ES2353544A1 - Cementitious composite with carbon nanofibers for monitoring deformations - Google Patents

Cementitious composite with carbon nanofibers for monitoring deformations Download PDF

Info

Publication number
ES2353544A1
ES2353544A1 ES200901735A ES200901735A ES2353544A1 ES 2353544 A1 ES2353544 A1 ES 2353544A1 ES 200901735 A ES200901735 A ES 200901735A ES 200901735 A ES200901735 A ES 200901735A ES 2353544 A1 ES2353544 A1 ES 2353544A1
Authority
ES
Spain
Prior art keywords
cement
composite
cementitious
deformation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200901735A
Other languages
Spanish (es)
Other versions
ES2353544B2 (en
ES2353544B8 (en
Inventor
Luis Garcia Andion
Emilio Zornora Perez
Francisco J. Baeza De Los Santos
Oscar Galao Malo
Pedro Garces Terradillos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Alicante
Original Assignee
Universidad de Alicante
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Alicante filed Critical Universidad de Alicante
Priority to ES200901735A priority Critical patent/ES2353544B8/en
Priority to PCT/ES2010/000341 priority patent/WO2011015689A2/en
Publication of ES2353544A1 publication Critical patent/ES2353544A1/en
Publication of ES2353544B2 publication Critical patent/ES2353544B2/en
Application granted granted Critical
Publication of ES2353544B8 publication Critical patent/ES2353544B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0083Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by measuring variation of impedance, e.g. resistance, capacitance, induction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Abstract

The invention proposes the viability of using carbon nanofibers for cement moulds such as pastes, mortars, and concretes, with the purpose of using such composites to monitor deformations in order to detect the deformation thereof due to external activities with no sensor embedded or attached. The procedure is based on changing the electrical resistance of the carbon nanofiber/cement composites when subjected to stress. A proportional change is made to the contact stress of the matrix with the nanofiber and the level of stresses to which it is subjected this is undoubtedly interesting when talking about an intelligent structure. The composite is adaptable to control structural vibrations, heavy traffic monitoring, movement detection in building areas, and building security in real time, amongst others.

Description

Composite cementicio con nanofibras de carbono para monitorización de deformaciones.Cementitious composite with carbon nanofibers for deformation monitoring.

Campo de la invenciónField of the Invention

La presente invención se encuadra en el campo de la construcción, y más particularmente se refiere a tecnología de los materiales y nanotecnología.The present invention falls within the field of construction, and more particularly refers to technology of Materials and nanotechnology.

Antecedentes de la invenciónBackground of the invention

La función de percepción de la deformación fue desarrollada inicialmente utilizando fibras de acero y fibras de carbono de uso general, siendo objeto de estudio con creciente interés hasta el presente con la introducción de nuevos parámetros.The deformation perception function was initially developed using steel fibers and fibers of General purpose carbon, being studied with increasing interest so far with the introduction of new parameters

En la década de los noventa se patentaron diversos procedimientos para aplicar esta técnica. Entre los antecedentes conocidos destacan las patentes americanas US5817944 y US6079277. Tales invenciones consisten en el uso de fibras de carbono dispersadas en matrices de cemento para medir la deformación que sufren al ser sometidas a un esfuerzo externo sin necesidad de llevar ningún sensor embebido o adherido, mediante la medida de las variaciones de su resistencia eléctrica durante el proceso.In the nineties they were patented Various procedures to apply this technique. Between the known background highlights US patents US5817944 and US6079277. Such inventions consist of the use of fibers of carbon dispersed in cement matrices to measure deformation who suffer when subjected to an external effort without the need for carry any embedded or adhered sensor, by measuring the variations of its electrical resistance during the process.

