ES2558472B1 - COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE - Google Patents

COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE Download PDF

Info

Publication number
ES2558472B1
ES2558472B1 ES201431000A ES201431000A ES2558472B1 ES 2558472 B1 ES2558472 B1 ES 2558472B1 ES 201431000 A ES201431000 A ES 201431000A ES 201431000 A ES201431000 A ES 201431000A ES 2558472 B1 ES2558472 B1 ES 2558472B1
Authority
ES
Spain
Prior art keywords
composite material
cellulose
fibrous
nanocellulose
sepiolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES201431000A
Other languages
Spanish (es)
Other versions
ES2558472A1 (en
Inventor
Eduardo Ruiz Hitzky
María Pilar Aranda Gallego
Margarita María DARDER COLOM
María Del Mar GONZÁLEZ DEL CAMPO RODRÍGUEZ BARBERO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES201431000A priority Critical patent/ES2558472B1/en
Priority to PCT/ES2015/070506 priority patent/WO2016001466A1/en
Publication of ES2558472A1 publication Critical patent/ES2558472A1/en
Application granted granted Critical
Publication of ES2558472B1 publication Critical patent/ES2558472B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Material composite de nanocelulosa y arcillas fibrosas, procedimiento de fabricación y uso.#La invención se refiere a un material composite estable que comprende celulosa desfibrada y partículas de morfología fibrosa o fibras de silicatos pertenecientes a la familia de las arcillas fibrosas, entrelazadas nanométricamente. Además, la invención se refiere a un procedimiento de preparación de dicho material composite y sus usos como adsorbentes, absorbentes agentes espesantes, aditivos en alimentación, soportes de catalizadores, soportes de enzimas, soportes de fármacos, retardantes de llama y materiales autoextinguibles, aditivos de cementos, papeles especiales, elementos de materiales sensores, entre otros.Composite material of nanocellulose and fibrous clays, manufacturing and use process. # The invention relates to a stable composite material comprising defibrated cellulose and particles of fibrous morphology or silicate fibers belonging to the family of fibrous clays, nanometrically interlaced. Furthermore, the invention relates to a process for preparing said composite material and its uses as adsorbents, absorbent thickeners, feed additives, catalyst supports, enzyme supports, drug supports, flame retardants and self-extinguishing materials, additives of cements, special papers, elements of sensor materials, among others.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

MATERIAL COMPOSITE DE NANOCELULOSA Y ARCILLAS FIBROSAS, PROCEDIMIENTO DE FABRICACION Y USOCOMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE

DESCRIPCIONDESCRIPTION

SECTOR DE LA TECNICA Y OBJETO DE LA INVENCIONSECTOR OF THE TECHNIQUE AND OBJECT OF THE INVENTION

La invencion se refiere a un material composite estable que comprende celulosa desfibrada y particulas de morfologia fibrosa o fibras de silicatos pertenecientes a la familia de las arcillas fibrosas, entrelazadas nanometricamente.The invention relates to a stable composite material comprising defibrated cellulose and particles of fibrous morphology or silicate fibers belonging to the family of fibrous clays, nanometrically intertwined.

Otros objetos de la invencion son un procedimiento de preparation del material composite que comprende homogeneizar los dos componentes fibrosos, arcilla y celulosa desfibrada, en medio acuoso hasta obtener un hidrogel estable; y el uso de este tipo de materiales composites como adsorbentes, absorbentes agentes espesantes, aditivos en alimentation, soportes de catalizadores, soportes de enzimas, soportes de farmacos, retardantes de llama y materiales autoextinguibles, aditivos de cementos, papeles especiales, elementos de materiales sensores, etc.Other objects of the invention are a method of preparing the composite material which comprises homogenizing the two fibrous components, clay and defibrated cellulose, in aqueous medium until a stable hydrogel is obtained; and the use of such composites as adsorbents, absorbent thickeners, feed additives, catalyst supports, enzyme supports, drug carriers, flame retardants and self-extinguishing materials, cement additives, special papers, sensor material elements , etc.

El campo tecnico de la invencion se encuadra en el sector tecnico de los nuevos materiales, en particular de los materiales compuestos nanoestructurados.The technical field of the invention falls within the technical sector of new materials, in particular nanostructured composite materials.

ESTADO DE LA TECNICASTATE OF THE TECHNIQUE

Los materiales nanocompuestos o "nanocomposites" son un tipo de material hibrido organico-inorganico nanoestructurado, generalmente compuesto por una matriz polimerica y una fase inorganica dispersa en dicha matriz que interaccionan a nivel nanometrico generando propiedades sinergicas y/o mejoradas que inciden en multitud de aplicaciones. Dentro de estos materiales compuestos o “composites”, los bionanocomposites son nanocomposites en los que la matriz polimerica es un biopolimero, o sea un polimero de origen natural. En un gran numero de bionanocomposites, el componente inorganico es un silicato que pertenece a la familia de los minerales de la arcilla, ya sean de tipo laminar como las esmectitas y las vermiculitas, ya sean de tipo fibroso como la sepiolita o la palygorskita. Estos silicatos combinan propiedades singulares como la inercia quimica, la baja o nula toxicidad y una buena biocompatibilidad, junto a una elevada capacidad deNanocomposites or "nanocomposites" are a type of nanostructured organic-inorganic hybrid material, generally composed of a polymeric matrix and an inorganic phase dispersed in said matrix that interact at a nanometric level generating synergistic and / or improved properties that affect many applications. . Within these composite materials or "composites", bionanocomposites are nanocomposites in which the polymer matrix is a biopolymer, that is, a polymer of natural origin. In a large number of bionanocomposites, the inorganic component is a silicate that belongs to the family of clay minerals, whether of laminar type such as smectites and vermiculites, whether of fibrous type such as sepiolite or palygorskite. These silicates combine unique properties such as chemical inertia, low or no toxicity and good biocompatibility, together with a high capacity of

55

1010

15fifteen

20twenty

2525

3030

3535

absorcion, propiedades de intercambio ionico y elevada area superficial. Estas caracterlsticas son esenciales para asegurar una fuerte interaction con biopollmeros a traves de diferentes mecanismos, tales como enlaces de hidrogeno, interacciones electrostaticas y fuerzas de Van der Waals.absorption, ion exchange properties and high surface area. These characteristics are essential to ensure a strong interaction with biopollmeros through different mechanisms, such as hydrogen bonds, electrostatic interactions and Van der Waals forces.

Los materiales composites preparados a partir de componentes de origen natural (biocomposites) representan actualmente una tematica de gran interes con vistas al desarrollo de materiales avanzados funcionales y/o estructurales, no solo porque son materiales ecologicos con todos sus componentes de origen natural, sino tambien por su gran versatilidad en diversas aplicaciones. Asl, estudios recientes han demostrado que los minerales fibrosos de la arcilla, tales como la sepiolita y la palygorskita, tambien llamada attapulgita, resultan de gran interes como agentes de refuerzo tanto en pollmeros derivados del petroleo, como en matrices biopolimericas. En particular, los biocomposites resultantes de la incorporation de arcillas de tipo fibroso a diferentes tipos de polisacaridos como almidon, quitosano y alginato, ha permitido la obtencion de materiales compuestos que presentan buenas propiedades mecanicas junto con propiedades interesantes como es la reduction de la absorcion de agua en comparacion con los biopollmeros puros.Composite materials prepared from components of natural origin (biocomposites) currently represent a thematic of great interest with a view to the development of advanced functional and / or structural materials, not only because they are ecological materials with all their components of natural origin, but also for its great versatility in various applications. Thus, recent studies have shown that the fibrous minerals of clay, such as sepiolite and palygorskite, also called attapulgite, are of great interest as reinforcing agents in both petroleum-derived polymers, as in biopolymeric matrices. In particular, the biocomposites resulting from the incorporation of fibrous clays to different types of polysaccharides such as starch, chitosan and alginate, has allowed the obtaining of composite materials that have good mechanical properties along with interesting properties such as the reduction of the absorption of water compared to pure biopollmeros.

Por otro lado, los polisacaridos del tipo de la celulosa de origen diverso son potencialmente de gran interes para su combination con arcillas y poder obtener asl materiales composites. La elevada relation de aspecto de las fibras de celulosa y su contenido en grupos hidroxilo hace de este biopollmero un componente deseado por sus propiedades mecanicas y por su capacidad de funcionalizacion. Una limitation importante es su caracter insoluble, que hasta ahora se ha superado mediante la preparation de diferentes derivados de la celulosa por reacciones qulmicas diversas. Este es el caso de derivados de celulosa como los acetatos de celulosa, los eteres de celulosa y los esteres de celulosa y especlficamente, por ejemplo, la hidroximetilcelulosa, la hidroxietilcelulosa, la propilmetilhidroxicelulosa o la carboximetilcelulosa, algunos de ellos empleados en combinacion con diversas arcillas, incluidas las arcillas fibrosas. Hasta ahora se han descrito diversos composites resultantes de la combinacion de dichos derivados de la celulosa con sepiolita y palygorskita (E. Ruiz- Hitzky et al., Progress in Polymer Science, 38,2013, 1392-1414).On the other hand, polysaccharides of the cellulose type of diverse origin are potentially of great interest for their combination with clays and to be able to obtain composites materials. The high aspect ratio of cellulose fibers and their hydroxyl group content makes this biopollomer a desired component due to its mechanical properties and functional capacity. An important limitation is its insoluble character, which until now has been overcome by preparing different cellulose derivatives by various chemical reactions. This is the case of cellulose derivatives such as cellulose acetates, cellulose ethers and cellulose esters and specifically, for example, hydroxymethyl cellulose, hydroxyethyl cellulose, propylmethylhydroxycellulose or carboxymethyl cellulose, some of them used in combination with various clays , including fibrous clays. So far, various composites resulting from the combination of said cellulose derivatives with sepiolite and palygorskite have been described (E. Ruiz-Hitzky et al., Progress in Polymer Science, 38,2013, 1392-1414).

Un descubrimiento relativamente reciente se refiere a los micro- y nano-materiales basados en diversos estados de agregacion de las cadenas individuales del polisacarido celulosa en regiones cristalinas y amorfas, originando fibrillas elementales que componen a su vez las fibras de la celulosa. Mediante procesos de desagregacion de estas fibras de mayoresA relatively recent discovery concerns the micro- and nano-materials based on various states of aggregation of the individual chains of the cellulose polysaccharide in crystalline and amorphous regions, causing elementary fibrils that in turn make up the cellulose fibers. Through disaggregation processes of these major fibers

