = 0,

X= F-,X = F-,

q= 4 q = 4

L es un ligando pireno de fórmula general (II)L is a pyrene ligand of general formula (II)

Figure imgf000007_0001
Figure imgf000007_0001

donde:where:

R1=R3=R4=R6 = fosfonato;R 1 = R 3 = R 4 = R 6 = phosphonate;

R2=R5 = HR2 = R5 = H

r=3r = 3

Más en particular, el MOF de la presente invención es Zr4F4[Py(PO3H)4]3-4H,O.More in particular, the MOF of the present invention is Zr4F4 [Py (PO3H) 4] 3-4H, O.

En otra realización particular, el MOF de la presente invención, comprende una fórmula general (I), donde:In another particular embodiment, the MOF of the present invention comprises a general formula (I), where:

M es Bi,M is Bi,

m= 2,m = 2,

p=0,p = 0,

X= OH-,X = OH-,

q= 2q = 2

L es un ligando pireno de fórmula general (II)L is a pyrene ligand of general formula (II)

Figure imgf000007_0002
Figure imgf000007_0002

donde:where:

R i=R3=R4=R6 = fosfonato;R i = R 3 = R 4 = R 6 = phosphonate;

R2=R5 = HR2 = R5 = H

r=1r = 1

Más en particular, el MOF de la presente invención es Bi2(OH)2[Py(PO3H)4] More in particular, the MOF of the present invention is Bi 2 (OH) 2 [Py (PO 3 H) 4 ]

En otra realización particular, el MOF de la presente invención, comprende una fórmula general (I), donde:In another particular embodiment, the MOF of the present invention comprises a general formula (I), where:

M es Cu,M is Cu,

m= 2 ,m = 2 ,

p=0 ,p = 0 ,

X=X =

q= 0 q = 0

L es un ligando pireno de fórmula general (II)L is a pyrene ligand of general formula (II)

Figure imgf000008_0001
Figure imgf000008_0001

donde:where:

R1=R3=R4=R6 = fosfonato;R 1 = R 3 = R 4 = R 6 = phosphonate;

R2=R5 = HR2 = R5 = H

r=1r = 1

Más en particular, el MOF de la presente invención es Cu2[Py(PO3H)4]-6 H2OMore in particular, the MOF of the present invention is Cu 2 [Py (PO 3 H) 4 ] - 6 H 2 O

En otra realización particular, el MOF de la presente invención, comprende una fórmula general (I), donde:In another particular embodiment, the MOF of the present invention comprises a general formula (I), where:

M es Cu,M is Cu,

m= 2 ,m = 2 ,

p=0 ,p = 0 ,

X=X =

q= 0 q = 0

L es un ligando pireno de fórmula general (II) L is a pyrene ligand of general formula (II)

donde:where:

R1=R3=R4=R6 = fosfonato;R1 = R 3 = R 4 = R6 = phosphonate;

R2=R5 = HR2 = R5 = H

r=1r = 1

Más en particular, el MOF de la presente invención es Cu2[Py(PO3H)4]-5H2OMore in particular, the MOF of the present invention is Cu2 [Py (PO3H) 4] -5H2O

En una realización particular, el MOF de la presente invención, presenta una estructura en forma monocristalina.In a particular embodiment, the MOF of the present invention has a structure in monocrystalline form.

En otra realización particular, el MOF de la presente invención, presenta una estructura en forma policristalina.In another particular embodiment, the MOF of the present invention has a structure in polycrystalline form.

En un segundo aspecto, la presente invención se refiere al procedimiento para la síntesis de una red metal-orgánica (MOF) de la presente invención (de aquí en adelante procedimiento de la presente invención), que comprende las siguientes etapas:In a second aspect, the present invention refers to the process for the synthesis of a metal-organic network (MOF) of the present invention (hereinafter the process of the present invention), which comprises the following steps:

a) obtención de un ligando precursor de fórmula general (III) (de aquí en adelante, ligando precursor de la presente invención)a) Obtaining a precursor ligand of general formula (III) (hereinafter, the precursor ligand of the present invention)

Figure imgf000009_0001
Figure imgf000009_0001

donde:where:

R7=R9=R10=R12 = PO3R13 R7 = R9 = R10 = R12 = PO 3 R 13

Donde R13 es seleccionado de entre H, alquilo, alqueno, alquino, arilo, heteroarilo, metales alcalinos y metales alcalinotérreos. Preferentemente R13 es seleccionado de entre H, etilo, bencilo, metilo, Na, K, Li, Ca y Mg.Where R 13 is selected from H, alkyl, alkene, alkyne, aryl, heteroaryl, alkali metals and alkaline earth metals. Preferably R 13 is selected from H, ethyl, benzyl, methyl, Na, K, Li, Ca and Mg.

R8=R11 = HR8 = R11 = H

b) hacer reaccionar el ligando precursor obtenido en la etapa a) con una sal metálica, oxosal, hidróxido, oxohidróxido u óxido metálico b) reacting the precursor ligand obtained in step a) with a metal salt, oxosalt, hydroxide, oxohydroxide or metal oxide

c) dispersar el compuesto obtenido en la etapa b), en un disolvente seleccionado de entre agua, etanol, metanol, propanol, isopropanol, butanol, secbutanol, isobutanol, dietilacetamida, isopropilformamida, disopropilformamida, dimetilformamida, dietilformamida, N-metilpirrolidona, xilenos, nitrometano, acetona, dimetilamina, tetrahidrofurano, cloroformo, diclorometano, dietileter, acetonitrilo, dimetilsulfóxido, tolueno, hexano, heptano, isooctano, nitrobenceno, ácido acético y mezclas de los mismos.c) dispersing the compound obtained in step b), in a solvent selected from among water, ethanol, methanol, propanol, isopropanol, butanol, secbutanol, isobutanol, diethylacetamide, isopropylformamide, disopropylformamide, dimethylformamide, diethylformamide, N-methylpyrrolidone, xylenes, nitromethane, acetone, dimethylamine, tetrahydrofuran, chloroform, dichloromethane, diethyl ether, acetonitrile, dimethylsulfoxide, toluene, hexane, heptane, isooctane, nitrobenzene, acetic acid, and mixtures thereof.

En un aspecto particular, el procedimiento de la presente invención, comprende una etapa adicional comprendida entre la etapa b) y la etapa c), de adición de un compuesto modificador de la reacción seleccionado de entre agente acidificante, agente alcalinizante, agente mineralizante y/o agente modulador. Preferentemente, se añaden agentes ácidos o alcalinizantes seleccionados de entre HCl, HClO4, HNO3 , H2SO4 , NaOH, KOH, ácido acético, ácido fórmico, ácido fosfórico, trietilamina, diisopropilamida, piridina, etc., agentes mineralizadores como el F, agentes moduladores que pueden competir con el ligando por la coordinación con el metal y modificar así la velocidad de reacción (ej. ácido acético, ácido fórmico, ácido propiónico, ácido benzoico, ácido piválico, ácido triluorometasulfónico, ácido tricloroacético, piridina, anilina, diaminobenceno, acetamidina, ácido hipofosforoso, ácido fosfórico, ácido fosforoso, metilfosfonato de dimetilo, dietil (2-metilalil)fosfonato, dietil(-cianoetil)fosfonato, dietil(-cianometil)fosfonato, difenilfosfito, dietilfosfonato, dietilclorometilfosfonato, etc.)In a particular aspect, the process of the present invention comprises an additional step comprised between step b) and step c), of addition of a reaction modifying compound selected from among acidifying agent, alkalizing agent, mineralizing agent and / or modulating agent. Preferably, acidic or alkalizing agents selected from among HCl, HClO4, HNO 3 , H 2 SO 4 , NaOH, KOH, acetic acid, formic acid, phosphoric acid, triethylamine, diisopropylamide, pyridine, etc., mineralizing agents such as F , modulating agents that can compete with the ligand for coordination with the metal and thus modify the reaction rate (e.g. acetic acid, formic acid, propionic acid, benzoic acid, pivalic acid, triluoromethasulfonic acid, trichloroacetic acid, pyridine, aniline, diaminobenzene, acetamidine, hypophosphorous acid, phosphoric acid, phosphorous acid, dimethyl methylphosphonate, diethyl (2-methylallyl) phosphonate, diethyl (-cyanoethyl) phosphonate, diethyl (-cyanomethyl) phosphonate, diphenylphosphite, diethylphosphonate, diethylchloromethylphosphonate, diethylchloromethylphosphonate, diethylchloromethylphosphonate, diethylchloromethylphosphonate, etc.)

En una realización particular, en la etapa a) del procedimiento de la presente invención, el ligando precursor de la presente invención es el ligando pireno-1,3,6,8-tetraetilfosfonato Py(PO3Et2)4In a particular embodiment, in step a) of the process of the present invention, the precursor ligand of the present invention is the pyrene-1,3,6,8-tetraethylphosphonate Py (PO3Et2) 4 ligand

En otra realización particular, en la etapa a) del procedimiento de la presente invención, el ligando precursor de la presente invención es el ligando ácido pireno-1,3,6,8-tetrafosfónico Py(PO3H2)4In another particular embodiment, in step a) of the process of the present invention, the precursor ligand of the present invention is the ligand pyrene-1,3,6,8-tetraphosphonic acid Py (PO3H2) 4

En otra realización particular, la sal metálica de la etapa b) del procedimiento de la presente invención, se selecciona de entre: Acetilacetonato de zirconio (IV), Sulfato hidratado de zirconio (IV) , Oxohidroxo carbonato de zirconio(IV), Carboxietil acrilato de zirconio, Hidrogenofosfato de zirconio (IV), Acrilato de zirconio, Oxinitrato hidratado de zirconio (IV), Hidruro de zirconio(II), Nitruro de zirconio, tetrakis(2,2,6,6-tetrametil-3,5-heptanodionato) de zirconio, Trifluoroacetilacetonato de zirconio (IV), Bromuro de zirconio (IV), Solución de carbonato de zirconio (IV) en amoniaco, Dicloruro bis(ciclopentadienilo) de zirconio (IV), Cloruro hidruro bis(ciclopentadienilo) de zirconio (IV), Dihidruro bis(ciclopentadienilo) de zirconio (IV), Acetato de zirconio, Fluoruro de zirconio (IV), Etóxido de zirconio (IV), Hexafluorozirconato de potasio, Zirconato de calcio, Hidróxido de zirconio (IV), Complejo de osopropanol e isopropóxido de zirconio (IV), tertabutóxido de zirconio (IV), Solución de ácido hexafluorozircónico, Butóxido de zirconio(IV), Propóxido de zirconio (IV), Cloruro de zirconio(IV) y Óxido de zirconio(IV).In another particular embodiment, the metal salt of step b) of the process of the present invention is selected from: Zirconium acetylacetonate (IV), Zirconium hydrated sulfate (IV), Zirconium oxohydroxo carbonate (IV), Carboxyethyl acrylate Zirconium, Zirconium (IV) hydrogen phosphate, Zirconium acrylate, Zirconium (IV) hydrated oxynitrate, Zirconium (II) hydride, Zirconium nitride, Tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate ) Zirconium, Zirconium (IV) trifluoroacetylacetonate, Zirconium (IV) bromide, Zirconium (IV) carbonate in ammonia, Zirconium (IV) bis (cyclopentadienyl) dichloride, Zirconium (IV) bis (cyclopentadienyl) hydride chloride, Zirconium (IV) bis (cyclopentadienyl) dihydride, Zirconium acetate, Zirconium fluoride (IV), Zirconium Ethoxide (IV), Potassium Hexafluorozirconate, Calcium Zirconate, Zirconium Hydroxide (IV), Zirconium Isopropanol and Osopropanol Complex (IV), Zirconium Tertabutoxide (IV), Hexafluorozirconic Acid Solution, Butozirconic Acid Solution Zirconium (IV), Zirconium Propoxide (IV), Zirconium Chloride (IV) and Zirconium Oxide (IV).

Fluoruro de bismuto (III), Oxonitrato de bismuto, Nitrato de bismuto (III) pentahidratado, Subnitrato de bismuto, Cloruro de bismuto (III), Acetato de bismuto (III), Óxido de bismuto (III), Trifluorometanosulfonato de bismuto (III), Subsalizato de bismuto, Bromuro de bismuto (III), Yoduro de bismuto (III), Subcarbonato de bismuto, Fosfato de bismuto (III), Oxicloruro de bismuto (III) y Sulfuro de bismuto (III). Bismuth (III) fluoride, Bismuth oxonitrate, Bismuth (III) nitrate pentahydrate, Bismuth subnitrate, Bismuth (III) chloride, Bismuth (III) acetate, Bismuth (III) oxide, Bismuth (III) trifluoromethanesulfonate , Bismuth subsalyzate, Bismuth (III) bromide, Bismuth (III) iodide, Bismuth subcarbonate, Bismuth (III) phosphate, Bismuth (III) oxychloride and Bismuth (III) sulfide.

Cobre metálico, Tetraclorocuprato (II) de amonio, Bromuro de cobre (I y II), Yoduro de Cobre (I y II), Cloruro de cobre (I y II), Hidruro de cobre (I y II), Difenilfosfinato de cobre (I), Complejo de cianuro di(cloruro de litio) cobre (I), Oxicloruro de cobre, 3-Metilsalicilato de cobre (I), Acetato de cobre (I y II), Perclorato de cobre (II), Oxido de cobre (I y II), Sulfato de cobre (II), Tartrato de cobre (II), Tert-butilacetonato de cobre (II), Trifluorometanesulfonato de cobre (II), Selenido de cobre (I), Tiofeno-2-carboxilato de cobre (I), Tiofenolato de cobre (I), 2-etilhexanoato de cobre (II), 2-pyrazinecarboxilato de cobre (II), Acetato de cobre (II), Acetilacetonato de cobre (II), D-gluconato de cobre (II), Etilacetonato de cobre (II), i-Butirato de cobre (II), tetrakis(acetonitrilo) de cobre (I). Metallic copper , Ammonium tetrachlorocuprate (II), Copper bromide (I and II), Copper iodide (I and II), Copper chloride (I and II), Copper hydride (I and II), Copper diphenylphosphinate ( I), Di (lithium chloride) copper (I) cyanide complex, Copper oxychloride, Copper (I) 3-Methylsalicylate, Copper acetate (I and II), Copper (II) perchlorate, Copper oxide ( I and II), Copper (II) sulfate, Copper (II) tartrate, Copper (II) tert-butylacetonate, Copper (II) trifluoromethanesulfonate, Copper (I) selenide, Copper thiophene-2-carboxylate ( I), Copper (I) thiophenolate, Copper (II) 2-ethylhexanoate, Copper (II) 2-pyrazinecarboxylate, Copper (II) acetate, Copper (II) acetylacetonate, Copper (II) D-gluconate , Copper (II) ethylacetonate, copper (II) i-Butyrate, copper (I) tetrakis (acetonitrile).