Los principales inconvenientes que plantean estos antecedentes son:The main drawbacks they pose This background is:

\bullet?
La dispersión de estas adiciones en la matriz cementicia es una labor compleja y muy delicada a la hora de obtener los resultados deseados ya que implica el uso de aditivos adicionales y varias etapas previas a la propia incorporación a la matriz.The dispersion of these additions in the cement matrix is a complex and very delicate work to the time to obtain the desired results since it implies the use of additional additives and several stages prior to one's own incorporation into the matrix.

\bullet?
La fibra de carbono ofrece una moderada área de contacto con la matriz cementicia, propiedad que es importante a la hora de que el material funcione.Carbon fiber offers a moderate area of contact with the cement matrix, property that is important when the material works.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

Con la intención de mejorar tales inconvenientes surge esta invención que ofrece las siguientes mejoras respecto a los materiales que emplean fibras de carbono:With the intention of improving such inconveniences this invention arises that offers the following improvements with respect to Materials that use carbon fibers:

\bullet?
La incorporación de nanofibras en la matrices cementicias es un proceso sencillo y reproducible ya que su dispersión en la matriz es directa, lo cual garantiza poder llevar a cabo la monitorización de la deformación de forma óptima.The incorporation of nanofibers in cementitious matrices it is a simple and reproducible process since that its dispersion in the matrix is direct, which guarantees power carry out form deformation monitoring optimal

\bullet?
El área de contacto matriz-nanofibra es muy superior a la que presenta el material con fibra de carbono, lo cual se traduce en una mayor sensibilidad del composite.The contact area matrix-nanofiber is much higher than the one presented the material with carbon fiber, which translates into greater composite sensitivity
Explicación de la invenciónExplanation of the invention.

Tradicionalmente la línea de investigación de los materiales cementicios empleados en obra civil y edificación ha estado orientada al estudio de sus propiedades mecánicas debido a su principal y única función estructural. No obstante, últimamente ha surgido una nueva tendencia en esta línea; la integración de otras propiedades que le permitan tener funciones complementarias, convirtiéndose en materiales "multifuncionales".Traditionally the research line of the cementitious materials used in civil works and building has been oriented to the study of its mechanical properties due to its Main and only structural function. However, lately it has a new trend emerged in this line; the integration of others properties that allow it to have complementary functions, becoming "multifunctional" materials.

Existen diversas categorías dentro de los materiales cementicios "multifuncionales"; una de ellas son los materiales cementicios conductores.There are various categories within "multifunctional" cementitious materials; one of them are conductive cementitious materials.

Las propiedades eléctricas se consiguen mediante adiciones conductoras como los materiales carbonosos (por ejemplo, polvo de grafito, fibras de carbono o nanofibras de carbono).The electrical properties are achieved by conductive additions such as carbonaceous materials (for example, graphite powder, carbon fibers or carbon nanofibers).

Esta invención plantea la viabilidad del uso de nanofibras de carbono en matrices cementicias: pastas, morteros y hormigones, a fin de usar dichos composites en la monitorización de deformaciones, es decir de detectar su propia deformación al verse sometidos a acciones externas sin ningún tipo de sensor embebido o adherido.This invention raises the feasibility of using Carbon nanofibers in cementitious matrices: pastes, mortars and concretes, in order to use these composites in the monitoring of deformations, that is, to detect its own deformation when viewed subjected to external actions without any embedded sensor or adhered

Este procedimiento innovador se basa en el cambio en la resistencia eléctrica del material cementicio con adición de nanofibras de carbono al ser sometida a tensiones. De este modo, se realizar un cambio proporcional de la resistencia de contacto de la matriz con la nanofibra con el nivel de tensiones a que es sometida, lo cual es indudablemente interesante a la hora de hablar de una estructura inteligente.This innovative procedure is based on the change in the electrical resistance of the cementitious material with addition of carbon nanofibers when subjected to stress. From in this way, a proportional change in the resistance of contact of the matrix with the nanofiber with the stress level at which is submitted, which is undoubtedly interesting at the time of Talk about an intelligent structure.

