ES2343494A1 - Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding) - Google Patents

Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2343494A1
ES2343494A1 ES200701334A ES200701334A ES2343494A1 ES 2343494 A1 ES2343494 A1 ES 2343494A1 ES 200701334 A ES200701334 A ES 200701334A ES 200701334 A ES200701334 A ES 200701334A ES 2343494 A1 ES2343494 A1 ES 2343494A1
Authority
ES
Spain
Prior art keywords
batteries
translation
materials
anode
ysz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
ES200701334A
Other languages
Spanish (es)
Inventor
Juan Carlos Ruiz Morales
Pedro Nuñez Coello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de La Laguna
Original Assignee
Universidad de La Laguna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de La Laguna filed Critical Universidad de La Laguna
Priority to ES200701334A priority Critical patent/ES2343494A1/en
Publication of ES2343494A1 publication Critical patent/ES2343494A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Material that can be used as a symmetrical electrode in devices called solid oxide fuel cells (sofc), but at intermediate temperatures, that is, 700-850º c. This new material replaces the two materials that are used as standard in fuel cells: ni-ysz cermet as anode and la0.8sr0.2mno 3 - δ -lsm- how cathode, where: ysz is zirconia stabilized with yttria. The additional advantage of this material is that when working at 700ºC we could use stainless steel to connect several batteries together (the so - called interconnectors) decreasing the price of the batteries, besides the symmetrical configuration allows: - produce cheaper batteries - less interaction between the different components, which can be prepared in a single heat treatment - avoid the problems of traditional batteries such as: formation of coal deposits and poisoning by sulfur compounds. (Machine-translation by Google Translate, not legally binding)

Description

Material para electrodo simétrico de pilas de combustible de óxidos sólidos de temperatura intermedia.Material for symmetric electrode of batteries intermediate temperature solid oxide fuel.

Sector de la técnicaTechnical sector

Ciencia y tecnología de los materiales.Materials science and technology.

Materiales para pilas de combustible. Producción de energía eléctrica no contaminante.Materials for fuel cells. Production of non-polluting electrical energy.

Introducción Introduction

Una pila de combustible de óxidos sólidos (SOFC) es un dispositivo de conversión energética que produce electricidad directamente por oxidación de un combustible y reducción simultánea de un oxidante, encontrándose ambos generalmente en estado gaseoso. Cada pila consta de dos electrodos, un ánodo y un cátodo separados por un electrolito. El combustible se suministra al ánodo, donde ocurre la reacción de oxidación, y libera electrones al circuito externo. El oxidante se suministra al cátodo, donde llegan los electrones del circuito externo, y ocurre la reacción de reducción. El flujo de electrones, desde el ánodo al cátodo, produce corriente eléctrica. El electrolito es un aislante electrónico que permite el transporte de iones óxido o protones -u otras especies iónicas- entre los dos electrodos.A solid oxide fuel cell (SOFC) It is an energy conversion device that produces electricity directly by oxidation of a fuel and simultaneous reduction of an oxidant, both generally being in a gaseous state. Each battery consists of two electrodes, a separate anode and cathode for an electrolyte. The fuel is supplied to the anode, where the oxidation reaction occurs, and releases electrons to the circuit external. The oxidant is supplied to the cathode, where the electrons from the external circuit, and the reduction reaction occurs. The flow of electrons, from the anode to the cathode, produces current electric The electrolyte is an electronic insulator that allows the transport of oxide or proton ions -u other ionic species- between the two electrodes.

Las pilas SOFC se basan, generalmente, en la capacidad de ciertos óxidos de permitir el transporte de iones óxido a temperaturas moderadamente altas (600-1000ºC), consiguiéndose eficiencias de hasta un 85% (con cogeneración). Además, no se necesitan combustibles de alta pureza debido a las altas temperaturas de operación e incluso se pueden emplear mezclas. Las altas temperaturas favorecen el reformado interno para extraer el hidrógeno de algunos combustibles, sin embargo, afectan negativamente a la durabilidad de los equipos y limita la elección de materiales como el acero inoxidable, lo que da lugar a un encarecimiento del producto.SOFC batteries are generally based on the ability of certain oxides to allow transport of oxide ions at moderately high temperatures (600-1000 ° C), achieving efficiencies of up to 85% (with cogeneration). In addition, high purity fuels are not required due to high operating temperatures and even mixtures can be used. High temperatures favor internal reforming to extract the hydrogen of some fuels, however, affect negatively to the durability of the equipment and limits the choice of materials such as stainless steel, which results in a product cost.

El electrolito en este caso es un óxido sólido no poroso, generalmente ZrO_{2} estabilizado con óxido de ytrio (YSZ) o de escandio (SSZ). Normalmente el ánodo es un material compuesto de NiO e YSZ que al reducirse in situ forma un cermet de Ni-YSZ. El cátodo es generalmente una manganita, por ejemplo LaMnO_{3} dopado con Sr.The electrolyte in this case is a non-porous solid oxide, generally ZrO2 stabilized with ytrium oxide (YSZ) or scandium oxide (SSZ). Normally the anode is a material composed of NiO and YSZ which, when reduced in situ, forms a Ni-YSZ cermet. The cathode is generally a manganite, for example LaMnO 3 doped with Mr.