Oxido de vanadio (III, V), Acetilacetonato de vanadio (III), Cloruro de vanadio (II, III, IV), Oxitriisopropóxido vanadio (V), Oxitripropóxido de vanadio (V), Oxido sulfato de vanadio (V) hidratado, Oxitrietóxido de vanadio (V), Nitrato de vanadio, Oxicloruro de vanadio (V), Carburo de vanadio (IV), Complejo (1:3) de tetrahydrofurano y cloruro de vanadio (III), Oxifluoruro de vanadio (V), Bromuro de vanadio (III), Óxido de acetilacetonato de vanadio (IV), Aleación de vanadio y cromo, Aleación de níquel y vanadio, Aleación de titanio y vanadio, Aleación de titanio, vanadio, cromo y aluminio, Aleación de zirconio y vanadio, Óxido de 5,10,15,20-tetrafenil-21H,23H-porfina vanadio (IV), Óxido de tris(trifenilsiloxi)vanadio, Óxido de 2,3,7,8,12,13,14,18-octaetil-21H,23H-porina de vanadio(IV), Dicloruro de bis(ciclopentadienil)vanadio (IV), Bis(ciclopentadienil)vanadio (II), Aleación de titanio, alumino y vanadio, Aleación de tungsteno, cromo y vanadio, Complejo de óxido de N,N’-bis(salicilideno)-o-fenilenediamina vanadio (IV), Vanadil ftalocianina y Metavanadato de sodio. Vanadium (III, V) oxide, Vanadium (III) acetylacetonate, Vanadium (II, III, IV) chloride, Vanadium (V) oxytriisopropoxide, Vanadium (V) oxytrypropoxide, Vanadium (V) oxide sulfate hydrated, Oxytrietoxide Vanadium (V), Vanadium Nitrate, Vanadium (V) Oxychloride, Vanadium (IV) Carbide, Tetrahydrofuran and Vanadium (III) Chloride Complex (1: 3), Vanadium (V) Oxyfluoride, Vanadium Bromide (III), Vanadium (IV) Acetylacetonate Oxide, Vanadium Chromium Alloy, Nickel Vanadium Alloy, Titanium Vanadium Alloy, Titanium Vanadium Chromium Aluminum Alloy, Zirconium Vanadium Alloy, 5 Oxide , 10,15,20-tetraphenyl-21H, 23H-porphine vanadium (IV), Tris (triphenylsiloxy) vanadium oxide, 2,3,7,8,12,13,14,18-octaethyl-21H oxide, 23H -vanadium (IV) porin, Bis (cyclopentadienyl) vanadium (IV) dichloride, Bis (cyclopentadienyl) vanadium (II), Titanium, aluminum and vanadium alloy, Tungsten, chromium and vanadium alloy, N oxide complex, N'-bis (salicilid Eno) -o-phenylenediamine Vanadium (IV), Vanadyl Phthalocyanine and Sodium Metavanadate.

Dextrano de hierro, Carbonilo de hierro, Hierro, Acetato de hierro (II), Citrato de amonio hierro (III), Iodudo de hierro (II), Bromuro de hierro (II, III), Sulfato de etilenediamonio hierro (II) tetrahidratado, Fluoruro de hierro (III) trihidratado, Oxalato de amonio hierro (III) trihidratado, D-gluconato de hierro (II) dihidratado, Fluoruro de hierro (II), Cloruro de 5,10,15,20­ tetrakis(pentafluorofenil)-21H,23H-porfirina hierro (III), Sulfato de hierro (II, III) hidratado, p-Toluenosulfonato de hierro (III) hexahidratado, Gluconato de hierro (II) hidratado, Fosfonato de hierro (III) dihidratado, Fosfato de hierro (III) tetrahidratado, Tetrafluoroborato de hierro (II) hexahidratado, Perclorato de hierro (II) hidratado, Citrato de hierro (III) tribásico monohidratado, Óxido de hierro (II, III), Sulfato de amonio hierro (II) hexahidratado, Citrato de hierro (III), Cloruro de hierro (II, III), Sulfuro de hierro (II), Acetilacetonato de hierro (III), Disulfuro de hierro, Nitrato de hierro (III) nonahidratado, Fosfonato de litio hierro (II), Tartrato de hierro (III), Fosfuro de hierro, Pentacarbonilo de hierro (0), Óxido de manganeso hierro, Oxalato de hierro (II) dihidratado, Trifluorometanosulfonato de hierro (II, III), Lactato de hierro (II) hidratado, Óxido de hierro níquel, Oxihidróxido de hierro, Siliciuro de hierro, Pirofosfonato de hierro (III), Molibdato de hierro (II), Ftalocianina de hierro (II, III), Perclorato de hierro (III), Óxido de itrio hierro, Ionóforo IV de hierro (III), Boruro de hierro, Oxalato de hierro (III) hexahidrato, L-ascorbato de hierro (II), Ácido ftalocianina-4,4’,4’’,4’’’-tetrasulfonico de hierro (III) , Fumarato de hierro (II), Tris(2,2,6,6-tetrametil-3,5-heptanodionato de hierro (III), Hexafluoroantimonato de (2S,2’S-(-)-[N,N’-bis(2-piridilmetil)]-2,2’-bipirrolidinebis(acetonitrilo)hierro (II), Titanato de hierro (II), Arseniuro de hierro (II, III), Disiliciduro de hierro, Sulfonato de etilenediamonio hierro (II), Oxoacetato de perclorato de hierro (III) hidratado, Óxido de cobre hierro, Dímero de ciclopentadienilo y dicarbonilo de hierro (II), Óxido de zinc hierro, Óxido de litio hierro (III), Aleación de neodimio, hierro y boro, Aleación de aluminio y hierro, Oxihidróxido de cerio hierro, Aleación de cobalto y hierro, Aleación de oro y hierro, Ácido etilenediaminotetraacetico hierro (III), Cloruro de 5,10,15,20-tetrafenil-21H,23H-porfina de hierro (III), Salt de ácido etilenediaminatetraacetico hierro (III), Tricarbonil(ciclooctatetraene)hierro (II), Cloruro de 2,3,7,8,12,13,14,18-octaetil-21H,23H,porfirina de hierro (III), Óxido de cobre, zinc y hierro, Tetrafluoroborato de cyclopentadienildicarbonil(tetrahidrofurano)hierro (II), Bis(tetrametilciclopentadienil)hierro (II), Hexafluorofosfonato de tricarbonil(2-metoxiciclohexadienilio)hierro, Ácido etilenediaminetetraacético de hierro (III), Dihierrononacarbonilo, Basolita F300 y Ferrita de bario. Iron dextran, iron carbonyl, iron acetate, iron (II), iron citrate ammonium (III), Iodudo iron (II) chloride, iron (II, III), Iron sulphate etilenediamonio (II) acetate tetrahydrate, Iron (III) fluoride trihydrate, Ammonium iron (III) oxalate trihydrate, Iron (II) D-gluconate dihydrate, Iron (II) fluoride, 5,10,15,20 tetrakis (pentafluorophenyl) -21H chloride, Iron (III) 23H-porphyrin, Iron (II, III) sulfate hydrate, Iron (III) p-Toluenesulfonate hexahydrate, Iron (II) gluconate hydrate, Iron (III) phosphonate dihydrate, Iron (III) phosphate tetrahydrate, Iron (II) tetrafluoroborate hexahydrate, Iron (II) perchlorate hydrate, Tribasic iron (III) citrate monohydrate, Iron (II, III) oxide, Ammonium iron (II) sulfate hexahydrate, Iron (III) citrate ), Iron (II, III) chloride, Iron (II) sulfide, Iron (III) acetylacetonate, Iron disulfide, Iron nitrate ro (III) nonahydrate, Lithium iron (II) phosphonate, Iron (III) tartrate, Iron phosphide, Iron pentacarbonyl (0), Iron manganese oxide, Iron (II) oxalate dihydrate, Iron (II) trifluoromethanesulfonate , III), Hydrated iron (II) lactate, Nickel iron oxide, Iron oxyhydroxide, Iron silicide, Iron (III) pyrophosphonate, Iron (II) molybdate, Iron (II, III) phthalocyanine, Iron perchlorate Iron (III), Yttrium iron oxide, Iron (III) ionophore IV, Iron boride, Iron (III) oxalate hexahydrate, Iron (II) L-ascorbate, Phthalocyanine acid-4,4 ', 4'' , 4 '''- iron (III) tetrasulfonic, Iron (II) fumarate, Tris (2,2,6,6-tetramethyl-3,5-iron (III) heptanedionate, Hexafluoroantimonate (2S, 2'S- (-) - [N, N'-bis (2-pyridylmethyl)] - 2,2'-bipyrrolidinebis (acetonitrile) iron (II), Iron (II) titanate, Iron (II, III) arsenide, Disilicide de iron, Ethylene ammonium iron (II) sulfonate, Percl oxoacetate Hydrated iron (III) orate, Iron copper oxide, Iron (II) cyclopentadienyl dicarbonyl dimer, Iron zinc oxide, Lithium iron (III) oxide, Neodymium iron boron alloy, Aluminum iron alloy , Iron cerium oxyhydroxide, Cobalt and iron alloy, Gold and iron alloy, Ethylenediaminetetraacetic acid iron (III), 5,10,15,20-tetraphenyl-21H chloride, 23H-porphine of iron (III), Salt of Ethylenediaminetetraacetic acid iron (III), Tricarbonyl (cyclooctatetraene) iron (II), 2,3,7,8,12,13,14,18-octaethyl-21H chloride, 23H, iron (III) porphyrin, Copper oxide , Zinc and iron, Cyclopentadienyldicarbonyl tetrafluoroborate (tetrahydrofuran) iron (II), Bis (tetramethylcyclopentadienyl) iron (II), Tricarbonyl hexafluorophosphonate (2-methoxycyclohexadienyllium) iron, Ferrilenediaminetetraacetic acid ethylenediaminetetracarbonite300, Iron basronite300 and iron-di-iron (III) Ferrilenediaminetetracarbonite barium.

En otro aspecto, la presente invención se refiere al uso del MOF de la presente invención como conductor protónico. In another aspect, the present invention relates to the use of the MOF of the present invention as a proton conductor.

En otro aspecto, la presente invención se refiere al uso del MOF de la presente invención para la eliminación de contaminantes emergentes en agua.In another aspect, the present invention relates to the use of the MOF of the present invention for the removal of emerging contaminants in water.

Descripción de las figurasDescription of the figures

La figura 1 muestra la estructura vista desde el eje a (izquierda) y b (derecha) del compuesto IEF-10 (Zr-Py).Figure 1 shows the structure seen from the a (left) and b (right) axis of the compound IEF-10 (Zr-Py).

La figura 2 muestra los octaedros de ZrO5F unidos mediante grupos fosfonato en el IEF-10 (Zr-Py).Figure 2 shows the ZrO 5 F octahedra linked by phosphonate groups on the IEF-10 (Zr-Py).

La figura 3 muestra el diagrama de rayos X (XRD) simulado a partir de los datos de monocristal comparado con el difractograma a partir del polvo obtenido en el laboratorio del IEF-10 (Zr-Py).Figure 3 shows the X-ray diagram (XRD) simulated from the single crystal data compared to the diffractogram from the powder obtained in the IEF-10 laboratory (Zr-Py).

La figura 4 muestra los espectros infrarrojos del IEF-10 (Zr-Py) y del ligando.Figure 4 shows the infrared spectra of the IEF-10 (Zr-Py) and the ligand.

La figura 5 muestra las micrografías del IEF-10 (Zr-Py)a x800 (izquierda) y x2000 (derecha). Figure 5 shows the micrographs of the IEF-10 (Zr-Py) at x800 (left) and x2000 (right).

La figura 6 muestra la isoterma de adsorción de N2 a 77 K (izquierda) y distribución de tamaño de poro con el método Horvath-Karazoe (HK) (derecha) del IEF-10 (Zr-Py).Figure 6 shows the adsorption isotherm of N 2 at 77 K (left) and pore size distribution with the Horvath-Karazoe (HK) method (right) of the IEF-10 (Zr-Py).

La figura 7 muestra los espectros de reflectancia difusa para el IEF-10 (Zr-Py) y el ligando. Figure 7 shows the diffuse reflectance spectra for IEF-10 (Zr-Py) and the ligand.

La figura 8 muestra ATG (izquierda) y patrón de termodifracción de rayos X (derecha) del material IEF-10 (Zr-Py).Figure 8 shows ATG (left) and X-ray thermodifraction pattern (right) of the IEF-10 (Zr-Py) material.

La figura 9 muestra el ajuste de Le Bail de los datos de DRXP. Datos experimentales, patrón modelo y diferencia entre ambos.del compuesto IEF-7 (Bi-Py).Figure 9 shows the Le Bail fit of the DRXP data. Experimental data, model pattern and difference between the two of compound IEF-7 (Bi-Py).

La figura 10 muestra los espectros infrarrojos del IEF-7 (Bi-Py) y del ligando.Figure 10 shows the infrared spectra of the IEF-7 (Bi-Py) and the ligand.

La figura 11 muestra las micrografías del IEF-7 (Bi-Py)a x2500 (izquierda) y x10000 (derecha). Figure 11 shows the IEF-7 (Bi-Py) micrographs at x2500 (left) and x10000 (right).

La figura 12 muestra los espectros de reflectancia difusa para el IEF-7 (Bi-Py) y el ligando. Figure 12 shows the diffuse reflectance spectra for IEF-7 (Bi-Py) and the ligand.

La figura 13 muestra ATG (izquierda) y patrón de termodifracción de rayos X (derecha) del material IEF-7 (Bi-Py).Figure 13 shows ATG (left) and X-ray thermodiffraction pattern (right) of the IEF-7 (Bi-Py) material.

La figura 14 muestra el DRXP del material IEF-10 (Zr-Py) después de ser suspendido en distintos medios orgánicos (arriba) y en disoluciones acuosas de distintos pH (abajo). Figure 14 shows the DRXP of the IEF-10 material (Zr-Py) after being suspended in different organic media (top) and in aqueous solutions of different pH (bottom).

La figura 15 muestra el DRXP del material IEF-10 (Zr-Py) después de ser suspendido en HCl concentrado a temperatura ambiente y a reflujo (arriba) y en agua regia a reflujo (abajo). Figure 15 shows the XRD of the IEF-10 (Zr-Py) material after being suspended in concentrated HCl at room temperature and reflux (top) and in refluxing aqua regia (bottom).

La figura 16 muestra el DRXP del material IEF-7 (Bi-Py) después de ser suspendido en distintos medios orgánicos y en disoluciones acuosas de distintos pH.Figure 16 shows the DRXP of the IEF-7 (Bi-Py) material after being suspended in different organic media and in aqueous solutions of different pH.

La figura 17 muestra la cinética de fotodegradación de SMT(%) utilizando IEF-7 (Zr-Py) como catalizador.Figure 17 shows SMT photodegradation kinetics (%) using IEF-7 (Zr-Py) as a catalyst.

La figura 18 muestra la representación de Arrhenius de la conductividad protónica del IEF-7 (Bi-Py).Figure 18 shows the Arrhenius plot of the proton conductivity of IEF-7 (Bi-Py).

La figura 19 muestra la citotoxicidad del ligando ácido pireno-1,3,6,8-tetrafosfónico Py(POsH2)4 para la línea celular Caco-2.Figure 19 shows the cytotoxicity of the pyrene-1,3,6,8-tetraphosphonic acid ligand Py (POsH 2) 4 for the Caco-2 cell line.

La figura 20 muestra la citotoxicidad de los materiales IEF-10 e IEF-7 para la línea celular Caco-2.Figure 20 shows the cytotoxicity of the IEF-10 and IEF-7 materials for the Caco-2 cell line.

