ES2391510B1 - Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica - Google Patents

Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica Download PDF

Info

Publication number
ES2391510B1
ES2391510B1 ES201130685A ES201130685A ES2391510B1 ES 2391510 B1 ES2391510 B1 ES 2391510B1 ES 201130685 A ES201130685 A ES 201130685A ES 201130685 A ES201130685 A ES 201130685A ES 2391510 B1 ES2391510 B1 ES 2391510B1
Authority
ES
Spain
Prior art keywords
optical coherence
coherence tomography
distortion
correction
tomography system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES201130685A
Other languages
English (en)
Other versions
ES2391510A1 (es
Inventor
Sergio ORTIZ EGEA
Susana Marcos Celestino
Damian SIEDLECKI
Carlos Dorronsoro Diaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES201130685A priority Critical patent/ES2391510B1/es
Priority to JP2014506915A priority patent/JP2014512242A/ja
Priority to PCT/ES2012/070185 priority patent/WO2012146811A1/es
Priority to EP12777359.6A priority patent/EP2704095B1/en
Priority to US14/114,254 priority patent/US9593933B2/en
Publication of ES2391510A1 publication Critical patent/ES2391510A1/es
Application granted granted Critical
Publication of ES2391510B1 publication Critical patent/ES2391510B1/es
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02076Caused by motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards
    • A61B2560/0233Optical standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/65Spatial scanning object beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geometry (AREA)

Abstract

Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica.#Procedimiento de calibración y corrección de la distorsión de barrido de cualquier sistema de tomografía de coherencia óptica, mediante el uso de patrones de referencia y la obtención de relaciones matemáticas entre las posiciones de los puntos de referencia en un patrón de referencia y las coordenadas locales de dichos puntos de referencia obtenidas mediante el citado sistema de tomografía de coherencia óptica.

