ES2387484B1 - Sistema de multiespectral de barrido. - Google Patents

Sistema de multiespectral de barrido. Download PDF

Info

Publication number
ES2387484B1
ES2387484B1 ES200901996A ES200901996A ES2387484B1 ES 2387484 B1 ES2387484 B1 ES 2387484B1 ES 200901996 A ES200901996 A ES 200901996A ES 200901996 A ES200901996 A ES 200901996A ES 2387484 B1 ES2387484 B1 ES 2387484B1
Authority
ES
Spain
Prior art keywords
radiation
optical system
linear scanning
compact
scene according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200901996A
Other languages
English (en)
Other versions
ES2387484A1 (es
Inventor
Carlos Callejero Andrés
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfa Imaging SA
Original Assignee
Alfa Imaging SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES200901996A priority Critical patent/ES2387484B1/es
Application filed by Alfa Imaging SA filed Critical Alfa Imaging SA
Priority to BR112012008942A priority patent/BR112012008942A2/pt
Priority to KR1020127012291A priority patent/KR20120083911A/ko
Priority to CA2780162A priority patent/CA2780162A1/en
Priority to EP10710288.1A priority patent/EP2488910B1/en
Priority to JP2012533533A priority patent/JP5653443B2/ja
Priority to MX2012004360A priority patent/MX2012004360A/es
Priority to ES10710288.1T priority patent/ES2552763T3/es
Priority to US13/502,104 priority patent/US9158110B2/en
Priority to PCT/EP2010/053558 priority patent/WO2011045087A1/en
Priority to CN201080052157.9A priority patent/CN102667571B/zh
Publication of ES2387484A1 publication Critical patent/ES2387484A1/es
Application granted granted Critical
Publication of ES2387484B1 publication Critical patent/ES2387484B1/es
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0694Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror with variable magnification or multiple imaging planes, including multispectral systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

El objetivo de la presente invención es proporcionar un sistema de barrido lineal de tamaño compacto que se pueda utilizar en sistema de ondas milimétricas, terahercios y microondas, y que además pueda proporcionar información, multiespectral, es decir que el sistema no sea selectivo respecto a la longitud de onda de la radiación incidente. El objetivo del sistema es recibir la radiación del espectro electromagnético, convertir el patrón de barrido cónico en lineal y focalizar dicha radiación en un detector puntual, lineal o matricial.#La invención utiliza dos espejos enfrentados, un primario (1) y un secundario (2). Se denomina primario al primero en reflejar la radiación de la escena y hacerla converger en el secundario. Los dos espejos giran en sentido contrario a la misma velocidad y tienen sus ejes de rotación alineados.#La superficie del espejo primario es siempre cóncava (esférica, parabólica, hiperbólica, elipsoidal, asférica) con objeto de hacer converger la radiación en el espejo secundario.#La superficie del espejo secundario puede ser plana, cóncava o convexa (esférica, parabólica, hiperbólica, elipsoidal, asférica).#Existen dos posibilidades para la colocación del detector, entre los dos espejos o detrás del espejo primario (3).