La función de percepción de la deformación mediante adición de nanofibras de carbono consiste en que al someter al material a una compresión, esta resistencia de contacto entre la matriz cementicia y la nanofibra disminuye, produciendo a su vez el descenso de la resistencia eléctrica global en la dirección del esfuerzo. Mientras que si la tensión aplicada es de tracción el fenómeno generado es el contrario.The deformation perception function by adding carbon nanofibers is that when submitting to the material at a compression, this contact resistance between the cementitious matrix and nanofiber decreases, producing in turn the decrease in global electrical resistance in the direction of effort. While if the tension applied is tensile the phenomenon generated is the opposite.

Si la tensión aplicada sobrepasa el límite elástico del material se observan efectos irreversibles en la respuesta de su resistencia eléctrica. En ese caso, la capacidad de percibir la deformación del material no es capaz de recuperar totalmente su valor inicial de resistencia ya que en ese nivel tan elevado de tensión ya se han producido dos cambios irreversibles, el fallo del anclaje nanofibra-matriz y la rotura de algunas de las nanofibras.If the applied voltage exceeds the limit elastic material irreversible effects are observed in the response of its electrical resistance. In that case, the ability to perceive the deformation of the material is not able to recover totally its initial resistance value since at that level so high tension there have already been two irreversible changes, the nanofiber-matrix anchor failure and breakage of Some of the nanofibers.

El desarrollo de este composite cementicio permite diferentes aplicaciones prácticas: control de vibraciones estructurales, monitorización de tráfico pesado, detección de movimiento en estancias y seguridad de edificios, en tiempo real, entre otros.The development of this cementitious composite Allows different practical applications: vibration control structural, heavy traffic monitoring, detection of movement in rooms and security of buildings, in real time, among others.

Descripción de los dibujosDescription of the drawings

En la Figura 1 se representa una probeta prismática de dimensiones 4x4x16 cm. Esta probeta utilizada en la invención esta fabricada con pasta de cemento Pórtland y nanofibra de carbono del tipo stacked-cup, con un diámetro exterior que varía entre los 20 y 80 nm y un gran hueco central. Dichas nanofibras presentan una relación de aspecto muy alta, con una longitud de varias micras. El método de medida consiste en introducir la corriente por la cara superior 1 y la cara inferior 2 de la probeta y la diferencia de potencial se tomó entre los puntos 3 y 4. A partir de los valores de caída de potencial entre los puntos 3 y 4, se calcula la variación de las resistividades correspondientes.Figure 1 shows a test tube prismatic dimensions 4x4x16 cm. This test tube used in the invention is made with Portland cement paste and nanofiber carbon stacked-cup type, with a diameter exterior that varies between 20 and 80 nm and a large central hole. These nanofibers have a very high aspect ratio, with a length of several microns. The measurement method consists of introduce the current through the upper face 1 and the lower face 2 of the specimen and the potential difference was taken between the points 3 and 4. From the potential drop values between the points 3 and 4, the variation of the resistivities is calculated corresponding.

En la Figura 2 se representa un ejemplo del comportamiento de la invención donde se muestra la evolución de la resistencia eléctrica en función de la deformación durante un ensayo de compresión axial. Probeta 4x4x16 cm de pasta de cemento con adición 5% de nanofibra de carbono, amplitud de carga de 4000 N y velocidad 100 N/s.An example of the behavior of the invention where the evolution of the electrical resistance as a function of deformation during a test axial compression Probeta 4x4x16 cm of cement paste with 5% carbon nanofiber addition, 4000 N load amplitude and speed 100 N / s.

En la Figura 3 se recoge la relación entre el incremento unitario de resistencia eléctrica y la deformación unitaria en un ensayo de compresión axial. Probeta 4x4x16 cm de pasta de cemento con adición 5% de nanofibra de carbono, amplitud de carga de 4000 N y velocidad 100 N/s.Figure 3 shows the relationship between the unit increase of electrical resistance and deformation unitary in an axial compression test. 4x4x16 cm test tube cement paste with 5% carbon nanofiber addition, amplitude of 4000 N load and 100 N / s speed.