Estado de la técnicaState of the art

Electrolito. Entre los materiales con potenciales propiedades para ser utilizados como electrolitos en SOFCs, destacan los óxidos con estructura tipo fluorita, entre los que hay que destacar los derivados de ZrO_{2} y CeO_{2}. El óxido de zirconio (ZrO_{2}) sin dopar no es un buen conductor iónico, sin embargo, la incorporación de iones tales como Y^{3+}, Sc^{3+} o Ca^{2+}, [1] lo convierte en uno de los mejores conductores iónicos a alta temperatura. Las denominadas zirconas estabilizadas son los materiales más empleados como electrolito en el diseño de dispositivos SOFCs, (especialmente la composición Zr_{0 . 84}Y_{0 . 16}O_{1 . 92} abreviada como YSZ), debido a su mayor estabilidad a alta temperatura (800-1000ºC) y durante tiempos de operación elevados. Sin embargo, el hecho de trabajar a altas temperaturas encarece notablemente estos dispositivos, ya que impone unas condiciones bastante restrictivas a los demás componentes, impidiendo, por ejemplo, el empleo de aceros como materiales interconectores.Electrolyte. Among the materials with potential properties to be used as electrolytes in SOFCs, highlight the oxides with fluorite type structure, among the The ZrO 2 and CeO 2 derivatives must be highlighted. He Zirconium oxide (ZrO2) without doping is not a good conductor ionic, however, the incorporation of ions such as Y3 +, Sc 3+ or Ca 2+, [1] makes it one of the best ionic conductors at high temperature. The so-called zircons stabilized are the most commonly used materials as electrolyte in the design of SOFC devices, (especially the composition Zr_ {0. 84} Y_ {0. 16} O_ {1. 92} abbreviated as YSZ), due to its greater stability at high temperature (800-1000ºC) and during high operating times. However, the fact of work at high temperatures remarkably expensive these devices, since it imposes quite restrictive conditions on the other components, preventing, for example, the use of steels as interconnecting materials.

A temperaturas más bajas se pueden emplear otros materiales como los derivados del CeO_{2}. [2] De modo similar a lo que ocurre en las zirconas no es un conductor iónico. Sin embargo, la introducción de otras especies como Gd^{3+}, Sm^{3+}, Y^{3+}, La^{3+}, Nd^{3+} o Ca^{2+}, da lugar a fases que presentan valores de conductividad iónica superiores a las zirconas a temperaturas moderadas (400-600ºC). El principal inconveniente de estas fases es la reducción del Ce (IV) a Ce(III) por encima de 600ºC y en condiciones reductoras, lo que trae consigo una caída de potencial que afecta a las prestaciones de la pila. Las composiciones óptimas parecen ser Ce_{1-x}Ln_{x}O_{2-x/2}, Ln = Sm^{3+}, Gd^{3+} (x=0.1-0.2), [2] generalmente la fase sustituida con Gd se representa por CGO y la de Sm por CSO.At lower temperatures other ones can be used materials such as those derived from CeO2. [2] Similar to What happens in zircons is not an ionic conductor. Without However, the introduction of other species such as Gd3 +, Sm 3+, Y 3+, La 3+, Nd 3+ or Ca 2+, results in phases that have ionic conductivity values higher than Zircons at moderate temperatures (400-600ºC). He main drawback of these phases is the reduction of Ce (IV) to Ce (III) above 600 ° C and under reducing conditions, which brings about a potential drop that affects the battery performance. The optimal compositions seem to be Ce_ {1-x} Ln_ {x} O_ {2-x / 2}, Ln = Sm 3+, Gd 3+ (x = 0.1-0.2), [2] generally the phase substituted with Gd is represented by CGO and that of Sm by CSO

Ánodo. En el ánodo se produce la oxidación electroquímica del combustible, que puede ser cualquier especie susceptible de ser oxidada, aunque generalmente se emplea hidrógeno o hidrocarburos ligeros. La lista de posibles materiales de ánodo que cumplan con todos los requisitos descritos anteriormente no es muy amplia [3]. Una de las estrategias más empleadas para obtener materiales de ánodo es la de producir composites, es decir, nuevos materiales que resultan de la combinación de dos o más materiales con el fin de combinar sus propiedades.Anode. In the anode oxidation occurs electrochemical of the fuel, which can be any species liable to be oxidized, although hydrogen is generally used or light hydrocarbons. The list of possible anode materials that meet all the requirements described above is not very wide [3]. One of the most used strategies to obtain anode materials is to produce composites, that is, new materials that result from the combination of two or more materials in order to combine its properties.