Description

SISTEMA MULTIESPECTRAL DE BARRIDO
CAMPO DE LA INVENCIÓN
La presente invención se refiere, en general, al campo de la ingeniería óptica y en particular al de los sistemas de barrido para formar imágenes. El sistema de barrido objeto de esta invención puede operar con una velocidad de refresco suficiente para considerarlas de tiempo real y en un amplio rango de longitudes de onda entre las que se encuentran las milimétricas, terahercianas, infrarrojas y microondas.
ANTECEDENTES DE LA INVENCiÓN
Un requIsito deseable en cualquier sistema de barrido para fonnación de imágenes es barrer la escena con un patrón lineal y con la mayor rapidez posible. Una manera sencilla de conseguirlo es por medio de espejos planos en movimiento. Dichas soluciones basadas en espejos pueden ser variadas, y entre las más comunes están un espejo oscilante (de una sola cara) movido por medio de distintos dispositivos como por ejemplo de tipo galvanométrico, o un polígono rotatorio con múltiples caras espejadas. Estas técnicas se emplean en sistemas que trabajan con radiación de longitudes de onda pequeñas tal como el infrarrojo o el visible.
En el infrarrojo las aperturas ópticas son típicamente del orden de 100 mm y con
la ayuda de lentes se reducen a aperturas efectivas para el sistema de barrido típicamente un orden de magnitud menor. En los sistemas de ondas milimétricas las aperturas son del orden de 500 mm de diámetro, tamaño que no hace posible ni el uso de espejos planos oscilantes ni de polígonos rotatorios.
Es conocida la posibilidad de lograr un barrido lineal utilizando dos discos reflectores que giren en sentido opuesto a la misma velocidad, estando inclinados con respecto a sus ejes de rotación un ángulo idéntico para ambos. Un disco reflector inclinado con respecto a su eje de giro produce por sí solo un patrón de barrido cónico. Sin embargo, cuando la radiación alcanza el segundo espejo, el patrón cónico se puede convertir en lineal si los ejes y la fase de rotación entre ambos están correctamente ajustados.
Así ocurre por ejemplo con la patente "Scanning Apparatus", de Alan H. Lettington, (US 7,154,650 B2). Dicha patente describe cómo dos discos reflectores montados en estructuras con ejes de giro independientes y no alineados, giran a la misma velocidad en sentido contrario. La radiación llega a uno de los espejos, que la refleja al segundo espejo, que a su vez la devuelve al primer espejo. Este finalmente la envía a una zona donde se ubica el detector. Con el fin de lograr barrer la escena, ambos espejos están inclinados respecto a sus ejes de rotación. Para conseguir un barrido lineal se ha de satisfacer a = 2 ecos cp, donde el primer espejo está inclinado un ángulo n, el segundo espejo está inclinado un ángulo 0, y lp es el ángulo que fonnan entre si los ejes de rotación de los espejos.
La configuración de la patente US 7, 154,650 82 tiene la ventaja de no utilizar ningún elemento selectivo en frecuencia (polarizador lineal, lámina lambda cuartos, rotador de Faraday, etc.), pero el hecho de que ambos ejes de rotación estén desalineados, penaliza el tamaño final del sistema.
Existe otra patente similar de Alan Lettington (WO 03/009048 Al). que precisamente consigue compactar el sistema haciendo coincidir los ejes de rotación de ambos espejos. El sistema consta de dos cuerpos que giran en sentido contrario a la misma velocidad. El primer cuerpo contiene un polarizador y dos láminas de cuarto de onda, mientras que el segundo cuerpo es un espejo. La radiación llega al primer cuerpo con una polarización adecuada para atravesarlo y ser reflejada por el segundo cuerpo, de tal forma que cuando vuelve al primer cuerpo su polarización es ortogonal a la polarización de transmisión del polarizador lineal, lo que provoca que sea reflejada hacia el espejo. Después de este segundo reflejo en el espejo, la radiación vuelve a tener la polarización adecuada para atravesar el primer cuerpo y dirigirse finalmente hacia el detector. La inclinación del primer cuerpo es el doble que la del segundo, para compensar las veces que la radiación refleja en cada superficie y conseguir un barrido lineal. La invención WO 03/009048 A I permite lograr un sistema más compacto que la US 7,154,650 82, pero presenta está en desventaja por dos motivos. El primero es que al utilizar componentes selectivos de frecuencia (láminas de cuarto de onda y polarizadores lineales) su rango de detección está limitado y por lo tanto no sirve para cualquier detector (visible, infrarrojo, milimétricas, etc.). El segundo motivo es que la relación señal-ruido empeora, debido principalmente a las pérdidas intrínsecas por transmisión de las láminas de cuarto de onda.