Descripción detallada de la invenciónDetailed description of the invention

Esta realización se proporciona a modo de descripción detallada para cubrir completamente el alcance de la invención para los expertos en la técnica.This embodiment is provided by way of Detailed description to fully cover the scope of the invention for those skilled in the art.

La invención consiste en el uso de nanofibras de carbón en matrices cementicias: pastas, morteros y hormigones, con el objetivo de desarrollar la función de percepción de la deformación y así poder detectar su propia deformación al verse sometidos a acciones externas sin ningún tipo de sensor embebido o adherido.The invention consists in the use of nanofibers of coal in cementitious matrices: pastes, mortars and concrete, with the objective of developing the perception function of the deformation and thus be able to detect its own deformation when viewed subjected to external actions without any embedded sensor or adhered

En cuanto a los materiales utilizados y preparación de las probetas, se han considerado probetas prismáticas de dimensiones 4x4x16 cm con pasta de cemento Pórtland y nanofibra de carbono del tipo stacked-cup, con un diámetro exterior que varía entre los 20 y 80 nm y un gran hueco central. Dichas nanofibras presentan una relación de aspecto muy alta, con una longitud de varias micras.As for the materials used and preparation of the specimens, prismatic specimens have been considered 4x4x16 cm dimensions with Portland cement paste and nanofiber carbon stacked-cup type, with a diameter exterior that varies between 20 and 80 nm and a large central hole. These nanofibers have a very high aspect ratio, with a length of several microns.

Los componentes básicos utilizados han sido:The basic components used have been:

\bullet?
Cemento tipo CEM I 52.5 R.Cement type CEM I 52.5 R.

\bullet?
Relación agua cemento a/c=0.5.Cement water ratio a / c = 0.5.

\bullet?
Cantidad nanofibra de carbono añadida a la mezcla: 5% respecto masa de cemento.Carbon nanofiber amount added to the mixture: 5% with respect to cement mass.

\bullet?
Plastificante (SIKA) en proporción variable.Plasticizer (SIKA) in variable proportion

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

Las probetas se curaron sumergidas en agua durante 28 días antes de ser ensayadas.The specimens were cured submerged in water for 28 days before being tested.

Después se montaron los componentes eléctricos. Se pintaron bandas de pintura de plata 5 alrededor de las probetas para lograr un buen contacto eléctrico entre el monitor de potencial y la probeta del composite, entonces se rodearon con hilo de cobre 6 firmemente para tener un punto claro de anclaje entre el monitor de potencial y la probeta y que asegure además el contacto eléctrico entre el monitor de potencial y la pintura de plata. La cara superior 1 y la cara inferior 2 también se cubrieron con pintura de plata.Then the electrical components were mounted. 5 silver paint bands were painted around the specimens to achieve good electrical contact between the potential monitor and the composite test tube, then they were surrounded with 6 copper wire firmly to have a clear anchor point between the monitor potential and the test tube and also ensure the electrical contact Between the potential monitor and the silver paint. Face upper 1 and lower face 2 were also covered with paint silver.

En cuanto a los instrumentos de ensayo, la carga de las probetas se realizó mediante una prensa electromecánica modelo EMI/100/FR, suministrada por Microtest S.A. La resistencia eléctrica se midió gracias a un multímetro digital Keithley 2002 suministrado por National Instruments Inc. La intensidad de corriente fue aplicada mediante una fuente externa Keithley 6021 suministrada por National Instruments Inc.As for the test instruments, the load of the specimens was performed using an electromechanical press EMI / 100 / FR model, supplied by Microtest S.A. The resistance electrical was measured thanks to a 2002 Keithley digital multimeter supplied by National Instruments Inc. The intensity of current was applied by an external source Keithley 6021 supplied by National Instruments Inc.