Las excelentes propiedades catalíticas del Pt hacen que pudiera ser considerado como un candidato componente del ánodo. Sin embargo, su elevadísimo coste ha derivado en la búsqueda de otros materiales. Así, los cermets (composites de cerámica y metal) de Ni-YSZ son los ánodos más utilizados en la tecnología SOFC, ya que presentan alta conductividad electrónica (debida al Ni), alta conductividad iónica (debido al soporte de YSZ) y excelente actividad catalítica para la oxidación electroquímica de combustibles. Entre los inconvenientes, hay que destacar la tendencia a formar depósitos de carbono al trabajar con hidrocarburos, que pueden provocar la fractura de la pila tras unas pocas horas de operación. Una posible solución a este problema es trabajar a menor temperatura y con un mayor grado de humedad, variando la relación combustible/vapor de agua que llega al ánodo. Por otra parte, estos cermets son muy sensibles al envenenamiento por azufre, lo que obliga a trabajar con combustibles de alta pureza encareciendo todo el proceso. Finalmente, hay que añadir que estos cermets tienden a sufrir problemas de sinterización de las partículas de Ni, efecto que es más grave cuando mayores son las temperaturas de trabajo y mayor es el tiempo de operación. A estos inconvenientes, hay que añadir que el Ni se genera a partir de NiO, siendo este último tóxico y potencialmente cancerígeno [4] por lo que habría que evitar su uso.The excellent catalytic properties of Pt do that could be considered as a component candidate of anode. However, its very high cost has resulted in the search of other materials. Thus, the cermets (ceramic composites and metal) of Ni-YSZ are the most used anodes in the SOFC technology, as they have high electronic conductivity (due to Ni), high ionic conductivity (due to YSZ support) and excellent catalytic activity for electrochemical oxidation of fuels Among the drawbacks, we must highlight the tendency to form carbon deposits when working with hydrocarbons, which can cause the battery to break after few hours of operation A possible solution to this problem is work at a lower temperature and with a higher degree of humidity, varying the fuel / water vapor ratio that reaches the anode. Moreover, these cermets are very sensitive to poisoning. by sulfur, which forces to work with high purity fuels making the whole process more expensive. Finally, we must add that these cermets tend to suffer from sintering problems Ni particles, an effect that is more serious when older are the Working temperatures and higher is the operating time. To these inconveniences, it should be added that Ni is generated from NiO, the latter being toxic and potentially carcinogenic [4] so that its use should be avoided.

Una de las soluciones adoptadas para superar estos problemas ha sido la incorporación de cermets alternativos [5] en los que el rol del Ni es llevado a cabo por Cu y CeO_{2} dentro de una matriz de YSZ, aunque todavía se encuentran en fase de investigación. Otra alternativa al uso de cermets es el empleo de óxidos mixtos. Entre los materiales con mejores prestaciones se encuentran (La,Sr)(Cr,Mn)O_{3} [6] con resultados comparables a los cermets de Ni-YSZ en pilas alimentadas con hidrógeno. Otros posibles materiales de ánodo son las fases derivadas del SrTiO_{3} substituido con diferentes elementos y de fórmula general (La,Sr)(Ti,M)O_{3} (M=Ga, Mn, Se). [7] Recientemente, se ha demostrado que operando en pilas alimentadas con metano, ofrecen un rendimiento extraordinario y generan voltajes de circuito abierto estables y superiores a 1.2 V, no favorecen la formación de depósitos de carbono y presentan una notable tolerancia a combustibles que contienen impurezas de azufre.One of the solutions adopted to overcome These problems have been the incorporation of alternative cermets [5] in which the role of Ni is carried out by Cu and CeO_ {2} within of a matrix of YSZ, although they are still in the phase of investigation. Another alternative to the use of cermets is the use of mixed oxides. Among the best performing materials are find (La, Sr) (Cr, Mn) O 3 [6] with results comparable to Ni-YSZ cermets in batteries fed with hydrogen. Other possible anode materials are the phases derived from SrTiO 3 substituted with different elements and of general formula (La, Sr) (Ti, M) O 3 (M = Ga, Mn, Se). [7] Recently, it has been shown that operating on batteries fueled with methane, they offer extraordinary performance and generate stable open circuit voltages and higher than 1.2 V, they do not favor the formation of carbon deposits and have a remarkable tolerance to fuels containing impurities of sulfur.