Por otro lado, es bien conocido que en radio astronomía se utilizan los
telescopios de espejos enfrentados: un primario (ej.: parabólico) y un secundario (ej.: hiperbólico). Así se consigue reducir la longitud del telescopio con el inconveniente de que el segundo espejo impide el aprovechamiento de la luz que entra en la zona del eje.
Esta invención propone utilizar la configuración de dos espejos enfrentados, ampliamente utilizada en astronomía y radio astronomía, y hacerlos girar en sentidos opuestos a la misma velocidad. Ambos están inclinados con respecto a sus ejes de giro para poder barrer la escena. Esta invención permitirá tener un sistema de barrido más compacto que los de las patentes anterionnente citadas, y además recoger radiación de una amplia zona del espectro electromagnético.
DESCRIPCiÓN GENERAL DE LA INVENCiÓN
El objetivo de la presente invención es proporcionar un sistema de barrido lineal de tamaño compacto que proporcione información multiespectral, es decir, que no sea selectivo respecto a la longitud de onda de la radiación. De esta manera el sistema de barrido será compatible con emisores y/o detectores de ondas milimétricas, terahercios. infrarrojos y microondas. El sistema está formado por una primera superficie reflectora denominada espejo primario que refleja la radiación de la escena y la hace converger y una segunda superficie reflectora denominada espejo secundario que recibe dicha radiación concentrada y la hace focalizar en un detector puntual, lineal o matricial
Para ello se va a recurrir a una configuración óptica muy utilizada en astronomía (radiación visible) y radio astronomía (radio frecuencia).
La invención utiliza dos espejos enfrentados, un primario y un secundario, cuyos ejes de giro se encuentran alineados. La novedad de esta invención radica en inclinar estos dos espejos respecto al eje de rotación y hacerlos girar en sentido contrario a la misma velocidad angular. Además, la inclinación de ambos espejos es idéntica, ya que la radiación se refleja el mismo número de veces en el espejo primario y secundario.
La superficie del espejo primario es siempre cóncava (esférica, parabólic~ hiperbólica, elipsoidal, asférica), con objeto de hacer converger la radiación en el espejo secundario. La superficie del espejo secundario puede ser plana, cóncava o convexa (esférica, parabólica, hiperbólica, elipsoidal, asférica).
Existen dos posibilidades para la colocación del detector, entre los dos espejos o detrás del espejo primario. Colocar el detector entre los dos espejos facilita poder utilizar un elevado número de antenas y cubrir un amplio campo de visión. Por otro lado colocar el detector detrás del espejo primario elimina cualquier restricción de espacio a la hora de integrar un sistema radiante como por ejemplo un cabezal radar o un sistema ladar o lidar. De esta forma el sistema puede emitir radiación que distribuirá en la escena con un patrón de barrido lineal, y al mismo tiempo recogerá la radiación tal y como se ha descrito anteriormente.
Entre las múltiples configuraciones que permite esta invención se encuentran aquellas que utilicen elementos separadores de haz. Estos pueden tratar con los diferentes estados de polarización de la radiación y/o con los diferentes rangos espectrales. De esta manera esta invención puede proporcionar información multiespectral, polarimétrica y espectrométrica.
DESCRIPCIÓN DE LOS DIBUJOS
La figura I muestra un sistema que sigue la configuración en la que el detector está colocado detrás del espejo primario. El espejo primario l es cóncavo, mientras que el secundario 2 es convexo. La radiación focaliza en eje detrás del espejo primario en 3. Esta configuración, sin que pueda ser considerada como una restricción de la invención, está pensada para facilitar la integración de un detector de un solo píxel y/o para una cabeza de radar o un sistema ladar o lidar.