Los diferentes ensayos realizados consistieron en monitorizar la resistencia eléctrica de la probeta en la dirección longitudinal mientras se aplicaban ciclos de compresión también longitudinalmente. El valor máximo de carga aplicado en cada ciclo fue de 4 kN, este valor corresponde a menos de un 25% de la carga de rotura del material compuesto, situándose en un punto intermedio dentro de la zona de deformación elástica del composite, en la cual el comportamiento es óptimo y reversible. La velocidad de carga y descarga fue de 100 N/s ya que se evita que una carga más acelerada produzca efectos similares a impactos, lo cual se traduciría en daños irreversibles al composite. Valores menores de velocidad de carga alargan en exceso el ensayo del material. La intensidad de corriente aplicada fue de 0.1 mA ya que valores superiores producirían la polarización de la disolución intersticial del composite (lo cual enmascara la medida), evitando asimismo reacciones electroquímicas indeseables sobre los electrodos que también afectan al composite y a la monitorización de la deformación. Valores menores de corriente reducían significativamente la sensibilidad del composite al ensayo realizado.The different tests performed consisted of in monitoring the electrical resistance of the specimen in the longitudinal direction while applying compression cycles also longitudinally. The maximum load value applied in each cycle was 4 kN, this value corresponds to less than 25% of the breaking load of the composite material, standing at a point intermediate within the elastic deformation zone of the composite, in which the behavior is optimal and reversible. The speed of loading and unloading was 100 N / s since it prevents a load more accelerated produce effects similar to impacts, which would result in irreversible damage to the composite. Values less than loading speed excessively extend the material test. The applied current intensity was 0.1 mA since values higher would produce polarization of the interstitial solution of the composite (which masks the measurement), also avoiding undesirable electrochemical reactions on the electrodes that they also affect the composite and the monitoring of the deformation. Lower current values reduced significantly the sensitivity of the composite to the test accomplished.

El nivel de percepción de la deformación viene caracterizado por el factor de galga (FG). Este parámetro se define como el cambio fraccional de la resistividad por unidad de deformación (\varepsilon). La siguiente ecuación muestra tal relación:The level of perception of deformation comes characterized by the gauge factor (FG). This parameter is defined. as the fractional change of resistivity per unit of deformation (ε). The following equation shows such relationship:

1one

En donde FG es el factor de galga, \Delta\rho es al variación de resistividad [ohm\cdotcm], \rho es la resistividad inicial [ohm\cdotcm], y \varepsilon es la deformación aplicada (\varepsilon = \DeltaL/L, siendo L la longitud de la probeta).Where FG is the gauge factor, \ Delta \ rho is the resistivity variation [ohm \ cdotcm], \ rho is the initial resistivity [ohm \ cdotcm], and \ varepsilon is the applied strain (ε = ΔL / L, where L is the test tube length).

Según las referencias consultadas, la magnitud de las deformaciones es muy pequeña, midiéndose por este motivo la resistencia eléctrica en lugar de la resistividad. Las medidas de deformación se realizaron utilizando galgas extensométricas sobre la superficie de las probetas.According to the references consulted, the magnitude of the deformations is very small, measuring for this reason the electrical resistance instead of resistivity. The measurements of deformation were performed using strain gauges on the surface of the specimens.

El método de medida consiste en introducir la corriente entre las cara superior 1 y la cara inferior 2 de la probeta y la diferencia de potencial se tomó entre los puntos 3 y 4. A partir de los valores de caída de potencial entre los puntos 3 y 4, se calcula la variación de las resistividades correspondientes. La deformación se calculó como la media de los valores registrados por cuatro galgas extensométricas que se situaron en el punto central de cada una de las caras laterales de las probetas, para de esta forma, tener un valor más fiable de la deformación real durante el ensayo de carga.The method of measurement is to introduce the current between the upper face 1 and the lower face 2 of the test tube and the potential difference was taken between points 3 and 4. From the potential drop values between points 3 and 4, the variation of the corresponding resistivities is calculated. The deformation was calculated as the average of the recorded values by four strain gauges that were located at the point center of each of the side faces of the specimens, for this way, have a more reliable value of the actual deformation during The load test.