Descripción detallada de la invenciónDetailed description of the invention

Ejemplo 1: Síntesis del ligando pireno-1,3,6,8-tetraetilfosfonato Py(3Et2)4: Example 1: Synthesis of the pyrene-1,3,6,8-tetraethylphosphonate Py ( 3 Et 2 ) 4 ligand:

Ver Esquema 1: El intermediario 1,3,6,8-tetrabromopireno (C^HeB^ o Py(Br)4) se sintetizó siguiendo el modo reportado con algunas modificaciones (S. Bernhardt, M. Kastler, V. Enkelmann, M. Baumgarten and K. Müllen, Chem. - A Eur. J., 2006, 12, 6117). En un matraz redondo de 250 mL se disolvieron 2 g (9.88 mmol) de pireno (C16H10, Sigma Aldrich, 98%) en 60 mL de nitrobenceno (Acros Organics, 99%) a temperatura ambiente con agitación magnética constante. Después se añadieron 6.48 g (40.56 mmol) de bromo (Br2, Sigma Aldrich, 99.5%), y la mezcla resultante se calentó con un condensador a 160 °C durante 3 h. Después de dejarlo enfriar hasta temperatura ambiente, se añadieron unos 50 mL de acetona y el sólido amarillo resultante se filtró y lavó con acetona y se secó al aire. Rendimiento = 97%.See Scheme 1: The intermediate 1,3,6,8-tetrabromopyrene (C ^ HeB ^ or Py (Br) 4) was synthesized following the reported mode with some modifications (S. Bernhardt, M. Kastler, V. Enkelmann, M Baumgarten and K. Müllen, Chem. -A Eur. J., 2006, 12, 6117). In a 250 mL round flask, 2 g (9.88 mmol) of pyrene (C 16 H 10 , Sigma Aldrich, 98%) were dissolved in 60 mL of nitrobenzene (Acros Organics, 99%) at room temperature with constant magnetic stirring. Then 6.48 g (40.56 mmol) of bromine (Br 2 , Sigma Aldrich, 99.5%) was added, and the resulting mixture was heated with a condenser at 160 ° C for 3 h. After allowing it to cool to room temperature, about 50 mL of acetone was added and the resulting yellow solid was filtered and washed with acetone and air dried. Yield = 97%.

Figure imgf000014_0001
Figure imgf000014_0001

Esquema 1. Ruta sintética para la preparación del Py(PO3Et2)4. Scheme 1. Synthetic route for the preparation of Py (PO 3 Et 2 ) 4 .

En un reactor de microondas de 30 mL se añadieron 0 .6 g de Py(Br)4 (1.16 mmol), 0.1063 g (0.092 mmol) de tetrakis(trifenilfosfina)paladio (0) ([Pd(PPh3)4], Acros Organics, 99%) (8 % basado los moles de Py(Br)4) y 6 mL de trietilfosfito (P(OEt)3 , Acros Organics, 98%) y se agitaron durante 1 min. Después de este tiempo, el reactor se cerró y se introdujo en el microondas, donde se calentó siguiendo el siguiente programa: i) Calentar de temperatura ambiente hasta 200 °C en 5 min; ii) Mantener a 200 °C por 25 min; y iii) Enfriar hasta 60 °C. In a 30 mL microwave reactor, 0 .6 g of Py (Br) 4 (1.16 mmol), 0.1063 g (0.092 mmol) of tetrakis (triphenylphosphine) palladium (0) ([Pd (PPh 3 ) 4 ], Acros Organics, 99%) ( 8 % based on the moles of Py (Br) 4) and 6 mL of triethylphosphite (P (OEt) 3 , Acros Organics, 98%) and stirred for 1 min. After this time, the reactor was closed and placed in the microwave, where it was heated following the following program: i) Heating from room temperature to 200 ° C in 5 min; ii) Keep at 200 ° C for 25 min; and iii) Cool to 60 ° C.

Después de la reacción, el reactor se dejó durante toda la noche en condiciones ambientales, de forma que cristalice el compuesto deseado. Para recuperarlo, se añadieron aproximadamente 20 mL de éter de petróleo (J.T. Baker, 40-60°) en el reactor, se sonicó durante 1 minuto en un baño, y el sólido amarillo resultante se recuperó mediante filtración a vacío. El polvo obtenido, el pireno-1,3,6,8-tetraetilfosfonato (Py(PO3Et2)4), se lavó de nuevo suspendiéndolo en éter de petróleo y sonicándolo de nuevo en un baño para eliminar así los restos de P(OEt)3 y otras impurezas. Finalmente, se filtró y dejó secar en condiciones ambiente. Rendimiento de la reacción = 92%.After the reaction, the reactor was left overnight at ambient conditions so that the desired compound crystallized. To recover it, approximately 20 mL of petroleum ether (JT Baker, 40-60 °) was added to the reactor, sonicated for 1 minute in a bath, and the resulting yellow solid was recovered by vacuum filtration. The powder obtained, pyrene-1,3,6,8-tetraethylphosphonate (Py (PO 3 Et 2 ) 4 ), was washed again by suspending it in petroleum ether and sonicating it again in a bath to thus eliminate the remains of P (OEt) 3 and other impurities. Finally, it was filtered and allowed to dry under ambient conditions. Yield of reaction = 92%.

Ejemplo 2: Síntesis del ligando ácido pireno-1,3,6,8-tetrafosfónico Py(3H2)4 Example 2: Synthesis of the ligand pyrene-1,3,6,8-tetraphosphonic acid Py ( 3 H 2) 4

Ver Esquema 2: En un matraz de fondo redondo de 250 mL se mezclaron 1.4299 g (1.92 mmol) del pireno-1,3,6,8-tetraetilfosfonato Py(PO3Et2)4 y 80 mL de ácido clorhídrico concentrado (HCl 12M, J.T. Baker) y la mezcla se calentó a reflujo con agitación durante 24 horas. El sólido obtenido se filtró y se lavó con una pequeña cantidad de acetona (10 mL). El polvo amarillo obtenido, llamado ácido pireno-1,3,6,8-tetrafosfónico (Py(PO3H2)4) se secó a 60 °C durante 4 h. Rendimiento de la reacción = 98%.See Scheme 2: 1.4299 g (1.92 mmol) of pyrene-1,3,6,8-tetraethylphosphonate Py (PO 3 Et 2 ) 4 and 80 mL of concentrated hydrochloric acid (HCl 12M, JT Baker) and the mixture was refluxed with stirring for 24 hours. The solid obtained was filtered and washed with a small amount of acetone (10 mL). The yellow powder obtained, called pyrene-1,3,6,8-tetraphosphonic acid (Py (PO 3 H 2 ) 4 ) was dried at 60 ° C for 4 h. Reaction yield = 98%.

Figure imgf000015_0001
Figure imgf000015_0001

Esquema 2. Ruta sintética para la preparación del Py(PO3H2)4. Scheme 2. Synthetic route for the preparation of Py (PO 3 H 2 ) 4 .

Ejemplo 3: Síntesis de IEF-10 (Zr-Py) ó Zr4F4[Py(PÜ3H)4]3-4H2Ü en forma policristalina: 96.48 mg (0.414 mmol) de cloruro de zirconio (ZrCU, Sigma Aldrich, 99.5%) y 154.55 mg (0.207 mmol) del ligando pireno-1,3,6,8-tetraetilfosfonato (C32H46P4O 12 ó Py(PO3Et2); síntesis en laboratorio previamente descrita) se dispersaron en 13.8 mL de una mezcla de agua destilada, metanol (MeOH, J.T. Baker, HPLC) y ácido fluorhídrico (HF, J.T. Baker) 2 M (ratio volumétrico 0.4:0.4:0.7) dentro de un reactor de teflón de 23 mL. Finalmente, el reactor cerrado se calentó desde temperatura ambiente a 120 °C en 6 h y se mantuvo a esa temperatura durante 48 h, dejándolo enfriar hasta 30 °C durante 6 h. El material obtenido de color amarillo pálido se filtró y lavó con agua y metanol, y se recuperó y secó al aire. Rendimiento de la reacción: 40 %. Example 3: Synthesis of IEF-10 ( Zr-Py) or Zr4F4 [Py ( PÜ3H) 4] 3-4H2Ü in polycrystalline form: 96.48 mg (0.414 mmol) of zirconium chloride (ZrCU, Sigma Aldrich, 99.5%) and 154.55 mg (0.207 mmol) of the pyrene-1,3,6,8-tetraethylphosphonate ligand (C 32 H 46 P 4 O 12 or Py (PO 3 Et 2 ); synthesis in previously described laboratory) were dispersed in 13.8 mL of a mixture of distilled water, methanol (MeOH, JT Baker, HPLC) and hydrofluoric acid (HF, JT Baker) 2 M (volumetric ratio 0.4: 0.4: 0.7) inside a reactor of 23 mL Teflon. Finally, the closed reactor was heated from room temperature to 120 ° C in 6 h and was kept at that temperature for 48 h, allowing it to cool down to 30 ° C during 6 h. The pale yellow material obtained was filtered and washed with water and methanol, and recovered and air dried. Yield of reaction: 40%.

Ejemplo 4: Síntesis de IEF-10 (Zr-Py) ó Zr4F4[Py(PÜ3H)4]3-4H2Ü en forma de monocristales: Los monocristales usados para la resolución estructural del material se obtuvieron de la siguiente manera: 56.42 mg (0.414 mmol) de etóxido de zirconio (Zr(OEt)4 , Acros Organics, 99%) y 154.55 mg (0.207 mmol) del ligando pireno-1,3,6,8-tetraetilfosfonato (C32H46P4O 12 o Py(PO3Et2)) preparado en el laboratorio (ver condiciones de síntesis en el apartado anterior) se dispersaron en 13.8 mL de una mezcla de H2O destilada, metanol y ácido fluorídrico 2 M (3.561,3.561 y 6.44 mL, respectivamente) dentro de un reactor de teflón de 23 mL. Después, se añadieron 0.236 mL de ácido acético glacial (CH3COOH, J.T. Baker) (10 equivalentes por metal). Finalmente, el reactor cerrado se calentó desde temperatura ambiente a 120 °C en 6 h y se mantuvo a esa temperatura durante 48 h, dejándolo enfriar hasta 30 °C durante 24 h. Los cristales obtenidos se filtraron y lavaron con agua y metanol, recuperándolos y secándolos al aire. Example 4: Synthesis of IEF-10 ( Zr-Py) or Zr4F4 [Py ( PÜ3H) 4] 3-4H2Ü in the form of single crystals: The single crystals used for the structural resolution of the material were obtained as follows: 56.42 mg (0.414 mmol) of zirconium ethoxide (Zr (OEt) 4 , Acros Organics, 99%) and 154.55 mg (0.207 mmol) of the pyrene-1,3,6,8-tetraethylphosphonate ligand (C 32 H 46 P 4 O 12 or Py (PO 3 Et 2 )) prepared in the laboratory (see synthesis conditions in the previous section) were dispersed in 13.8 mL of a mixture of distilled H 2 O, methanol and 2 M hydrofluoric acid (3,561,3,561 and 6.44 mL, respectively ) inside a 23 mL Teflon reactor. Then, 0.236 mL of glacial acetic acid (CH 3 COOH, JT Baker) (10 equivalents per metal) was added. Finally, the closed reactor was heated from room temperature to 120 ° C in 6 h and was kept at that temperature for 48 h, allowing it to cool down to 30 ° C during 24 h. The crystals obtained were filtered and washed with water and methanol, recovering them and drying them in the air.

Además de las condiciones mencionadas, el material IEF-10 (Zr-Py) también puede prepararse utilizando las siguientes condiciones de síntesis:In addition to the conditions mentioned, the IEF-10 (Zr-Py) material can also be prepared using the following synthesis conditions:

Tabla 1: Distintas condiciones de síntesis del IEF-10 (Zr-Py) ó Zr4F4[Py(POsH)4]3'4H2O Table 1: Different synthesis conditions of IEF-10 (Zr-Py) or Zr4F4 [Py (POsH) 4] 3'4H2O

Figure imgf000016_0001
Figure imgf000016_0001

Figure imgf000017_0001
Figure imgf000017_0001

Donde: ZrCU = cloruro de zirconio, ZrOCh = oxicloruro de zirconio (Sigma Aldrich, 99.5%), ZrOi.33(C2H5COO) i .34"H2O = propionato de zirconio monohidratado (MEL Chemicals, 99%), Zr(OEt)4 = etóxido de zirconio, AcH = Ácido acético; PrH = Ácido propiónico (Across Organics 99%); TFAcH = Ácido trifluoroacético (Across Organics, 99%), MeOH = metanol, HF = ácido fluorhídrico, H2O = agua.Where: ZrCU = zirconium chloride, ZrOCh = zirconium oxychloride (Sigma Aldrich, 99.5%), ZrOi.33 (C2H5COO) i .34 "H 2 O = zirconium propionate monohydrate (MEL Chemicals, 99%), Zr (OEt ) 4 = zirconium ethoxide, AcH = Acetic acid; PrH = Propionic acid (Across Organics 99%); TFAcH = Trifluoroacetic acid (Across Organics, 99%), MeOH = methanol, HF = hydrofluoric acid, H 2 O = water.

Ejemplo 5: Síntesis de IEF-7 (Bi-Py) ó BÍ2(OH)2[Py(PÜ3H)4] en forma policristalina: 200.81 mg (0.414 mmol) de nitrato de bismuto pentahidratado (Bi(NOs)3'5H2O, Alfa Aesar 98%) y 108.09 mg (0.207 mmol) del ligando ácido pireno-1,3,6,8-tetrafosfónico (C16H14P4O 12 ó Py(PO3H2); síntesis en laboratorio previamente descrita) se dispersaron en 13.8 mL de una mezcla de agua destilada, metanol (MeOH, J.T. Baker, HPLC) y ácido clorhídrico (HCl, J.T. Baker) 6 M (ratio volumétrico 0.45:1:0.05) dentro de un reactor de teflón de 23 mL. Finalmente, el reactor cerrado se calentó desde temperatura ambiente a 120 °C en 6 h y se mantuvo a esa temperatura durante 48 h, dejándolo enfriar hasta 30 °C durante 6 h. El material obtenido de color amarillo pálido se filtró y lavó con agua y metanol, y se recuperó y secó al aire. Rendimiento de la reacción: 60 %. Example 5: Synthesis of IEF-7 ( Bi-Py) or BÍ2 ( OH) 2 [Py ( PÜ3H) 4] in polycrystalline form: 200.81 mg (0.414 mmol) of bismuth nitrate pentahydrate (Bi (NOs) 3.5H2O, Alfa Aesar 98%) and 108.09 mg (0.207 mmol) of the ligand pyrene-1,3,6,8-tetraphosphonic acid (C 16 H 14 P 4 O 12 or Py (PO3H2); previously described laboratory synthesis) were dispersed in 13.8 mL of a mixture of distilled water, methanol (MeOH, JT Baker, HPLC) and hydrochloric acid (HCl, JT Baker) 6 M (volumetric ratio 0.45: 1: 0.05) inside a 23 mL Teflon reactor. Finally, the closed reactor was heated from room temperature to 120 ° C in 6 h and was kept at that temperature for 48 h, allowing it to cool down to 30 ° C during 6 h. The pale yellow material obtained was filtered and washed with water and methanol, and recovered and air dried. Yield of the reaction: 60%.

Además de las condiciones mencionadas, el material IEF-7 (Bi-Py) también puede prepararse utilizando las siguientes condiciones de síntesis.In addition to the conditions mentioned, the IEF-7 (Bi-Py) material can also be prepared using the following synthesis conditions.