La figura 2 muestra un sistema que sigue la configuración en la que el detector está colocado entre los dos espejos. En este caso el espejo primario 1 es cóncavo y el secundario 2 es plano. Esta otra posible configuración está pensada para un sistema que utiliza una línea dc antenas aunque en la figura solamente se representa el trazado de los rayos que corresponden con la antena central y las dos antenas de los extremos de la línea.
La figura 3 muestra un sistema que utiliza un dispositivo para separar el haz en dos haces con polarizaciones ortogonales entre sí. Este caso es un ejemplo de la configuración descrita en figura 1, pero se podría aplicar a la configuración descrita en la figura 2. El espejo primario es (1), el secundario es (2). Cuando la radiación llega al separador de haz (ej.: polarizador lineal 3), éste filtra una componente del campo
eléctrico (que representa aproximadamente el 50% de la energía) y rechaza la
componente ortogonal. Colocando las dos antenas (4 y 5) con polarizaciones
ortogonales entre sí, se integra mayor cantidad de energía para cada punto de la escena
barrido y consecuentemente se mejora la sensibilidad térmica de la imagen. Otro
5
ejemplo sin carácter limitativo es utilizar uno o varios dispositivos que separen el haz
filtrando la radiación de una longitud de onda determinada (ej.: milimétrica) y
reflejando radiación correspondiente a otra (ej.: infrarroja), para posteriormente redirigir
cada uno de los diferentes haces a diferentes detectores y de esa forma lograr imágenes
multiespectrales.
lO
El movimiento de ambos espejos se puede esclavizar mecánicamente utilizando
un único motor y una transmisión de tres corona... dentada... con fonna de U. Esta
transmisión tiene un acoplamiento para cl eje del motor y dos ejes de salida que giran en
sentido opuesto y que comparten el centro geométrico de rotación. Para ello uno de los
15
ejes está metido dentro del otro que cs hucco. El principal inconveniente de esta
solución mecánica es que el eje de rotación coincide con el eje óptico y obstruye parte
de la radiación que se de otra forma convergería en el punto focal. Por esta razón se
propone una solución mecánica que prescinda de utilizar el eje de giro geométrico para
dar arrastre a Jos espejos.
20
La figura 4 muestra una posibilidad de montaje mecánico para la configuración
óptica de la figura 2, sin que pueda ser considerada como una restricción de la
invención. Ambos espejos (7 y 8) están esclavizados electrónicamente ya que cada uno
tiene acoplado un motor que les hace rotar (5 y 6) Y un sensor de posicionamiento. De
25
esta forma el dispositivo que gobierna el movimiento de los motores es capaz de
detectar y corregir posibles desviaciones en el sincronismo. El espejo (8) está sujeto
mediante nervios que salen de su perímetro exterior, a un anillo colocado parcialmente
dentro de un rodamiento (2) y al que simultáneamente se le trasmite el movimiento a
través de una corona dentada (3). Los motores y la estructura (4) están amarrados a un
30
mismo chasis (1).
DESCRIPCiÓN DE UNA REALIZACIÓN PREFERIDA
La figura 5 muestra la posibilidad preferida de montaje mecánico para esta
35
invención, sin que pueda considerarse como una restricción a la misma. En esta ocasión
ambos espejos (5 y 8) estan esclavizados mecánicamente a través de un conjunto de
coronas de transmisión (9). El acoplo del motor (7) puede hacerse bien directamente, o a
través de una primera etapa de transmisión del movimiento a 900 respecto del eje del
motor. En la siguiente etapa se mueve una corona (10) que a su vez trasmite el
40
movimiento a otras dos coronas (11 y 12) perpendiculares con respecto a (10). Cada una
de estas coronas está fijada a un eje que en el otro extremo mueve otra corona, que es la
que transmite el movimiento a cada uno de los discos rotatorios. De esta forma, sólo es
necesario emplear un motor. Además al estar ambos espejos esclavizados
mecánicamente, se prescinde del esclavizado electrónico. Otra ventaja importante es
45
que esta configuración permite colocar el detector/es tanto entre los dos espejos como
detrás del espejo primario (5) previo mecanizado de una apertura central. Esta
realización es la preferida por ser la más polivalente, ya que pennite integrar fácilmente
cualesquiera quc sean los detectores y/o sistemas radiantes que elegidos.