Cátodo. En el cátodo ocurre la reducción del oxígeno, proceso que consta de varias etapas que ocurren en el seno del material y en su superficie, y que depende fundamentalmente de la presión parcial del oxígeno, temperatura y características del electrodo. Las altas temperaturas de trabajo de las pilas SOFC (600-1000ºC) hacen que los candidatos a operar como cátodos sean compuestos con conductividad electrónica o mixta. Los metales nobles como Pt o Pd, aunque presentan propiedades adecuadas para ser utilizados como cátodos, tienen un coste demasiado elevado para fines prácticos. En la actualidad, los materiales de cátodo más empleados son las manganitas de lantano y estroncio (LSM), generalmente La_{1-x}Sr_{x}MnO_{3-\delta} (x=0.2-0.5) con altos valores de conductividad electrónica tipo-p del orden de 200 Scm^{-1} a 1000ºC [8]. Sin embargo, existen algunos inconvenientes derivados de su uso, por lo que se han buscado nuevos materiales como ferritas con fórmula general La_{1-x}Sr_{x}FeO_{3-\delta} y cobalto-ferritas La_{1-x}Sr_{x}Fe_{1-y}Co_{y}O_{3-\delta}. [9] Estos materiales son conductores mixtos (iónicos + electrónicos) y presentan una notable actividad catalítica hacia la reducción del oxígeno, aunque la compatibilidad química de estos materiales con la YSZ es aún cuestionable.Cathode. In the cathode the reduction of the oxygen, a process that consists of several stages that occur in the breast of the material and its surface, and that depends fundamentally on the partial pressure of oxygen, temperature and characteristics of the electrode. High working temperatures of SOFC batteries (600-1000 ° C) cause candidates to operate as cathodes are compounds with electronic or mixed conductivity. The noble metals such as Pt or Pd, although they have adequate properties to be used as cathodes, they are too expensive for practical purposes. Currently, more cathode materials employees are lanthanum and strontium manganites (LSM), generally La_ {1-x} Sr_ {x} MnO_ {3- \ delta} (x = 0.2-0.5) with high conductivity values p-type electronics of the order of 200 Scm -1 to 1000 ° C [8]. However, there are some drawbacks arising from its use, so new materials such as ferrites have been sought with general formula La_ {1-x} Sr_ {x} FeO_ {3- \ delta} and cobalt-ferrites La_ {1-x} Sr_ {x} Fe_ {1-y} Co_ {y} O_ {3- \ delta}. [9] These materials are mixed conductors (ionic + electronic) and present a remarkable catalytic activity towards the reduction of oxygen, although the chemical compatibility of these materials with the YSZ is still questionable.

Actualmente se ha probado un material que funciona como ánodo y cátodo simultáneamente, verificándose dicho concepto [10] y la primera pila construida de este tipo, con fases derivadas de las cromitas (La,Sr)(Cr,Mn)O_{3-\delta}, -representado como (LSCM)- ha permitido generar hasta 500 mW/cm^{2} trabajando con hidrógeno y 300 mW/cm^{2} cuando se utiliza metano como combustible.Currently a material has been tested that works as anode and cathode simultaneously, verifying said concept [10] and the first stack constructed of this type, with phases derived from the chromites (La, Sr) (Cr, Mn) O_ {3- δ}, -represented as (LSCM) - has allowed to generate up to 500 mW / cm2 working with hydrogen and 300 mW / cm2 when Use methane as fuel.

El LSCM aunque funciona bien presenta el problema de que la conductividad eléctrica en condiciones reductoras no es muy elevada y hay que utilizar un colector de corriente para suplir dicha carencia, por ejemplo en el estudio de la referencia [10a] se utilizó platino.The LSCM although it works well presents the problem that the electrical conductivity under reducing conditions It is not very high and you have to use a current collector to replace this lack, for example in the study of the reference [10a] platinum was used.

Nosotros proponemos un nuevo material que suple las deficiencias del LSCM, y además permite trabajar a más bajas temperaturas.We propose a new material that supplies LSCM deficiencies, and also allows to work at lower temperatures

Referencias References

[1] a) D. W. Strickler, W. G. Carlson, J. Am. Ceram. Soc. 1964, 47, 122-127; b) S. P. S. Badwal, Solid State Ionics 1992, 52, 23-32; c) O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai and Y. Nakamura, Solid State Ionics 1995, 79, 137-142; d) S. P. S. Badwal, F. T. Ciacchi and D. Milosevic, Solid State Ionics 2000, 136-137, 91-99.[1] a) DW Strickler , WG Carlson , J. Am. Ceram. Soc . 1964 , 47, 122-127; b) SPS Badwal , Solid State Ionics 1992 , 52, 23-32; c) O. Yamamoto , Y. Arati , Y. Takeda , N. Imanishi , Y. Mizutani , M. Kawai and Y. Nakamura , Solid State Ionics 1995 , 79, 137-142; d) SPS Badwal , FT Ciacchi and D. Milosevic , Solid State Ionics 2000 , 136-137, 91-99.

[2] a) B. C. H. Steele, "High Conductivity Solid Ionic Conductors", Ed. T. Takahashi, World Scientific, Singapore, 1989; b) R. Gerhardt-Anderson and A. S. Nowick, Solid State Ionics 1981, 5, 547-550; c) J. A. Kilner and R. J. Brook, Solid State Ionics 1982, 6(3), 237-252.[2] a) BCH Steele , "High Conductivity Solid Ionic Conductors", Ed. T. Takahashi, World Scientific, Singapore , 1989 ; b) R. Gerhardt-Anderson and AS Nowick , Solid State Ionics 1981 , 5, 547-550; c) JA Kilner and RJ Brook , Solid State Ionics 1982 , 6 (3), 237-252.

[3] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, J. Vohs, Nat. Mater. 2004, 3,17-27.[3] A. Atkinson , S. Barnett , RJ Gorte , JTS Irvine , AJ McEvoy , M. Mogensen , SC Singhal , J. Vohs , Nat. Mater . 2004 , 3.17-27.