Description

Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica
OBJETO DE LA INVENCIÓN
La presente invención, tal y como se expresa en el enunciado de esta memoria descriptiva se refiere a un procedimiento de calibración y corrección de la distorsión de barrido de sistemas de tomografía de coherencia óptica.
La presente invención supone una mejora de la técnica de tomografía de coherencia óptica, en cuanto a que la aplicación del procedimiento descrito en la invención permite la obtención de una topografía cuantitativa bidimensional y tridimensional de superficies a partir de imágenes de tomografía de coherencia óptica. El procedimiento es aplicable a cualquier sistema de tomografía de coherencia óptica cuyo sistema de barrido esté basado en un sistema de escáner de dos ejes.
La presente invención supone una mejora del estado de la técnica, al permitir la cuantificación de imágenes obtenidas mediante técnicas de tomografía de coherencia óptica, y la obtención de mapas topográficos de superficies en general, y de superficies oculares en particular, con ventajas sobre técnicas alternativas existentes.
En consecuencia, el objetivo de la presente invención es proporcionar un procedimiento para la corrección de la distorsión de cualquier sistema de tomografía de coherencia óptica, mediante el uso de patrones de referencia y la obtención de relaciones matemáticas entre las posiciones de los puntos de referencia en un patrón de referencia y las coordenadas locales de dichos puntos de referencia obtenidas mediante el citado sistema de tomografía de coherencia óptica.
La presente invención se refiere, en general, al campo de los sistemas de captura de imágenes, y en particular, a los sistemas de tomografía de coherencia óptica.
ANTECEDENTES DE LA INVENCIÓN
La tomografía de coherencia óptica, OCT, (Huang, D. et al., 1991. Optical coherence tomography. Science 254:1178-1181) es una técnica interferométrica que permite obtener las diferencias de camino óptico entre superficies. Un escáner de barrido lateral de una muestra permite obtener una colección de interferogramas (A-scans) que forman una imagen de la sección transversal de la muestra (B-Scan). Un barrido en dos direcciones (x e y) permite obtener una colección de B-scans y construir una imagen tridimensional de la muestra. La resolución axial de la técnica se encuentra en el orden de las micras (Povazay, B. et al. 2002. Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27:1800) y viene determinada por el ancho de banda espectral de la fuente (típicamente se utilizan diodos superluminiscentes, aunque en también se utilizan láseres de femtosegundos o fuentes de barrido). Los interferogramas se pueden obtener en el dominio temporal, cambiando físicamente la longitud del brazo de referencia, o en el dominio de frecuencias: espacialmente (dominio frecuencial espacial (Fercher A. F. et al., “Measurement of Intraocular Distances by Backscattering Spectral Interferometry.” Optics Communications 1995,117:43-48)) o temporalmente (dominio frecuencial temporal (Chinn, S.R. et al. (1997). Optical coherence tomography using a frequency-tunable optical source. Opt. Lett., 22, 340-342)) codificadas mediante un espectrómetro o barriendo la frecuencia de la fuente.
El aumento de la velocidad de adquisición de datos en los sistemas OCT (de hasta 150.000 A-scans/s) ha permitido la captura de imágenes tridimensionales en tiempos inferiores a 1 segundo. La alta resolución axial (2-20 μm) y lateral (del orden de 100 μm) confiere a la tomografía de coherencia óptica un alto potencial para la caracterización topográfica y profilométrica de superficies y para la medida, in vivo, de la topografía corneal, entre otros.
En el estado actual de la técnica (relativo a las técnicas de tomografía de coherencia óptica, a los sistemas de topografía de superficies oculares, y a las técnicas de profilometría de superficies en general basadas en otros métodos) existe la necesidad de cuantificar los sistemas de topografía de coherencia óptica para mejorar la biometría ocular que se obtiene mediante estos sistemas, y conseguir así un nuevo y ventajoso procedimiento asociado al uso de profilometría basada en tomografía de coherencia óptica. Además, existe la necesidad de un procedimiento general de calibración de sistemas de tomografía de coherencia óptica, con el fin de mejorar la información cuantitativa que se obtiene de estos sistemas. En general, el uso de la técnica de OCT como técnica topográfica viene limitada por la presencia de la distorsión de barrido asociada a la arquitectura del sistema de barrido (generalmente formada por un escáner de espejos bi-axial), y que produce distorsión de campo y astigmatismo en las imágenes. La principal contribución a dicha distorsión viene dada por la separación de los espejos en el escáner y la focal de la lente que colima el haz sobre la muestra, y en menor medida, por la planitud de los espejos y desalineamiento del haz de rotación de los espejos.
Hasta el momento, no existe ningún método general para la calibración y corrección de la distorsión de barrido aplicable a cualquier sistema de tomografía de coherencia óptica, sin conocimiento previo de la configuración óptica y mecánica del sistema. La ausencia de calibración y corrección de la distorsión de barrido ha impedido la generalización del uso cuantitativo de los sistemas de tomografía de coherencia óptica, o la correcta interpretación de datos topográficos. Uno de los objetivos principales de la presente invención es proporcionar un método para la calibración y corrección de la distorsión de barrido para la cuantificación de los datos topográficos obtenidos con cualquier sistema de Tomografía de Coherencia Óptica. La corrección de la distorsión óptica es relativamente sencilla en sistemas de tomografía de coherencia óptica basados en un solo escáner, y con adquisición únicamente bidimensional de los datos. Sin embargo, en sistemas de dos escáneres, con adquisición tridimensional de datos, la distorsión es compleja, al ser no lineal, con dependencias entre las posiciones laterales y axiales, y dependiente de la configuración óptica y geométrica de cada equipo. Esta complejidad ha impedido la obtención general de datos topográficos tridimensionales cuantitativos.