Claims (11)

  1. REIVINDICACIONES
    1. Un sistema óptico compacto multiespectral formado por una primera superficie reflectora denominada espejo primario que refleja la radiación de la escena y la hace converger y una segunda superficie reflectora denominada espejo secundario que recibe dicha radiación concentrada y la dirige al detector, para el barrido lineal de la escena, caracterizado por:
    i) Que ambas superficies reflectoras denominadas espejo primario y espejo secundario están enfrentadas y giran en torno a sendos ejes de giro que pasan por sus respectivos centros y con cierto ángulo de inclinación respecto a la perpendicular a la superiicie.
    ii) Que ambos ejes de giro correspondientes a ambas superficies están alineados y giran en sentido contrario con la misma velocidad angular. iii) Que la radiación es focal izada en un detector.
  2. 2.
    Un sistema óptico compacto multiespectral para el barrido lineal de la escena según reivindicación 1 caracterizado por que el ángulo de inclinación de ambos espejos respecto a sus ejes de giro es idéntico.
  3. 3.
    Sistema óptico compacto multiespectral para el barrido lineal de la escena según reivindicación I caracterizado por que comprende detectores puntuales, lineales o matriciales.
  4. 4.
    Sistema óptico compacto multiespectral para el barrido lineal de la escena según reivindicación I caracterizado por que comprende uno o varios detectores en canales de detección simultáneos, alternativos o sucesivos, de las bandas espectrales de las microondas, ondas milimétricas, terahercios, infrarrojos, visible o ultravioleta.
    S. Sistema óptico compacto multiespectral para el barrido lineal de la escena según rei vindicación 1 caracterizado por que comprende un sistema radiante para distribuir la radiación emitida por la escena con un patrón de barrido lineal al mismo tiempo que recoge la radiación.
  5. 6. Sistema óptico compacto muItiespectral para el barrido lineal de la escena según rei vindicaciones 3 a S, caracterizado por que la radiación converge entre los espejos primario y secundario, donde se sitúan los detectores
    o los sistemas radiantes.
  6. 7.
    Sistema óptico compacto multiespectral para el barrido lineal de la escena según rei vindicaciones 3 a 5, caracterizado por que el espejo primario tiene una apertura central y la radiación converge tras el espejo primario, donde se sitúan los detectores o los sistemas radiantes
  7. 8.
    Sistema óptico compacto multiespectral para el barrido lineal de la escena según reivindicación 1, caracterizado por la inclusión de un dispositivo
    en la trayectoria óptica que separa el haz en dos o más haces cada uno de los cuales converge en un detector puntual, lineal o matricial.
  8. 9. Sistema óptico compacto multiespectral para el barrido lineal de
    5 la escena según la reivindicaciones 1 y 8, caracterizado por que el dispositivo separador de haz es un polarizador y porque los distintos detectores son sensibles a los estados de polarización.
  9. 10. Sistema óptico compacto mu ltiespectral para el barrido lineal de
    10 la escena según reivindicación 1 y 8, caracterizado por que para cada uno de los haces se colocan detectores sensibles a los distintos rangos espectrales.
  10. 11. Sistema óptico compacto multiespectral para el barrido lineal de
    la escena según reivindicación 1 caracterizado por esclavizar el movimiento de 15 los espejos primario y secundario a través de una transmisión mecanica.
  11. 12. Sistema óptico compacto multiespectral para el barrido lineal de la escena según reivindicación I caracterizado por esclavizar electrónicamente el movimiento de los espejos primario y secundario.
ES200901996A 2009-10-15 2009-10-15 Sistema de multiespectral de barrido. Expired - Fee Related ES2387484B1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES200901996A ES2387484B1 (es) 2009-10-15 2009-10-15 Sistema de multiespectral de barrido.
US13/502,104 US9158110B2 (en) 2009-10-15 2010-03-18 Compact multispectral scanning system
CA2780162A CA2780162A1 (en) 2009-10-15 2010-03-18 Compact multispectral scanning system
EP10710288.1A EP2488910B1 (en) 2009-10-15 2010-03-18 Compact multispectral scanning system
JP2012533533A JP5653443B2 (ja) 2009-10-15 2010-03-18 小型マルチスペクトル走査システム
MX2012004360A MX2012004360A (es) 2009-10-15 2010-03-18 Sistema multiespectral de barrido compacto.
BR112012008942A BR112012008942A2 (pt) 2009-10-15 2010-03-18 sistema de varredura multiespecial compacto
KR1020127012291A KR20120083911A (ko) 2009-10-15 2010-03-18 컴팩트한 다중스펙트럼 스캐닝 시스템
PCT/EP2010/053558 WO2011045087A1 (en) 2009-10-15 2010-03-18 Compact multispectral scanning system
CN201080052157.9A CN102667571B (zh) 2009-10-15 2010-03-18 紧凑型多光谱扫描***
ES10710288.1T ES2552763T3 (es) 2009-10-15 2010-03-18 Sistema multiespectral de barrido compacto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200901996A ES2387484B1 (es) 2009-10-15 2009-10-15 Sistema de multiespectral de barrido.

Publications (2)

Publication Number Publication Date
ES2387484A1 ES2387484A1 (es) 2012-09-24
ES2387484B1 true ES2387484B1 (es) 2013-08-02

Family

ID=42237051

Family Applications (2)

Application Number Title Priority Date Filing Date
ES200901996A Expired - Fee Related ES2387484B1 (es) 2009-10-15 2009-10-15 Sistema de multiespectral de barrido.
ES10710288.1T Active ES2552763T3 (es) 2009-10-15 2010-03-18 Sistema multiespectral de barrido compacto

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES10710288.1T Active ES2552763T3 (es) 2009-10-15 2010-03-18 Sistema multiespectral de barrido compacto

Country Status (10)