[4] a) A. D. Ottolenghi, J. K. Haseman, W. W. Payne, H. L. Falk and H. N. MacFarland, J. Nati. Cancer Inst. 1974, 54(5), 1165-1172; b) P. J. Haley, G. M. Shopp, J. M. Benson, Y. S. Cheng, D. E. Bice, M. I. Luster, J. K. Dunnick and C. H. Hobbs, Fundam. Appl. Toxicol. 1990, 15, 476-487.[4] a) AD Ottolenghi , JK Haseman , WW Payne , HL Falk and HN MacFarland , J. Nati. Cancer Inst . 1974 , 54 (5), 1165-1172; b) PJ Haley , GM Shopp , JM Benson , YS Cheng , DE Bice , MI Luster , JK Dunnick and CH Hobbs , Fundam. Appl. Toxicol 1990 , 15, 476-487.

[5] R. J. Gorte, H. Kim and J. M. Vohs, J. Power Sources 2002, 106(1-2), 10-15.[5] RJ Gorte , H. Kim and JM Vohs , J. Power Sources 2002 , 106 (1-2), 10-15.

[6] a) J. Liu, B. D. Madsen, Z. Ji and S. A. Barnett, Electrochem. Solid-State Lett. 2002, 5(6), A122-A124; b) S. Tao and John T. S. Irvine, Nat. Mater. 2003, 2, 320-323.[6] a) J. Liu , BD Madsen , Z. Ji and SA Barnett , Electrochem. Solid-State Lett . 2002 , 5 (6), A122-A124; b) S. Tao and John TS Irvine , Nat. Mater . 2003 , 2, 320-323.

[7] a) J. C. Ruiz-Morales, J. Canales-Vázquez, C. D. Savaniu, D. Marrero-López, W. Zhou and J. T. S. Irvine, Nature 2006, 439, 568-571; b) J. Canales-Vázquez, J. C. Ruiz-Morales, J. T. S. Irvine and W. Zhou, J. Electrochem. Soc. 2005, 152, A1458-A1465; c) J. Canales-Vázquez, S. W. Tao and J. T. S. Irvine, Solid State Ionics 2003, 159, 159-165; d) A. Ovalle, J. C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López and J. T. S. Irvine, Solid State Ionics 2006, 117(19-25), 1997-2003; e) J. C. Ruiz-Morales, J. Canales-Vázquez, C. D. Savaniu, D. Marrero-López, P. Núñez, W. Zhou and J. T. S. Irvine, Phys. Chem. Chem. Phys. 2007, 9, 1821-1830.[7] a) JC Ruiz-Morales , J. Canales-Vázquez , CD Savaniu , D. Marrero-López , W. Zhou and JTS Irvine , Nature 2006 , 439, 568-571; b) J. Canales-Vázquez , JC Ruiz-Morales , JTS Irvine and W. Zhou , J. Electrochem. Soc . 2005, 152, A1458-A1465; c) J. Canales-Vázquez , SW Tao and JTS Irvine , Solid State Ionics 2003 , 159, 159-165; d) A. Ovalle , JC Ruiz-Morales , J. Canales-Vázquez , D. Marrero-López and JTS Irvine , Solid State Ionics 2006 , 117 (19-25), 1997-2003; e) JC Ruiz-Morales , J. Canales-Vázquez , CD Savaniu , D. Marrero-López , P. Núñez , W. Zhou and JTS Irvine , Phys. Chem. Chem. Phys . 2007 , 9, 1821-1830.

[8] S. C. Singhal and K. Kendall, "High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications", Elsevier, Oxford, 2004.[8] SC Singhal and K. Kendall , "High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications", Elsevier, Oxford , 2004 .

[9] a) S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle, and J. W. Stevenson, Electrochem. Solid-State Lett. 2002, 5(7), A173-A175; b) K. Huang, H. Y. Lee and J. B. Goodenough, J. Electrochem. Soc. 1998, 149(9) 3220-3227; c) B. C. H. Steele, Solid State Ionics 1996, 86-88, 1223-1234; d) S. P. Jiang, Solid State Ionics 2002, 146(1-2), 1-22; e) L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi and Y. Takeda, Solid State Ionics 2003, 158(1-2), 55-65; f) S. Carter, A. Selcuk, R. J. Charter, J. Kajda, J. A. Kilner and B. C. H. Steele, Solid State Ionics 1992, 53-56, 597-605.[9] a) SP Simner , JF Bonnett , NL Canfield , KD Meinhardt , VL Sprenkle , and JW Stevenson , Electrochem. Solid-State Lett . 2002 , 5 (7), A173-A175; b) K. Huang , HY Lee and JB Goodenough , J. Electrochem. Soc . 1998 , 149 (9) 3220-3227; c) BCH Steele , Solid State Ionics 1996 , 86-88, 1223-1234; d) SP Jiang , Solid State Ionics 2002 , 146 (1-2), 1-22; e) L. Qiu , T. Ichikawa , A. Hirano , N. Imanishi and Y. Takeda , Solid State Ionics 2003 , 158 (1-2), 55-65; f) S. Carter , A. Selcuk , RJ Charter , J. Kajda , JA Kilner and BCH Steele , Solid State Ionics 1992 , 53-56, 597-605.