Existen en el mercado varios sistemas de tomografía de coherencia óptica del segmento anterior del ojo. Estos sistemas proporcionan datos biométricos cuantitativos, generalmente en la dirección axial. Sin embargo, no se tiene constancia de la corrección de la distorsión de barrido en estos sistemas comerciales. De hecho, uno de los sistemas comerciales más extendidos (Visante, Zeiss) ha incorporado un sistema de topografía corneal de cara anterior basado en anillos de Placido, a pesar de disponer de datos tridimensionales de elevación corneal.
Algunos autores proporcionan configuraciones de barrido alternativas que minimizan la distorsión de barrido dependiendo de la configuración de espejos del mismo (Chinn, et al (1997). Optical coherence tomography using a frequency-tunable optical source. Opt. Lett., 22, 340-342), o en sistemas de escáneres orientados a maquinas de corte (Ireneusz Grulkowski et al “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express 17, 4842-4858 (2009)). Sin embargo, estos sistemas siempre dejan distorsiones residuales que deben de ser corregidas para poder obtener las coordenadas tridimensionales de cada punto de una superficie.
Westphal et al. (Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle, Opt. Express 10, 397–404 (2002)) proporciona una solución a la distorsión de barrido en sistemas de OCT corneal en que el sistema de barrido es un sistema de escáner no lineal (espejos resonantes con barrido no telecéntrico), mediante la toma de imágenes axialmente alrededor de la posición axial, y aplicado únicamente a secciones bi-dimensionales de la muestra, y no imágenes tridimensionales. Kim et al. (Automated analysis of OCT images of the crystalline lens, Proc. SPIE 7163, 716313 (2009)) utilizan un sistema telecéntrico para la adquisición de imágenes transversales (bi-dimensionales) libres de distorsión óptica. O’hara y Meyer (US7878651) proponen el uso de haces normales a la cornea para la obtención de la refracción de la cornea, sin embargo esto no produciría la pretendida corrección de la distorsión, si no más bien al contrario, dado que los haces tienen que recorrer caminos muy diferentes.
Ortiz et al. (Optical coherence tomography for quantitative surface topography, Appl. Opt. 48, 6708-6715 (2009)) propusieron un método para la optimización de la distorsión de barrido en un sistema propio de OCT de dominio temporal, y la corrección tri-dimensional de la distorsión de barrido residual, basado en la adquisición de imágenes axiales mediante un canal de imagen lateral confocal incorporado en el sistema de OCT. Sin embargo, este procedimiento requiere el uso de un canal confocal para la obtención de la distorsión de barrido. Dicho canal confocal noestá disponible en general en instrumentos de Tomografía de Coherencia Óptica, por lo cual el procedimiento no es aplicable de manera general. Estos autores proporcionan además estimaciones teóricas de la distorsión de barrido que permiten predecir la distorsión de barrido medida experimentalmente, pero éstas exigen conocimiento preciso de la configuración óptica y geométrica del instrumento. Las estimaciones teóricas permiten obtener una configuración optimizada que permite minimizar estas distorsiones pero no eliminarlas, siendo necesario realizar el método propuesto para las distorsiones residuales que permanecen en el sistema óptico de iluminación y recolección de luz.
El método de corrección de distorsión de barrido de la presente invención se puede aplicar a la obtención de profilometría de superficies en general, o a la topografía corneal en particular, mediante el uso de sistemas de tomografía de coherencia óptica.
La patente US7416300 ha descrito el uso de tomografía de coherencia óptica para la metrología de lentes y superficies, pero no alude a la corrección de la distorsión de barrido. Varias patentes US7878651, US716313 y US5491524 describen sistemas de mapeo topográfico corneal mediante tomografía de coherencia óptica, pero no aluden a la corrección de la distorsión de barrido. Generalmente, en estos estudios los mapas se obtienen a partir de un conjunto de secciones transversales adquiridas para un conjunto de meridianos alrededor de un eje de rotación, centrado en el ápex corneal (de manera similar a los sistemas de Scheimpflug, o de barrido por rotación de rendija), limitando la resolución lateral en la dimensión radial.
La técnica de tomografía de coherencia óptica, una vez corregida la distorsión de barrido, presenta ventajas frente a la profilometría de contacto de superficies (por ejemplo Talysurf), incluyendo una mayor rapidez de adquisición de datos y la ausencia de contacto con la muestra. También presenta ventajas frente a la profilometría óptica basada en microscopía, incluyendo una mayor distancia de trabajo, mucha mayor rapidez de adquisición de datos en áreas más amplias y mayor independencia de las propiedades de reflexión especular de la muestra. La técnica de tomografía de coherencia óptica, una vez corregida la distorsión de barrido, presenta ventajas a la medida de la topografía corneal en pacientes frente a la videoqueratoscopía corneal basada en anillos de Placido, habitualmente utilizada en clínica, incluyendo una mayor resolución axial y lateral, en la dimensión radial, y la adquisición directa de datos de elevación, sin suposiciones derivadas de la presencia del “skew ray”. También presenta ventajas frente a la topografía corneal basada en Scheimpflug, incluyendo una mayor rapidez de aquisición, mayor resolución axial y lateral.
DESCRIPCIÓN DE LA INVENCIÓN
Para lograr los objetivos y evitar los inconvenientes indicados anteriormente, la invención consiste en un procedimiento de calibración de cualquier tipo de sistema de tomografía de coherencia óptica.