Country Link
US (1) US9158110B2 (es)
EP (1) EP2488910B1 (es)
JP (1) JP5653443B2 (es)
KR (1) KR20120083911A (es)
CN (1) CN102667571B (es)
BR (1) BR112012008942A2 (es)
CA (1) CA2780162A1 (es)
ES (2) ES2387484B1 (es)
MX (1) MX2012004360A (es)
WO (1) WO2011045087A1 (es)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375378B1 (ko) * 2013-01-07 2014-03-19 한국 천문 연구원 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템
CN103809176B (zh) * 2014-03-13 2016-06-29 中国电子科技集团公司第三十八研究所 一种单像素毫米波成像装置和方法
US10088558B2 (en) 2014-08-15 2018-10-02 Aeye, Inc. Method and system for ladar transmission with spiral dynamic scan patterns
KR101570092B1 (ko) 2015-05-15 2015-11-27 엘아이지넥스원 주식회사 십자형 표적위치 추적기 및 이를 이용하여 위치 오차를 측정하기 위한 방법
US20170242102A1 (en) 2016-02-18 2017-08-24 Aeye, Inc. Ladar System with Dichroic Photodetector for Tracking the Targeting of a Scanning Ladar Transmitter
US10908262B2 (en) 2016-02-18 2021-02-02 Aeye, Inc. Ladar transmitter with optical field splitter/inverter for improved gaze on scan area portions
US10042159B2 (en) 2016-02-18 2018-08-07 Aeye, Inc. Ladar transmitter with optical field splitter/inverter
US9933513B2 (en) 2016-02-18 2018-04-03 Aeye, Inc. Method and apparatus for an adaptive ladar receiver
KR101851701B1 (ko) * 2016-09-28 2018-04-25 (주)트루아이즈 지향성 광학계 및 그를 구비한 비접촉식 이벤트 검출장치
JP7206206B2 (ja) 2017-02-17 2023-01-17 エイアイ インコーポレイテッド Ladarパルス干渉回避方法およびシステム
CA3075736A1 (en) 2017-09-15 2019-11-14 Aeye, Inc. Intelligent ladar system with low latency motion planning updates
CN107942499A (zh) * 2017-11-09 2018-04-20 中国科学院长春光学精密机械与物理研究所 全反射式成像***
CN107908011B (zh) * 2017-11-14 2019-09-17 海信集团有限公司 一种焦点可变的缩束装置、激光光源及投影显示设备
CN107797295A (zh) * 2017-11-14 2018-03-13 海信集团有限公司 一种光源缩束***、激光光源装置以及激光投影***
CN109283540A (zh) * 2018-09-30 2019-01-29 江苏慧光电子科技有限公司 适用于输出图案化光束的***和光路结构
CN112903801A (zh) * 2021-01-27 2021-06-04 南开大学 一种离子光解离方法及装置
US20220317249A1 (en) 2021-03-26 2022-10-06 Aeye, Inc. Hyper Temporal Lidar with Switching Between a Baseline Scan Mode and a Pulse Burst Mode
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US20230044929A1 (en) 2021-03-26 2023-02-09 Aeye, Inc. Multi-Lens Lidar Receiver with Multiple Readout Channels
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
US20220308222A1 (en) 2021-03-26 2022-09-29 Aeye, Inc. Hyper Temporal Lidar with Multi-Channel Readout of Returns
US11460552B1 (en) 2021-03-26 2022-10-04 Aeye, Inc. Hyper temporal lidar with dynamic control of variable energy laser source
US11822016B2 (en) 2021-03-26 2023-11-21 Aeye, Inc. Hyper temporal lidar using multiple matched filters to orient a lidar system to a frame of reference
WO2023030632A1 (en) * 2021-09-02 2023-03-09 Esa - European Space Agency An imaging system with a scanning mirror
GB2617846A (en) * 2022-04-21 2023-10-25 Global Satellite Vu Ltd Telescope with de-scanning secondary mirror for forward motion compensation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917390B2 (ja) * 1980-03-31 1984-04-20 防衛庁技術研究本部長 赤外線追尾装置
US4387952A (en) 1981-03-27 1983-06-14 Spectra-Physics, Inc. Single axis beam scanner
US4871904A (en) * 1987-12-28 1989-10-03 Symbol Technologies, Inc. Multidirectional optical scanner
JPH0210283A (ja) * 1988-06-29 1990-01-16 Oki Electric Ind Co Ltd レーザレーダ装置
US4923263A (en) * 1988-09-22 1990-05-08 The United States Of America As Represented By The Secretary Of The Army Rotating mirror optical scanning device
JPH02131682U (es) * 1989-04-07 1990-11-01
DE4131429C2 (de) 1991-09-20 1994-01-27 Bodenseewerk Geraetetech Optisches System zur Positionierung eines Strahlenganges
US5416319A (en) * 1993-12-03 1995-05-16 Hughes Aircraft Company Optical scanner with dual rotating wedge mirrors
JPH09318743A (ja) * 1996-05-30 1997-12-12 Toshiba Corp 距離測定装置
US5995265A (en) * 1996-08-12 1999-11-30 Black; Michael Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
GB9819064D0 (en) * 1998-09-02 1998-10-28 Secr Defence Scanning apparatus
JP2000307334A (ja) * 1999-04-19 2000-11-02 Matsushita Electric Ind Co Ltd アンテナ装置及びそれを用いたレーダ装置
GB0117750D0 (en) 2001-07-20 2001-09-12 Univ Reading The Scanning apparatus
GB0203530D0 (en) 2002-02-14 2002-04-03 Lettington Alan H Scanning apparatus
EP1730576A2 (en) * 2004-03-30 2006-12-13 Farran Technology Limited Scanning apparatus
JP4355670B2 (ja) * 2005-03-10 2009-11-04 日本電信電話株式会社 物体透視装置
JP2007298741A (ja) * 2006-04-28 2007-11-15 Olympus Imaging Corp ライブビュー可能な一眼レフカメラ
CN201107407Y (zh) * 2007-10-30 2008-08-27 北京空间机电研究所 空间大口径压缩光束中继扫描成像光学***
CN101303254A (zh) * 2008-06-30 2008-11-12 杨庆华 新型双猫眼动镜干涉仪