[10] a) J. C. Ruiz-Morales, J. Canales-Vázquez, J. Peña Martínez, D. Marrero-López and P. Núñez, Electrochimica Acta 2006, 52(1), 278-284; b) J. C. Ruiz-Morales, J. Canales-Vázquez, B. Ballesteros, J. Peña-Martínez, D. Marrero-López, J. T. S. Irvine and P. Núñez, J. Eur. Ceram. Soc. 2006, doi: 10.1016/j.jeurceramsoc.2007.02.117; c) J. C. Ruiz-Morales, H. Lincke, D. Marrero-López, J. Canales-Vázquez and P. Núñez, Bol. Soc. Esp. Ceram. V. 2007 (in press); d) D Bastidas, S. Tao and J. T. S. Irvine, J. Mater. Chem. 2006, 16, 1603-1605.[10] a) JC Ruiz-Morales , J. Canales-Vázquez , J. Peña Martínez , D. Marrero-López and P. Núñez , Electrochimica Acta 2006 , 52 (1), 278-284; b) JC Ruiz-Morales , J. Canales-Vázquez , B. Ballesteros , J. Peña-Martínez , D. Marrero-López , JTS Irvine and P. Núñez , J. Eur. Ceram. Soc . 2006 , doi: 10.1016 / j.jeurceramsoc. 2007.02.117; c) JC Ruiz-Morales , H. Lincke , D. Marrero-López , J. Canales-Vázquez and P. Núñez , Bol. Soc. Esp. Ceram. V. 2007 (in press); d) D Bastidas , S. Tao and JTS Irvine , J. Mater. Chem 2006 , 16, 1603-1605.

Descripción de la invenciónDescription of the invention

La invención consiste en utilizar un material que funciona, simultáneamente, como ánodo y cátodo de una pila de combustible de óxido sólido (SOFC), o también conocido como electrodo simétrico.The invention consists in using a material which works simultaneously as the anode and cathode of a stack of solid oxide fuel (SOFC), or also known as symmetric electrode

Este material tiene una estructura denominada perovskita. Es una ferrita dopada, y algunas de estas ferritas normalmente se utilizan como cátodo en las pilas, pero no así como cátodo y ánodo, simultáneamente.This material has a structure called perovskita It is a doped ferrite, and some of these ferrites They are normally used as a cathode in batteries, but not as well as cathode and anode, simultaneously.

El ensamblaje de los elementos de una pila consiste en:The assembly of the elements of a stack consists in:

Se pesa una determinada cantidad de la ferrita. Normalmente se prepara como composite, es decir como una mezcla 1:1 en peso de nuestro material y un electrolito como YSZ o CGO. Se mezclan los polvos de los dos materiales cerámicos, en un mortero de ágata con acetona, y se deja secar. A continuación se adiciona un compuesto orgánico aglomerante y fijador, llamado binder, al menos en una proporción 1:1 con respecto a la mezcla anterior. Esta nueva mezcla viscosa, llamada slurry, se utiliza para pintar los electrodos a ambos lados de una pastilla densa de electrolito y formar así una pila simétrica. Se pretende que el grosor del electrodo sea del orden de 5-10 micras como máximo. La celda con los electrodos pintados se deja secar en una estufa, entre 50ºC y 80ºC. Finalmente la muestra se quema a altas temperaturas para fijar los electrodos al electrolito, suelen ser necesarias temperaturas superior a 1100ºC y hasta un máximo de 1300ºC, durante 1-3 horas.A certain amount of ferrite is weighed. It is usually prepared as a composite, that is, as a 1: 1 mixture by weight of our material and an electrolyte such as YSZ or CGO. Be mix the powders of the two ceramic materials in a mortar of agate with acetone, and let it dry. Next a organic compound binder and fixative, called binder, at least in a 1: 1 ratio with respect to the previous mixture. This new viscous mixture, called slurry, is used to paint the electrodes on both sides of a dense electrolyte tablet and thus form a symmetrical stack. It is intended that the thickness of the electrode is of the order of 5-10 microns maximum. The cell with the painted electrodes is allowed to dry in an oven, between 50ºC and 80ºC. Finally the sample burns at high temperatures to fix the electrodes to the electrolyte, usually necessary temperatures above 1100ºC and up to a maximum of 1300 ° C, for 1-3 hours.

Modos de realización de la invenciónEmbodiments of the invention Preparación de la ferrita La_{0 . 7}Sr_{0 . 3}Fe_{0 . 9}Sc_{0 . 1}O_{3-\delta}Preparation of the ferrite La_ {0. 7} Sr_ {0. 3} Fe_ {0. 9} Sc_ {0. 1} O_ {3- \ delta}

1)one)
Se pesan 1.3456 g de La_{2}O_{3}, 0.8137 g SrCO_{3}, 0.9893 g Fe_{2}O_{3} y 0.0950 g de Sc_{2}O_{3} (el La_{2}O_{3} se quema, previamente, a 900ºC durante 5 horas para eliminar el CO_{2} absorbido). Las 4 cantidades se mezclan en un mortero de ágata con acetona, se muele bien, se homogeniza, se deja secar1.3456 g of La 2 O 3, 0.8137 g are weighed SrCO 3, 0.9893 g Fe 2 O 3 and 0.0950 g of Sc 2 O 3 (La 2 O 3 is burned, previously, at 900 ° C for 5 hours to remove the absorbed CO2). The 4 quantities are mixed in an agate mortar with acetone, it grinds well, it homogenizes, it let dry

2)2)
El polvo resultante es quemado a 1000ºC, durante 10 horas. Se saca del horno, se vuelve a moler y se prepara para un nuevo calentamiento. Este proceso se repite dos veces.The resulting powder is burned at 1000 ° C, for 10 hours. It is taken out of the oven, grinds again and prepared for a new warming This process is repeated twice.