El procedimiento de la presente invención se plantea como un protocolo de calibración de cualquier sistema de tomografía de coherencia óptica para la obtención de mapas topográficos cuantitativos a partir de las imágenes tridimensionales de tomografía de coherencia óptica de la muestra. El procedimiento permite corregir de distorsión de cualquier sistema de tomografía de coherencia óptica, independientemente de su configuración óptica y geométrica específica, a diferencia de otros procedimientos descritos que se limitan a una configuración particular del sistema, a imágenes bidimensionales, o asumen hipótesis que exigen conocimiento previo del sistema, incluyendo la disposición de sus elementos, el alineamiento y respuesta del sistema. La presente invención aborda la medida empírica de la distorsión de barrido del sistema, determinando, mediante el uso de un patrón de referencia, la distorsión de las coordenadas espaciales del volumen de interés.
La presente invención hace uso de un patrón de referencia, que puede consistir en, aunque no está limitado a, una rejilla calibrada montada sobre un desplazador lineal axial; un cubo transparente con una rejilla tridimensional tallada, o un patrón en escalera.
La presente invención hace uso de imágenes de tomografía de coherencia óptica de dicho patrón de referencia, de donde se extraen las posiciones en la imagen de los puntos de referencia en el patrón, permitiendo establecer una correspondencia entre las coordenadas conocidas del patrón de referencia y las medidas resultantes del instrumento de tomografía de coherencia óptica.
En general, la correspondencia se establecerá entre puntos discretos del patrón, por ejemplo nodos en una rejilla para cada posición axial o nodos en una rejilla tridimensional y las posiciones de los puntos del patrón referencia en los datos obtenidos por el sistema de tomografía de coherencia óptica, expresadas en coordenadas locales del sistema. La correspondencia se generaliza a cualquier posición del volumen en la región calibrada mediante la interpolación –en general no lineal- de los datos entre los puntos muestreados, mediante funciones analíticas o numéricas con un muestreo de puntos suficientemente denso. Por ejemplo, las líneas horizontales y verticales distorsionadas de una rejilla de calibración constituida por nodos equiespaciados unidos por líneas rectas se pueden ajustar a funciones cuádricas (coordenadas laterales) y las posiciones axiales de los nodos mediante una regresión lineal (cosenos directores). Dichas funciones analíticas permiten representar la posición de cualquier punto del volumen distorsionado en coordenadas locales. La presente invención establece una transformación matemática de coordenadas entre el volumen distorsionado, en las coordenadas locales del sistema y el volumen real del patrón de referencia, o equivalentemente, de la magnitud de la distorsión de barrido para cada punto, en general, en coordenadas angulares. La presente invención establece una transformación matemática de coordenadas entre el volumen distorsionado, en las coordenadas locales del sistema y el volumen real del patrón de referencia. La corrección de la distorsión de barrido se realiza mediante la aplicación de la transformación a todos los puntos de una imagen cualquiera adquirida por el sistema de Tomografía de Coherencia Óptica.
En una modalidad de la invención el procedimiento se aplica directamente a imágenes de tomografía de coherencia óptica en niveles de gris. Estas imágenes se procesan mediante algoritmos digitales para la eliminación del ruido de la imagen y segmentación de superficies.
En otra modalidad de la invención el procedimiento se aplica a puntos de la superficie previamente segmentados.
En otra modalidad de la invención el procedimiento se aplica a funciones analíticas ajustadas a los bordes o superficies de la imagen.
En una modalidad de la invención el procedimiento se aplica a la imagen de cualquier superficie reflectante, obtenida mediante cualquier sistema tomografía de coherencia óptica con escáner de barrido biaxial.
En otra modalidad de la invención el procedimiento se aplica a la superficie anterior corneal, obtenida mediante cualquier sistema tomografía de coherencia óptica con escáner de barrido biaxial de segmento anterior.
En otra modalidad de la invención el procedimiento se aplica a toda la imagen de segmento anterior del ojo, obtenida mediante cualquier sistema tomografía de coherencia óptica con escáner de barrido biaxial de segmento anterior.
En otra modalidad de la invención el procedimiento se aplica a toda la imagen de segmento anterior, obtenida mediante cualquier sistema tomografía de coherencia óptica con escáner de barrido biaxial de retina.
Así pues, la presente invención reivindica un procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica, que comprende las siguientes fases:
i) seleccionar un patrón de referencia que comprende unos puntos de referencia conocidos y que están descritos en unas coordenadas reales;
ii)adquirir imágenes del patrón de referencia seleccionado en la fase i), estando situado el patrón de referencia en un espacio objeto del sistema de tomografía de coherencia óptica, mediante el sistema de tomografía de coherencia óptica;
iii) identificar, en las imágenes adquiridas del patrón de referencia, unas posiciones de unos puntos de referencia descritas en unas coordenadas locales proporcionadas por el sistema de tomografía de coherencia óptica y que se corresponden a los puntos de referencia conocidos de la fase i);
iv) obtener una relación matemática de distorsión que define una transformación entre las coordenadas locales proporcionadas por el sistema de tomografía de coherencia óptica y unas coordenadas reales, estando basada la relación matemática en la comparación de las posiciones de los puntos de referencia conocidos en las coordenadas locales de la fase iii) y en las coordenadas reales de la fase i); y,
v) corregir la distorsión mediante la aplicación de la relación matemática de distorsión obtenida en la fase iv) a los datos obtenidos por el sistema de tomografía de coherencia óptica.
En una realización preferente de la invención la relación matemática de distorsión descrita en la fase iv) comprende ser una interpolación de las posiciones de los puntos de referencia, mediante funciones seleccionadas entre funciones analíticas, funciones numéricas y una combinación de ambas.
En otra realización de la invención, el patrón de referencia de la fase i) está seleccionado entre cualquier estructura bidimensional móvil con marcas localizadas en posiciones conocidas y cualquier estructura tridimensional con marcas localizadas en posiciones conocidas.