33

55

1010

15fifteen

20twenty

2525

3030

3535

dimensiones se pueden obtener las fibrillas elementales, denominadas tambien “celulosa desfibrada”. De especial interes son los materiales fibrosos producidos a partir de celulosa con dimensiones en el rango del micrometro o bien a partir de partlculas de celulosa que presenten al menos una dimension en la escala nanometrica. En el primero de los casos, la celulosa con dimensiones micrometricas se conoce como "celulosa microcristalina" o microcelulosa, la cual esta formada por fibras de celulosa parcialmente despolimerizada con ayuda de tratamientos qulmicos y mecanicos, presentando longitudes de fibras entre 50 y 10 pm y diametro del orden de 10-50 pm. En el segundo caso, las partlculas de celulosa que presentan al menos una dimension en la escala nanometrica o nanocelulosas se denominan “celulosa microfibrilada”, "celulosa nanofibrilada" y "celulosa nanocristalina". La “celulosa microfibrilada” presenta longitudes entre 0,5 y 10 pm y diametros en el rango de 10 a 100 nm, mientras que la “celulosa nanofibrilada” y la “celulosa nanocristalina” presentan longitudes de fibra en los rangos 500 a 2000 nm y 50 a 500 nm, respectivamente, asl como diametros de 4 a 20 nm y de 3 a 5 nm, respectivamente (R.J. Moon et al., Chemical Society Reviews, 40, 2011, 3941-3994; Y. Habibi, Chemical Society Reviews, 43, 2014, 1519-1542; S. Kalia et al., Colloid Polymer Science, 292, 2014, 5-31). Las microcelulosas y las nanocelulosas poseen caracterlsticas flsico-qulmicas muy diferentes a las de la celulosa nativa y abren camino a nuevas aplicaciones. Especialmente las celulosas desfibradas a la escala nanometrica o nanocelulosas, tales como “celulosa microfibrilada”, "celulosa nanofibrilada" y "celulosa nanocristalina", presentan una marcada relacion de aspecto longitud-diametro y capacidad de formacion de geles acuosos estables de elevada viscosidad. Por otro lado, debe senalarse que en las plantas, los materiales celulosicos se encuentran asociados a hemicelulosas asl como a lignina, por lo que entre los materiales relacionados se encuentran tambien los compuestos lignocelulosicos.dimensions can be obtained elementary fibrils, also called "defibrated cellulose". Of special interest are the fibrous materials produced from cellulose with dimensions in the micrometer range or from cellulose particles that have at least one dimension in the nanometric scale. In the first case, cellulose with micrometric dimensions is known as "microcrystalline cellulose" or microcellulose, which is formed by partially depolymerized cellulose fibers with the help of chemical and mechanical treatments, presenting fiber lengths between 50 and 10 pm and diameter of the order of 10-50 pm. In the second case, the cellulose particles that have at least one dimension on the nanometer or nanocellulosic scale are called "microfibrillated cellulose", "nanofibrillated cellulose" and "nanocrystalline cellulose". "Microfibrillated cellulose" has lengths between 0.5 and 10 pm and diameters in the range of 10 to 100 nm, while "nanofibrillated cellulose" and "nanocrystalline cellulose" have fiber lengths in the ranges 500 to 2000 nm and 50 to 500 nm, respectively, as well as 4 to 20 nm and 3 to 5 nm diameters, respectively (RJ Moon et al., Chemical Society Reviews, 40, 2011, 3941-3994; Y. Habibi, Chemical Society Reviews, 43, 2014, 1519-1542; S. Kalia et al., Colloid Polymer Science, 292, 2014, 5-31). Microcelluloses and nanocelluloses have physical-chemical characteristics that are very different from those of native cellulose and open the way to new applications. Especially cellulose defibrated to the nanometric or nanocellulose scale, such as "microfibrillated cellulose", "nanofibrillated cellulose" and "nanocrystalline cellulose", have a marked relationship of length-diameter appearance and formation capacity of stable high viscosity aqueous gels. On the other hand, it should be noted that in plants, cellulosic materials are associated with hemicelluloses as well as lignin, so that among the related materials are also lignocellulosic compounds.

Hasta la fecha las microcelulosas y las nanocelulosas formadas a partir de la celulosa desfibrada se han empleado en la preparacion de composites con arcillas de estructura laminar, principalmente montmorillonita y vermiculita (A. Liu et al., Carbohydrate Polymers, 87, 2012, 53- 60; T. Nypelo et al., Cellulose, 19, 2012, 779-792; T.T.T. Ho et al., Journal of Materials Science 47, 2012, 4370-4382).To date, microcelluloses and nanocelluloses formed from defibrated cellulose have been used in the preparation of composites with clays of laminar structure, mainly montmorillonite and vermiculite (A. Liu et al., Carbohydrate Polymers, 87, 2012, 53- 60; T. Nypelo et al., Cellulose, 19, 2012, 779-792; TTT Ho et al., Journal of Materials Science 47, 2012, 4370-4382).

En WO2013126321A1 se indica un material que comprende nanocelulosa y arcillas fibrosas pero que requiere para su formacion de, al menos, 5 componentes.WO2013126321A1 indicates a material that comprises nanocellulose and fibrous clays but that requires for its formation of at least 5 components.

En US20120094953A1 se presenta un proceso para la produccion de suspensiones de nanocelulosa desfibrada combinando fibras de celulosa y un filler (aditivos y/o carga) y/oIn US20120094953A1 a process is presented for the production of suspensions of defibrated nanocellulose combining cellulose fibers and a filler (additives and / or filler) and / or

44

55

1010

15fifteen

20twenty

2525

3030

3535

pigmento que puede incluir sepiolita. En este documento no se indica que la combination de esas nanofibras con alguna arcilla fibrosa se produzca a nivel nanometrico, ni se indican las propiedades o caracterlsticas mejoradas o diferenciadoras respecto a los materiales de partida.Pigment that may include sepiolite. This document does not indicate that the combination of these nanofibers with any fibrous clay is produced at a nanometric level, nor are the properties or characteristics improved or differentiated with respect to the starting materials.

Por otro lado, en el caso de la sepiolita, las fibras que conforman este mineral se encuentran formando madejas que hacen diflcil su disgregacion y dispersion en agua para formar geles estables, sin embargo procesos de molienda en humedo y homogeneizacion (ES8505893, ES8506358, ES8505894 y EP0170299), permiten obtener materiales conocidos como sepiolitas de grado reologico, capaces de producir suspensiones de elevada viscosidad a concentraciones relativamente bajas de solidos en dispersion, si se comparan con las arcillas laminares del tipo de la montmorillonita con muy baja densidad superficial en grupos hidroxilo del tipo de los silanoles (Si-OH). Ademas, aunque algunas investigaciones hablan de reacciones de anclaje a traves de este tipo de grupos hidroxilo de arcillas laminares, el contenido en estos grupos es muy escaso y solo estan presentes en los bordes del material, por lo que no se pueden efectuar modificaciones basadas en la reactividad de dichos grupos que afecten a toda la superficie de la arcilla. La palygorskita es una arcilla estructural y morfologicamente emparentada con la sepiolita, sin embargo no se han descrito metodos de preparation de palygorskita que desarrollen materiales de grado reologico similares a los de sepiolita.On the other hand, in the case of sepiolite, the fibers that make up this mineral are forming skeins that make it difficult to disintegrate and disperse in water to form stable gels, however wet milling and homogenization processes (ES8505893, ES8506358, ES8505894 and EP0170299), allow to obtain materials known as rheological grade sepiolites, capable of producing high viscosity suspensions at relatively low concentrations of dispersed solids, when compared with lamellar clays of the montmorillonite type with very low surface density in hydroxyl groups of the type of silanoles (Si-OH). In addition, although some research speaks of anchoring reactions through this type of hydroxyl groups of lamellar clays, the content in these groups is very scarce and they are only present at the edges of the material, so modifications based on the reactivity of said groups that affect the entire surface of the clay. Palygorskite is a structural clay and morphologically related to sepiolite, however methods of preparing palygorskite that develop rheological grade materials similar to sepiolite have not been described.

Los tratamientos de sepiolita con ultrasonidos generan suspensiones coloidales de sepiolita en las que debido a la desaglomeracion de las fibras, el mineral posee una mayor capacidad de asociacion a escala nanometrica con diferentes tipos de compuestos (I. Kuncek et al., Ultrasonics Sonochemistry, 17, 2010, 250-257; C. Maqueda et al., Applied Clay Science, 46, 2009, 289-295). Sin embargo, estos tratamientos estan enfocados a lograr una mejor dispersion de la arcilla y no a lograr la formation de materiales composites con un material basado en microcelulosa o en nanocelulosa, que ademas no son solubles.Ultrasonic sepiolite treatments generate colloidal sepiolite suspensions in which due to fiber breakdown, the mineral has a greater ability to associate on a nanometric scale with different types of compounds (I. Kuncek et al., Ultrasonics Sonochemistry, 17 , 2010, 250-257; C. Maqueda et al., Applied Clay Science, 46, 2009, 289-295). However, these treatments are focused on achieving a better dispersion of the clay and not on achieving the formation of composite materials with a material based on microcellulose or nanocellulose, which are also not soluble.

Una combinacion a la escala nanometrica de arcillas fibrosas como la sepiolita y la palygorskita con celulosa desfibrada, partiendo tanto de "celulosa microcristalina" o microcelulosa como de nanocelulosa, incluyendo “celulosa microfibrilada”, "celulosa nanofibrilada" y "celulosa nanocristalina", permitirla obtener un material compuesto de dos tipos de nanofibras o fibrillas, de celulosa y del silicato fibroso, capaz de generar en agua hidrogeles homogeneos, estables y viscosos debido a la interaction entre los grupos hidroxilos superficiales de ambos componentes fibrosos. Esta combinacion no es inmediataA combination to the nanometric scale of fibrous clays such as sepiolite and palygorskite with defibrated cellulose, starting from both "microcrystalline cellulose" or microcellulose and nanocellulose, including "microfibrillated cellulose", "nanofibrillated cellulose" and "nanocrystalline cellulose", allows it to be obtained a material composed of two types of nanofibers or fibrils, cellulose and fibrous silicate, capable of generating homogeneous, stable and viscous hydrogels in water due to the interaction between the surface hydroxyl groups of both fibrous components. This combination is not immediate.

55

55

1010

15fifteen

20twenty

2525

3030

3535

porque, entre otras cosas, la celulosa desfibrada no es soluble, y hasta ahora los tratamientos encontrados requieren de tratamientos quimicos en presencia de otros compuestos. Este material tendria muchas aplicaciones debido a la naturaleza de los materiales y a su estructuracion.because, among other things, defibrated cellulose is not soluble, and so far the treatments found require chemical treatments in the presence of other compounds. This material would have many applications due to the nature of the materials and their structuring.

Se ha comprobado que se han formado dispersiones estables de nanotubos o nanofibras de carbono en presencia de sepiolita utilizando ultrasonidos (ES2361763B1). Una vez eliminada el agua de estas dispersiones se producen solidos de naturaleza hibrida sepiolita- nanotubos de carbono, resultando los materiales denominados "hybrid buckypapers" compuestos por el entrecruzamiento de fibras de sepiolita y nanotubos de carbono multipared, que poseen propiedades sinergicas de interes en aplicaciones diversas (F.M. Fernandes et al., Carbon, 72, 2014, 296-303). En relacion con estos trabajos se ha descrito, tambien muy recientemente, la capacidad de las celulosas desfibradas a nivel nanometrico para combinarse con nanotubos de carbono (M.M. Hamedi, et al, ACS Nano, 8, 2014, 2467 - 2476). Sin embargo, hasta ahora no se han fabricado materiales composites de arcilla fibrosas junto con celulosa desfibrada y nanotubos de carbono que aprovechen la naturaleza de estos tres compuestos en una presentation de gel estable que pueda ser transformada en una fase solida.It has been proven that stable dispersions of nanotubes or carbon nanofibers have been formed in the presence of sepiolite using ultrasound (ES2361763B1). Once the water is removed from these dispersions, solids of a sepiolite-carbon nanotube hybrid nature are produced, resulting in materials called "hybrid buckypapers" composed of the cross-linking of sepiolite fibers and multipared carbon nanotubes, which have synergistic properties of interest in applications. diverse (FM Fernandes et al., Carbon, 72, 2014, 296-303). In relation to these works, the ability of cellulose defibrated at a nanometric level to combine with carbon nanotubes has also been described very recently (M.M. Hamedi, et al, ACS Nano, 8, 2014, 2467-2476). However, until now no fibrous clay composite materials have been manufactured together with defibrated cellulose and carbon nanotubes that take advantage of the nature of these three compounds in a stable gel presentation that can be transformed into a solid phase.

EXPLICACION DE LA INVENCIONEXPLANATION OF THE INVENTION

Un primer aspecto de la invention es un material composite que comprende celulosa desfibrada y arcilla fibrosa cuyas fibrillas estan enlazadas nanometricamente, la celulosa desfibrada que forma el material composite puede ser microcelulosa o nanocelulosa y la arcilla fibrosa sepiolita o palygorskita.A first aspect of the invention is a composite material comprising defibrated cellulose and fibrous clay whose fibrils are nanometrically bonded, the defibrated cellulose that forms the composite material can be microcellulose or nanocellulose and sepiolite or palygorskite fibrous clay.