Las probetas usadas en estos ensayos se almacenaron en un ambiente con humedad relativa del 100% hasta que se estabilizó su peso. La resistividad inicial de las probetas (empleando un método de cuatro puntas) fue aproximadamente de 1575 ohm\cdotcm.The specimens used in these tests are stored in an environment with 100% relative humidity until its weight stabilized. The initial resistivity of the specimens (using a four-pointed method) was approximately 1575 ohm \ cdotcm.

A continuación se muestran los resultados obtenidos después del curado en cámara húmeda.The results are shown below. obtained after curing in a humid chamber.

En la Figura 2 se muestra la evolución de la resistencia eléctrica de una probeta de pasta de cemento con un 5% de adición de nanofibra de carbono con la deformación que sufre dicha probeta al ser sometida a un esfuerzo de compresión axial. Se usó esta proporción de nanofibra ya que tras estudios iniciales, el comportamiento óptimo del composite desde el punto de vista de la monitorización de la deformación se obtenía para esta cantidad. Deformaciones negativas se corresponden con compresiones de la probeta. Como se puede observar, existe una clara relación entre ambos parámetros, a medida que se comprime la probeta se produce una disminución de su resistencia eléctrica, lo cual permite la posibilidad de establecer una relación entre ambos parámetros.Figure 2 shows the evolution of the electrical resistance of a 5% cement paste test tube of addition of carbon nanofiber with the deformation it suffers said test tube when subjected to an axial compression stress. Be used this proportion of nanofiber since after initial studies, the optimal behavior of the composite from the point of view of the Deformation monitoring was obtained for this amount. Negative deformations correspond to compressions of the test tube. As you can see, there is a clear relationship between both parameters, as the specimen is compressed a decrease in electrical resistance, which allows possibility of establishing a relationship between both parameters.

Por otra parte, también se puede apreciar una reversibilidad del comportamiento entre los distintos ciclos de carga a los que es sometida la probeta. Cuando cesa el estado de carga, la resistencia eléctrica de la probeta recupera su valor inicial. Este comportamiento es crítico a la hora de poder tener una buena fiabilidad en la función de percepción de la deformación. La probeta utilizada es 4x4x16 cm de pasta de cemento con adición 5% de nanofibra de carbono, amplitud de carga de 4000 N y velocidad 100 N/s.On the other hand, you can also appreciate a reversibility of behavior between the different cycles of load to which the test piece is subjected. When the state of load, the electrical resistance of the specimen recovers its value initial. This behavior is critical when it comes to having a Good reliability in the deformation perception function. The test tube used is 4x4x16 cm of cement paste with 5% addition of carbon nanofiber, load amplitude 4000 N and speed 100 N / s

En la Figura 3 se muestra la relación entre el incremento unitario de resistencia eléctrica y la deformación unitaria en un ensayo de compresión axial. Probeta de pasta de cemento con 5% de adición de nanofibra de carbono. De la pendiente de dicha relación se obtiene el parámetro que caracteriza la sensibilidad de la función de percepción de la deformación.Figure 3 shows the relationship between the unit increase of electrical resistance and deformation unitary in an axial compression test. Test tube cement with 5% carbon nanofiber addition. Of the slope from this relationship the parameter that characterizes the Sensitivity of the deformation perception function.