Tabla 2: Distintas condiciones de síntesis del IEF-7 (Bi-Py) ó Bi2(OH)2[Py(PO3H)4] Table 2: Different synthesis conditions of IEF-7 (Bi-Py) or Bi2 (OH) 2 [Py (PO3H) 4]

Figure imgf000018_0001
Figure imgf000018_0001

Donde: Bi(NOs)3-5H2O = nitrato de bismuto pentahidratado, AcH = Acido acético; PrH = Acido propiónico; TFAcH = Ácido trifluoroacético, H3PO3 = ácido fosforoso, MeOH = metanol, HCl = ácido clorhídrico, HF = ácido fluorhídrico, KF = fluoruro de potasio, H2O = agua Where: Bi (NOs) 3-5H2O = bismuth nitrate pentahydrate, AcH = Acetic acid; PrH = Propionic acid; TFAcH = Trifluoroacetic acid, H 3 PO 3 = phosphorous acid, MeOH = methanol, HCl = hydrochloric acid, HF = hydrofluoric acid, KF = potassium fluoride, H 2 O = water

Ejemplo 6: Síntesis del material IEF-8 (Cu) ó Cu2[Py(PO3H)4]-6H2Ü: Example 6: Synthesis of the IEF-8 ( Cu) or Cu2 [Py ( PO3H) 4] -6H2Ü material:

0.1957 g (0.81 mmol) de nitrato de cobre trihidratado (Cu(NOs)2-3 H2O, Acros Organics, 99%) y 0.2115 g (0.405 mmol) del ligando ácido pireno-1,3,6,8-tetraetilfosfónico (C16H14P4O 12 ó Py(PO3H2); síntesis en laboratorio previamente descrita) se dispersaron en 27 mL de una mezcla en proporciones 1:2 de agua destilada y metanol (MeOH, J.T. Baker, HPLC), respectivamente, dentro de un reactor de teflón de 45 mL. Finalmente, el reactor cerrado se calentó desde temperatura ambiente a 120 °C en 8 h y se mantuvo a esa temperatura durante 48 h, dejándolo enfriar hasta 30 °C durante 8 h. El material obtenido en forma de cristales de color amarillo pálido se filtró y lavó con agua y metanol, y se recuperó y secó al aire. Rendimiento de la reacción: 86 % en peso (relativo al precursor metálico).0.1957 g (0.81 mmol) of copper nitrate trihydrate (Cu (NOs) 2 - 3 H 2 O, Acros Organics, 99%) and 0.2115 g (0.405 mmol) of the ligand pyrene-1,3,6,8-tetraethylphosphonic acid (C 16 H 14 P 4 O 12 or Py (PO3H2); previously described laboratory synthesis) were dispersed in 27 mL of a mixture in 1: 2 proportions of distilled water and methanol (MeOH, JT Baker, HPLC), respectively, inside a 45 mL Teflon reactor. Finally, the closed reactor was heated from room temperature to 120 ° C in 8 h and was kept at that temperature for 48 h, allowing it to cool down to 30 ° C during 8 h. The material obtained in the form of pale yellow crystals was filtered and washed with water and methanol, and recovered and air dried. Yield of the reaction: 86% by weight (relative to the metal precursor).

Ejemplo 7: Síntesis del material IEF-9 (Cu) ó Cu2[Py(PO3H)4]-5H2O: Example 7: Synthesis of the IEF-9 ( Cu) or Cu2 [Py ( PO3H) 4] -5H2O material:

0.2174 g (0.90 mmol) de nitrato de cobre trihidratado (Cu(NO3)2-3 H2O, Acros Organics, 99%) y 0.3359 g (0.45 mmol) del ligando pireno-1,3,6,8-tetraetilfosfonato (C32H46P4O 12 ó Py(PO3Et2); síntesis en laboratorio previamente descrita) se dispersaron en 30 mL de una mezcla en proporciones 2:1 de agua destilada y metanol (MeOH, J.T. Baker, HPLC), respectivamente, dentro de un reactor de teflón de 45 mL. Posteriormente, se añadieron 0.20 mL de ácido clorhídrico (HCl, J.T. Baker) 6 M. Finalmente, el reactor cerrado se calentó desde temperatura ambiente a 120 °C en 8 h y se mantuvo a esa temperatura durante 48 h, dejándolo enfriar hasta 30 °C durante 8 h. El material obtenido en forma de cristales de color verde oscuro se filtró y lavó con agua y metanol, y se recuperó y secó al aire. Rendimiento de la reacción: 50 % en peso (relativo al precursor metálico). También se han sintetizado nuevos materiales basados en pireno tetrafosfonato con distintos metales de transición (Cu, V, Fe, etc.) y distintos metales del bloque p (Bi) en distintas formas (sales, hidróxidos, oxihidróxidos, etc.). En los casos en los que coordinación de los distintos metales es la misma, se han preparado fases heterometálicas. Dentro de esta familia de materiales, se han obtenido también otras estructuras distintas a la del material ejemplo de Zr.0.2174 g (0.90 mmol) of copper nitrate trihydrate (Cu (NO 3 ) 2 - 3 H 2 O, Acros Organics, 99%) and 0.3359 g (0.45 mmol) of pyrene-1,3,6,8-tetraethylphosphonate ligand (C 32 H 46 P 4 O 12 or Py (PO 3 Et 2 ); previously described laboratory synthesis) were dispersed in 30 mL of a mixture in 2: 1 proportions of distilled water and methanol (MeOH, JT Baker, HPLC) , respectively, inside a 45 mL Teflon reactor. Subsequently, 0.20 mL of 6 M hydrochloric acid (HCl, JT Baker) were added. Finally, the closed reactor was heated from room temperature to 120 ° C in 8 h and was kept at that temperature for 48 h, allowing it to cool to 30 ° C for 8 h. The material obtained in the form of dark green crystals was filtered and washed with water and methanol, and recovered and dried in the air. Yield of the reaction: 50% by weight (relative to the metal precursor). New materials based on pyrene tetraphosphonate have also been synthesized with different transition metals (Cu, V, Fe, etc.) and different metals of the p (Bi) block in different forms (salts, hydroxides, oxyhydroxides, etc.). In cases where the coordination of the different metals is the same, heterometallic phases have been prepared. Within this family of materials, structures other than that of the Zr example material have also been obtained.

Estas estructuras se caracterizan por una alta estabilidad, destacable dentro del campo de los MOFs.These structures are characterized by high stability, remarkable within the field of MOFs.

En general, el disolvente general utilizado en esta familia de materiales es el agua. Sin embargo, con el objetivo de optimizar las distintas preparaciones de materiales se han utilizado distintas mezclas de disolventes (i.e. agua+metanol, agua+DMF, agua+acetonitrilo, agua+metanol+ácido, agua+metanol+DMF, etc.) así como distintos moduladores y agentes mineralizantes (ácidos monocarboxílicos, ácidos fosforosos, ácidos inorgánicos, etc.) In general, the general solvent used in this family of materials is water. However, in order to optimize the different material preparations, different solvent mixtures have been used ( ie water + methanol, water + DMF, water + acetonitrile, water + methanol + acid, water + methanol + DMF, etc.) as well as various modulators and mineralizing agents (monocarboxylic acids, phosphorous acids, inorganic acids, etc.)

Por otro lado, el ligando utilizado puede presentar varias modificaciones utilizando por ejemplo derivados del pireno tetrasustituidos en las posiciones 1,3,6,8 con distintos grupos funcionales basados en fosfonatos (ejemplo: pireno-1,3,6,8-tetrabencilfosfonato), así como pireno disustituido en las posiciones 2,7 con distintos grupos fosfonatos. Estos ligandos pueden ser utilizados con los grupos ácidos en forma de ácido libre (-PO3H2), ésteres (-PO3R2) o sales (-PO32- 2M+/M2+)On the other hand, the ligand used can present several modifications using, for example, tetra-substituted pyrene derivatives in the 1,3,6,8 positions with different functional groups based on phosphonates (example: pyrene-1,3,6,8-tetrabenzylphosphonate) , as well as pyrene disubstituted in the 2,7 positions with different phosphonate groups. These ligands can be used with acid groups in the form of free acid (-PO 3 H 2 ), esters (-PO 3 R 2 ) or salts (-PO 3 2- 2M + / M2 +)

Ejemplo 8: Caracterización de IEF-10 (Zr-Py) Example 8: Characterization of IEF-10 ( Zr-Py)

Caracterización estructural: La estructura del material, con fórmula Zr4F4Py(PO3H)4]3-4H2O, fue elucidada mediante difracción de rayos X de monocristal. Dicha estructura presenta un grupo espacial P-1 (n° 2) con unos parámetros de red de a = 11.198(5) Á, b = 11.791(5) Á, c = 18.820(5) Á, a = 85.498(5)°, p = 88.982(5)°, y = 69.028(5)°, V = 2313.0(16) Á3. Structural characterization: The structure of the material, with the formula Zr4F4Py (PO3H) 4] 3-4H2O, was elucidated by single crystal X-ray diffraction. This structure presents a space group P-1 (n ° 2) with network parameters of a = 11,198 (5) Á, b = 11,791 (5) Á, c = 18,820 (5) Á, a = 85,498 (5) °, p = 88.982 (5) °, y = 69.028 (5) °, V = 2313.0 (16) Á3.

La estructura consiste en dobles capas formadas por grupos de 4 octaedros de ZrOsF conectados mediante los grupos fosfonato del ligando (Figura 1). Durante la síntesis, todos los grupos ésteres de los ligandos iniciales se hidrolizaron debido a que el medio de síntesis es fuertemente ácido. Estas dobles capas están unidas entre ellas mediante otros ligandos, que actúan como pilares. Esta distribución espacial de los componentes de la red da lugar a canales a lo largo de los ejes a y b que poseen un tamaño aproximado de 6 x 8 Á. Los ligandos de la doble capa tienen la siguiente conectividad: un grupo PO3 enlazado a Zr, dos grupos PO3 enlazados a 2 átomos de Zr cada uno, y el último grupo PO3 unido a 3 átomos de Zr diferentes. Cada ligando laminar está conectado a 8 Zr distintos. Los grupos PO3 de los ligandos pilares están unidos a un átomo de Zr cada uno. Todos los ligandos (tanto laminares como pilares) tienen desprotonados a la mitad los grupos fosfonato. En toda la estructura, cada Zr está unido únicamente a un O por grupo fosfonato.The structure consists of double layers formed by groups of 4 octahedra of ZrOsF connected by the phosphonate groups of the ligand (Figure 1). During the synthesis, all the ester groups of the initial ligands were hydrolyzed because the synthesis medium is strongly acidic. These double layers are linked together by other ligands, which act as pillars. This spatial distribution of the network components gives rise to channels along the a and b axes that are approximately 6 x 8 Á in size. The double layer ligands have the following connectivity: one PO 3 group linked to Zr, two PO 3 groups linked to 2 Zr atoms each, and the last PO 3 group linked to 3 different Zr atoms. Each laminar ligand is connected to 8 different Zr. The PO 3 groups of the backbone ligands are attached to one Zr atom each. All ligands (both laminar and pillar) have half deprotonated phosphonate groups. Throughout the structure, each Zr is bound to only one O per phosphonate group.

La esfera de coordinación de los octaedros de ZrOsF está formada por 5 oxígenos de 5 grupos fosfonato diferentes y un flúor aislado que proviene del HF de la síntesis (Figura 2).The coordination sphere of the octahedra of ZrOsF is formed by 5 oxygens of 5 different phosphonate groups and an isolated fluorine that comes from the HF of the synthesis (Figure 2).

Una vez se obtuvo la estructura se simuló el diagrama de rayos X en polvo (DRXP) y se comparó con el diagrama del polvo obtenido experimentalmente, confirmando así la correspondencia de la estructura con la del material en bulk (Figura 3). Este procedimiento se llevó a cabo con todas las condiciones de síntesis anteriormente descritas (Tabla 1). Once the structure was obtained, the powder X-ray diagram (DRXP) was simulated and compared with the powder diagram obtained experimentally, thus confirming the correspondence of the structure with that of the bulk material (Figure 3). This procedure was carried out with all the synthesis conditions previously described (Table 1).

Utilizando la espectroscopia infrarroja con transformada de Fourier (FTIR), y comparando el espectro del material con el del ligando, podemos observar como las bandas correspondientes a las cadenas alifáticas de los grupos ésteres que están presentes en el ligando (2984 cm-1) desaparecen en el material debido a la hidrólisis que ocurre durante la síntesis. Asimismo, se puede ver una variación en el número de ondas en las bandas características de los enlaces del grupo fosfonato (1000-1250 cm-1), lo cual es debido a la coordinación de éstos con el metal (Figura 4).Using Fourier transform infrared spectroscopy (FTIR), and comparing the spectrum of the material with that of the ligand, we can observe how the bands corresponding to the aliphatic chains of the ester groups that are present in the ligand (2984 cm-1) disappear in the material due to hydrolysis that occurs during synthesis. Likewise, a variation in the number of waves can be seen in the characteristic bands of the phosphonate group bonds (1000-1250 cm-1), which is due to their coordination with the metal (Figure 4).

Análisis de la composición: La composición del material ha sido confirmada por análisis elemental (C, H) y por ICP-OES (Zr, P). Los valores obtenidos experimentalmente concuerdan con los calculados mediante difracción de rayos-X de monocristal (Tabla 3). Composition analysis: The composition of the material has been confirmed by elemental analysis (C, H) and by ICP-OES (Zr, P). The values obtained experimentally agree with those calculated by single crystal X-ray diffraction (Table 3).

Tabla 3. Composición calculada vs experimental para Zr4F4Py(PO3H)4]3-4H2O Table 3. Calculated vs experimental composition for Zr4F4Py (PO3H) 4] 3-4H2O

Figure imgf000021_0001
Figure imgf000021_0001

Análisis de la morfología: La morfología de la muestra fue estudiada mediante microscopía electrónica de barrido (SEM). En las micrografías (Figura 5) se puede observar que el material se presenta en forma de conglomerados de agujas o bastones con las caras bien definidas. Morphology analysis: The morphology of the sample was studied by scanning electron microscopy (SEM). In the micrographs (Figure 5) it can be observed that the material is presented in the form of conglomerates of needles or rods with well-defined faces.

Mediante el uso de la espectroscopía de energía dispersiva de rayos-X (EDS) se pudo confirmar la presencia de Zr y P en la muestra homogéneamente distribuida.By using energy dispersive X-ray spectroscopy (EDS) it was possible to confirm the presence of Zr and P in the homogeneously distributed sample.

Porosidad: El material presenta una porosidad accesible al nitrógeno (N2), con un área superficial calculada a partir de los datos de la isoterma de adsorción y desorción de N2 (Figura 5) y de la ecuación de Brunauer-Emmet-Teller (o BET) de 390 m2-g-1, un volumen de microporo de 0.16 cm3-g-1 (p /p < 0.3) y una distribución de tamaño de poro calculada mediante el método de Horvarth-Karazoe (HK) de 5 y 8 Á, los cuales están en concordancia con los obtenidos cristalográficamente (6 y 8 Á) (Figura 6). Porosity: The material presents a porosity accessible to nitrogen (N 2 ), with a surface area calculated from the data of the adsorption and desorption isotherm of N 2 (Figure 5) and the Brunauer-Emmet-Teller equation ( or BET) of 390 m2-g-1, a micropore volume of 0.16 cm3-g-1 (p / p <0.3) and a pore size distribution calculated by the Horvarth-Karazoe (HK) method of 5 and 8 Á, which are in agreement with those obtained crystallographically (6 and 8 Á) (Figure 6).

Propiedades ópticas: Las propiedades ópticas del material se evaluaron mediante espectroscopia UV-Vis de reflectancia difusa, obteniéndose un valor de band gap mediante el ajuste de Kubelka-Munk (Figura 7) de 3.14 eV (vs 3.08 eV del ligando). En esta ocasión, las propiedades del material se compararon con las del ligando hidrolizado Py-(PO3H2)4 debido a que éste es más similar al ligando presente en la estructura. Optical properties: The optical properties of the material were evaluated by means of diffuse reflectance UV-Vis spectroscopy, obtaining a band gap value by means of the Kubelka-Munk adjustment (Figure 7) of 3.14 eV ( vs 3.08 eV of the ligand). On this occasion, the properties of the material were compared with those of the hydrolyzed Py- (PO 3 H 2) 4 ligand because it is more similar to the ligand present in the structure.