Las cantidades relativas en peso pueden variar y dependeran de los materiales de partida. Asi, las cantidades relativas en peso de arcilla fibrosa: nanocelulosa estan entre 91:9 y 2:98, mas particularmente entre 50:50 y 34:66, mientras que en el caso de arcilla fibrosa:microcelulosa estan entre 40:60 y 60:40, mas particularmente en la proportion 50:50.The relative amounts by weight may vary and will depend on the starting materials. Thus, the relative amounts by weight of fibrous clay: nanocellulose are between 91: 9 and 2:98, more particularly between 50:50 and 34:66, while in the case of fibrous clay: microcellulose are between 40:60 and 60 : 40, more particularly in the 50:50 ratio.

La celulosa desfibrada puede ser de origen vegetal o microbiano, de algas o de residuos lignocelulosicos reciclados.Defibrated cellulose can be of plant or microbial origin, of algae or recycled lignocellulosic residues.

El segundo aspecto de la invencion es el procedimiento de preparacion del material composite que comprende las siguientes etapas:The second aspect of the invention is the process of preparing the composite material comprising the following steps:

66

55

1010

15fifteen

20twenty

2525

3030

3535

a) mezclar en agua los dos componentes fibrosos, arcilla y celulosa desfibrada en un mismo recipiente,a) mix in water the two fibrous components, clay and cellulose defibrated in the same container,

b) homogeneizar fuertemente la mezcla en el medio acuoso hasta obtener un hidrogel estable.b) strongly homogenize the mixture in the aqueous medium until a stable hydrogel is obtained.

Los materiales de partida se pueden mezclar simultaneamente de manera directa a partir de material comercial o bien prepararse previamente a la mezcla.The starting materials can be mixed simultaneously directly from commercial material or prepared before mixing.

En el que en el paso a) se pueden utilizar mezcladores mecanicos para poner en suspension los materiales de partida.In which in step a) mechanical mixers can be used to suspend starting materials.

La homogeneizacion de la etapa b) se puede realizar mediante un homogeneizador de alta cizalla y presion, por tratamiento en un microfluidificador o por aplicacion de un tratamiento sonomecanico mediante ultrasonidos. El tratamiento sonomecanico ha de ser de alta energla y pueden utilizarse cavitadores de puntas metalicas o equipos con sonotrodos, bien en modo estatico y/o continuo.The homogenization of stage b) can be carried out by means of a high shear and pressure homogenizer, by treatment in a microfluidizer or by application of a sonomechanical treatment by ultrasound. The sonomechanical treatment must be of high energy and metal tip caviters or equipment with sonotrodes can be used, either in static and / or continuous mode.

La irradiacion ultrasonica se puede efectuar de forma pulsada. Preferiblemente la cantidad de ultrasonidos irradiada se encuentra en un intervalo entre 100 J y 5000 J por 25 gramos de dispersion, y aun mas preferiblemente la irradiacion de ultrasonidos que se realiza de forma clclica en pulsos de 5 a 20 segundos de irradiacion, seguidos de 5 a 20 segundos de reposo.Ultrasound irradiation can be performed in a pulsed manner. Preferably the amount of irradiated ultrasound is in a range between 100 J and 5000 J per 25 grams of dispersion, and even more preferably the ultrasound irradiation that is performed in a cyclic manner in pulses of 5 to 20 seconds of irradiation, followed by 5 at 20 seconds rest.

El material composite en forma de hidrogel puede secarse procediendo a la elimination del agua, de tal manera que se puede conformar para presentarse en una forma definida, como puede ser bloques monollticos de dimensiones predeterminadas, pellculas de grosor variable, o espumas de distinta densidad.The hydrogel-shaped composite material can be dried by eliminating water, so that it can be shaped to present in a defined form, such as monolithic blocks of predetermined dimensions, films of varying thickness, or foams of different density.

El secado se puede realizar mediante secado al aire, extraction forzada de agua a presion reducida, filtration, centrifugation, liofilizacion, procesos de secado supercrltico, pulverization o atomization, lechos fluidificados o fluidizados, ciclon de flujo de aire o gas inerte caliente.Drying can be performed by air drying, forced extraction of water under reduced pressure, filtration, centrifugation, lyophilization, supercritical drying processes, pulverization or atomization, fluidized or fluidized beds, air flow cyclone or hot inert gas.

Adicionalmente se pueden incorporar aditivos organicos y/o inorganicos al material composite, para formar un compuesto ternario o de orden superior basado en el material composite.Additionally, organic and / or inorganic additives can be incorporated into the composite material, to form a ternary or higher order compound based on the composite material.

55

1010

15fifteen

20twenty

2525

3030

3535

El aditivo inorganico que se incorpora puede ser uno o varios de los elementos siguientes: una arcilla laminar o particulas nano- o micro-metricas de nanotubos de carbono, nanofibras de carbono, de un metal, de un oxido, o de una sal metalica; y el aditivo organico que se incorpora puede incluir alguno o varios de los siguientes: un colorante, un agente tensioactivo, o un material polimerico.The inorganic additive that is incorporated can be one or more of the following elements: a laminar clay or nano- or micro-metric particles of carbon nanotubes, carbon nanofibers, a metal, an oxide, or a metal salt; and the organic additive that is incorporated may include one or more of the following: a dye, a surfactant, or a polymeric material.

Se pueden ademas incorporar nanoparticulas magneticas basadas en oxidos de hierro del tipo de la magnetita.It is also possible to incorporate magnetic nanoparticles based on iron oxides of the magnetite type.

El material composite y/o los materiales ternarios o de orden superior basados en el mismo pueden ser funcionalizados adicionalmente por reacciones quimicas o por ensamblado a nanoparticulas de distinta naturaleza.The composite material and / or ternary or higher order materials based on it can be additionally functionalized by chemical reactions or by assembly to nanoparticles of different nature.

El material composite se puede modificar quimicamente para alterar deliberadamente sus propiedades estructurales y/o funcionales, particularmente se modifica mediante reacciones con silanos, epoxidos, isocianatos, dialdehidos o con cualquier otro reactivo de entrecruzamiento o agente de acoplamiento, mas particularmente modificando los silanos por reacciones de silanizacion de las funciones hidroxilo del material.The composite material can be chemically modified to deliberately alter its structural and / or functional properties, particularly it is modified by reactions with silanes, epoxides, isocyanates, dialdehydes or with any other cross-linking reagent or coupling agent, more particularly by modifying the silanes by reactions of silanization of the hydroxyl functions of the material.

Un tercer aspecto de la invencion es el uso del material composite como adsorbente, absorbente, agente espesante, aditivo en alimentacion, soporte de catalizadores, soporte de enzimas, retardante de llama y material autoextinguible, aditivos de cemento, produccion de vino, embalaje de alimentos y papeles especiales como el nanopapel.A third aspect of the invention is the use of composite material as adsorbent, absorbent, thickening agent, feed additive, catalyst support, enzyme support, flame retardant and self-extinguishing material, cement additives, wine production, food packaging and special papers such as nano paper.

DESCRIPCION DE LA INVENCIONDESCRIPTION OF THE INVENTION

Los inventores han sintetizado un nuevo material composite estable que comprende celulosa desfibrada (microcelulosa o nanocelulosa) y particulas de aspecto fibroso o fibras de silicatos pertenecientes a la familia de las arcillas fibrosas (como la sepiolita y la palygorskita o attapulgita) que resulta del ensamblado a nivel nanometrico de los dos tipos de fibra. Este material no requiere de la adicion de otros materiales para garantizar su estabilidad en condiciones ambientales y se prepara en medio acuoso; ademas el material composite presenta caracteristicas diferentes respecto a los materiales de partida y es potencialmente util en muchas aplicaciones.The inventors have synthesized a new stable composite material comprising defibrated cellulose (microcellulose or nanocellulose) and fibrous-looking particles or silicate fibers belonging to the family of fibrous clays (such as sepiolite and palygorskite or attapulgite) that results from assembly to nanometric level of the two types of fiber. This material does not require the addition of other materials to guarantee its stability in environmental conditions and is prepared in an aqueous medium; In addition, the composite material has different characteristics with respect to the starting materials and is potentially useful in many applications.

55

1010

15fifteen

20twenty

2525

3030

3535

Asl, un primer objeto de la invencion es un material composite que comprende celulosa desfibrada y arcilla fibrosa cuyas fibrillas estan enlazadas nanometricamente.Thus, a first object of the invention is a composite material comprising defibrated cellulose and fibrous clay whose fibrils are nanometrically bonded.

La presencia de arcillas fibrosas supone una ventaja frente al uso anteriormente descrito de arcillas de morfologla laminar como la montmorillonita y otras esmectitas presentes como agregados, ya que las arcillas fibrosas aqul consideradas contienen grupos hidroxilos superficiales del tipo de los grupos silanoles, que junto a su morfologla fibrosa proporcionan una mayor eficiencia en su interaction con la celulosa desfibrada.The presence of fibrous clays is an advantage over the previously described use of lamellar morphology clays such as montmorillonite and other smectites present as aggregates, since the fibrous clays considered here contain surface hydroxyl groups of the silane groups, which together with their Fibrous morphology provide greater efficiency in its interaction with defibrated cellulose.

El material composite puede encontrarse en suspension acuosa homogenea formando un hidrogel estable o en fase solida tras la correspondiente elimination de agua mediante un proceso de secado.The composite material can be found in a homogeneous aqueous suspension forming a stable or solid phase hydrogel after the corresponding elimination of water by means of a drying process.

Las ventajas fundamentales del material composite se refieren a las propiedades sinergicas entre los componentes que lo integran. Por ejemplo, estos sistemas hlbridos fibrosos pueden beneficiarse de las propiedades aportadas por los componentes como las propiedades mecanicas caracterlsticas de las fibrillas de microcelulosa o nanocelulosa, de las propiedades adsorbentes de los dos componentes, de su diferente y complementaria reactividad qulmica, del efecto ignlfugo de las fibrillas de sepiolita y de la palygorskita, de la capacidad de ensamblado a nanopartlculas de metales y de oxidos metalicos distintas para los dos componentes, de los diferentes comportamientos reologicos, etc.The fundamental advantages of composite material refer to the synergistic properties between the components that comprise it. For example, these fibrous hybrid systems can benefit from the properties provided by the components such as the characteristic mechanical properties of the microcellulose or nanocellulose fibrils, the adsorbent properties of the two components, their different and complementary chemical reactivity, the flame retardant effect of the sepiolite and palygorskite fibrils, the ability to assemble nanoparticles of metals and different metal oxides for the two components, of the different rheological behaviors, etc.

En una realization particular la celulosa desfibrada que forma el material composite comprende al menos uno de los materiales siguientes: microcelulosa, nanocelulosa.In a particular embodiment, the defibrated cellulose that forms the composite material comprises at least one of the following materials: microcellulose, nanocellulose.

En una realizacion particular la arcilla fibrosa comprende al menos uno de los materiales siguientes: sepiolita, palygorskita, mas particularmente sepiolita.In a particular embodiment, the fibrous clay comprises at least one of the following materials: sepiolite, palygorskite, more particularly sepiolite.

En una realizacion mas particular las cantidades relativas en peso de arcilla fibrosa:nanocelulosa estan entre 91:9 y 2:98, mas particularmente entre 50:50 y 34:66.In a more particular embodiment, the relative amounts by weight of fibrous clay: nanocellulose are between 91: 9 and 2:98, more particularly between 50:50 and 34:66.