Claims (3)

1. Un composite cementicio con adición de nanofibras de carbono que comprende:1. A cementitious composite with the addition of carbon nanofibers comprising:
a.to.
Una matriz cementicia basa en la mezcla de cemento, agua y áridos, presentando esta matriz durante las primeras horas naturaleza plástica, lo que permite darle forma, y que tras un determinado tiempo de varias horas (fraguado) se transforma en un material rígido sensible a las deformaciones.A cementitious matrix based on the mixture of cement, water and aggregates, presenting this matrix during the first hours of nature plastic, which allows shaping, and that after a certain time of several hours (setting) is transformed into a material Rigid sensitive to deformations.
b.b.
Un 5% de nanofibra de carbono respecto a la masa de cemento que se adiciona a los componentes de la matriz cementicia previamente a su amasado.5% of carbon nanofiber with respect to the cement mass that is add to the components of the cement matrix prior to its Kneading
c.C.
Dos contactos eléctricos de pintura de plata aplicada en los extremos de la probeta de composite endurecida que permiten la aplicación de una corriente eléctrica.Two electrical contacts of silver paint applied at the ends of the hardened composite specimen that allows the application of a electric current.
d.d.
Dos contactos eléctricos de pintura de plata e hilo de cobre situados perimetralmente en la probeta de composite que permiten la monitorización de la caída de potencial, y en consecuencia de la resistencia eléctrica.Two Silver paint and copper wire electrical contacts located perimeter in the composite specimen that allow monitoring of the potential drop, and consequently of the electric resistance.
         \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
      
2. Un composite cementicio según la reivindicación 1 para monitorizar deformaciones.2. A cementitious composite according to the claim 1 for monitoring deformations. 3. Uso del composite según la reivindicación 1 para control de vibraciones estructurales, monitorización de tráfico pesado, detección de movimiento en estancias y seguridad de edificios en tiempo real.3. Use of the composite according to claim 1 for structural vibration control, traffic monitoring heavy, motion detection in rooms and safety of Real time buildings.
ES200901735A 2009-08-05 2009-08-05 COMPOSITE CEMENTICIO WITH CARBON NANOFIBRAS FOR MONITORIZATION OF DEFORMATIONS. Active ES2353544B8 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200901735A ES2353544B8 (en) 2009-08-05 2009-08-05 COMPOSITE CEMENTICIO WITH CARBON NANOFIBRAS FOR MONITORIZATION OF DEFORMATIONS.
PCT/ES2010/000341 WO2011015689A2 (en) 2009-08-05 2010-08-02 Cementitious composite with carbon nanofibers for monitoring deformations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200901735A ES2353544B8 (en) 2009-08-05 2009-08-05 COMPOSITE CEMENTICIO WITH CARBON NANOFIBRAS FOR MONITORIZATION OF DEFORMATIONS.

Publications (3)

Publication Number Publication Date
ES2353544A1 true ES2353544A1 (en) 2011-03-03
ES2353544B2 ES2353544B2 (en) 2011-09-15
ES2353544B8 ES2353544B8 (en) 2019-04-22

Family

ID=43544715

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200901735A Active ES2353544B8 (en) 2009-08-05 2009-08-05 COMPOSITE CEMENTICIO WITH CARBON NANOFIBRAS FOR MONITORIZATION OF DEFORMATIONS.

Country Status (2)

Country Link
ES (1) ES2353544B8 (en)
WO (1) WO2011015689A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2403134A1 (en) * 2011-11-07 2013-05-14 Universidad De Alicante Cementitious composite having carbon nanofibres for heating
ITUA20162508A1 (en) * 2016-04-12 2017-10-12 Safecertifiedstructure Ingegneria S R L Survey method and device for measuring stresses in an agglomerate structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406582A (en) * 2018-12-28 2019-03-01 南水北调东线总公司 A kind of Structure Damage Identification using carbon fiber change in resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718252A2 (en) * 1994-12-19 1996-06-26 Mitsubishi Chemical Corporation Carbon fibre-reinforced concrete and method for preparing the same
US5817944A (en) * 1996-03-19 1998-10-06 The Research Foundation Of State University Of New York Composite material strain/stress sensor
US6079277A (en) * 1997-12-12 2000-06-27 The Research Foundation Of State University Of New York Methods and sensors for detecting strain and stress