3)3)
Se efectúa igual que en el punto 2), otro calentamiento a 1200ºC durante 10 horas.It is done the same as in point 2), another heating at 1200 ° C for 10 hours.

4)4)
Y finalmente se prepara una pastilla con los polvos anteriores, del punto 3). Se prensa en una balanza isostática, unos 0.5 gramos, con 1 tonelada de presión, durante 2 minutos. La pastilla se mete en un horno de alta temperatura y se calienta a 1400 durante 10 horas. En todos los casos, la rampa de calentamiento y de enfriamiento es de 5º/min. Ésta pastilla se saca del horno, se muele y obtendremos unos polvos, que será nuestro material de electrodo simétrico.And finally a pill is prepared with the powders above, from point 3). It is pressed on an isostatic balance, about 0.5 grams, with 1 ton of pressure, for 2 minutes. The tablet gets into a high temperature oven and is heated to 1400 for 10 hours. In all cases, the heating ramp and cooling is 5º / min. This pill is taken out of the oven, it grind and we will get some powders, which will be our material of symmetric electrode

Claims (2)

1. Material de electrodos simétricos (ánodo y cátodo simultáneamente), para pila SOFC, caracterizado por ABO_{3} donde:1. Material of symmetric electrodes (anode and cathode simultaneously), for SOFC battery, characterized by ABO 3 where:
A comprende los elementos M y N, siendo:A understands the M and N elements, being:
M o bien La, o bien Pr, o bien Sm, o bien Nd, o bien Gd, y siendo,M or La, or either Pr, or Sm, or Nd, or Gd, and being,
N o bien Sr o bien CaNo. Mr or ok Ca
B comprende los elementos P y Q, siendoB includes the elements P and Q, being
P= FeP = Faith
Q o bien Se, o bien, Mn, Al, Ga, Ti, Cr.Q or Se, or Well, Mn, Al, Ga, Ti, Cr.
2. Material de electrodos simétricos (ánodo y cátodo simultáneamente) caracterizado según reivindicación 1 donde:2. Material of symmetric electrodes (anode and cathode simultaneously) characterized according to claim 1 wherein:
M = La; N = Sr; P = Fe; Q = Sc.M = La; N = Sr; P = Faith; Q = Sc.
ES200701334A 2007-04-27 2007-04-27 Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding) Pending ES2343494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200701334A ES2343494A1 (en) 2007-04-27 2007-04-27 Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200701334A ES2343494A1 (en) 2007-04-27 2007-04-27 Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
ES2343494A1 true ES2343494A1 (en) 2010-08-02

Family

ID=42338061

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200701334A Pending ES2343494A1 (en) 2007-04-27 2007-04-27 Material for symmetrical electrode of batteries of combustibles of solid oxides of intermediate temperature. (Machine-translation by Google Translate, not legally binding)

Country Status (1)