En otra realización de la invención el patrón de referencia de la fase i) está seleccionado entre:
una rejilla de calibración tridimensional, y los puntos de referencia conocidos son los nodos de la rejilla de calibración tridimensional;
una rejilla de calibración bidimensional montada sobre una etapa lineal de desplazamiento calibrada, y los puntos de referencia conocidos son los nodos de la rejilla de calibración en distintas posiciones axiales;
un cubo con una rejilla de calibración tridimensional tallada, y los puntos de referencia conocidos son los nodos de la rejilla de calibración tridimensional; y,
un patrón en escalera, y los puntos de referencia conocidos son las transiciones abruptas en profundidad entre escalones.
En otra realización de la invención, los puntos de referencia descritos mediante las coordenadas locales de la fase iii) se unen mediante líneas, estando la líneas definidas por funciones analíticas. Para llevar a cabo la calibración del sistema, los puntos identificados en la fase iii) del procedimiento se unen con líneas. Como debido a la distorsión de barrido las líneas que los unen, en cualquiera de los tres ejes del espacio, no son rectas sino curvas, para definir dichas rectas, se emplean funciones analíticas convencionales. Por ejemplo en una realización particular, las funciones analíticas corresponderían con funciones parabólicas ya que dichas parábolas se asemejarían a las curvas descritas por las líneas que unirían los puntos identificados en la fase iii) del procedimiento.
Además, se ha previsto el uso del procedimiento descrito en la presente memoria para la obtención de datos calibrados y corregidos de distorsión de barrido con el sistema de tomografía de coherencia óptica seleccionados entre:
-
datos de secciones bidimensionales;
-
datos de volúmenes tridimensionales;
-
datos de topografías corneales;
-
datos de topografías de la retina;
-
datos de superficies internas de un ojo en combinación con una compensación de una distorsión óptica y de refracción;
-
datos de imagen de segmento anterior del ojo;
-
datos de imagen de las capas de la retina;
-
datos de señales obtenidas en un fotodetector del sistema de tomografía de coherencia óptica;
-
datos de imágenes y volúmenes en intensidad;
-
datos de mapas de puntos correspondientes a unos bordes previamente extraídos de una imagen de tomografía de coherencia óptica; y,
-
datos de superficies ajustadas a unos bordes previamente extraídos de una imagen de tomografía de coherencia óptica.
No obstante existen otros muchos usos posibles de la presente invención en diversos campos de la ciencia no especificados en la presente memoria descriptiva.
Nótese que la distorsión de barrido es un tipo de distorsión geométrica. Además la presente invención permite el que una vez corregida dicha distorsión de barrido mediante el procedimiento descrito, se puedan abordar otro tipo de correcciones como por ejemplo la corrección de la distorsión óptica, siendo dicha distorsión óptica la producida al ver una superficie a través de otra superficie.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1a.- Muestra una imagen integrada de una rejilla como patrón de referencia.
Figura 1b.- Muestra la rejilla de la figura con los nodos marcados.
Figura 1c.- Muestra la rejilla de la figura 1 con los nodos y la estimación de las coordenadas laterales reales marcada.
Figura 2a.- Muestra la diferencia entre la topografía real (medida mediante profilometría) de una superficie esférica y la topografía basada en OCT sin corrección de la distorsión óptica.
Figura 2b.- Muestra la diferencia entre la topografía real (medida mediante profilometría) de una superficie esférica y la topografía basada en OCT tras la corrección de la distorsión geométrica.
Figura 3a.- Muestra un mapa topográfico de la cara anterior de la cornea de un paciente obtenido mediante OCT antes de aplicar la corrección de distorsión de barrido.
Figura 3b.- Muestra un mapa topográfico de la cara anterior de la cornea de un paciente obtenido mediante OCT después de aplicar la corrección de distorsión de barrido.
DESCRIPCIÓN DE VARIOS EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
Seguidamente se realiza, con carácter ilustrativo y no limitativo, una descripción de varios ejemplos de realización de la invención, haciendo referencia a la numeración adoptada en las figuras.
Así pues a modo de ejemplo de realización, se describe a continuación un procedimiento preferido de calibración de un sistema de tomografía de coherencia óptica y su aplicación a la medida de una superficie de plástico y una córnea de un paciente.
El procedimiento se ha aplicado a las imágenes de OCT obtenidas mediante un Tomógrafo de CoherenciaÓptica espectral de cámara anterior no comercial en un laboratorio de investigación. El dispositivo empleado incluye un sistema de escáneres x-y (8 mm de apertura y separación entre centros de los espejos de 13.6 mm) y una lente colimadora-focalizadora de 75 mm. La fuente de iluminación es un diodo superluminiscente (840 nm, 50 nm ancho espectral). La línea de retardo está constituida por un espectrómetro con una red de difracción y una cámara CMOS. La velocidad de adquisición es de 25.000 A-scans (interferogramas por segundo).
El procedimiento descrito en la invención se aplicó siguiendo las siguientes etapas:
(1)
Fabricación de un patrón de referencia, consistente en una superficie opaca plana reflectante con interlineado conocido impreso o grabado, y en particular en una malla o rejilla de calibración milimetrada impresa en papel blanco con tinta negra;
(2) Desplazamiento manual o motorizado con graduación, sobre la que se coloca dicha rejilla de calibración;
(3)