Also Published As

Publication number Publication date
MX2012004360A (es) 2012-07-17
JP5653443B2 (ja) 2015-01-14
EP2488910A1 (en) 2012-08-22
BR112012008942A2 (pt) 2019-09-24
ES2387484A1 (es) 2012-09-24
US20120267517A1 (en) 2012-10-25
US9158110B2 (en) 2015-10-13
CN102667571A (zh) 2012-09-12
KR20120083911A (ko) 2012-07-26
EP2488910B1 (en) 2015-08-19
ES2552763T3 (es) 2015-12-02
CN102667571B (zh) 2015-06-17
WO2011045087A1 (en) 2011-04-21
JP2013507662A (ja) 2013-03-04
CA2780162A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
ES2387484B1 (es) Sistema de multiespectral de barrido.
CN107209265B (zh) 光探测和测距装置
US11522335B2 (en) Transmitting device with a scanning mirror covered by a collimating cover element
ES2216555T3 (es) Aparato de exploracion.
US7236299B1 (en) Compact periscopic beam director
US9927515B2 (en) Liquid crystal waveguide steered active situational awareness sensor
US6723975B2 (en) Scanner for airborne laser system
WO2021035428A1 (zh) 激光雷达及自动驾驶设备
EP1929354B1 (en) Energy signal processing system
JP6893538B2 (ja) 光走査装置および、光学拡張または光学圧縮の装置
EP3413078A1 (en) Object detection device of optical scanning type
JP7230443B2 (ja) 距離測定装置及び移動体
EP1344100B1 (en) Scanning sensor system with multiple rotating telescope subassemblies
EP3413079A1 (en) Object detection device of optical scanning type
CN102597817B (zh) 中间镜片装置
US7602548B2 (en) Schiefspiegler telescope with three reflecting surfaces
CN111352125A (zh) 同轴宏扫描仪***
ES2274052T3 (es) Aparato de exploracion para formar imagenes en el dominio espectral de las microondas, ondas milimetricas o los infrarrojos.
ES2603679T3 (es) Sistema óptico de observación espacial por barrido
CN115989427A (zh) 在确保眼睛安全的同时进行多个同时激光束的发射和照明
WO2024084859A1 (ja) 光学センサ、受光モジュール
US12025790B2 (en) Micro-electro-mechanical system (MEMS) micro-mirror array (MMA) and off-axis parabola (OAP) steered active situational awareness sensor
CN218727982U (zh) 一种光路结构及混合固态激光雷达
AU2008201561B2 (en) Energy signal processing system
JPH0814507B2 (ja) 光学装置

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2387484

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20130802

FD2A Announcement of lapse in spain

Effective date: 20210915