En otra realizacion mas particular la cantidad relativa en peso de arcilla fibrosa:microcelulosa esta entre 40:60 y 60:40, mas particularmente 50:50.In another more particular embodiment, the relative amount by weight of fibrous clay: microcellulose is between 40:60 and 60:40, more particularly 50:50.

En otra realizacion particular la celulosa desfibrada es de origen vegetal o microbiano, de algas o de residuos lignocelulosicos reciclados.In another particular embodiment, the defibrated cellulose is of plant or microbial origin, of algae or recycled lignocellulosic residues.

99

55

1010

15fifteen

20twenty

2525

3030

3535

En particular la celulosa desfibrada de origen vegetal se puede obtener a partir de pulpa de papel preparada a partir de maderas blandas como las de comferas del tipo del pino, abeto, picea y alerce, de maderas duras como las del eucalipto, alamo y abedul, o de fibras vegetales de plantas como cana de azucar (bagazo), lino, algodon y canamo. La celulosa desfibrada tambien puede proceder de residuos de elevado contenido en celulosa como papel, carton y textiles desechados.In particular, defibrated cellulose of vegetable origin can be obtained from paper pulp prepared from softwoods such as those of pine, fir, spruce and larch, from hardwoods such as eucalyptus, poplar and birch, or from plant fibers of plants such as sugar cane (bagasse), flax, cotton and hemp. Defibrated cellulose can also come from residues of high cellulose content such as paper, cardboard and discarded textiles.

Un segundo aspecto de la presente invention es un procedimiento de preparation del material composite, que comprende las siguientes etapas:A second aspect of the present invention is a composite material preparation process, which comprises the following steps:

a) mezclar en agua los dos componentes fibrosos, arcilla y celulosa desfibrada en un mismo recipiente,a) mix in water the two fibrous components, clay and cellulose defibrated in the same container,

b) homogeneizar fuertemente la mezcla en el medio acuoso hasta obtener un hidrogel estable,b) strongly homogenize the mixture in the aqueous medium until a stable hydrogel is obtained,

Una simple adicion de los materiales de partida, arcillas fibrosas y celulosa desfibrada no daria lugar a la formation del material composite de la invencion, obteniendose geles no homogeneos o incluso con separation de fases en el caso de utilizar microcelulosa. Para obtener un hidrogel homogeneo y estable, capaz de dar lugar al material compuesto final, es necesaria la asociacion a nivel nanometrico de los dos tipos de fibras, lo cual se produce en esta invencion promoviendo la formacion de enlaces de hidrogeno entre los grupos hidroxilos que se encuentran en la superficie de la arcilla fibrosa (grupos silanoles) y los grupos hidroxilos que componen las cadenas glucosidicas de las fibras de la microcelulosa o nanocelulosa.A simple addition of the starting materials, fibrous clays and defibrated cellulose would not lead to the formation of the composite material of the invention, obtaining non-homogeneous gels or even with phase separation in the case of using microcellulose. To obtain a homogeneous and stable hydrogel, capable of giving rise to the final composite material, it is necessary the nanometric level association of the two types of fibers, which is produced in this invention by promoting the formation of hydrogen bonds between the hydroxyl groups that They are found on the surface of the fibrous clay (silane groups) and the hydroxyl groups that make up the glucosidic chains of the microcellulose or nanocellulose fibers.

En una realization particular, los materiales de partida o precursores (celulosa desfibrada y arcilla fibrosa) se pueden mezclar simultaneamente de forma directa a partir de materiales comerciales o bien se pueden preparar previamente a la mezcla. Por ejemplo, una option es desagregar previamente a la mezcla la arcilla fibrosa aplicando ultrasonidos.In a particular embodiment, the starting materials or precursors (defibrated cellulose and fibrous clay) can be mixed simultaneously directly from commercial materials or prepared before mixing. For example, one option is to previously disaggregate the fibrous clay into the mixture by applying ultrasound.

En otra realizacion particular en el paso a) se pueden utilizar mezcladores mecanicos para poner en suspension los materiales y conseguir que se dispersen de manera mas rapida y homogenea.In another particular embodiment in step a) mechanical mixers can be used to suspend the materials and get them to disperse more quickly and homogeneously.

En el paso b) la homogeneizacion se realiza hasta que el hidrogel no decanta, dependiendo el tiempo de esta etapa de la naturaleza y la cantidad de material de partida.In step b) homogenization is carried out until the hydrogel does not decant, the time of this stage depending on the nature and the amount of starting material.

55

1010

15fifteen

20twenty

2525

3030

3535

En una realization particular la homogeneizacion de la etapa b) se puede realizar mediante un homogeneizador de alta cizalla y presion, por tratamiento en un microfluidificador o mas particularmente por aplicacion de un tratamiento sonomecanico mediante ultrasonidos que ha de ser de alta energla empleando preferentemente cavitadores de puntas metalicas o equipos con sonotrodos. Los ultrasonidos pueden aplicarse en modo estatico o continuo.In a particular embodiment, the homogenization of step b) can be carried out by means of a high shear and pressure homogenizer, by treatment in a microfluidizer or more particularly by application of a sonomechanical treatment by means of ultrasound which must be of high energy preferably using cavitators of metal tips or equipment with sonotrodes. Ultrasound can be applied in static or continuous mode.

En una realization aun mas particular la irradiation ultrasonica se efectua preferiblemente de forma pulsada. Siendo mas preferiblemente la cantidad de ultrasonidos irradiada que se encuentra en un intervalo entre 100 J y 5000 J por 25 gramos de dispersion. Y aun mas preferiblemente la irradiation de ultrasonidos que se realiza de forma clclica en pulsos de 5 a 20 segundos de irradiation, seguidos de 5 a 20 segundos de reposo.In an even more particular embodiment, the ultrasonic irradiation is preferably carried out in a pulsed manner. More preferably the amount of irradiated ultrasound that is in a range between 100 J and 5000 J per 25 grams of dispersion. And even more preferably the ultrasound irradiation that is performed in a cyclic manner in pulses of 5 to 20 seconds of irradiation, followed by 5 to 20 seconds of rest.

Es necesario aplicar metodos de homogenization de alta energla en la etapa b) para producir la desagregacion en medio acuoso de ambos tipos de fibras organicas e inorganicas simultaneamente. Este proceso de homogeneizacion es crltico pues se ha encontrado que al menos es necesario aplicar 100 J por 25 g de mezcla arcilla fibrosa- celulosa fibrilada en agua para que se produzcan geles estables del material composite, cuando se utiliza la irradiation con ultrasonidos, aunque este valor puede ser superior cuando se trabaja con suspensiones de arcilla fibrosa y/o celulosa desfibrada que requieren una energla adicional para desagregarse. Tras esta homogeneizacion da lugar a un hidrogel en el que se favorece la recombination de las fibras que permite la formation del material composite.It is necessary to apply high energy homogenization methods in step b) to produce the disaggregation in aqueous medium of both types of organic and inorganic fibers simultaneously. This homogenization process is critical because it has been found that it is necessary to apply at least 100 J per 25 g of fibrous-fibrous cellulose clay mixture in water to produce stable gels of the composite material, when ultrasound irradiation is used, although this Value may be higher when working with suspensions of fibrous clay and / or defibrated cellulose that require additional energy to disaggregate. After this homogenization results in a hydrogel in which the recombination of the fibers that allows the formation of the composite material is favored.

El uso de sepiolita se considera ventajoso frente a otras arcillas de tipo laminar porque permite formar geles muy estables en agua mediante procesos de homogeneizacion y esto facilita la preparation del material composite.The use of sepiolite is considered advantageous over other clays of the laminar type because it allows the formation of gels that are very stable in water through homogenization processes and this facilitates the preparation of the composite material.

Los procesos de homogeneizacion, producen una desagregacion de las fibrillas de los dos tipos de componentes provocando su entrecruzamiento y combination cruzada que da lugar al material composite. La formation de nanocomposites requiere una Intima y homogenea combination de los dos componentes fibrosos aqul implicados. Para ello es necesaria la aplicacion de metodos potentes de homogeneizacion como es la irradiation de ultrasonidos, que permiten deshacer de forma temporal los agregados de nanofibras de celulosa y del silicato fibroso facilitando la yuxtaposicion entre los grupos hidroxilos superficiales de ambos componentes fibrosos. Asl, geles acuosos de celulosa tratados con sepiolita o con suspensiones acuosas de sepiolita mediante metodos de mezclado convencionales porThe homogenization processes produce a breakdown of the fibrils of the two types of components causing their cross-linking and cross combination that gives rise to the composite material. The formation of nanocomposites requires an intimate and homogeneous combination of the two fibrous components involved here. For this, it is necessary to apply powerful homogenization methods such as ultrasound irradiation, which allow to temporarily undo the aggregates of cellulose nanofibers and fibrous silicate facilitating juxtaposition between the surface hydroxyl groups of both fibrous components. Asl, aqueous cellulose gels treated with sepiolite or with aqueous suspensions of sepiolite by conventional mixing methods by

11eleven

55

1010

15fifteen

20twenty

2525

3030

metodos mecanicos o sonomecanicos de baja energla, como agitacion magnetica, tratamiento en vortex o bano de ultrasonidos, no siempre conduce a suspensiones homogeneas que permitan preparar los composites de la invention. Solo metodos potentes de homogeneizacion como el uso de ultrasonidos de elevada energla produce la desagregacion de los paquetes de fibras de celulosa y del silicato fibroso favoreciendo su recombination y la formation del material composite. Con ultrasonidos de elevada energla, se consigue un hidrogel estable a partir de celulosa microcristalina y sepiolita con viscosidad elevada con valores aproximados a 5000 cP. Si se utiliza mezclado mecanico, tratamientos de vortex o bano con ultrasonidos se produce una sineresis inmediata con separacion de componentes (ver un ejemplo particular en la figura 1).Mechanical or sonomechanical methods of low energy, such as magnetic stirring, vortex treatment or ultrasonic bath, do not always lead to homogeneous suspensions that allow preparing the composites of the invention. Only powerful homogenization methods such as the use of high energy ultrasound produces the disaggregation of the cellulose fiber and fibrous silicate packages, favoring their recombination and the formation of the composite material. With ultrasound of high energy, a stable hydrogel is obtained from microcrystalline cellulose and sepiolite with high viscosity with approximate values of 5000 cP. If mechanical mixing, vortex or ultrasonic bath treatments are used, immediate syneresis occurs with component separation (see a particular example in Figure 1).

Por otro lado, hay que destacar que la palygorskita no forma geles estables mediante tratamientos de homogeneizacion como material aislado, sin embargo, sorprendentemente se ha encontrado que al mezclarlo con la celulosa y aplicar el procedimiento, en particular, el tratamiento sonomecanico, se permite la combination de ambos tipos de fibras produciendo hidrogeles estables del material composite de la invencion.On the other hand, it should be noted that palygorskite does not form stable gels through homogenization treatments as an isolated material, however, surprisingly it has been found that when mixed with cellulose and applying the procedure, in particular, the sonomechanical treatment, the combination of both types of fibers producing stable hydrogels of the composite material of the invention.

En una realization particular el procedimiento comprende la etapa adicional deIn a particular embodiment the method comprises the additional step of

c) secar el hidrogel estable preparado en la etapa b) procediendo a la elimination del agua,c) drying the stable hydrogel prepared in step b) by eliminating water,

El material composite, que tras el paso b) se puede encontrar en forma de hidrogel, puede ser conformado de modo que el material tras secarse en el paso c) se presente en una forma definida, como pueden ser bloques monollticos de dimensiones predeterminadas, pellculas de grosor variable, o espumas de distinta densidad.The composite material, which after step b) can be found in the form of a hydrogel, can be shaped so that the material after drying in step c) is present in a defined form, such as monolithic blocks of predetermined dimensions, films of variable thickness, or foams of different density.