Adquisición de volúmenes en 3D de la rejilla de calibración colocada en la posición de la muestra (espacio objeto), y en distintas posiciones axiales alrededor de dicha posición, en un rango de 7 mm y pasos de 0.5 mm. Las Figura 1a, 1b y 1c muestran las imágenes de la rejilla utilizada para la calibración de la distorsión de barrido en el os presentes ejemplos de realización. La figura 1a muestra la rejilla de calibración empleada, la figura 1b muestra esa misma rejilla con los nodos conocidos identificados por puntos blancos. La figura 1c muestra la rejilla con los nodos identificados y el desplazamiento de dichos nodos debido a la distorsión de barrido. Como se ve de estas figuras la distorsión de barrido ha producido un desplazamiento de los nodos, estando dicho desplazamiento representado por las líneas que parten de las posiciones originales de los nodos hasta la posición en la que quedan tras la toma de imágenes en el espacio objeto del sistema de tomografía de coherencia óptica;
(4)
Obtención de imágenes bidimensionales integradas de la rejilla de calibración, para cada posición axial, a partir de la suma de la señal de cada A-scan;
(5) Eliminación del ruido de barrido de la imagen mediante filtros digitales;
(6)
Extracción de los bordes de las líneas de la rejilla mediante procedimientos de análisis de imagen, en particular una transformada de Hough;
(7) Ajuste a funciones cuádricas de las líneas horizontales y verticales extraídas;
(8)
Obtención de los puntos de intersección de las curvas horizontales y verticales y etiquetado de dichos nodos, para cada imagen de rejilla adquirida en una posición axial diferente. Por lo tanto, para cada nodo se obtiene un conjunto de puntos tridimensionales expresados en las coordenadas locales del dispositivo, como por ejemplo pixeles en las imágenes tridimensionales;
(9)
Obtención de un factor de calibración entre coordenadas locales del dispositivo (calculadas según el paso 8) y coordenadas euclídeas. La coordinada axial euclídea se obtiene a partir de las posiciones axiales de los desplazamientos lineales;
(10)
Obtención de funciones analíticas que representan las posiciones de cualquier punto de la imagen de la rejilla de calibración mediante interpolación bicúbica entre las posiciones estimadas de los nodos (coordenadas laterales) y mediante una regresión lineal de las posiciones axiales de los nodos (cosenos directores);
(11)
Obtención de las funciones de transformación entre las coordenadas reales y las coordenadas de la imagen, o equivalentemente, de la magnitud de distorsión de barrido obtenida para cada punto, en coordenadas angulares;y,
(12)
Corrección de la distorsión de un punto genérico que se lleva a cabo mediante la aplicación de la función de transformación de coordenadas a cada punto de la imagen de una superficie obtenida mediante el sistema de tomografía de coherencia óptica. La magnitud de distorsión de barrido para cada punto se sustrae (en coordenadas angulares) de la diferencia de camino óptico obtenida como señal de OCT para cada punto de la superficie detectada para obtener la posición actual de la superficie sin distorsión.
Para el sistema de OCT usado en el ejemplo, la distorsión de barrido medida es de 24 píxeles (86 um) en la dirección horizontal y 7 píxeles (24 um) en la dirección vertical para un rango angular del escáner entre -7.5 y 7.5 grados.
En la aplicación del ejemplo descrito, el procedimiento se aplicó sobre datos tridimensionales de una superficie esférica de PMMA (Polimetilmetacrilato) y de una cornea de un paciente. Se utilizaron rutinas de procesado de imagen para la eliminación de ruido y segmentación de las superficies. El procedimiento se utiliza para cada punto de la superficie detectado en la imagen tridimensional. Las imágenes se adquirieron sobre una zona de 10 x 10 mm, con una densidad de 200 x 200 A-scans para el caso de la superficie esférica d PMMA, y de 10 x 12 mm, con una densidad de 120x50 A-scans para e caso de la córnea del paciente.
La superficie de PMMA consistía en una superficie asférica tratada con un láser de cirugía refractiva (patrón de ablación miópico) lo que alteró la forma de la superficie incrementando su asfericidad corneal. Como referencia, la topografía de la superficie se evaluó con un profilómetro de no contacto basado en microscopía confocal (PLμ, Sensofar).
El procedimiento descrito en la invención, con los parámetros detallados en el ejemplo de aplicación, se aplicó sobre la imagen tridimensional de OCT adquirida sobre esta superficie. Los datos topográficos (del profilómetro y de OCT, datos brutos, y tras calibración/corrección de la distorsión de barrido) se ajustaron a funciones bicónicas (caracterizadas por el radio de curvatura y la asfericidad) y a polinomios de Zernike de orden 8. La discrepancia en el radio de curvatura ajustado a la superficie de OCT sin calibrar ni corregir con respecto al ajuste del perfil profilométrico de no contacto fue de 4.6%, mientras que la discrepancia tras la calibración fue de 1.6%. La discrepancia en la asfericidad disminuyó de 130% al 5%. La Figura 2a muestra el mapa de diferencia entre la superficie y el ajuste del perfil profilométrico antes de la calibración y la figura 2b muestra el mapa de diferencia entre la superficie y el ajuste del perfil profilométrico después de la aplicación del procedimiento de calibración de la invención.
Para el otro ejemplo de realización en el que se aplicaba el procedimiento objeto de la invención sobre la córnea de un ser humano, el paciente medido era un sujeto joven normal. El sujeto fija la vista en un estímulo que permite alinear el eje pupilar keratométrico con el eje óptico del instrumento. El tiempo de adquisición de la imagen de OCT es de 0.72 segundos. El procedimiento descrito en la invención, con los parámetros detallados en el ejemplo de aplicación, se aplicaron sobre la imagen tridimensional de OCT adquirida de la cara anterior corneal. Los datos topográficos se ajustaron a superficies bicónicas y a polinomios de Zernike de orden 8. La corrección de la distorsión de barrido disminuyó la asimetría de la superficie en 5.7 % (radio de curvatura) y 9.5 % (asfericidad). El radio de curvatura apical de la cornea antes y después de la corrección fue 7.38 y 7.59 mm respectivamente, y la asfericidad -0.38 y -0.42, respectivamente. La Figura 3a muestra el mapa topográfico de la cara anterior de la córnea (ajuste a polinomios de Zernike) de un paciente obtenido mediante OCT antes de aplicar la corrección de la distorsión de barrido y la figura 3b muestra dicho mapa topográfico de la cara anterior de la córnea tras aplicar la corrección de la distorsión de barrido, en ambos casos, previa sustracción de la mejor esfera.