Country Link
ES (1) ES2343494A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916700A (en) * 1998-01-23 1999-06-29 Siemens Westinghouse Power Corporation Lanthanum manganite-based air electrode for solid oxide fuel cells
US20060216575A1 (en) * 2005-03-23 2006-09-28 Ion America Corporation Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916700A (en) * 1998-01-23 1999-06-29 Siemens Westinghouse Power Corporation Lanthanum manganite-based air electrode for solid oxide fuel cells
US20060216575A1 (en) * 2005-03-23 2006-09-28 Ion America Corporation Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BUERGLER, P.NUÑEZ y L.J. GAUCKLER, "{}SOFC test using BaSrCoFeO3 as cathode on LaSrGaMgO2 electrolyte"{}, Solid State Ionics, Octubre 2006, Volumen 177, Número 19-25, Páginas 2143-2147. *
BUERGLER, P.NUÑEZ y L.J. GAUCKLER, "SOFC test using BaSrCoFeO3 as cathode on LaSrGaMgO2 electrolyte", Solid State Ionics, Octubre 2006, Volumen 177, Número 19-25, Páginas 2143-2147. *
J.PEÑA-MARTÍNEZ, D.MARRERO-LÓPEZ, D.PÉREZ-COLL, J.C. RUIZ- MORALES y P.NUÑEZ, "{}Performance of XSCoF and LSCrX' perovskita- structure material son LSGM electrolyte for IT-SOFC"{}. Electrochimica Acta, 15 Febrero 2007, Volumen 52, Número 9, Páginas 2950-2958. *
J.PEÑA-MARTÍNEZ, D.MARRERO-LÓPEZ, D.PÉREZ-COLL, J.C. RUIZ- MORALES y P.NUÑEZ, "Performance of XSCoF and LSCrX' perovskita- structure material son LSGM electrolyte for IT-SOFC". Electrochimica Acta, 15 Febrero 2007, Volumen 52, Número 9, Páginas 2950-2958. *
PEÑA-MARTÍNEZ, D.MARRERO-LÓPEZ, J.C. RUIZ-MORALES, B.E. BUERGLER, P.NUÑEZ y L.J. GAUCKLER, "{}Fuel Cell Studies of Perovskite-type materials for IT-SOFC"{}, Journal of Power Sources, Septiembre 2006, Volumen 159, Issue 2, Páginas 914-921. *
PEÑA-MARTÍNEZ, D.MARRERO-LÓPEZ, J.C. RUIZ-MORALES, B.E. BUERGLER, P.NUÑEZ y L.J. GAUCKLER, "Fuel Cell Studies of Perovskite-type materials for IT-SOFC", Journal of Power Sources, Septiembre 2006, Volumen 159, Issue 2, Páginas 914-921. *
R. CHIBA, F. YOSHIMURA, Y.SAKURAI, "{}Properties of LaSrNiFeO3 as a cathode material for a low-temperature operating SOFC"{}, Solid State Ionics, Diciembre 2002, Volumen 152-153, Páginas 575-582. *
R. CHIBA, F. YOSHIMURA, Y.SAKURAI, "Properties of LaSrNiFeO3 as a cathode material for a low-temperature operating SOFC", Solid State Ionics, Diciembre 2002, Volumen 152-153, Páginas 575-582. *
V.V. KHARTON, E.V. TSIPIS, I.P. MAROZAU, A.P. VISKUP, J.R. FRADE, J.T.S. IRVINE, "{}Mixed conductivity and electrochemical behavior of LaSrCrO3"{}, Solid State Ionics, Enero 2007, Volumen 178, Números 1-2, Páginas 101-113. *
V.V. KHARTON, E.V. TSIPIS, I.P. MAROZAU, A.P. VISKUP, J.R. FRADE, J.T.S. IRVINE, "Mixed conductivity and electrochemical behavior of LaSrCrO3", Solid State Ionics, Enero 2007, Volumen 178, Números 1-2, Páginas 101-113. *

Similar Documents

Publication Publication Date Title
Cao et al. Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell
Bastidas et al. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes
Ruiz-Morales et al. On the simultaneous use of La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ as both anode and cathode material with improved microstructure in solid oxide fuel cells
AU2003248994B2 (en) Perovskite-based fuel cell electrode and membrane
US9806345B2 (en) Electrochemical energy conversion devices and cells, and positive electrode-side materials for them
Yoo et al. Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel
Ishihara et al. Oxide ion conductivity in La0. 8Sr0. 2Ga0. 8Mg0. 2− X Ni X O3 perovskite oxide and application for the electrolyte of solid oxide fuel cells
Wang et al. Enhanced ORR activity of A-site deficiency engineered BaCo0· 4Fe0· 4Zr0· 1Y0· 1O3-δ cathode in practical YSZ fuel cells
Li et al. Composite cathode based on Ni-loaded La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer
Wang et al. Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+ BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ anode for solid oxide fuel cells operating on ethanol
Yang et al. Improving stability and electrochemical performance of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3-δ electrode for symmetrical solid oxide fuel cells by Mo doping
Zhang et al. BaCo0. 4Fe0. 4Zr0. 2O3-δ: evaluation as a cathode for ceria-based electrolyte IT-SOFCs
CN102208651A (en) Metal oxide-yttria stabilized zirconia composite and solid oxide fuel cell using the same
US20130224627A1 (en) Scandium-doped bzcy electrolytes
Du et al. Electrical conductivity and cell performance of La0. 3Sr0. 7Ti1− xCrxO3− δ perovskite oxides used as anode and interconnect material for SOFCs
Khan et al. Design of efficient and durable symmetrical protonic ceramic fuel cells at intermediate temperatures via B-site doping of Ni in BaCe0. 56Zr0. 2Ni0. 04Y0. 2O3–δ
Miao et al. Optimizing strontium titanate anode in solid oxide fuel cells by ytterbium doping
Huang et al. Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials
Lou et al. Synthesis and characterization of aluminum-doped perovskites as cathode materials for intermediate temperature solid oxide fuel cells
Ruiz-Morales et al. Potential electrode materials for symmetrical solid oxide fuel cells
Zhang et al. Modification of electrocatalytic activity of BaCe0. 40Sm0. 20Fe0. 40O3− δ with Co3O4 as cathode for proton-conducting solid oxide fuel cell
Yang et al. Sr-substituted SmBa0. 75Ca0. 25CoFeO5+ δ as a cathode for intermediate-temperature solid oxide fuel cells
Liang et al. Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells
Wang et al. Enhanced stability of a direct-methane and carbon dioxide protonic ceramic fuel cell with a PrCrO3 based reforming layer
Yang et al. Low temperature co-sintering of Sr2Fe1. 5Mo0. 5O6− δ–Gd0. 1Ce0. 9O2− δ anode-supported solid oxide fuel cells with Li2O–Gd0. 1Ce0. 9O2− δ electrolyte

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20100802

Kind code of ref document: A1

FC2A Grant refused

Effective date: 20110906