En una realizacion particular el tratamiento de secado de la etapa c) del procedimiento se realiza mediante secado al aire, extraction forzada de agua a presion reducida, filtration, centrifugation, liofilizacion, procesos de secado supercrltico, pulverization o atomization, lechos fluidificados o fluidizados, ciclon de flujo de aire o gas inerte caliente. Siguiendo cualquiera de estos procedimientos, en el proceso de secado se desfavorece la recombinacion entre si de las fibras de celulosa de tamano submicrometrico debido a la interposition de las fibras minerales entre las fibras organicas.In a particular embodiment the drying treatment of step c) of the process is carried out by air drying, forced extraction of water under reduced pressure, filtration, centrifugation, lyophilization, supercritical drying processes, pulverization or atomization, fluidized or fluidized beds, Cyclone of air flow or hot inert gas. Following any of these procedures, in the drying process, recombination between submicrometric cellulose fibers is disadvantaged due to the interposition of the mineral fibers between the organic fibers.

55

1010

15fifteen

20twenty

2525

3030

3535

En una realization particular se incorporan aditivos organicos y/o inorganicos, en adelante el aditivo, para formar un compuesto ternario o de orden superior basado en el material composite.In a particular embodiment, organic and / or inorganic additives, hereinafter the additive, are incorporated to form a ternary or higher order compound based on the composite material.

En una realization mas particular el aditivo inorganico que se incorpora puede ser uno o varios de los elementos siguientes: una arcilla laminar o partlculas nano- o micro-metricas de nanotubos de carbono, nanofibras de carbono, de un metal, de un oxido, o de una sal metalica.In a more particular embodiment, the inorganic additive that is incorporated can be one or more of the following elements: a laminar clay or nano- or micro-metric particles of carbon nanotubes, carbon nanofibers, of a metal, of an oxide, or of a metal salt.

En una realization mas particular es posible incorporar nanopartlculas magneticas basadas en oxidos de hierro del tipo de la magnetita que confieren propiedades magneticas o superparamagneticas a los materiales composites. La capacidad de adsorcion de colorantes organicos solubles en agua por parte de la arcilla fibrosa puede ser igualmente aprovechada para incorporar este tipo de moleculas al sistema capaz de retener fuertemente este tipo de colorantes, aplicable para eliminar colorantes (contaminantes del agua).In a more particular embodiment it is possible to incorporate magnetic nanoparticles based on iron oxides of the magnetite type that confer magnetic or superparamagnetic properties to composites. The adsorption capacity of water-soluble organic dyes by fibrous clay can also be used to incorporate this type of molecule into the system capable of strongly retaining this type of dye, applicable to remove dyes (water contaminants).

En otra realization mas particular, el aditivo organico puede ser un colorante, un agente tensioactivo, o un material polimerico: la introduction de estos aditivos permitirla obtener nuevas propiedades del material.In another more particular embodiment, the organic additive can be a dye, a surfactant, or a polymeric material: the introduction of these additives allows it to obtain new properties of the material.

En otra realization particular, el material composite o los materiales ternarios o de orden superior basados en el mismo podrlan ser funcionalizados adicionalmente por reacciones qulmicas o por ensamblado a nanopartlculas de distinta naturaleza, ampliando su ambito de aplicaciones a dispositivos sensores, materiales con propiedades antimicrobianas, con comportamiento magnetico, luminiscentes, etc.In another particular embodiment, the composite material or ternary or higher order materials based on it could be additionally functionalized by chemical reactions or by assembling to nanoparticles of different nature, extending their scope of applications to sensor devices, materials with antimicrobial properties, with magnetic behavior, luminescent, etc.

El procedimiento permite generar materiales de composition hlbrida organica-inorganica con propiedades estructurales, texturales y de reactividad utiles para diversas aplicaciones, como adsorbentes, agentes espesantes, aditivos en alimentation, soportes de catalizadores, soportes de farmacos, soportes de enzimas, soportes de microorganismos, adsorbentes o reductores de olores, retardantes de llama y materiales autoextinguibles, aditivos de cementos, envasado de alimentos, ingenierla de tejidos, etc, y que ademas estan provistos de capacidad de funcionalizacion adicional por reacciones qulmicas o por ensamblado a nanopartlculas de distinta naturaleza lo que amplla su ambito de aplicaciones.The procedure allows the generation of organic-inorganic hybrid composition materials with structural, textural and reactivity properties useful for various applications, such as adsorbents, thickening agents, feed additives, catalyst supports, drug holders, enzyme supports, microorganism supports, adsorbents or odor reducers, flame retardants and self-extinguishing materials, cement additives, food packaging, tissue engineering, etc., and which are also provided with additional functional capacity by chemical reactions or by assembling nanoparticles of different nature which Expands its scope of applications.

55

1010

15fifteen

20twenty

2525

3030

3535

En otra realization particular, el material composite de la invention puede ser sometido a modificaciones quimicas para alterar deliberadamente sus propiedades estructurales y/o funcionales, particularmente se puede modificar mediante reacciones con silanos, epoxidos, isocianatos, dialdehidos o con cualquier otro reactivo de entrecruzamiento o agente de acoplamiento, mas particularmente modificando el composite por reacciones de silanizacion de las funciones hidroxilo del material, para aumentar el caracter hidrofobico del composite o conferirle una reactividad adicional.In another particular embodiment, the composite material of the invention can be subjected to chemical modifications to deliberately alter its structural and / or functional properties, particularly it can be modified by reactions with silanes, epoxides, isocyanates, dialdehydes or with any other cross-linking reagent or coupling agent, more particularly by modifying the composite by silanization reactions of the hydroxyl functions of the material, to increase the hydrophobic character of the composite or to confer additional reactivity.

El tercer objeto de la invention es el uso del material composite de la invention como adsorbente o absorbente, agente espesante, aditivo en alimentation, soporte de catalizadores, soporte de enzimas, adsorbente de olores, retardante de llama y material autoextinguible, aditivos de cemento, production de vino, embalaje de alimentos y papeles especiales como el nanopapel, entre otras aplicaciones.The third object of the invention is the use of the composite material of the invention as adsorbent or absorbent, thickening agent, feed additive, catalyst support, enzyme support, odor adsorbent, flame retardant and self-extinguishing material, cement additives, wine production, food packaging and special papers such as nano paper, among other applications.

A lo largo de la description y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras caracteristicas tecnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y caracteristicas de la invention se desprenderan en parte de la description y en parte de la practica de la invention. Los siguientes ejemplos se proporcionan a modo de ilustracion, y no se pretende que sean limitativos de la presente invention.Throughout the description and claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples are provided by way of illustration, and are not intended to be limiting of the present invention.

BREVE DESCRIPCION DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES

Figura 1: (Izquierda) Material composite obtenido tras la etapa b) en forma de hidrogel estable de viscosidad elevada producido por tratamiento de sepiolita y celulosa microcristalina o microcelulosa con ultrasonidos de elevada energia; (Derecha) Mezclado mecanico de sepiolita y celulosa microcristalina que da lugar a una sineresis inmediata con separacion de componentes.Figure 1: (Left) Composite material obtained after stage b) in the form of a stable high viscosity hydrogel produced by treatment of sepiolite and microcrystalline cellulose or microcellulose with high energy ultrasound; (Right) Mechanical mixing of sepiolite and microcrystalline cellulose that results in immediate syneresis with component separation.

Figura 2: Imagenes obtenidas por microscopia tipo FE-SEM en las que se muestra el material composite de la invention formado a partir de fibras de sepiolita (A) y de celulosa microcristalina (B) con un contenido 50:50 sepiolita:celulosa microcristalina (C).Figure 2: Images obtained by FE-SEM type microscopy showing the composite material of the invention formed from sepiolite (A) and microcrystalline cellulose (B) fibers with a 50:50 sepiolite content: microcrystalline cellulose ( C).

Figura 3: (Izquierda) Material composite formando un hidrogel estable de alta viscosidad obtenido tras la etapa b) producido por tratamiento de palygorskita y celulosa microcristalinaFigure 3: (Left) Composite material forming a stable high viscosity hydrogel obtained after stage b) produced by palygorskite and microcrystalline cellulose treatment

55

1010

15fifteen

20twenty

2525

3030

3535

con ultrasonidos de elevada energla; (Derecha) Mezclado mecanico que da lugar a una sineresis inmediata con separation de componentes.with high energy ultrasound; (Right) Mechanical mixing that results in immediate syneresis with separation of components.

Figura 4: (Izquierda) Pellcula de sepiolita:nanocelulosa (proportion 34:66) sometida en la etapa b) a un tratamiento de homogeneizacion con ultrasonidos de alta energla. (Derecha) Pellcula de sepiolita:nanocelulosa (proporcion 34:66) sometida en la etapa b) a un tratamiento de homogenization utilizando un vortex.Figure 4: (Left) Sepiolite film: nanocellulose (proportion 34:66) submitted in stage b) to a homogenization treatment with high energy ultrasound. (Right) Sepiolite film: nanocellulose (ratio 34:66) submitted in stage b) to a homogenization treatment using a vortex.

Figura 5: (Arriba, Izquierda) Imagen obtenida por microscopla tipo FE-SEM del material composite sepiolita:nanocelulosa en proporcion 50:50, e imagenes obtenidas por analisis de energla dispersiva de rayos X (EDX) en las que se muestra la distribution en el material de los elementos Si y Mg, correspondientes a la sepiolita, y de C, presente en la nanocelulosa.Figure 5: (Above, Left) Image obtained by FE-SEM type microscope of the sepiolite composite material: nanocellulose in 50:50 ratio, and images obtained by X-ray dispersive energy analysis (EDX) in which the distribution in the material of the elements Si and Mg, corresponding to sepiolite, and of C, present in the nanocellulose.

Figura 6: Espectros FTIR (region de 3760 a 3650 cm-1) de pellculas de sepiolita (A), nanocelulosa (B) y del material composite de la invention con un contenido 50:50 sepiolita:nanocelulosa (C).Figure 6: FTIR spectra (region 3760 to 3650 cm-1) of sepiolite (A), nanocellulose (B) and composite film of the invention with a 50:50 sepiolite: nanocellulose (C) content.

Figura 7: Imagen FE-SEM de una pellcula de material composite sepiolita:nanocelulosa 50:50 integrando nanotubos de carbono multipared (20% en peso con respecto al contenido en sepiolita).Figure 7: FE-SEM image of a sepiolite composite film: 50:50 nanocellulose integrating multipared carbon nanotubes (20% by weight with respect to the sepiolite content).

EJEMPLOS DEMOSTRATIVOS DE LA INVENCIONDEMOSTRATIVE EXAMPLES OF THE INVENTION

Ejemplo 1. Material composite hecho con microcelulosa y sepiolita mediante homogeneizacion sonomecanicaExample 1. Composite material made with microcellulose and sepiolite by sonomechanical homogenization

En este ejemplo se ilustra la fabrication del material composite, en el caso de que la arcilla fibrosa sea sepiolita y la celulosa desfibrada microcelulosa con una proporcion 50:50.This example illustrates the fabrication of the composite material, in case the fibrous clay is sepiolite and the cellulose defibrated microcellulose with a 50:50 ratio.