Claims (7)

  1. REIVINDICACIONES
    1.- Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica, caracterizado porque comprende las siguientes fases:
    i) seleccionar un patrón de referencia que comprende unos puntos de referencia conocidos y que están descritos en unas coordenadas reales;
    ii)adquirir imágenes del patrón de referencia seleccionado en la fase i), estando situado el patrón de referencia en un espacio objeto del sistema de tomografía de coherencia óptica, mediante el sistema de tomografía de coherencia óptica;
    iii) identificar, en las imágenes adquiridas del patrón de referencia, unas posiciones de unos puntos de referencia descritas en unas coordenadas locales proporcionadas por el sistema de tomografía de coherencia óptica y que se corresponden a los puntos de referencia conocidos de la fase i);
    iv) obtener una relación matemática de distorsión que define una transformación entre las coordenadas locales proporcionadas por el sistema de tomografía de coherencia óptica y unas coordenadas reales, estando basada la relación matemática en la comparación de las posiciones de los puntos de referencia conocidos en las coordenadas locales de la fase iii) y en las coordenadas reales de la fase i); y,
    v) corregir la distorsión mediante la aplicación de la relación matemática de distorsión obtenida en la fase iv) a los datos obtenidos por el sistema de tomografía de coherencia óptica.
  2. 2.- Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica, según la reivindicación 1, caracterizado porque la relación matemática de distorsión de la fase iv) comprende ser una interpolación de las posiciones de los puntos de referencia, mediante funciones seleccionadas entre funciones analíticas, funciones numéricas y una combinación de ambas.
  3. 3.- Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica, según la reivindicación 1, caracterizado porque el patrón de referencia de la fase i) está seleccionado entre cualquier estructura bidimensional móvil con marcas localizadas en posiciones conocidas y cualquier estructura tridimensional con marcas localizadas en posiciones conocidas.
  4. 4.- Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica, según la reivindicación 1, caracterizado porque el patrón de referencia de la fase i) está seleccionado entre:
    una rejilla de calibración tridimensional, y los puntos de referencia conocidos son los nodos de la rejilla de calibración tridimensional;
    una rejilla de calibración bidimensional montada sobre una etapa lineal de desplazamiento calibrada, y los puntos de referencia conocidos son los nodos de la rejilla de calibración en distintas posiciones axiales;
    un cubo con una rejilla de calibración tridimensional tallada, y los puntos de referencia conocidos son los nodos de la rejilla de calibración tridimensional; y,
    un patrón en escalera y los puntos de referencia conocidos son las transiciones abruptas en profundidad entre escalones.
  5. 5.- Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica, según la reivindicación 1, caracterizado porque los puntos de referencia descritos mediante las coordenadas locales de la fase iii) se unen mediante líneas, estando la líneas definidas por funciones analíticas.
  6. 6.- Uso del procedimiento descrito en las reivindicaciones 1 a 5 para la obtención de datos calibrados y corregidos de distorsión de barrido con el sistema de tomografía de coherencia óptica seleccionados entre:
    -
    datos de secciones bidimensionales;
    -
    datos de volúmenes tridimensionales;
    -
    datos de topografías corneales;
    -
    datos de topografías de la retina;
    -
    datos de superficies internas de un ojo en combinación con una compensación de una distorsión óptica y de refracción;
    -
    datos de imagen de segmento anterior del ojo;
    -
    datos de imagen de las capas de la retina;
    -
    datos de señales obtenidas en un fotodetector del sistema de tomografía de coherencia óptica;
    -
    datos de imágenes y volúmenes en intensidad;
    5
    - datos de mapas de puntos correspondientes a unos bordes previamente extraídos de una imagen de tomografía de coherencia óptica; y,
    -
    datos de superficies ajustadas a unos bordes previamente extraídos de una imagen de tomografía de
    coherencia óptica.
    -
    OFICINA ESPAÑOLA DE PATENTES Y MARCAS
    N.º solicitud: 201130685
    ESPAÑA
    Fecha de presentación de la solicitud: 29.04.2011
    Fecha de prioridad:
    INFORME SOBRE EL ESTADO DE LA TECNICA
    51 Int. Cl. : G06T5/00 (2006.01) A61B6/02 (2006.01)
    DOCUMENTOS RELEVANTES
    Categoría
    56 Documentos citados Reivindicaciones afectadas
    X
    US 2003/0118227 A1 (WINSOR, R. ET AL.) 26.06.2003, resumen; párrafos [0003]-[0016], [0031][0034].[0036]-[0039], [0041]-[0057]; figuras. 1-4, 6
    A
    US 5005578 A (GREER, D. ET AL.) 09.04.1991, todo el documento. 1, 3, 4, 6
    A
    JP 2005261487 A (FUJI PHOTO FILM CO., LTD.) 29.09.2005, todo el documento. 1, 3, 4, 6
    A
    ORTIZ, S.: "Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging", OPTICS EXPRESS, 1 de febrero de 2010, Vol. 18, Nº 3, págs. 2782-2796. -
    A
    BORJA, D. et al.: "Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient", BIOMEDICAL OPTICAL EXPRESS, 1 de diciembre de 2010, Vol. 1, Nº 5, págs. 1331-1340. -
    A
    WESTPHAL, V. et al.: "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle", OPTICS EXPRESS, 6 de mayo de 2002, Vol. 10, Nº 9, págs. 397-404. -
    Categoría de los documentos citados X: de particular relevancia Y: de particular relevancia combinado con otro/s de la misma categoría A: refleja el estado de la técnica O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de presentación de la solicitud E: documento anterior, pero publicado después de la fecha de presentación de la solicitud
    El presente informe ha sido realizado • para todas las reivindicaciones • para las reivindicaciones nº:
    Fecha de realización del informe 01.08.2012
    Examinador Ó. González Peñalba Página 1/4
    INFORME DEL ESTADO DE LA TÉCNICA
    Nº de solicitud: 201130685
    Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) G06T, A61B, H04N, G01N Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de
    búsqueda utilizados) INVENES, EPODOC, WPI, INSPEC
    Informe del Estado de la Técnica Página 2/4
    OPINIÓN ESCRITA
    Nº de solicitud: 201130685
    Fecha de Realización de la Opinión Escrita: 01.08.2012
    Declaración
    Novedad (Art. 6.1 LP 11/1986)
    Reivindicaciones Reivindicaciones 1-6 SI NO
    Actividad inventiva (Art. 8.1 LP11/1986)
    Reivindicaciones Reivindicaciones 5 1-4, 6 SI NO
    Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).
    Base de la Opinión.-
    La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.
    Informe del Estado de la Técnica Página 3/4
    OPINIÓN ESCRITA
    Nº de solicitud: 201130685
    1. Documentos considerados.-
    A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.
    Documento
    Número Publicación o Identificación Fecha Publicación
    D01
    US 2003/0118227 A1 (WINSOR, R. et al.) 26.06.2003
    D02
    US 5005578 A (GREER, D. et al.) 09.04.1991
  7. 2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración
    Se ha considerado, dentro del límite de tiempo establecido al efecto, que la invención definida en las reivindicaciones 1-4 y 6 de la presente Solicitud parece carecer de actividad inventiva por poder deducirse de forma evidente del estado de la técnica por un experto en la materia.
    En el documento D01, citado en el Informe sobre el Estado de la Técnica (IET) con la categoría X para dichas reivindicaciones y considerado el antecedente técnico más próximo al objeto en ellas definido, se describe un método de corrección de la distorsión en la radiografía digital que utiliza las mismas etapas esenciales de la invención definida en la reivindicación 1: seleccionar un patrón de referencia ("phantom having a plurality of fiduaciary marks"; párrafo [0009] de D01) con unas coordenadas reales, identificar en la imagen captada del patrón los puntos de referencia (párrafo [0010]), obtener una relación matemática de distorsión ("map correction"; párrafo [0037]), basada en la comparación entre las posiciones locales y las reales de los puntos de referencia (mediante vectores diferencia entre los puntos; párrafo [0051]), y corregir los datos obtenidos basándose en dicha relación matemática.
    La diferencia entre la invención definida en dicha primera reivindicación y el método de D01 es, por tanto, que este último se aplica a la obtención de imágenes digitales de rayos X. Sin embargo, esta diferencia no es esencial, puesto que el método de D01 podría aplicarse de forma evidente a cualquier sistema o método de obtención de imágenes, particularmente para fines médicos, en tanto en cuanto sus características esenciales no son limitativas del tipo de radiación utilizada y pueden extenderse a cualquier otra técnica equivalente en el aspecto del tratamiento de las imágenes obtenidas, y en particular, a la tomografía computerizada, una de cuyas variantes utiliza también los rayos X, y a otras técnicas de tomografía óptica. Cabe mencionar aquí, como ejemplo, el uso de un patrón de referencia y una corrección matemática de la distorsión obtenida con dicho patrón en tomografía computerizada, objeto del documento D02.
    Dicha reivindicación 1 parece carecer, por tanto, de actividad inventiva con respecto a D01, de acuerdo con el Art. 8 de la vigente Ley de Patentes, y un razonamiento análogo puede hacerse respecto al resto de reivindicaciones afectadas en su actividad inventiva por D01.
    Informe del Estado de la Técnica Página 4/4
ES201130685A 2011-04-29 2011-04-29 Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica Expired - Fee Related ES2391510B1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES201130685A ES2391510B1 (es) 2011-04-29 2011-04-29 Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica
JP2014506915A JP2014512242A (ja) 2011-04-29 2012-03-21 光コヒーレンストモグラフィシステムの走査歪みを較正および補正する方法
PCT/ES2012/070185 WO2012146811A1 (es) 2011-04-29 2012-03-21 Procedimiento de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica
EP12777359.6A EP2704095B1 (en) 2011-04-29 2012-03-21 Method for calibrating and correcting the scanning distortion of an optical coherence tomography system
US14/114,254 US9593933B2 (en) 2011-04-29 2012-03-21 Method for calibrating and correcting the scanning distortion of an optical coherence tomography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201130685A ES2391510B1 (es) 2011-04-29 2011-04-29 Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica

Publications (2)

Publication Number Publication Date
ES2391510A1 ES2391510A1 (es) 2012-11-27
ES2391510B1 true ES2391510B1 (es) 2013-11-11

Family

ID=47071640

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201130685A Expired - Fee Related ES2391510B1 (es) 2011-04-29 2011-04-29 Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica

Country Status (5)

Country Link
US (1) US9593933B2 (es)
EP (1) EP2704095B1 (es)
JP (1) JP2014512242A (es)
ES (1) ES2391510B1 (es)
WO (1) WO2012146811A1 (es)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2509131B (en) * 2012-12-21 2017-05-17 Optos Plc Improvements in and relating to ophthalmoscopes
ITFI20130067A1 (it) * 2013-03-26 2014-09-27 Strumenti Oftalmici C S O S R L Costruzioni Procedimento e sistema di tomografia a coerenza ottica
GB201307990D0 (en) 2013-05-02 2013-06-12 Optos Plc Improvements in and relating to imaging of the eye
US9733152B2 (en) 2013-12-17 2017-08-15 Bioptigen, Inc. Immersion lens assemblies for use in optical coherence tomography systems
EP3405745B1 (en) * 2016-01-22 2020-10-14 3Shape A/S Encoder for optical coherence tomography scanner
EP3510562A1 (en) 2016-09-07 2019-07-17 Starship Technologies OÜ Method and system for calibrating multiple cameras
EP3595535A4 (en) * 2017-03-14 2020-12-16 Narayana Nethralaya Foundation HUMAN CORNEA IMAGING SYSTEM AND METHOD COMBINING ARTIFICIAL INTELLIGENCE AND TOMOGRAPHY
CN107737410B (zh) * 2017-10-12 2024-04-09 佛山科学技术学院 一种白癜风治疗***及其实现方法
ES2969279T3 (es) 2018-05-11 2024-05-17 Optos Plc Procesamiento de imagen OCT
KR102145381B1 (ko) * 2018-05-21 2020-08-19 주식회사 고영테크놀러지 Oct 시스템, oct 영상 생성 방법 및 저장 매체
CN109887037B (zh) * 2019-01-22 2023-03-14 西安工程大学 一种适用于斜入式激光干涉测量镜头成像畸变的标定方法
JP7367433B2 (ja) 2019-09-30 2023-10-24 株式会社ニデック 眼科撮影装置
WO2021081157A1 (en) * 2019-10-22 2021-04-29 The Uab Research Foundation Distortion correction for optical coherence tomography
KR102449039B1 (ko) * 2021-02-19 2022-09-29 (주) 휴비츠 광 단층 촬영 구강 스캐너 교정 장치 및 전 영역 스캔을 통한 교정 정보 획득 방법
CN113327202A (zh) * 2021-03-30 2021-08-31 苏州微清医疗器械有限公司 一种图像畸变的矫正方法及其应用
KR102625950B1 (ko) * 2021-12-20 2024-01-17 주식회사 휴비츠 광간섭 단층 촬영 장치의 캘리브레이션 방법
DE102022104416A1 (de) 2022-02-24 2023-08-24 Precitec Optronik Gmbh Vorrichtung und Verfahren zum Vermessen von Wafern

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US716313A (en) 1902-02-24 1902-12-16 John S Thurman Carpet-renovator.
US5005578A (en) * 1986-12-16 1991-04-09 Sam Technology, Inc. Three-dimensional magnetic resonance image distortion correction method and system
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
CA2412707A1 (en) * 2001-11-23 2003-05-23 Brent King Positioning stand for radiography imaging device
JP2005261487A (ja) * 2004-03-16 2005-09-29 Fuji Photo Film Co Ltd 放射線画像読取方法および装置
WO2006078802A1 (en) * 2005-01-21 2006-07-27 Massachusetts Institute Of Technology Methods and apparatus for optical coherence tomography scanning
US7416300B2 (en) 2006-05-25 2008-08-26 Coopervision International Holding Company, Lp Measurement of lenses and lens molds using optical coherence tomography
WO2009042644A2 (en) * 2007-09-25 2009-04-02 Perception Raisonnement Action En Medecine Methods and apparatus for assisting cartilage diagnostic and therapeutic procedures
US7878651B2 (en) 2007-12-26 2011-02-01 Carl Zeiss Meditec, Inc. Refractive prescription using optical coherence tomography
JP2010014458A (ja) * 2008-07-02 2010-01-21 Fujifilm Corp 較正用治具
US8441648B2 (en) * 2008-02-07 2013-05-14 Fujifilm Corporation Calibration jig for optical tomographic imaging apparatus and method for generating a calibration conversion table
JP5577513B2 (ja) * 2010-01-29 2014-08-27 公益財団法人ヒューマンサイエンス振興財団 基準格子、基準格子の使用方法、及び、基準格子を備える光干渉断層画像診断装置

Also Published As

Publication number Publication date
JP2014512242A (ja) 2014-05-22
ES2391510A1 (es) 2012-11-27
EP2704095A1 (en) 2014-03-05
US9593933B2 (en) 2017-03-14
EP2704095B1 (en) 2015-07-01
EP2704095A4 (en) 2014-11-05
US20140107960A1 (en) 2014-04-17
WO2012146811A1 (es) 2012-11-01

Similar Documents

Publication Publication Date Title
ES2391510B1 (es) Procedimiento de calibracion y correccion de la distorsion de barrido de un sistema de tomografia de coherencia optica
ES2767054T3 (es) Un aparato para modelar estructuras oculares
JP7147004B2 (ja) 全眼の生体測定変数を確実に判定するための装置
ES2365766T3 (es) Mejoras en o relativas a la exploración retiniana por barrido.
KR101442519B1 (ko) 광 단층 화상 촬상방법 및 광 단층 화상 촬상장치
Fernández et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator
US8690328B1 (en) Methods and devices for ophthalmic optical tomographic image display
ES2633915T3 (es) Procedimiento y aparato para visualizar secciones transversales de OCT
ES2797378T3 (es) Procedimiento y sistema de análisis para examinar un ojo
Ortiz et al. Corneal topography from spectral optical coherence tomography (sOCT)
US9733152B2 (en) Immersion lens assemblies for use in optical coherence tomography systems
Kuo et al. Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures
ES2678518T3 (es) Proceso para tomografía de coherencia óptica y aparato para tomografía de coherencia óptica
JP2010201102A (ja) 光断層画像撮像装置
CN102068235B (zh) 成像装置和成像方法
US10893799B2 (en) Method for determining the topography of the cornea of an eye
Wells-Gray et al. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope
US11154192B2 (en) Method and arrangement for high-resolution topography of the cornea of an eye
WO2017090361A1 (ja) 角膜検査装置
JP5893248B2 (ja) 光断層画像撮像方法および光断層画像撮像装置
JP2012147976A (ja) 光断層画像撮像方法および光断層画像撮像装置
ES2546076T3 (es) Método de calibración y corrección de la distorsión de barrido de un sistema de tomografía de coherencia óptica
Sun et al. Intraocular lens alignment from an en face optical coherence tomography image Purkinje-like method
US9622659B2 (en) Method for determining the total refractive power of the cornea of an eye
Plesea et al. Direct corneal elevation measurements using multiple delay en face optical coherence tomography

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2391510

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20131111

FD2A Announcement of lapse in spain

Effective date: 20210915