Estabilidad térmica: La estabilidad térmica del material fue evaluada mediante termodifracción y análisis termogravimétrico (Figura 8), siendo la temperatura máxima de 450 °C antes del colapso y descomposición de la estructura. Thermal stability: The thermal stability of the material was evaluated by thermodifraction and thermogravimetric analysis (Figure 8), the maximum temperature being 450 ° C before the collapse and decomposition of the structure.

Ejemplo 9: Caracterización de IEF-7 (Bi-Py) Example 9: Characterization of IEF-7 ( Bi-Py)

Caracterización estructural: El material de fórmula con fórmula Bi2(OH)2[Py(PO3H)4], presenta un grupo espacial P2/m (n° 10) con unos parámetros de red de a = 18.689(4) Á, b = 7.362(9) Á, c = 12.266(3) Á, a = 90°, p = 110.952(0)°, y = 90°, V = 1575.7(7) Á3. Estos datos fueron obtenidos mediante un ajuste de Le Bail (Figura 9) y son válidos para todas las condiciones de sintesis anteriormente descritas (Tabla 2). Structural characterization: The material with the formula Bi2 (OH) 2 [Py (PO3H) 4], presents a space group P2 / m (n ° 10) with network parameters of a = 18,689 (4) Á, b = 7.362 (9) Á, c = 12.266 (3) Á, a = 90 °, p = 110.952 (0) °, y = 90 °, V = 1575.7 (7) Á3. These data were obtained through a Le Bail adjustment (Figure 9) and are valid for all the previously described synthesis conditions (Table 2).

Utilizando la espectroscopia infrarroja con transformada de Fourier (FTIR), y comparando el espectro del material con el del ligando, podemos observar una variación en el número de ondas de las bandas características de los enlaces del grupo fosfonato (1000-1250 cm-1), lo cual es debido a la coordinación de éstos con el metal (Figura 10).Using Fourier transform infrared spectroscopy (FTIR), and comparing the spectrum of the material with that of the ligand, we can observe a variation in the number of waves of the characteristic bands of the phosphonate group bonds (1000-1250 cm-1) , which is due to their coordination with the metal (Figure 10).

Análisis de la composición: La composición del material ha sido evaluada mediante análisis elemental (C, H) y por ATG (Zr, P). (Tabla 4). Composition analysis: The composition of the material has been evaluated by elemental analysis (C, H) and by ATG (Zr, P). (Table 4).

Tabla 4. Composición calculada vs experimental para IEF-7 o Bi2(OH)2[Py(PO3H)4] Table 4. Composition calculated vs experimental for IEF-7 or Bi2 (OH) 2 [Py (PO3H) 4]

Figure imgf000022_0001
Figure imgf000022_0001

Análisis de la morfología: La morfología de la muestra fue estudiada mediante microscopía electrónica de barrido (SEM). En las micrografías (Figura 11) se puede observar que el material se presenta en forma de pequeñas partículas con morfología indefinida. Morphology analysis: The morphology of the sample was studied by scanning electron microscopy (SEM). In the micrographs (Figure 11) it can be observed that the material is presented in the form of small particles with indefinite morphology.

Mediante el uso de la espectroscopía de energía dispersiva de rayos-X (EDS) se pudo confirmar la presencia de Bi y P en la muestra homogéneamente distribuida.By using X-ray energy dispersive spectroscopy (EDS) the presence of Bi and P in the homogeneously distributed sample could be confirmed.

Propiedades ópticas: Las propiedades ópticas del material se evaluaron mediante espectroscopía UV-Vis de reflectancia difusa, obteniéndose un valor de band gap mediante el ajuste de Kubelka-Munk (Figura 12) de 3.004 eV (vs 3.08 eV del ligando). Optical properties: The optical properties of the material were evaluated by means of diffuse reflectance UV-Vis spectroscopy, obtaining a band gap value by means of the Kubelka-Munk adjustment (Figure 12) of 3,004 eV ( vs 3.08 eV of the ligand).

Estabilidad térmica: La estabilidad térmica del material fue evaluada mediante termodifracción y análisis termogravimétrico (Figura 13), siendo la temperatura máxima de 400 °C antes del colapse y descomposición de la estructura. Thermal stability: The thermal stability of the material was evaluated by thermodifraction and thermogravimetric analysis (Figure 13), the maximum temperature being 400 ° C before the collapse and decomposition of the structure.

Ejemplo 10: Estabilidad química de IEF-10 (Zr-Py) Example 10: Chemical stability of IEF-10 ( Zr-Py)

La estabilidad química del material fue corroborada mediante simples test en los que se suspendió el material en distintos medios (acuosos con diferentes pHs a diferentes temperaturas u orgánicos, Figuras 14 y 15) a una concentración de 1 mg-mL-1 durante 16 h. Tras recuperar el material mediante filtración, se confirmó su estabilidad estructural mediante DRXP. Cabe destacar la excelente estabilidad del material en prácticamente la totalidad de medios probados, excepto tras ser sometida a un tratamiento con agua regia a reflujo (mezcla de HCl:HNÜ33:1, condiciones suficientemente agresivas para degradar la gran mayoría de materiales híbridos conocidos) donde se observa únicamente una leve pérdida de cristalinidad.The chemical stability of the material was corroborated by simple tests in which the material was suspended in different media (aqueous with different pHs at different temperatures or organic, Figures 14 and 15) at a concentration of 1 mg-mL-1 for 16 h. After recovering the material by filtration, its structural stability was confirmed by DRXP. It should be noted the excellent stability of the material in practically all the tested media, except after being subjected to a treatment with refluxing aqua regia (mixture of HCl: HNÜ 3 3: 1, conditions aggressive enough to degrade the vast majority of known hybrid materials. ) where only a slight loss of crystallinity is observed.

Ejemplo 11: Estabilidad química de IEF-7 (Bi-Py) Example 11: Chemical stability of IEF-7 ( Bi-Py)

La estabilidad química del material fue corroborada mediante simples test en los que se suspendió el material en distintos medios (acuosos con diferentes pHs a diferentes temperaturas u orgánicos, Figura 16) a una concentración de 1 mg-mL-1 durante 16 h. Tras recuperar el material mediante filtración, se confirmó su estabilidad estructural mediante DRXP. Cabe destacar la excelente estabilidad del material en prácticamente la totalidad de medios probados, excepto tras ser sometida a un tratamiento con una solución de NaOH de pH = 12. The chemical stability of the material was corroborated by simple tests in which the material was suspended in different media (aqueous with different pHs at different temperatures or organic, Figure 16) at a concentration of 1 mg-mL-1 for 16 h. After recovering the material by filtration, its structural stability was confirmed by DRXP. It should be noted the excellent stability of the material in practically all the tested media, except after being subjected to a treatment with a NaOH solution of pH = 12.

Ejemplo 12: Utilización del material IEF-10 (Zr-Py) para la eliminación de contaminantes emergentes en agua Example 12: Use of the IEF-10 ( Zr-Py) material for the elimination of emerging contaminants in water

La gran estabilidad del material en agua (ver ejemplo 8), así como las propiedades fotocatalíticas de otros materiales basados en Zr, hacen del IEF-10 (Zr-Py) un candidato excelente para su uso en la fotodegradación de contaminantes emergentes. Para llevar a cabo el estudio de la fotoactividad del material, se eligió como contaminante modelo la sulfametazina (SMT), un antibiótico animal ampliamente utilizado en la industria ganadera y que se encuentra presente en las aguas fluviales.The great stability of the material in water (see example 8), as well as the photocatalytic properties of other Zr-based materials, make IEF-10 (Zr-Py) an excellent candidate for use in the photodegradation of emerging pollutants. To carry out the study of the photoactivity of the material, sulfamethazine (SMT), an animal antibiotic widely used in the livestock industry and which is present in river waters, was chosen as a model pollutant.

Procedimiento experimental: Para realizar los ensayos de degradación, se preparó una disolución de SMT en agua con una concentración de 10.409 mg/L (unas 1000 veces superior a la presente en los ríos). 15 mg del material IEF-10 (Zr-Py) se suspendieron en 15 mL de disolución de SMT (concentración final 1 mg/mL) con agitación constante a 750 rpm. Esta suspensión se irradió con luz UV-Vis (300 W, lámpara de Xe) y se tomaron muestras a distintos tiempos. Estas muestras fueron centrifugadas, y se tomó 100 pL de sobrenadante, devolviendo el resto a la suspensión inicial. Estos 100 pL se diluyeron 10 veces en agua para analizar los resultados mediante cromatografía líquida de alto rendimiento (HPLC). Experimental procedure: To carry out the degradation tests, a solution of SMT was prepared in water with a concentration of 10,409 mg / L (about 1000 times higher than that present in rivers). 15 mg of the IEF-10 material (Zr-Py) were suspended in 15 mL of SMT solution (final concentration 1 mg / mL) with constant stirring at 750 rpm. This suspension was irradiated with UV-Vis light (300 W, Xe lamp) and samples were taken at different times. These samples were centrifuged, and 100 pL of supernatant was taken, returning the rest to the initial suspension. These 100 pL were diluted 10 times in water to analyze the results by high performance liquid chromatography (HPLC).

La SMT se midió a una longitud de onda de 263 nm a un tiempo de retención de 2.2 min utilizando una fase móvil de proporción acetonitrilo:agua 35:65.SMT was measured at a wavelength of 263 nm at a retention time of 2.2 min using a 35:65 acetonitrile: water ratio mobile phase.

Hay que destacar que durante todo el procedimiento no se detectó ligando del material, lo que demuestra su gran estabilidad. Asimismo, hay que destacar que cuando la SMT se irradia con luz UV-Vis no hay degradación, solo se degrada en presencia de IEF-10 (Zr-Py).It should be noted that during the entire procedure, no ligand of the material was detected, which shows its great stability. Likewise, it should be noted that when SMT is irradiated with UV-Vis light there is no degradation, it only degrades in the presence of IEF-10 (Zr-Py).

Los resultados obtenidos muestran una degradación del 50% de SMT en 8 min y del 100% en menos de 4 h (96% en 2 h) (Figura 17), poniendo de manifiesto el interés de estos materiales en la eliminación de contaminantes emergentes presentes en el agua.The results obtained show a 50% degradation of SMT in 8 min and 100% in less than 4 h (96% in 2 h) (Figure 17), showing the interest of these materials in the elimination of emerging pollutants present in water.

Ejemplo 13: Utilización del material IEF-7 (Bi-Py) como membrana de intercambio iónico en pilas de combustible Example 13: Use of the IEF-7 ( Bi-Py) material as an ion exchange membrane in fuel cells

La elevada estabilidad acuosa del material IEF-7 (ver ejemplo 9) y la presencia de protones lábiles en su estructura (actuando como transportadores de carga) permiten pensar que este material podría ser un buen conductor protónico, siendo un candidato prometedor como membranas de intercambio iónico en pilas de combustible. The high aqueous stability of the IEF-7 material (see example 9) and the presence of labile protons in its structure (acting as charge transporters) suggest that this material could be a good proton conductor, being a promising candidate as exchange membranes ionic in fuel cells.

Procedimiento experimental: Para realizar las medidas de espectroscopia de impedancia compleja, los distintos materiales fueron primeramente conformados en forma de pastillas de 6 mm de diámetro y aproximadamente 0.8 mm de altura. Para ello, primero se prensaron uniaxialmente durante 5 min con una presión de 6.9 MPa y después isostáticamente durante 18 y 2 min a presiones de 4.9 y 19.6 MPa, respectivamente. La densidad de estas pastillas se calculó a partir de la masa de cada una y de las dimensiones finales de altura y diámetro. Experimental procedure : To carry out complex impedance spectroscopy measurements, the different materials were first shaped into tablets of 6 mm in diameter and approximately 0.8 mm in height. To do this, they were first pressed uniaxially for 5 min with a pressure of 6.9 MPa and then isostatically for 18 and 2 min at pressures of 4.9 and 19.6 MPa, respectively. The density of these tablets was calculated from the mass of each one and the final dimensions of height and diameter.

Las caras de las dos pastillas se metalizaron con oro para darles un carácter conductor y usarlas como electrodos. Las medidas se llevaron a cabo aplicando una amplitud de 100 mV en un rango de frecuencias de 10-1-10-7 Hz. Se realizaron experimentos a distintas temperaturas (25, 30, 40, 50, 60, 70, 80 y 90 °C) y humedades relativas (30, 50, 70 y 90 %). Para ello, se siguió el siguiente procedimiento: Primero, antes de la medida, se secan las pastillas a 100 °C para eliminar la humedad residual. Una vez hecho esto, la muestra a analizar se puso en la cámara climática a la humedad relativa más baja, dejándola estabilizar durante 1 h. Una vez estabilizada, se realizaron las medidas de conductividad protónica aumentando progresivamente la temperatura, dejando que alcance el equilibrio durante 15 min cada vez que se cambia de temperatura. Finalmente, una vez realizadas todas las medidas con la misma humedad relativa, se deja enfriar la cámara climática hasta temperatura ambiente, se programa el valor de la nueva humedad relativa y se deja estabilizar de nuevo durante 1 h antes de comenzar a medir. Este procedimiento se realiza para cada serie de temperaturas a distintas humedades relativas.The faces of the two tablets were metallized with gold to give them a conductive character and use them as electrodes. The measurements were carried out applying an amplitude of 100 mV in a frequency range of 10-1-10-7 Hz. Experiments were carried out at different temperatures (25, 30, 40, 50, 60, 70, 80 and 90 ° C) and relative humidity (30, 50, 70 and 90%). For this, the following procedure was followed: First, before the measurement, the tablets are dried at 100 ° C to eliminate residual humidity. Once this was done, the sample to be analyzed was placed in the climatic chamber at the lowest relative humidity, allowing it to stabilize for 1 h. Once stabilized, proton conductivity measurements were made by progressively increasing the temperature, allowing it to reach equilibrium for 15 min each time the temperature was changed. Finally, once all the measurements have been made with the same relative humidity, the climatic chamber is allowed to cool down to room temperature, the value of the new relative humidity is programmed and it is allowed to stabilize again for 1 h before starting to measure. This procedure is carried out for each series of temperatures at different relative humidities.

El análisis de los datos se realiza utilizando el programa ZView2. La conductividad (a, en S-cm-1) se calcula utilizando la siguiente ecuación:Data analysis is performed using the ZView2 program. The conductivity (a, in S-cm-1) is calculated using the following equation:

ll

a = -------- a = --------

R X AR X A

Donde l y A son la altura (cm) y el área (cm2) de la pastilla (respectivamente) y R es la resistencia óhmica (Ohm) obtenida de la intersección de la curva de impedancia con el eje real en el gráfico de Nyquist.Where l and A are the height (cm) and area (cm2) of the pad (respectively) and R is the ohmic resistance (Ohm) obtained from the intersection of the impedance curve with the real axis on the Nyquist graph.

Resultados conductividad protónica de IEF-7 (Bi-Py): El material IEF-7 (Bi-Py) demuestra tener utilidad como conductor protónico. Las medidas realizadas (Figura 18) demuestran que el material posee una conductividad protónica de 3.5-10-3 S-cm-1 a 90 °C y una HR de 90%. Dicha conductividad se encuentra en el rango de las reportadas en la bibliografía para este tipo de materiales. Results of proton conductivity of IEF-7 (Bi-Py): The material IEF-7 (Bi-Py) proves to be useful as a proton conductor. The measurements made (Figure 18) show that the material has a proton conductivity of 3.5-10-3 S-cm-1 at 90 ° C and a RH of 90%. Said conductivity is in the range of those reported in the bibliography for this type of materials.