En un volumen de 10 ml de agua desionizada se incorporan 0,2 g de sepiolita comercializada por TOLSA S.A. como Pangel S9 con 0,2 g de celulosa microcristalina comercializada por Sigma-Aldrich (referencia: 435236, numero CAS 9004-34-6), mezclando estos componentes con ayuda de un equipo Vortex Vibra MixR OVAN durante un tiempo comprendido entre 15 segundos y un minuto. La suspension resultante se homogeniza sometiendola a un tratamiento de ultrasonidos irradiando la mezcla con 1 kJ en pulsos de 10 segundos de irradiation seguidos por 10 segundos de reposo. Para la irradiation se utilizoIn a volume of 10 ml of deionized water 0.2 g of sepiolite marketed by TOLSA S.A. are incorporated. as Pangel S9 with 0.2 g of microcrystalline cellulose marketed by Sigma-Aldrich (reference: 435236, CAS number 9004-34-6), mixing these components with the help of a Vortex Vibra MixR OVAN equipment for a time between 15 seconds and one minute. The resulting suspension is homogenized by subjecting it to an ultrasound treatment by irradiating the mixture with 1 kJ in pulses of 10 seconds of irradiation followed by 10 seconds of rest. For irradiation was used

15fifteen

55

1010

15fifteen

20twenty

2525

3030

3535

un equipo de ultrasonidos SONICS Vibracell VCX750 provisto de una punta Al-V-Ti de 13 mm de diametro, que opera a una frecuencia de resonancia de 20 kHz. La dispersion obtenida se presenta en forma de hidrogel consistente y espeso que se mantiene estable durante varios dlas con ausencia de sineresis frente a la utilization de mezclado mecanico en la etapa b) de los dos materiales (Figura 1). La viscosidad del hidrogel medida a 25 °C y una velocidad de 100 rpm con un equipo Brookfield, empleando el adaptador de volumenes pequenos provisto de un husillo SC4-21, es de aproximadamente 5000 cP, mientras que las viscosidades que presentaban los componentes por separado, tratados igualmente con ultrasonidos, antes de la mezcla y en las mismas condiciones de medida fueron inferiores a 1cP (por debajo del llmite de medida del equipo). Una vez secada esta dispersion en estufa a presion atmosferica a 40°C, se recoge un solido compacto de tipo monolltico, que constituye el material composite de la invention. La Figura 2 muestra el aspecto fibroso del material composite resultante observado directamente por microscopla electronica de barrido - emision de campo (FE-SEM) sin tratamientos de metalizacion de la muestra. En la Figura 2.C se observa como las fibras de sepiolita aparecen homogeneamente ensambladas en el composite.A SONICS Vibracell VCX750 ultrasonic device equipped with a 13 mm diameter Al-V-Ti tip, operating at a resonance frequency of 20 kHz. The dispersion obtained is presented in the form of a thick and consistent hydrogel that remains stable for several days with no syneresis against the use of mechanical mixing in stage b) of the two materials (Figure 1). The viscosity of the hydrogel measured at 25 ° C and a speed of 100 rpm with Brookfield equipment, using the small volume adapter provided with a SC4-21 spindle, is approximately 5000 cP, while the viscosities presented by the components separately , also treated with ultrasound, before mixing and under the same measurement conditions were lower than 1cP (below the equipment measurement limit). Once this dispersion is dried in an atmospheric pressure oven at 40 ° C, a compact solid of the monolithic type is collected, which constitutes the composite material of the invention. Figure 2 shows the fibrous appearance of the resulting composite material observed directly by scanning electron microscopy - field emission (FE-SEM) without sample metallization treatments. Figure 2.C shows how sepiolite fibers appear homogeneously assembled in the composite.

Los espectros infrarrojo (FTIR) del material composite indican la perturbation de los grupos hidroxilo de los componentes fibrosos, ya que se desplazan de frecuencia con respecto a los mismos espectros de los materiales de partida antes de su combination. Especialmente las vibraciones de tension O-H de los grupos silanoles de la sepiolita que aparecen a alrededor de 3720 cm-1 desaparecen del espectro lo que se atribuye a una interaction mediante enlaces de hidrogeno que conlleva una reduction de la frecuencia de las bandas de absorcion IR que se desplazan en el espectro solapando con otras bandas de mayor intensidad atribuidas a las vibraciones de O-H de moleculas de agua inherentes al silicato (vease J. L. Ahlrichs, et al., Clays and Clay Minerals, 23 (1975), 119; E. Ruiz-Hitzky, Journal of Materials Chemistry, 11, (2001), 86-91). Esta observation se puede interpretar en el presente caso como una perturbacion por interaccion de los grupos silanoles superficiales de la sepiolita con los grupos hidroxilo de las fibras de microcelulosa.The infrared spectra (FTIR) of the composite material indicate the perturbation of the hydroxyl groups of the fibrous components, since they move frequently with respect to the same spectra of the starting materials before their combination. Especially the vibrations of tension OH of the silanoles groups of the sepiolite that appear at around 3720 cm-1 disappear from the spectrum which is attributed to an interaction through hydrogen bonds that leads to a reduction in the frequency of the IR absorption bands that they move in the spectrum overlapping with other bands of greater intensity attributed to the OH vibrations of water molecules inherent in silicate (see JL Ahlrichs, et al., Clays and Clay Minerals, 23 (1975), 119; E. Ruiz- Hitzky, Journal of Materials Chemistry, 11, (2001), 86-91). This observation can be interpreted in the present case as a disturbance by interaction of the surface silanole groups of the sepiolite with the hydroxyl groups of the microcellulose fibers.

La superficie especlfica (BET, N2) del composite obtenido es 160 m2/g y la capacidad de adsorcion de agua del composite efectuada con un equipo Aquadyne DVS de Quantachrome Instruments es del 33%, lo cual indica su idoneidad para su uso como adsorbente, soporte de catalizadores, enzimas, microorganismos, etc.The specific surface area (BET, N2) of the composite obtained is 160 m2 / g and the water adsorption capacity of the composite made with Quantachrome Instruments Aquadyne DVS equipment is 33%, which indicates its suitability for use as adsorbent, support of catalysts, enzymes, microorganisms, etc.

55

1010

15fifteen

20twenty

2525

3030

3535

Ejemplo 2. Material composite hecho con microcelulosa y paly gorskita mediante homogeneizacion sonomecanicaExample 2. Composite material made with microcellulose and paly gorskite by sonomechanical homogenization

En este ejemplo se ilustra la fabricacion del material composite, en el caso de que la arcilla fibrosa sea palygorskita y la celulosa desfibrada microcelulosa.In this example, the manufacturing of the composite material is illustrated, in case the fibrous clay is palygorskite and the microcellulose defibrated cellulose.

Se procede igual que en el Ejemplo 1 sustituyendo la sepiolita por palygorskita proveniente del Estado de Piaul (Brasil) caracterizada segun referencia: dos Santos Soares et al., Journal of Thermal Analysis and Calorimetry, 113, 2013, 551-555, hasta obtener un hidrogel viscoso que se mantiene estable durante varios dlas con ausencia de sineresis (Figura 3). La viscosidad del hidrogel medida a 25 °C y una velocidad de 100 rpm con un equipo Brookfield, empleando el adaptador de volumenes pequenos provisto de un husillo SC4-21, es de 26,5 cP, mientras que las viscosidades que presentaban los componentes por separado, tratados igualmente con ultrasonidos, antes de la mezcla y en las mismas condiciones de medida fueron inferiores a 1 cP (por debajo del llmite de medida del equipo).The procedure is the same as in Example 1, replacing sepiolite with palygorskite from the State of Piaul (Brazil) characterized by reference: two Santos Soares et al., Journal of Thermal Analysis and Calorimetry, 113, 2013, 551-555, until obtaining a viscous hydrogel that remains stable for several days with absence of syneresis (Figure 3). The viscosity of the hydrogel measured at 25 ° C and a speed of 100 rpm with a Brookfield equipment, using the small volume adapter provided with a SC4-21 spindle, is 26.5 cP, while the viscosities presented by the components by separately, treated equally with ultrasound, before mixing and under the same measurement conditions were less than 1 cP (below the equipment measurement limit).

Ejemplo 3. Material composite hecho con nanocelulosa y sepiolita mediante homogeneizacion sonomecanicaExample 3. Composite material made with nanocellulose and sepiolite by sonomechanical homogenization

En este ejemplo se ilustra la fabricacion del material composite, en el caso de que la arcilla fibrosa sea sepiolita y la celulosa desfibrada sea nanocelulosa.In this example, the manufacturing of the composite material is illustrated, in case the fibrous clay is sepiolite and the defibrated cellulose is nanocellulose.

En un volumen de 10 ml de agua desionizada se incorporan 0,05 g de sepiolita comercializada por TOLSA S.A. como Pangel S9 y se anade una cantidad entre 0,51 g y 5,1 g de un hidrogel de nanocelulosa procedente de pulpa de eucaliptus suministrada por LEPAMAP (Laboratori d’Enginyeria Paperera i Materials Polimers de la Universidad de Girona
http://lepamap.udg.edu/cat/index.htm). Esta celulosa se presenta como un hidrogel conteniendo aproximadamente un 1% en masa de celulosa. Se mezclan estos componentes con ayuda de un equipo Vortex Vibra MixR OVAN durante un tiempo comprendido entre 15 segundos y un minuto. La suspension resultante se somete a un tratamiento de ultrasonidos irradiando la mezcla con 1 kJ en pulsos de 10 segundos de irradiacion seguidos por 10 segundos de reposo. Para la irradiacion se utilizo un equipo de ultrasonidos SONICS Vibracell VCX750 provisto de una punta Al-V-Ti de 13 mm de diametro, que opera a una frecuencia de resonancia de 20 kHz. La dispersion obtenida se presenta en forma de hidrogel consistente que se mantiene estable durante varios dlas con ausencia de sineresis. La viscosidad de estos geles medida a 25 °C y una velocidad de 100 rpm con un equipo
In a volume of 10 ml of deionized water, 0.05 g of sepiolite marketed by TOLSA SA as Pangel S9 are incorporated and an amount between 0.51 g and 5.1 g of a nanocellulose hydrogel from eucalyptus pulp supplied by LEPAMAP (Laboratori d'Enginyeria Paperera i Materials Polimers of the University of Girona
http://lepamap.udg.edu/cat/index.htm). This cellulose is presented as a hydrogel containing approximately 1% by mass of cellulose. These components are mixed with the help of a Vortex Vibra MixR OVAN device for a time between 15 seconds and one minute. The resulting suspension is subjected to an ultrasound treatment by irradiating the mixture with 1 kJ in pulses of 10 seconds of irradiation followed by 10 seconds of rest. For the irradiation, a SONICS Vibracell VCX750 ultrasonic device with an 13 mm diameter Al-V-Ti tip was used, operating at a resonance frequency of 20 kHz. The dispersion obtained is presented in the form of a consistent hydrogel that remains stable for several days with no syneresis. The viscosity of these gels measured at 25 ° C and a speed of 100 rpm with equipment