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718252A2 (en) * 1994-12-19 1996-06-26 Mitsubishi Chemical Corporation Carbon fibre-reinforced concrete and method for preparing the same
US5817944A (en) * 1996-03-19 1998-10-06 The Research Foundation Of State University Of New York Composite material strain/stress sensor
US6079277A (en) * 1997-12-12 2000-06-27 The Research Foundation Of State University Of New York Methods and sensors for detecting strain and stress

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2403134A1 (en) * 2011-11-07 2013-05-14 Universidad De Alicante Cementitious composite having carbon nanofibres for heating
WO2013068615A1 (en) * 2011-11-07 2013-05-16 Universidad De Alicante Cementitious composite having carbon nanofibres for heating
ITUA20162508A1 (en) * 2016-04-12 2017-10-12 Safecertifiedstructure Ingegneria S R L Survey method and device for measuring stresses in an agglomerate structure
WO2017178985A1 (en) * 2016-04-12 2017-10-19 Safecertifiedstructure Tecnologia S.R.L. Method and investigation device for measuring stresses in an agglomerate structure
JP2019514005A (en) * 2016-04-12 2019-05-30 セイフサーティファイドストラクチャー テクノロジア エス.アール.エル. Method and apparatus for measuring the stress of aggregate structures
US11118999B2 (en) 2016-04-12 2021-09-14 Safecertifiedstructure Tecnologia S.R.L. Method and investigation device for measuring stresses in an agglomerate structure

Also Published As

Publication number Publication date
WO2011015689A2 (en) 2011-02-10
WO2011015689A3 (en) 2011-03-31
ES2353544B2 (en) 2011-09-15
ES2353544B8 (en) 2019-04-22

Similar Documents

Publication Publication Date Title
Galao et al. Strain and damage sensing properties on multifunctional cement composites with CNF admixture
Ding et al. Development of sensing concrete: Principles, properties and its applications
Monteiro et al. Electrical properties of cement-based composites containing carbon black particles
Rovnaník et al. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars
Zhang et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials
Sun et al. Development of cement-based strain sensor for health monitoring of ultra high strength concrete
Ou et al. Piezoresistive cement-based strain sensors and self-sensing concrete components
Baeza et al. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites
Wen et al. Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement
Wang et al. Electrical and piezoresistive properties of carbon nanofiber cement mortar under different temperatures and water contents
Lin et al. Mechanical and electrical characterization of self-sensing carbon black ECC
Xu et al. Anisotropic electrical and piezoresistive sensing properties of cement-based sensors with aligned carbon fibers
ES2353544B2 (en) COMPOSITE CEMENTICIO WITH CARBON NANOFIBERS FOR MONITORING DEFORMATIONS.
Teomete et al. Cement based strain sensor: A step to smart concrete
Ma et al. Optimization on the piezoresistivity of alkali-activated fly ash/slag mortar by using conductive aggregates and carbon fibers
Teomete Transverse strain sensitivity of steel fiber reinforced cement composites tested by compression and split tensile tests
Dehghani et al. Piezoresistive sensing of cementitious composites reinforced with shape memory alloy, steel, and carbon fibres
KR102306459B1 (en) Cement composite composition capable of self stress sensing
Wen et al. Effect of moisture on piezoresistivity of carbon fiber-reinforced cement paste
Mosavinejad et al. Crack detection of a HPCFRCC thin plate using electrical resistivity method
Kim et al. Development of a smart concrete block with an eccentric load sensing capacity
Wang et al. Health monitoring of C60 smart concrete based on self-sensing
Han et al. Piezoresistive response extraction for smart cement-based composites/sensors
Tian et al. Self-sensing study of stress in low-doped carbon fiber reinforced hydraulic concrete
Ubertini et al. Novel nanocomposite clay brick for strain sensing in structural masonry

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2353544

Country of ref document: ES

Kind code of ref document: B2

Effective date: 20110915