Ejemplo 14: Evaluación de la toxicidad del ligando ácido p¡reno-1,3,6,8-tetrafosfón¡co Py(POsH2)4 y de los materiales IEF-10 e IEF-7 Example 14: Evaluation of the toxicity of the ligand pyrene-1,3,6,8-tetraphosphonic acid Py ( POsH 2 ) 4 and of the materials IEF-10 and IEF-7

Teniendo en cuenta que tan solo se encuentra reportada la toxicidad del núcleo pireno (LD50 (pireno) = 2700 mg/Kg) y no la de sus derivados fosfónatos, se evaluó la citotoxicidad del ligando ácido pireno-1,3,6,8-tetrafosfónico Py(PO3H2)4 para investigar su posible influencia en el carácter toxicológico de las partículas de los distintos materiales en los que se encuentra presente. La toxicidad celular fue investigada en presencia de células de adenocarcinoma de colon (Caco-2). Tras las 24 h de incubación, el ligando Py(PO3H2)4 produjo una ligera disminución de la viabilidad celular a concentraciones muy elevadas (500 pg/mL; Figura 19), lo que evidencia su baja toxicidadTaking into account that only the toxicity of the pyrene nucleus is reported (LD 50 (pyrene) = 2700 mg / Kg) and not that of its phosphonate derivatives, the cytotoxicity of the pyrene-1,3,6,8 acid ligand was evaluated. -tetraphosphonic Py (PO 3 H 2 ) 4 to investigate its possible influence on the toxicological character of the particles of the different materials in which it is present. Cell toxicity was investigated in the presence of colon adenocarcinoma cells (Caco-2). After 24 h of incubation, the Py ligand ( PO 3 H 2 ) 4 produced a slight decrease in cell viability at very high concentrations (500 pg / mL; Figure 19), which shows its low toxicity

Igualmente, los metales de transición y del bloque p presentan una baja toxicidad (ej. Zr4+ LD50 (acetato) = 4100 mg/Kg, Ti4+ LD50 (óxido) = 12000 mg/Kg Bi3+ LD50 (nitrato) = 2000 mg/Kg; Cu2+ LD50 (cloruro) = 1440 mg/Kg; Zn2+ LD50 (acetato) = 600 mg/Kg; Fe3+ LD50 (cloruro) = 450 mg/Kg; y V4+ LD50 (óxido) = 450 mg/Kg). Así, también se evaluó la toxicidad de los materiales híbridos IEF-10 y IEF-7. Cabe destacar el bajo perfil citotóxico de los materiales, aunque a concentraciones más elevadas (>250 pg/mL), la viabilidad disminuye ligeramente a valores entre 65-70% en el caso de las partículas del IEF-7. En cambio, la tendencia de IEF-10 es la ausencia de toxicidad en todas las concentraciones testadas, disminuyendo ligeramente hasta 89-90% de viabilidad a una concentración de 1000 pg/mL. (Figura 20)Likewise, the transition and p- block metals have low toxicity ( eg Zr4 + LD 50 (acetate) = 4100 mg / Kg, Ti4 + LD 50 (oxide) = 12000 mg / Kg Bi3 + LD 50 (nitrate) = 2000 mg / Kg; Cu2 + LD 50 (chloride) = 1440 mg / Kg; Zn2 + LD 50 (acetate) = 600 mg / Kg; Fe3 + LD 50 (chloride) = 450 mg / Kg; and V4 + LD 50 (oxide) = 450 mg / Kg ). Thus, the toxicity of the IEF-10 and IEF-7 hybrid materials was also evaluated. It is worth noting the low cytotoxic profile of the materials, although at higher concentrations (> 250 pg / mL), viability decreases slightly to values between 65-70% in the case of IEF-7 particles. On the other hand, the trend of IEF-10 is the absence of toxicity in all the concentrations tested, decreasing slightly to 89-90% viability at a concentration of 1000 pg / mL. (Figure 20)

Procedimiento experimental: Previamente al experimento, se sembraron las células Caco-2 en placas de cultivo de 96 pocillos con una densidad de 1104 células/pocillo en medio celular DMEM (Dulbecco's Modified Eagle Medium) suplementado con 10% de FBS (Fetal Bovine Serum). Se prepararon diferentes suspensiones acuosas de cada material con medio celular (30 pL de muestra suspendidas en una solución acuosa, añadidas a un volumen final de 300 pL por pocillo), obteniendo diferentes concentraciones en orden decreciente (de 1000 a 8 pg/mL). Posteriormente, todas las formulaciones se pusieron en contacto con las células durante 24 h a una temperatura de 37 °C bajo una atmosfera de 5% CO2. Después de estas 24 h de incubación, se añadieron 25 pL del reactivo MTT en cada pocillo (a una concentración de 5 mg/mL en buffer fosfato salino (PBS) durante 2 h a 37 °C), tras lo cual se lavó con PBS (200 pL), acabando de disolver los cristales de formazan con 100 pL de DMSO. El porcentaje de viabilidad celular se calculó teniendo en cuenta la absorbancia obtenida en el crecimiento control con el crecimiento observado en presencia de las diferentes concentraciones seleccionadas de cada material. Experimental procedure: Before the experiment, Caco-2 cells were seeded in 96-well culture plates with a density of 1104 cells / well in DMEM cell medium (Dulbecco's Modified Eagle Medium) supplemented with 10% FBS (Fetal Bovine Serum) . Different aqueous suspensions of each material were prepared with cell medium (30 pL of sample suspended in an aqueous solution, added to a final volume of 300 pL per well), obtaining different concentrations in decreasing order (from 1000 to 8 pg / mL). Subsequently, all the formulations were put in contact with the cells for 24 h at a temperature of 37 ° C under an atmosphere of 5% CO 2 . After these 24 h of incubation, 25 pL of the MTT reagent was added to each well (at a concentration of 5 mg / mL in phosphate buffered saline (PBS) for 2 h at 37 ° C), after which it was washed with PBS ( 200 pL), finishing dissolving the formazan crystals with 100 pL of DMSO. The percentage of cell viability was calculated taking into account the absorbance obtained in the growth control with the growth observed in the presence of the different selected concentrations of each material.

Técnicas experimentales utilizadas:Experimental techniques used:

Las síntesis en microondas se realizaron en un equipo Anton Paar Monowave 300 que opera a una potencia máxima de 300W.Microwave syntheses were carried out on an Anton Paar Monowave 300 equipment operating at a maximum power of 300W.

Los difractogramas de rayos X en polvo se colectaron utilizando un difractómetro Empyream PANALYTICAL equipado con un detector PIXcel3D con radiación Cu Ka1 (A = 1.54056 Á) que operaba en modo continuo a 45 kV y 40 mA de 3 a 35° (20) usando un tamaño de paso de 0.013° y 39.525 s por paso.X-ray powder diffractograms were collected using an Empyream PANALYTICAL diffractometer equipped with a PIXcel3D detector with Cu Ka1 radiation (A = 1.54056 Á) operating in continuous mode at 45 kV and 40 mA from 3 to 35 ° (20) using a 0.013 ° step size and 39.525 s per step.

Los difractogramas de rayos X colectados a distintas temperaturas fueron adquiridos utilizando un Bruker D8 advanced con radiación Cu Ka1 (A = 1.54056 Á) que operaba en modo continuo a 45 kV y 40 mA de 3 a 35° (20) usando un tamaño de paso de 0.02° y 2.5 s por paso. El programa de calentamiento seguido fue de 2 °C/min y con medidas cada 10 °C a diferentes temperaturas (30-600 °C) y cada 50 °C (600-800°C) con atmosfera de aire sintético 50 mL/min.The X-ray diffractograms collected at different temperatures were acquired using a Bruker D8 advanced with Cu Ka1 radiation (A = 1.54056 Á) operating in continuous mode at 45 kV and 40 mA from 3 to 35 ° (20) using a step size 0.02 ° and 2.5 s per step. The heating program followed was 2 ° C / min and with measurements every 10 ° C at different temperatures (30-600 ° C) and every 50 ° C (600-800 ° C) with a synthetic air atmosphere 50 mL / min .

Los datos de rayos-X de monocristal fueron colectados en un Bruker VENTURE a 100 K con radiación monocromática de Mo Ka (A = 0.71073 Á) equipado con un detector de área aplicando el método de barrido angular.Single crystal X-ray data were collected on a Bruker VENTURE at 100 K with monochromatic Mo Ka radiation (A = 0.71073 Á) equipped with an area detector applying the angular scanning method.

Las isotermas de adsorción de nitrógeno se realizaron a 77 K utilizando un Autosorb Quantachrome. Antes del análisis, las muestras fueron activadas a 150 °C en vacío primario (10-3 bares) durante 6 horas y justo antes de la medida con vacío secundario (10-5 bar) con el fin de eliminar el posible disolvente presente en los poros.Nitrogen adsorption isotherms were performed at 77 K using an Autosorb Quantachrome. Before the analysis, the samples were activated at 150 ° C in primary vacuum (10-3 bar) for 6 hours and just before the measurement with secondary vacuum (10-5 bar) in order to eliminate the possible solvent present in the samples. pores.

Los espectros infrarrojos con transformada de Fourier se llevaron a cabo gracias a un Thermo Nicolet 6700 FTIR con accesorio ATR (Thermo scientific, USA) en el rango de 4000 a 400 cm-1.Infrared spectra with Fourier transform were carried out thanks to a Thermo Nicolet 6700 FTIR with ATR accessory (Thermo scientific, USA) in the range of 4000 to 400 cm -1.

Los análisis termogravimétricos (ATG) se realizaron en un equipo Perkin Elmer Diamond TGA/DTA STA 6000 en atmósfera de aire sintético con un caudal de 100 mL-min-1 con una rampa de calentamiento de 5 °C-min-1 desde temperatura ambiente hasta 1000 °C. Thermogravimetric analyzes (ATG) were performed in a Perkin Elmer Diamond TGA / DTA STA 6000 equipment in a synthetic air atmosphere with a flow rate of 100 mL-min-1 with a heating ramp of 5 ° C-min-1 from room temperature. up to 1000 ° C.

El contenido de Zr y de P se cuantificó usando un espectrómetro de emisión atómica con una fuente de excitación de acoplamiento de plasma inducido (ICP-OES) 2300 DV de Perkin Elmer.The Zr and P content was quantified using a Perkin Elmer 2300 DV Atomic Emission Spectrometer with Induced Plasma Coupling Excitation Source (ICP-OES).

El análisis elemental de C, H, O, N y S se llevó a cabo con un analizador Flash 2000 de Thermo Scientific.Elemental analysis for C, H, O, N, and S was carried out with a Thermo Scientific Flash 2000 analyzer.

La morfología y el microanálisis de las muestras se analizó utilizando un microscopio electrónico de barrido con un detector de energía dispersiva de rayos-X (EDS) (Hitachi TM-1000).The morphology and microanalysis of the samples was analyzed using a scanning electron microscope with an energy dispersive X-ray detector (EDS) (Hitachi TM-1000).

Las medidas de reflectancia difusa UV-vis se realizaron en un espectrofotómetro Perkin Elmer (Lambda 19) equipado con una esfera integradora.UV-vis diffuse reflectance measurements were performed on a Perkin Elmer spectrophotometer (Lambda 19) equipped with an integrating sphere.

El baño de ultrasonidos utilizado para la dispersión de la muestra fue un equipo Branson 1800. The ultrasonic bath used for the dispersion of the sample was a Branson 1800 equipment.

Los ensayos de degradación de contaminantes emergentes (Ejemplo 1) se realizaron utilizando una lámpara de Xenón Arco Oriel Instruments UV-vis con una potencia de 300 W. Se basa en una fuente de alimentación de 500 W Oriel Instruments OPS-A500.Emerging contaminant degradation tests (Example 1) were performed using an Oriel Instruments UV-vis Xenon Arc lamp rated at 300 W. It is based on an Oriel Instruments OPS-A500 500 W power supply.

La cuantificación de diferentes especies orgánicas (ej. contaminantes emergentes, ligandos orgánicos, etc.) se realizaron mediante cromatografía líquida de alta eficacia (HPLC). En concreto se utilizó un HPLC de la casa Jasco LC-4000 que consta de un detector de fotodiodo en serie Jasco MD-4015 y una columna fase reversa C-18 (5 pm, 4.6 x 150 mm, Análisis Vínicos).The quantification of different organic species ( eg emerging pollutants, organic ligands, etc.) was performed by high performance liquid chromatography (HPLC). Specifically, an HPLC from Jasco LC-4000 was used, which consists of a Jasco MD-4015 serial photodiode detector and a C-18 reversed phase column (5 pm, 4.6 x 150 mm, Vinic Analysis).

Las medidas de espectroscopía de impedancia compleja utilizadas para evaluar la conductividad protónica (Ejemplo 2) de los distintos materiales se realizaron en un analizador Solartron SI 1260 aplicando una señal de 100 mV de amplitud en un rango de frecuencias de 10-1 a 10-7 Hz. Se utilizó una configuración de placas paralelas en atmósfera de aire. La temperatura y la humedad relativa se ajustaron mediante una cámara climática BINDER. The complex impedance spectroscopy measurements used to evaluate the proton conductivity (Example 2) of the different materials were carried out on a Solartron SI 1260 analyzer applying a signal of 100 mV amplitude in a frequency range from 10-1 to 10-7. Hz. A parallel plate configuration was used in an air atmosphere. Temperature and relative humidity were adjusted using a BINDER climatic chamber.

El equipo utilizado para metalizar con Au los pellets de los materiales para medirlos en conductividad iónica fue un Leica EM ACE 200.The equipment used to metallize the pellets of the materials with Au to measure them in ionic conductivity was a Leica EM ACE 200.

La absorbancia de las soluciones obtenidas para la evaluación de la citotoxicidad se determinaron a 537 nm con el espectrofotómetro Perkin Elmer Wallac 1420 Victor2 Multilabel Counter (PerkinElmer, US). The absorbance of the solutions obtained for the evaluation of cytotoxicity were determined at 537 nm with the Perkin Elmer Wallac 1420 Victor2 Multilabel Counter spectrophotometer (PerkinElmer, US).