1717

55

1010

15fifteen

20twenty

2525

3030

3535

Brookfield, empleando el adaptador de volumenes pequenos provisto de un husillo SC4-21, varla entre 6,5 cP y 159 cP, mientras que las viscosidades que presentaban los componentes por separado antes de la mezcla y en las mismas condiciones de medida fueron de <1cP (por debajo del llmite de medida del equipo) para la dispersion de sepiolita tratada con ultrasonidos y de 203 cP para el hidrogel de nanocelulosa al 0,5% (p/v) y tratada tambien con ultrasonidos. Los geles sepiolita-nanocelulosa fueron conformados en forma de pellculas mediante filtracion a vaclo sobre una membrana Millipore (VSWP de diametro de poro 0,025 micrometros), obteniendose pellculas homogeneas de espesor variable dependiendo del volumen de dispersion filtrada. El material composite resultante secado a presion atmosferica a 40°C se presenta como un material agregado de aspecto muy homogeneo. La Figura 4 muestra dos pellculas preparadas a partir del hidrogel que contiene una cantidad relativa en peso de sepiolita:nanocelulosa de 34:66, al que se ha aplicado o no el tratamiento sonomecanico. La Figura 5 muestra el aspecto fibroso del material composite resultante del gel sepiolita-nanocelulosa con cantidades relativas en peso de 50:50 observado directamente por microscopla electronica de barrido - emision de campo (FE- SEM) sin tratamientos de metalizacion de la muestra. Se muestra tambien en la figura la distribution homogenea en todo el material de los elementos Si y Mg, correspondientes a la sepiolita, y de C presente en las fibras de nanocelulosa, obtenida por analisis de energla dispersiva de rayos X (EDX). Los espectros infrarrojo (FTIR) mostrados en la Figura 6 indican la perturbation de los grupos hidroxilo de los componentes fibrosos, ya que se desplazan de frecuencia con respecto a los mismos antes de su combination. Especialmente las vibraciones de tension O-H de los grupos silanoles de la sepiolita que aparecen a alrededor de 3720 cm-1, desaparecen del espectro lo que se interpreta como una perturbacion por interaction con los grupos hidroxilo de las fibras de nanocelulosa.Brookfield, using the small volume adapter provided with a SC4-21 spindle, varies between 6.5 cP and 159 cP, while the viscosities presented by the components separately before mixing and under the same measurement conditions were < 1cP (below the equipment measurement limit) for the sepiolite dispersion treated with ultrasound and 203 cP for the 0.5% nanocellulose hydrogel (w / v) and also treated with ultrasound. The sepiolite-nanocellulose gels were formed in the form of films by vacuum filtration on a Millipore membrane (VSWP with a pore diameter of 0.025 micrometers), obtaining homogeneous films of varying thickness depending on the volume of dispersed filtration. The resulting composite material dried at atmospheric pressure at 40 ° C is presented as an aggregate material with a very homogeneous appearance. Figure 4 shows two films prepared from the hydrogel containing a relative amount by weight of sepiolite: nanocellulose of 34:66, to which the sonomechanical treatment has been applied or not. Figure 5 shows the fibrous appearance of the composite material resulting from the sepiolite-nanocellulose gel with relative amounts by weight of 50:50 observed directly by scanning electron microscopy - field emission (FE-SEM) without sample metallization treatments. Also shown in the figure is the homogeneous distribution throughout the material of the Si and Mg elements, corresponding to sepiolite, and of C present in the nanocellulose fibers, obtained by X-ray dispersive energy analysis (EDX). The infrared spectra (FTIR) shown in Figure 6 indicate the perturbation of the hydroxyl groups of the fibrous components, since they move frequently with respect to them before their combination. Especially the vibrations of tension O-H of the silanoles groups of the sepiolite that appear at around 3720 cm-1, disappear from the spectrum which is interpreted as a disturbance by interaction with the hydroxyl groups of the nanocellulose fibers.

Ejemplo 4. Caracterizacion me canica del material composit e que co mprende nanocelulosa y sepiolita preparado mediante homogeneizacion sonomecanicaExample 4. Mechanical characterization of composite material that comprises nanocellulose and sepiolite prepared by sonomechanical homogenization

En este ejemplo se indican varias de las propiedades que presenta el material composite.In this example, several of the properties of the composite material are indicated.

Se procede como en el Ejemplo 3 pero combinando en este caso la dispersion de sepiolita (0,4 g en 20 ml de agua desionizada) con 20,2 g del hidrogel de nanocelulosa, homogeneizando por medio de un equipo Vortex Vibra MixR OVAN durante 1 minuto, seguido de un tratamiento con un equipo Ultra-Turrax® IKA@ T25 digital durante 5 minutos a velocidad 3. Se prosigue a continuation con la homogeneizacion mediante irradiation de ultrasonidos con un equipo SONICS Vibracell VCX750, operando como se describe en elProceed as in Example 3 but in this case combining the dispersion of sepiolite (0.4 g in 20 ml of deionized water) with 20.2 g of the nanocellulose hydrogel, homogenizing by means of a Vortex Vibra MixR OVAN equipment for 1 minute, followed by a treatment with a digital Ultra-Turrax® IKA @ T25 for 5 minutes at speed 3. The homogenization is then continued with ultrasonic irradiation with a SONICS Vibracell VCX750 device, operating as described in the

1818

55

1010

15fifteen

20twenty

2525

3030

3535

Ejemplo 1. El material composite resultante secado en forma de pellcula a presion atmosferica a 40°C y humedad relativa del 89% se presenta como un material agregado de aspecto muy homogeneo. Los espectros infrarrojos de estos composites indican una perturbacion de grupos hidroxilo similar a lo observado en el Ejemplo 3, confirmando la interaction entre ambos tipos de nanofibras. Las pellculas se cortan en forma de tiras de 1,5 cm de ancho por 8 cm de largo para su caracterizacion mecanica en un equipo de ensayos universales Instron modelo 3345. El modulo de Young de las pellculas del composite sepiolita-nanocelulosa 50:50 fue de 1,37 GPa. Este valor indica la estabilidad y homogeneidad del material formadoExample 1. The resulting composite material dried in the form of a film at atmospheric pressure at 40 ° C and relative humidity of 89% is presented as an aggregate material of very homogeneous appearance. The infrared spectra of these composites indicate a disturbance of hydroxyl groups similar to that observed in Example 3, confirming the interaction between both types of nanofibers. The films are cut in the form of strips 1.5 cm wide by 8 cm long for mechanical characterization in an Instron model 3345 universal testing equipment. Young's modulus of the 50:50 sepiolite-nanocellulose composite films was of 1.37 GPa. This value indicates the stability and homogeneity of the material formed

Ejemplo 5. Material c omposite hecho con nanocelulosa y sepi olita incorporando nanotubos de carbono multipared.Example 5. Material c omposite made with nanocellulose and sepi olita incorporating multipared carbon nanotubes.

En este ejemplo se ilustra la fabrication de compuestos ternarios del material composite con caracterlsticas mejoradas, incorporando nanotubos de carbono multipared.This example illustrates the manufacture of ternary composites of composite material with improved characteristics, incorporating multipared carbon nanotubes.

Se procede en este caso mezclando 0,2 g de sepiolita en 10 ml de agua desionizada con 0,05 g de nanotubos de carbono multipared crecidos por el metodo CVD con un diametro promedio de 10 nm y una longitud promedio de 1 a 2 pm suministrados por la empresa Dropsens S.L. La mezcla se somete a un tratamiento de ultrasonidos irradiandola hasta aplicar una energla total de 1 kJ, en pulsos de 10 segundos de irradiation seguidos por 10 segundos de reposo, con un equipo de ultrasonidos SONICS Vibracell VCX750, como en el Ejemplo 1. A dicha mezcla se anaden 2.018 g del hidrogel de nanocelulosa y se procede, como en el Ejemplo 3, a una homogeneizacion con un equipo Vortex Vibra MixR OVAN durante 1 minuto. La mezcla resultante se somete nuevamente a un tratamiento con ultrasonidos como en el Ejemplo 3. La dispersion resultante se filtra a vaclo en un filtro Millipore (VSWP de diametro de poro 0,025 micrometros) obteniendose composites sepiolita:nanotubos de carbono:nanocelulosa en la proportion en peso 74:18,5:7,5, en forma de pellcula una vez secado el material hasta peso constante en estufa a presion atmosferica a 40°C. La Figura 7 muestra la imagen FE-SEM de una de estas pellculas donde se aprecia la homogeneidad de los tres tipos de nanopartlculas integrantes del material composite. La resistencia electrica de estas pellculas determinada por el metodo de van der Paw (metodo de 4 puntas) da un valor aproximado de 10 Ohmios, lo que supone una conductividad apreciable (1,8 S/cm) para un contenido en nanotubos de carbono del 18,5% en peso (con respecto al peso total del composite) indicado su idoneidad para uso en dispositivos electroqulmicos, como por ejemplo sensores y biosensores, electrocatalisis, etc.In this case, 0.2 g of sepiolite are mixed in 10 ml of deionized water with 0.05 g of multipared carbon nanotubes grown by the CVD method with an average diameter of 10 nm and an average length of 1 to 2 pm supplied by the company Dropsens SL The mixture is subjected to an ultrasonic treatment by irradiating it until a total energy of 1 kJ is applied, in pulses of 10 seconds of irradiation followed by 10 seconds of rest, with a SONICS Vibracell VCX750 ultrasound equipment, as in Example 1. To said 2018 g of the nanocellulose hydrogel are added and, as in Example 3, a homogenization is carried out with a Vortex Vibra MixR OVAN for 1 minute. The resulting mixture is again subjected to an ultrasonic treatment as in Example 3. The resulting dispersion is filtered under vacuum in a Millipore filter (0.025 micrometer pore diameter VSWP) obtaining sepiolite composites: carbon nanotubes: nanocellulose in the proportion in weight 74: 18.5: 7.5, in the form of a film once the material has dried to a constant weight in an oven at atmospheric pressure at 40 ° C. Figure 7 shows the FE-SEM image of one of these films where the homogeneity of the three types of nanoparticles integrating the composite material can be seen. The electrical resistance of these films determined by the van der Paw method (4-pointed method) gives an approximate value of 10 Ohms, which implies an appreciable conductivity (1.8 S / cm) for a carbon nanotube content of the 18.5% by weight (with respect to the total weight of the composite) indicated its suitability for use in electrochemical devices, such as sensors and biosensors, electrocatalysis, etc.

1919

Claims (26)

55 1010 15fifteen 20twenty 2525 3030 3535 REIVINDICACIONES 1. Material composite que comprende celulosa desfibrada y arcilla fibrosa cuyas fibrillas estan enlazadas nanometricamente.1. Composite material comprising defibrated cellulose and fibrous clay whose fibrils are nanometrically bonded. 2. Material composite segun la reivindicacion 1 caracterizado por que la celulosa desfibrada que forma el material composite comprende microcelulosa.2. Composite material according to claim 1 characterized in that the defibrated cellulose that forms the composite material comprises microcellulose. 3. Material composite segun la reivindicacion 1 caracterizado por que la celulosa desfibrada que forma el material composite comprende nanocelulosa.3. Composite material according to claim 1 characterized in that the defibrated cellulose that forms the composite material comprises nanocellulose. 4. Material composite segun cualesquiera de las reivindicaciones 1 a 3 caracterizado por que la arcilla fibrosa es sepiolita.4. Composite material according to any of claims 1 to 3 characterized in that the fibrous clay is sepiolite. 5. Material composite segun cualesquiera de las reivindicaciones 1 a 4 caracterizado por que la arcilla fibrosa es palygorskita.5. Composite material according to any of claims 1 to 4 characterized in that the fibrous clay is palygorskite. 6. Material composite segun cualesquiera de las reivindicaciones 1 a 5 caracterizado por que las cantidades relativas en peso de arcilla fibrosa:nanocelulosa estan entre 91:9 y 2:98, mas particularmente entre 50:50 y 34:66.6. Composite material according to any of claims 1 to 5 characterized in that the relative amounts by weight of fibrous clay: nanocellulose are between 91: 9 and 2:98, more particularly between 50:50 and 34:66. 7. Material composite segun cualesquiera de las reivindicaciones 1 a 6 caracterizado por que las cantidades relativas en peso de arcilla fibrosa:microcelulosa estan entre 40:60 y 60:40, mas particularmente en la proporcion 50:50.7. Composite material according to any of claims 1 to 6 characterized in that the relative amounts by weight of fibrous clay: microcellulose are between 40:60 and 60:40, more particularly in the 50:50 ratio. 8. Material composite segun cualesquiera de las reivindicaciones 1 a 7 caracterizado por que la celulosa desfibrada es de origen vegetal o microbiano, de algas o de residuos lignocelulosicos reciclados.8. Composite material according to any of claims 1 to 7 characterized in that the defibrated cellulose is of plant or microbial origin, of algae or recycled lignocellulosic residues. 9. Procedimiento de preparation del material composite definido en las reivindicaciones 1 a 8 que comprende las siguientes etapas:9. Preparation process of the composite material defined in claims 1 to 8 comprising the following steps: a) mezclar en agua los dos componentes fibrosos, arcilla y celulosa desfibrada en un mismo recipiente,a) mix in water the two fibrous components, clay and cellulose defibrated in the same container, b) homogeneizar fuertemente la mezcla en el medio acuoso hasta obtener un hidrogel estable.b) strongly homogenize the mixture in the aqueous medium until a stable hydrogel is obtained. 55 1010 15fifteen 20twenty 2525 3030 3535 10. Procedimiento segun la reivindicacion 9 donde los materiales de partida se mezclan simultaneamente de manera directa a partir de material comercial o bien se preparan previamente a la mezcla.10. Method according to claim 9 wherein the starting materials are mixed simultaneously directly from commercial material or are prepared before mixing. 11. Procedimiento segun cualesquiera de las reivindicaciones 9 a 10 en el que en el paso a) se utilizan mezcladores mecanicos para poner en suspension los materiales de partida.11. Method according to any of claims 9 to 10 wherein in step a) mechanical mixers are used to suspend the starting materials. 12. Procedimiento segun cualesquiera de las reivindicaciones 9 a 11 caracterizado por que la homogeneizacion de la etapa b) se realiza mediante un homogeneizador de alta cizalla y presion, por tratamiento en un microfluidificador o por aplicacion de un tratamiento sonomecanico mediante ultrasonidos.12. Method according to any of claims 9 to 11 characterized in that the homogenization of step b) is carried out by means of a high shear and pressure homogenizer, by treatment in a microfluidizer or by application of a sonomechanical treatment by ultrasound. 13. Procedimiento segun cualesquiera de las reivindicaciones 9 a 12 donde la13. Method according to any of claims 9 to 12 wherein the homogeneizacion se realiza por tratamiento sonomecanico utilizando ultrasonidos de alta energla utilizando cavitadores de puntas metalicas o equipos con sonotrodos.Homogenization is performed by sonomechanical treatment using high-energy ultrasound using metal tip caviters or equipment with sonotrodes. 14. Procedimiento segun cualesquiera de las reivindicaciones 9 a 13 donde la14. Method according to any of claims 9 to 13 wherein the homogeneizacion se realiza en modo estatico y/o continuo.homogenization is performed in static and / or continuous mode. 15. Procedimiento segun cualesquiera de las reivindicaciones 9 a 14 caracterizado por que la irradiacion ultrasonica se efectua de forma pulsada, preferiblemente la cantidad de ultrasonidos irradiada se encuentra en un intervalo entre 100 J y 5000 J por 25 gramos de dispersion, y aun mas preferiblemente la irradiacion de ultrasonidos que se realiza de forma clclica en pulsos de 5 a 20 segundos de irradiacion, seguidos de 5 a 20 segundos de reposo.15. Method according to any of claims 9 to 14 characterized in that the ultrasonic irradiation is carried out in a pulsed manner, preferably the amount of irradiated ultrasound is in a range between 100 J and 5000 J per 25 grams of dispersion, and even more preferably the ultrasound irradiation that is performed in a cyclic manner in pulses of 5 to 20 seconds of irradiation, followed by 5 to 20 seconds of rest. 16. Procedimiento segun cualesquiera de las reivindicaciones 9 a 15 caracterizado por que comprende la etapa adicional de:16. Method according to any of claims 9 to 15 characterized in that it comprises the additional step of: c) secar el hidrogel estable preparado en la etapa b) procediendo a la elimination del agua.c) drying the stable hydrogel prepared in step b) by eliminating water. 17. Procedimiento segun la reivindicacion 16 donde tras el paso b) el hidrogel se conforma de modo que tras secarse en el paso c) se presente en una forma definida, como son bloques monollticos de dimensiones predeterminadas, pellculas de grosor variable, o espumas de distinta densidad.17. Method according to claim 16 wherein after step b) the hydrogel is formed such that after drying in step c) it is presented in a defined form, such as monolithic blocks of predetermined dimensions, films of varying thickness, or foams of different density 55 1010 15fifteen 20twenty 2525 3030 3535 18. Procedimiento segun cualesquiera de las reivindicaciones 16 a 17 donde el secado de la etapa c) se realiza mediante secado al aire, extraction forzada de agua a presion reducida, filtration, centrifugation, liofilizacion, procesos de secado supercrltico, pulverization o atomization, lechos fluidificados o fluidizados, ciclon de flujo de aire o gas inerte caliente.18. Method according to any of claims 16 to 17 wherein the drying of step c) is carried out by air drying, forced extraction of water under reduced pressure, filtration, centrifugation, lyophilization, supercritical drying processes, pulverization or atomization, beds fluidized or fluidized, air flow cyclone or hot inert gas. 19. Procedimiento segun cualesquiera de las reivindicaciones 9 a 18 caracterizado por incorporar aditivos organicos y/o inorganicos, para formar un compuesto ternario o de orden superior basado en el material composite.19. Method according to any of claims 9 to 18 characterized by incorporating organic and / or inorganic additives, to form a ternary or higher order compound based on the composite material. 20. Procedimiento segun la reivindicacion 19 caracterizado por que el aditivo inorganico que se incorpora es uno o varios de los elementos siguientes: una arcilla laminar o partlculas nano- o micro-metricas de nanotubos de carbono, nanofibras de carbono, de un metal, de un oxido, o de una sal metalica.20. Method according to claim 19 characterized in that the inorganic additive that is incorporated is one or more of the following elements: a laminar clay or nano- or micro-metric particles of carbon nanotubes, carbon nanofibers, of a metal, of an oxide, or a metal salt. 21. Procedimiento segun la reivindicacion 20 donde se incorporan nanotubos de carbono.21. Method according to claim 20 wherein carbon nanotubes are incorporated. 22. Procedimiento segun la reivindicacion 20 donde se incorporan nanopartlculas magneticas basadas en oxidos de hierro del tipo de la magnetita.22. Method according to claim 20 wherein magnetic nanoparticles based on iron oxides of the magnetite type are incorporated. 23. Procedimiento segun la reivindicacion 19 donde el aditivo organico que se incorpora es uno o varios de los elementos siguientes: un colorante, un agente tensioactivo, o un material polimerico.23. Method according to claim 19 wherein the organic additive that is incorporated is one or more of the following elements: a dye, a surfactant, or a polymeric material. 24. Procedimiento segun cualesquiera de las reivindicaciones 9 a 23 donde el material composite y/o los materiales ternarios o de orden superior basados en el mismo son funcionalizados adicionalmente por reacciones qulmicas o por ensamblado a nanopartlculas de distinta naturaleza.24. Method according to any of claims 9 to 23 wherein the composite material and / or ternary or higher order materials based thereon are further functionalized by chemical reactions or by assembling to nanoparticles of different nature. 25. Procedimiento segun cualesquiera de las reivindicaciones 9 a 24 donde el material composite es sometido a modificaciones qulmicas para alterar deliberadamente sus propiedades estructurales y/o funcionales, particularmente se modifica mediante reacciones con silanos, epoxidos, isocianatos, dialdehidos o con cualquier otro reactivo de entrecruzamiento o agente de acoplamiento, mas particularmente modificando el composite por reacciones de silanizacion de las funciones hidroxilo del material.25. Method according to any of claims 9 to 24 wherein the composite material is subjected to chemical modifications to deliberately alter its structural and / or functional properties, particularly modified by reactions with silanes, epoxides, isocyanates, dialdehydes or with any other reagent of crosslinking or coupling agent, more particularly by modifying the composite by silanization reactions of the hydroxyl functions of the material. 26. Uso del material composite definido en cualesquiera la reivindicacion 1 a 8 como absorbente, adsorbente, agente espesante, aditivo en alimentacion, soporte de catalizadores, soporte de enzimas, retardante de llama y material autoextinguible, aditivos de cemento, produccion de vino, embalaje de alimentos y papeles especiales como el 5 nanopapel.26. Use of the composite material defined in any one of claims 1 to 8 as absorbent, adsorbent, thickening agent, feed additive, catalyst support, enzyme support, flame retardant and self-extinguishing material, cement additives, wine production, packaging of food and special papers such as 5 nano paper.
ES201431000A 2014-07-03 2014-07-03 COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE Expired - Fee Related ES2558472B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201431000A ES2558472B1 (en) 2014-07-03 2014-07-03 COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE
PCT/ES2015/070506 WO2016001466A1 (en) 2014-07-03 2015-06-30 Composite material of nanocellulose and fibrous clays, method of production and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201431000A ES2558472B1 (en) 2014-07-03 2014-07-03 COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE

Publications (2)

Publication Number Publication Date
ES2558472A1 ES2558472A1 (en) 2016-02-04
ES2558472B1 true ES2558472B1 (en) 2016-11-16

Family

ID=55018491

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201431000A Expired - Fee Related ES2558472B1 (en) 2014-07-03 2014-07-03 COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE

Country Status (2)

Country Link
ES (1) ES2558472B1 (en)
WO (1) WO2016001466A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921805A (en) * 2019-12-13 2020-03-27 北京化工大学 Attapulgite clay reduction-magnetic separation coupling continuous iron removal whitening purification method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179196B (en) * 2016-07-15 2018-06-19 中信国安化工有限公司 A kind of petrochemical wastewater processing adsorbent and preparation method thereof
FI20175604A (en) * 2017-06-26 2018-12-27 Teknologian Tutkimuskeskus Vtt Oy Fire-retardant composition and coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2501753A4 (en) * 2009-11-16 2014-01-22 Kth Holding Ab Strong nanopaper
EP2386683B1 (en) * 2010-04-27 2014-03-19 Omya International AG Process for the production of gel-based composite materials
FI124324B (en) * 2010-10-18 2014-06-30 Ekokem Palvelu Oy Treatment of wood containing fraction
US8686070B2 (en) * 2012-02-24 2014-04-01 Hercules Incorporated Nanocrystallinecellulose (NCC) in tape joint compound (JC)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921805A (en) * 2019-12-13 2020-03-27 北京化工大学 Attapulgite clay reduction-magnetic separation coupling continuous iron removal whitening purification method
CN110921805B (en) * 2019-12-13 2021-07-16 北京化工大学 Attapulgite clay reduction-magnetic separation coupling continuous iron removal whitening purification method

Also Published As

Publication number Publication date
WO2016001466A1 (en) 2016-01-07
ES2558472A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
Jiang et al. Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods
Isogai Development of completely dispersed cellulose nanofibers
Mohamed et al. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications
El Achaby et al. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites
HPS et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications
Song et al. Flexible and super thermal insulating cellulose nanofibril/emulsion composite aerogel with quasi-closed pores
George et al. Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles
Nair et al. Hydrogels prepared from cross-linked nanofibrillated cellulose
Zeng et al. Chitin whiskers: An overview
Li et al. Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel
Julkapli et al. Progress on nanocrystalline cellulose biocomposites
ES2829705T3 (en) Support material with nanocellulose coated surface
Duran et al. A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production
Abral et al. Effect of nanofibers fraction on properties of the starch based biocomposite prepared in various ultrasonic powers
Silva et al. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels
Bandyopadhyay-Ghosh et al. The use of biobased nanofibres in composites
Sanguanwong et al. Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications
Zhang et al. Fabrication and characterization of bamboo shoot cellulose/sodium alginate composite aerogels for sustained release of curcumin
Sharma et al. High aspect ratio carboxycellulose nanofibers prepared by nitro-oxidation method and their nanopaper properties
ES2558472B1 (en) COMPOSITE MATERIAL OF NANOCELLULOSE AND FIBER CLAYS, MANUFACTURING AND USE PROCEDURE
Lu et al. Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption
Zhang et al. Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation
del Campo et al. Ultrasound-assisted preparation of nanocomposites based on fibrous clay minerals and nanocellulose from microcrystalline cellulose
Ciolacu et al. Nanocomposites based on cellulose, hemicelluloses, and lignin
Kurniawan et al. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) as adsorbents of heavy metal ions

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2558472

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20161116

FD2A Announcement of lapse in spain

Effective date: 20211004