Claims (15)

REIVINDICACIONES 1. Una red metal-orgánica (MOF) que comprende la fórmula general (I):1. A metal-organic network (MOF) comprising the general formula (I): [MmOpXqLr][MmOpXqLr] (I)(I) donde:where: M es un metal seleccionado de entre un metal de transición y del bloque p.M is a metal selected from a transition metal and from the p block. m=1-10m = 1-10 O es un oxígeno coordinante,Or is it a coordinating oxygen, p= 0-20p = 0-20 X es un contraión,X is a counterion, q= 0-10q = 0-10 L es un ligando pireno de fórmula general (II):L is a pyrene ligand of general formula (II):
Figure imgf000029_0001
Figure imgf000029_0001
donde:where: R í=R3=R4=R6 seleccionados de entre H y fosfonato; Ri = R 3 = R 4 = R 6 selected from H and phosphonate; R2=R5 seleccionados de entre H y fosfonato,R 2 = R 5 selected from H and phosphonate, donde R1=R3=R4=R6 * R2=R5where R1 = R3 = R4 = R6 * R2 = R5 r=1-10r = 1-10
2. Red metal-orgánica (MOF) según la reivindicación 1, donde M es un metal seleccionado de entre Ti, Zr, Bi, Cu, Fe, Zn y V.2. Metal-organic network (MOF) according to claim 1, where M is a metal selected from Ti, Zr, Bi, Cu, Fe, Zn and V. 3. Red metal-orgánica (MOF) según cualquiera de las reivindicaciones 1-2, donde X es un contraión seleccionado de entre O2- OH-, F-, Cl-, Br-, I-, SO4-2, NO3 -, ClO4-, acetato y formiato.3. Metal-organic network (MOF) according to any of claims 1-2, where X is a counterion selected from O2- OH-, F-, Cl-, Br-, I-, SO 4-2 , NO 3 -, ClO4-, acetate and formate. 4. Red metal-orgánica (MOF) según cualquiera de las reivindicaciones anteriores, donde: 4. Metal-organic network (MOF) according to any of the preceding claims, where: M es Zr,M is Zr, m= 4,m = 4, p= 0, p = 0, X= F-,X = F-, q= 4q = 4 L es un ligando pireno de fórmula general (II)L is a pyrene ligand of general formula (II)
Figure imgf000030_0001
Figure imgf000030_0001
donde:where: R1=R3=R4=R6 = fosfonato;R 1 = R 3 = R 4 = R 6 = phosphonate; R2=R5 = HR2 = R5 = H r=3r = 3
5. Red metal-orgánica (MOF) según cualquiera de las reivindicaciones 1-3, donde: 5. Metal-organic network (MOF) according to any of claims 1-3, where: M es Bi,M is Bi, m= 2,m = 2, p=0,p = 0, X= OH-,X = OH-, q= 2q = 2 L es un ligando pireno de fórmula general (II)L is a pyrene ligand of general formula (II)
Figure imgf000030_0002
Figure imgf000030_0002
donde:where: R1=R3=R4=R6 = fosfonato;R 1 = R 3 = R 4 = R 6 = phosphonate; R2=R5 = HR2 = R5 = H r=1r = 1
6. Red metal-orgánica (MOF) según cualquiera de las reivindicaciones 1-3, donde: 6. Metal-organic network (MOF) according to any of claims 1-3, where: M es Cu, M is Cu, m= 2,m = 2, p=0,p = 0, q= 0q = 0 L es un ligando pireno de fórmula general (II)L is a pyrene ligand of general formula (II)
Figure imgf000031_0001
Figure imgf000031_0001
donde:where: R!=R3=R4=R6 = fosfonato;R! = R 3 = R 4 = R 6 = phosphonate; R2=R5 = HR2 = R5 = H r=1r = 1
7. Red metal-orgánica (MOF) según cualquiera de las reivindicaciones anteriores, donde la estructura es en forma cristalina.7. Metal-organic network (MOF) according to any of the preceding claims, wherein the structure is in crystalline form. 8. Red metal-orgánica (MOF) según cualquiera de las reivindicaciones anteriores, donde la estructura es en forma policristalina.8. Metal-organic network (MOF) according to any of the preceding claims, where the structure is in polycrystalline form. 9. Procedimiento para la síntesis de una red metal-orgánica (MOF) según cualquiera de las reivindicaciones 1-8, que comprende las siguientes etapas:9. Process for the synthesis of a metal-organic network (MOF) according to any of claims 1-8, comprising the following steps: a) obtención de un ligando precursor de fórmula general (III)a) obtaining a precursor ligand of general formula (III)
Figure imgf000031_0002
Figure imgf000031_0002
dondewhere R7=R9=R10=R12 = PO3R13 R7 = R9 = R10 = R12 = PO 3 R 13 donde R13 es seleccionado de entre H, alquilo, alqueno, alquino, arilo, heteroarilo y metales alcalinos o alcalinotérreos,where R 13 is selected from among H, alkyl, alkene, alkyne, aryl, heteroaryl and alkali or alkaline earth metals, R8=R11 = HR8 = R11 = H b) reaccionar el ligando precursor obtenido en la etapa a) con una sal metálica, oxosal, hidróxido, oxohidróxido u óxido metálico,b) reacting the precursor ligand obtained in step a) with a metal salt, oxosalt, hydroxide, oxohydroxide or metal oxide, c) dispersar el compuesto obtenido en la etapa b), en un disolvente seleccionado de entre agua, etanol, metanol, propanol, isopropanol, butanol, secbutanol, isobutanol, dietilacetamida, isopropilformamida, disopropilformamida, dimetilformamida, dietilformamida, N-metilpirrolidona, xilenos, nitrometano, acetona, dimetilamina, tetrahidrofurano, cloroformo, diclorometano, dietileter, acetonitrilo, dimetilsulfóxido, tolueno, hexano, heptano, isooctano, nitrobenceno, ácido acético y mezclas de los mismos.c) dispersing the compound obtained in step b), in a solvent selected from among water, ethanol, methanol, propanol, isopropanol, butanol, secbutanol, isobutanol, diethylacetamide, isopropylformamide, disopropylformamide, dimethylformamide, diethylformamide, N-methylpyrrolidone, xylenes, nitromethane, acetone, dimethylamine, tetrahydrofuran, chloroform, dichloromethane, diethyl ether, acetonitrile, dimethylsulfoxide, toluene, hexane, heptane, isooctane, nitrobenzene, acetic acid, and mixtures thereof.
10. Procedimiento según la reivindicación 9, donde en la etapa a), se obtiene un ligando precursor de fórmula general (III)10. Process according to claim 9, wherein in step a), a precursor ligand of general formula (III) is obtained
Figure imgf000032_0001
Figure imgf000032_0001
donde:where: R7=Rg=R10=R12 = PO3R13 R7 = Rg = R10 = R12 = PO 3 R 13 donde R13 es etilowhere R 13 is ethyl R8=Rn = HR8 = Rn = H
11. Procedimiento según cualquiera de las reivindicaciones 9-10, donde en la etapa a), se obtiene un ligando precursor de fórmula general (III) 11. Process according to any of claims 9-10, wherein in step a), a precursor ligand of general formula (III) is obtained
Figure imgf000033_0001
Figure imgf000033_0001
d o n d e :where : R 7= R g= R l0= R l2 = P O 3R 13 R 7 = R g = R l0 = R l2 = PO 3R 13 d o n d e R 13 e s Hd o n d e R 13 e s H R e= R íí = H R e = R íí = H
Figure imgf000033_0002
a d e la
Figure imgf000033_0002
from the
z ir c o n io ( I I ) , N i t r u ro d e z ir c o n io , t e t r a k is ( 2 ,2 ,6 ,6 - te t r a m e t i l - 3 ,5 - h e p ta n o d io n a to ) d e z ir c o n io , T r i f lu o r o a c e t i la c e to n a to d e z ir c o n io ( IV ) , B r o m u r o d e z ir c o n io ( IV ) , S o lu c ió n d e c a r b o n a to d e z ir c o n io ( IV ) e n a m o n ia c o , D ic lo r u r o b is ( c ic lo p e n ta d ie n i lo ) d e z ir c o n io ( IV ) , C lo r u r o h id ru ro b is ( c ic lo p e n ta d ie n i lo ) d e z ir c o n io ( IV ) , D ih id r u r o b is ( c ic lo p e n ta d ie n i lo ) d e z ir c o n io ( IV ) , A c e ta to d e z ir c o n io , F lu o r u r o d e z ir c o n io ( IV ) , E tó x id o d e z ir c o n io ( IV ) , H e x a f lu o r o z i r c o n a to d e p o ta s io , Z ir c o n a to d e c a lc io , H id r ó x id o d e z ir c o n io ( IV ) , C o m p le jo d e o s o p r o p a n o l e is o p r o p ó x id o d e z ir c o n io ( IV ) , t e r ta b u tó x id o d e z ir c o n io ( IV ) , S o lu c ió n d e á c id o h e x a f lu o r o z i r c ó n ic o , B u tó x id o d e z i r c o n io ( IV ) , P ro p ó x id o d e z ir c o n io ( IV ) , C lo r u r o d e z ir c o n io ( IV ) y Ó x id o d e z ir c o n io ( IV ) , F lu o r u r o d e b is m u to ( I I I ) , O x o n it r a to d e b is m u to , N i t r a to d e b is m u to ( I I I ) p e n ta h id ra ta d o , S u b n i t r a to d e b is m u to , C lo r u r o d e b is m u to ( I I I ) , A c e ta to d e b is m u to ( I I I ) , Ó x id o d e b is m u to ( I I I ) , T r i f lu o r o m e ta n o s u lfo n a to d e b is m u to ( I I I ) , S u b s a l iz a to d e b is m u to , B r o m u r o d e b is m u to ( I I I ) , Y o d u r o d e b is m u to ( I I I ) , S u b c a r b o n a to d e b is m u to , F o s fa to d e b is m u to ( I I I ) , O x ic lo r u r o d e z ir con io (II), N itru ro dez ir con io, tetrak is (2, 2, 6, 6 - te tramethyl - 3, 5 - hep ta nod io na to) dez ir con io, T rif lu oroaceti la ce to na to dez ir con io (IV), B romurodez ir con io (IV), S o lu t ió ndez ir con io (IV) enamon ia co, D ic lo rurob is (c ic lo pen ta d ie ni lo) dez go con io (IV), C lo ruroh id ru ro b is (c ic lo pen ta d ie ni lo) dez go con io (IV), D ih id rurob is (c ic lo pen ta d ie ni lo) dez ir con io (IV), A ce ta to dez ir con io, F lu orurodez ir con io (IV), Eto x id odez ir con io (IV), H exaf lu orozircona to depo ta s io, Z ir cona to deca lc io, H id r or x id odez ir con io (IV), C omp le jo deosopropanole is oprop ó x id ode z ir con io (IV), ter ta bu to x id odez ir con io (IV), S o lu tio nde á c id ohexaf lu orozirc on ic o, B u to x id odezircon io (IV), P ro p o x id odez ir con io ( IV), C lo rurodez ir con io (IV) and Ó x id odez ir con io (IV), F lu oru rodeb is mu to (III), O xon it ra to deb is mu to, N itra to deb is mu to (III) pen ta h id ra ta do, S ubnitra to deb is mu to, C lo rurodeb is mu to (III), A ce ta to deb is mu to (III), Ó x id odeb is mu to (III), T rif lu orometa nosu lfo na to deb is mu to (III), S ubsal iz a to deb is mu to, B romurodeb is mu to (III), Y odurodeb is mu to (III), S ubcarbona to deb is mu to, F os fa to deb is mu to (III), O x ic lo rurode
Figure imgf000033_0003
Figure imgf000033_0003
T r i f lu o r o m e ta n e s u lfo n a to d e c o b r e ( I I) , S e le n id o d e c o b r e ( I) , T io fe n o - 2 - c a r b o x i la to d e c o b r e ( I ) , T io fe n o la to d e c o b r e ( I) , 2 - e t i lh e x a n o a to d e c o b r e ( I I) , 2 - p y r a z in e c a r b o x i la to d e c o b r e ( I I) , A c e ta to d e c o b r e ( I I) , A c e t i la c e to n a to d e c o b r e ( I I) , D - g lu c o n a to d e c o b r e ( I I) , E t i la c e to n a to d e c o b r e ( I I) , i - B u t i r a to d e c o b r e ( I I) , t e t r a k is ( a c e to n i t r i lo ) d e c o b r e ( I) , O x id o d e v a n a d io ( I II , V ) ,T rif lu orometa nesu lfo na to copper (II), S e le n id ocobre (I), T io fe no - 2 - carboxy la t copper (I), T io fe no la t copper (I), 2 - eti lh exanoa to decobre (II), 2 - pyraz in ecarboxy la to decobre (II), A ceta to decobre (II), A ceti la ce to na to decobre (II), D - g lu cona to decobre (II), E ti la ce to na to decobre (II), i - B utira to decobre (II), tetrak is (ace to nitri lo) decobre (I), O x id odevanad io (I II, V ),
Figure imgf000034_0002
Figure imgf000034_0002
fu r a n o y c lo r u r o d e v a n a d io ( I I I ) , O x i f lu o r u r o d e v a n a d io (V ) , B r o m u r o d e d e a c e t i la c e to n a to d e v a n a d io ( IV ) , A le a c ió n d e v a n a d io y c r o m o , A le a c ió n io , A le a c ió n d e t i ta n io y v a n a d io , A le a c ió n d e t i ta n io , v a n a d io , c r o m o y d e z ir c o n io y v a n a d io , Ó x id o d e 5 ,10 ,15 ,20 - te t r a fe n i l - 21 H ,23 H - p o r f in a
Figure imgf000034_0001
fu ranoyc lo rurodevanad io (III), O xif lu orurodevanad io (V), B romurodedeaceti la ce to na to devanad io (IV), A le ac ió ndevanad io ycromo, A le ac ió n io, A le ac ió ndeti ta n io yvanad io, A le ac io ndeti ta n io, vanad io, cromoy dez go with io yvanad io, Ó x id ode 5, 10, 15, 20 - te tra fe nil - 21 H, 23 H - please in a
Figure imgf000034_0001
d o d e t r is ( t r i f e n i ls i lo x i) v a n a d io , Ó x id o d e 2 , 3 ,7 ,8 ,12 ,13 ,14 ,18 - o c ta e t i l -d o d e t r is (t r i f e n i ls i lo x i) v a n a d io, Ó x id o d e 2, 3, 7, 8, 12, 13, 14, 18 - o c ta e t i l - 2 1 H ,23 H - p o r in a d e v a n a d io ( IV ) , D ic lo r u r o d e b is ( c ic lo p e n ta d ie n i l ) v a n a d io ( IV ) , B is ( c ic lo p e n ta d ie n i l ) v a n a d io ( I I) , A le a c ió n d e t i ta n io , a lu m in o y v a n a d io , A le a c ió n d e t u n g s te n o , c r o m o y v a n a d io , C o m p le jo d e ó x id o d e N ,N ’- b is ( s a l ic i l id e n o ) - o - fe n i le n e d ia m in a v a n a d io ( IV ) , V a n a d il f t a lo c ia n in a y M e ta v a n a d a to d e s o d io , D e x tr a n o d e h ie r ro , C a r b o n i lo d e h ie r ro , H ie r ro , A c e ta to d e h ie r ro ( I I) , C i t r a to d e a m o n io h ie r r o ( I I I ) , Io d u d o d e h ie r ro ( I I) , B r o m u r o d e h ie r r o ( II, III) , S u l fa to d e e t i le n e d ia m o n io h ie r r o ( I I) te t r a h id r a ta d o , F lu o r u r o d e h ie r r o ( I I I ) t r ih id r a ta d o , O x a la to d e a m o n io h ie r ro ( I I I ) t r ih id r a ta d o , D - g lu c o n a to d e h ie r r o ( II) d ih id r a ta d o , F lu o r u r o d e h ie r r o ( I I) , C lo r u r o d e 5 ,10 ,15 ,20 - te t r a k is ( p e n ta f lu o r o fe n i l ) - 21 H ,23 H -p o r f i r in a h ie r ro ( I I I ) , S u l fa to d e h ie r r o ( I I, III) h id r a ta d o , p - T o lu e n o s u lfo n a to d e h ie r r o ( I II ) h e x a h id r a ta d o , G lu c o n a to d e h ie r r o ( I I) h id r a ta d o , F o s fo n a to d e h ie r r o ( I I I ) d ih id r a ta d o , F o s fa to d e h ie r r o ( I I I ) t e t r a h id r a ta d o , T e t r a f lu o r o b o r a to d e h ie r r o ( I I) h e x a h id r a ta d o , P e r c lo r a to d e h ie r r o ( I I) h id r a ta d o , C it r a to d e h ie r r o ( I I I ) t r ib á s ic o m o n o h id r a ta d o , Ó x id o d e h ie r r o ( I I, III) , S u l fa to d e a m o n io h ie r ro ( I I) h e x a h id r a ta d o , C i t r a to d e h ie r ro ( I I I ) , C lo r u r o d e h ie r r o ( I I, III), S u l fu r o d e h ie r ro ( I I) , A c e t i la c e to n a to d e h ie r r o ( I I I ) , D is u lfu r o d e h ie r ro , N i t r a to d e h ie r r o ( I I I ) n o n a h id r a ta d o , F o s fo n a to d e l i t io h ie r r o ( I I) , T a r t r a to d e h ie r r o ( I I I ) , F o s fu r o d e h ie r ro , P e n ta c a r b o n i lo d e h ie r r o (0 ) , Ó x id o d e m a n g a n e s o h ie r r o , O x a la to d e h ie r ro ( I I) d ih id r a ta d o , T r i f lu o r o m e ta n o s u lfo n a to d e h ie r r o ( I I, III) , L a c ta to d e h ie r r o ( I I) h id r a ta d o , Ó x id o d e h ie r ro2 1 H, 23 H - by in adevanad io (IV), D ic lo rurodeb is (c ic lo pen ta d ie nil) vanad io (IV), B is (c ic lo pen ta d ie nil) vanad io (II), A le ac ió ndeti ta n io, a lu m in oyvanad io, A le ac ió nde tungs te no, cromoyvanad io, C omp le jo de ó x id ode N, N '- b is (salt ic il id eno) - o - fe ni le ned ia m in a vanad io (IV), V anad il fta lo c ia n in ay M e ta vanada to desod io, D ex tr anodeh ie r ro, C arboni lo deh ie r ro, H ie r ro, A ce ta to deh ie r ro (II), C itra to deamon io h ie rro (III), Io dudodeh ie r ro (II), B romurodeh ie rro (II , III), S ul fa to deeti le ned ia mon io h ie rro (II) te trah id ra ta do, F lu orurodeh ie rro (III) tr ih id ra ta do, O xa la to deamon io h ie r ro (III) tr ih id ra ta do, D - g lu cona to deh ie rro (II) d ih id ra ta do, F lu orurodeh ie rro (II), C lo rurode 5, 10, 15, 20 - te trak is (pen ta f lu oro fe nil) - 21 H, 23 H - porfir in ah ie r ro (III), S ul fa to deh ie rro (II, III) h id ra ta do, p - T o lu enosu lfo na to deh ie rro (I II) hexah id ra ta do, G lu cona to deh ie rro (II) h id ra ta do, F os fo na to deh ie rro (III) d ih id ra ta do, F os fa to deh ie rro (III) tetrah id ra ta do, T etraf lu orobora to deh ie rro (II) hexah id ra ta do , P erc lo ra to deh ie rro (II) h id ra ta do, C it ra to deh ie rro (III) tr ib á s ic omonoh id ra ta do, Ó x id odeh ie rro (II, III) , S ul fa to deamon io h ie r ro (II) hexah id ra ta do, C itra to deh ie r ro (III), C lo rurodeh ie rro (II, III), S ul fu rodeh ie r ro ( II), A ceti la ce to na to deh ie rro (III), D is u lfu rodeh ie r ro, N itra to deh ie rro (III) nonah id ra ta do, F os fo na to delit io h ie rro (II), T artra to deh ie rro (III), F os fu rodeh ie r ro, P en ta carboni lo deh ie rro (0), Ó x id odemanganesoh ie rro, O xa la to deh ie r ro (II) d ih id ra ta do, T rif lu orome ta nosu lfo na to deh ie rro (II, III), L ac ta to deh ie rro (II) h id ra ta do, Ó x id odeh ie r ro
Figure imgf000034_0003
) ,
Figure imgf000034_0003
),
T r is ( 2 ,2 ,6 ,6 - te t r a m e t i l - 3 ,5 - h e p ta n o d io n a to d e h ie r ro ( I I I ) , H e x a f lu o r o a n t im o n a to d e ( 2 S ,2 ’S - ( - ) [N,N’-bis(2-piridilmetil)]-2,2’-bipirrolidinebis(acetonitrilo)hierro (II), Titanato de hierro (II), Arseniuro de hierro (II, III), Disiliciduro de hierro, Sulfonato de etilenediamonio hierro (II), Oxoacetato de perclorato de hierro (III) hidratado, Óxido de cobre hierro, Dímero de ciclopentadienilo y dicarbonilo de hierro (II), Óxido de zinc hierro, Óxido de litio hierro (III), Aleación de neodimio, hierro y boro, Aleación de aluminio y hierro, Oxihidróxido de cerio hierro, Aleación de cobalto y hierro, Aleación de oro y hierro, Ácido etilenediaminotetraacetico hierro (III), Cloruro de 5,10,15,20-tetrafenil-21H,23H-porfina de hierro (III), Salt de ácido etilenediaminatetraacetico hierro (III), Tricarbonil(ciclooctatetraene)hierro (II), Cloruro de 2,3,7,8,T r is (2, 2, 6, 6 - te tramethyl - 3, 5 - hep ta nod io na to deh ie r ro (III), H exaf lu oroant im ona to of (2 S, 2 'S - ( -) Iron (II) [N, N'-bis (2-pyridylmethyl)] - 2,2'-bipyrrolidinebis (acetonitrile), Iron (II) titanate, Iron (II, III) arsenide, Iron disilicide, Iron sulfonate Ethylenediamonium iron (II), Hydrated iron (III) perchlorate oxoacetate, Copper iron oxide, Cyclopentadienyl and dicarbonyl iron (II) dimer, Zinc iron oxide, Lithium iron (III) oxide, Neodymium alloy, iron and boron, Aluminum-iron alloy, Cerium-iron oxyhydroxide, Cobalt-iron alloy, Gold-iron alloy, Ethylenediaminetetraacetic acid iron (III), 5,10,15,20-tetraphenyl-21H chloride, 23H-porphine of iron (III), Salt of ethylenediaminetetraacetic acid iron (III), Tricarbonyl (cyclooctatetraene) iron (II), Chloride of 2,3,7,8,
12,13,14,18-octaetil-21H,23H,porfirina de hierro (III), Óxido de cobre, zinc y hierro, Tetrafluoroborato de cyclopentadienildicarbonil(tetrahidrofurano)hierro (II), Bis(tetrametilciclopentadienil)hierro (II), Hexafluorofosfonato de tricarbonil(2-metoxiciclohexadienilio)hierro, Ácido etilenediaminetetraacético de hierro (III), Dihierrononacarbonilo, Basolita F300 y Ferrita de bario.12,13,14,18-Octaethyl-21H, 23H, Iron (III) Porphyrin, Copper, Zinc and Iron Oxide, Cyclopentadienyldicarbonyl (Tetrahydrofuran) Iron (II) Tetrafluoroborate, Bis (Tetramethylcyclopentadienyl) Iron (II), Hexafluorophosphonate Tricarbonyl (2-methoxycyclohexadienilium) iron, Ethylenediaminetetraacetic acid of iron (III), Dihierrononecarbonil, Basolite F300 and Barium Ferrite. 13. Procedimiento según cualquiera de las reivindicaciones 9-12, que entre la etapa b) y la etapa c) comprende una etapa adicional de adición de un compuesto modificador de la reacción seleccionado de entre agente acidificante, agente alcalinizante, agente mineralizante y agente modulador.13. Process according to any of claims 9-12, which between step b) and step c) comprises an additional step of adding a reaction modifying compound selected from among acidifying agent, alkalizing agent, mineralizing agent and modulating agent . 14. Uso de una red metal-orgánica (MOF) según cualquiera de las reivindicaciones 1-8, como conductor protónico.14. Use of a metal-organic network (MOF) according to any of claims 1-8, as a proton conductor. 15. Uso de una red metal-orgánica (MOF) según cualquiera de las reivindicaciones 1-8, para la eliminación de contaminantes emergentes en agua. 15. Use of a metal-organic network (MOF) according to any of claims 1-8, for the elimination of emerging contaminants in water.
ES201931095A 2019-12-10 2019-12-10 METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE Active ES2832528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201931095A ES2832528B2 (en) 2019-12-10 2019-12-10 METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201931095A ES2832528B2 (en) 2019-12-10 2019-12-10 METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE

Publications (2)

Publication Number Publication Date
ES2832528A1 true ES2832528A1 (en) 2021-06-10
ES2832528B2 ES2832528B2 (en) 2022-12-28

Family

ID=76247969

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201931095A Active ES2832528B2 (en) 2019-12-10 2019-12-10 METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE

Country Status (1)

Country Link
ES (1) ES2832528B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058019A (en) * 2022-07-18 2022-09-16 陕西科技大学 Three-dimensional metal sodium coordination polymer and preparation method and application thereof
CN115725965A (en) * 2022-11-11 2023-03-03 佛山市金瑞达科技有限公司 Zirconium solution for surface treatment of neodymium iron boron magnetic material and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073901A2 (en) * 2006-12-08 2008-06-19 Uti Limited Partnership Metal-organic solids for use in proton exchange membranes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073901A2 (en) * 2006-12-08 2008-06-19 Uti Limited Partnership Metal-organic solids for use in proton exchange membranes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BLADEK, K.J. . ¿Molecular Design of Solid Sorbents for Gas Capture Applications¿. Tesis Doctoral (2018). University of Calgary, Calgary, AB. . 03.05.2018, [en línea][recuperado el 25.05.2020]. Recuperado de Internet (URL:<https://prism.ucalgary.ca/handle/1880/106600>), (DOI: 10.11575/PRISM/31886) Ver página ii, resumen; página 25, apartado 1.3.3; páginas 61-62, apartados 3.1.2-3.1.5; página 63, apartado 3.1.6; página 68; página 78; página 86, párrafo 2; página 82; páginas 112-113, apartado 3.4. *
DHAKA S. ET AL. . Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments.. Coordination Chemistry Reviews , 13.11.2018, Vol. 380, Páginas 330-352 [en línea][recuperado el 25.05.2020]. Recuperado de Internet (URL:<https://www.sciencedirect.com/science/article/pii/S0010854518302261> ), 0010-8545, (DOI: 10.1016/j.ccr.2018.10.003) Ver página 330, resumen; páginas 337-338, tablas 2 y 3; página 335, columna 1, párrafo 2. *
TAYLOR, J.M. ET AL. . Enhancing Water Stability of Metal-Frameworks via Phosphonate Monoester Linkers. Journal of the American Chemical Society , 21.08.2012, Vol. 134, Páginas 14338-14340 0002-7863; 1520-5126 (en línea), (DOI: 10.1021/ja306812r) Ver página 14338 e información suplementaria. *
VENKATRAMAIAH, N. ET AL. . Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors . Chemical Communications , 01.07.2014, Vol. 50, Páginas 9683-9686 1359-7345; 1364-548X (en línea), (DOI: 10.1039/c4cc03980g) Ver página 9683, resumen y esquema 1; página 9685, columna 2, párrafo 3. *
WANG, C. ET AL. . Applications of water stable metal-organic frameworks. Chemical Society Reviews , 13.07.2016, Vol. 15, Páginas 5107-5134 0306-0012; 1460-4744 (en línea), (DOI: 10.1039/c6cs00362a) Ver página 5107, resumen; páginas 5109-5114, tabla 1; página 5124-5127, apartado 6; columna 2, párrafo 3. *
YÜCESAN, G. ET AL. . Metal-organic solids derived from arylphosphonic acids. Coordination Chemistry Reviews , 24.05.2018, Vol. 369, Páginas 105-122 [en línea][recuperado el 26.05.2020]. Recuperado de Internet (URL:<https://www.sciencedirect.com/science/article/pii/S0010854518301231>), 0010-8545, (DOI: 10.1016/j.ccr.2018.05.002) Ver página 105, resumen; página 109, esquemas 2 y 3; página 120, esquema 5.<br /><br /> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058019A (en) * 2022-07-18 2022-09-16 陕西科技大学 Three-dimensional metal sodium coordination polymer and preparation method and application thereof
CN115058019B (en) * 2022-07-18 2023-04-21 陕西科技大学 Three-dimensional metal sodium coordination polymer and preparation method and application thereof
CN115725965A (en) * 2022-11-11 2023-03-03 佛山市金瑞达科技有限公司 Zirconium solution for surface treatment of neodymium iron boron magnetic material and use method thereof
CN115725965B (en) * 2022-11-11 2023-09-19 佛山市金瑞达科技有限公司 Zirconium solution for surface treatment of neodymium-iron-boron magnetic material and application method thereof

Also Published As

Publication number Publication date
ES2832528B2 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
Lyu et al. Phase transitions in metal–organic frameworks directly monitored through in situ variable temperature liquid-cell transmission electron microscopy and in situ X-ray diffraction
JP6254086B2 (en) Metal organic framework with maximal pore openings
Fromm Coordination polymer networks with s-block metal ions
Chen et al. Highly efficient visible-light-driven CO 2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes
Ding et al. Pillared-Layer Microporous Metal− Organic Frameworks Constructed by Robust Hydrogen Bonds. Synthesis, Characterization, and Magnetic and Adsorption Properties of 2, 2 ‘-Biimidazole and Carboxylate Complexes
Guo et al. Two novel 3D metal–organic frameworks based on two tetrahedral ligands: Syntheses, structures, photoluminescence and photocatalytic properties
Côté et al. Silver (I) arylsulfonates: a systematic study of “softer” hybrid inorganic− organic solids
Tan et al. Solvent controlled assembly of four Mn (ii)-2, 5-thiophenedicarboxylate frameworks with rod-packing architectures and magnetic properties
Calvez et al. Unprecedented lanthanide-containing coordination polymers constructed from hexanuclear molecular building blocks:{[Ln6O (OH) 8](NO3) 2 (bdc)(Hbdc) 2· 2NO3· H2bdc}∞
Safarifard et al. Sonochemical synthesis and characterization of nano-sized lead (II) 3D coordination polymer: precursor for the synthesis of lead (II) oxybromide nanoparticles
López-Periago et al. Exploring a novel preparation method of 1D metal organic frameworks based on supercritical CO 2
Cui et al. Synthesis and properties of five unexpected copper complexes with ring-cleavage of 3, 6-di-2-pyridyl-1, 2, 4, 5–tetrazine by one pot in situ hydrothermal reaction
Li et al. Ligand substitution induced single-crystal-to-single-crystal transformations in two Ni (II) coordination compounds displaying consequential changes in proton conductivity
ES2832528A1 (en) METAL-ORGANIC NETWORKS BASED ON PYRENE-PHOSPHONATE (Machine-translation by Google Translate, not legally binding)
Assen et al. The chemistry of metal–organic frameworks with face-centered cubic topology
Lin et al. A series of novel Pb (ii) or Pb (ii)/M (ii)(M= Ca and Sr) hybrid inorganic–organic frameworks based on polycarboxylic acids with diverse Pb–O–M (M= Pb, Ca and Sr) inorganic connectivities
Schmieder et al. CFA-7: an interpenetrated metal–organic framework of the MFU-4 family
Nguyen et al. A new porphyrinic vanadium-based MOF constructed from infinite V (OH) O 4 chains: syntheses, characterization and photoabsorption properties
Cepeda et al. Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands
Dhankhar et al. Green synthesis, optical and magnetic properties of a Mn II metal–organic framework (MOF) that exhibits high heat of H 2 adsorption
Lin et al. An ultrastable {SiNb18O54}-based hybrid polyoxoniobate framework for selective removal of crystal violet from aqueous solution and proton-conduction
Hua et al. Facile redox state manipulation in Cu (I) frameworks by utilisation of the redox-active tris (4-(pyridin-4-yl) phenyl) amine ligand
Liebing et al. From zero-to three-dimensional heterobimetallic coordination polymers with the [Pt {SSC-N (CH 2 COO) 2} 2] 4− metalloligand
Kim et al. Solid-state phase transformations toward a metal-organic framework of 7-connected Zn 4 O secondary building units
Zhao et al. Four unprecedented 2D trinuclear Mn (II)-complexes with adenine nucleobase controlled by solvent or co-ligand: Hydrothermal synthesis, crystal structure and magnetic behaviour

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2832528

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20210610

FG2A Definitive protection

Ref document number: 2832528

Country of ref document: ES

Kind code of ref document: B2

Effective date: 20221228