ES2339089A1 - Stable current generator (Machine-translation by Google Translate, not legally binding) - Google Patents

Stable current generator (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2339089A1
ES2339089A1 ES200801573A ES200801573A ES2339089A1 ES 2339089 A1 ES2339089 A1 ES 2339089A1 ES 200801573 A ES200801573 A ES 200801573A ES 200801573 A ES200801573 A ES 200801573A ES 2339089 A1 ES2339089 A1 ES 2339089A1
Authority
ES
Spain
Prior art keywords
block
current
voltage
current generator
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200801573A
Other languages
Spanish (es)
Other versions
ES2339089B1 (en
Inventor
Andoni Beriain Rodriguez
Daniel Pardo Sanchez
Iñigo Gutierrez Garcia
Alexander Vaz Serrano
Roc Berenguer Perez
Juan Melendez Lagunilla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Farsens SL
Original Assignee
Farsens SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Farsens SL filed Critical Farsens SL
Priority to ES200801573A priority Critical patent/ES2339089B1/en
Publication of ES2339089A1 publication Critical patent/ES2339089A1/en
Application granted granted Critical
Publication of ES2339089B1 publication Critical patent/ES2339089B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

Stable current generator, formed by a block (1000) that generates a voltage (v ctrl ) independent of the supply voltage (v dd ), by which it is determined in a second block (2000) a stable output current (i ref ), which is amplified in a third block (3000) for its adaptation to the target application. (Machine-translation by Google Translate, not legally binding)

Description

Generador de corriente estable.Stable current generator.

Sector de la técnicaTechnical sector

La presente invención pertenece al campo de los generadores de corriente, en concreto a los que ofrecen un comportamiento estable bajo diferentes condiciones de trabajo con un consumo reducido, proponiendo un generador que es capaz de proporcionar una corriente de salida estable pese a variaciones en la tensión de entrada.The present invention belongs to the field of current generators, specifically those that offer a stable behavior under different working conditions with a reduced consumption, proposing a generator that is capable of provide a stable output current despite variations in Input voltage

Estado de la técnicaState of the art

La tendencia actual en la electrónica de comunicaciones es el uso de dispositivos inalámbricos móviles basados en silicio, como pueden ser los sensores inalámbricos y los transpondedores RFID (identificaciones por Radiofrecuencia) dotados de un sensor.The current trend in electronics communications is the use of mobile wireless devices based on silicon, such as wireless sensors and RFID transponders (Radio Frequency Identifications) equipped of a sensor

La mayoría de estos dispositivos están formados por circuitos integrados activos y circuitos integrados pasivos. Los circuitos activos consumen energía alimentados por baterías, lo que les confiere de disponibilidad de energía muy limitada. Los circuitos pasivos, más económicos y ligeros, recogen y almacenan temporalmente energía proveniente de una fuente radiante. En ambos tipos de circuitos integrados se busca reducir los consumos al mínimo. En los circuitos pasivos esta reducción es el factor que marca el alcance del dispositivo inalámbrico en el cual está
integrado.
Most of these devices consist of active integrated circuits and passive integrated circuits. Active circuits consume energy powered by batteries, which gives them very limited power availability. Passive circuits, cheaper and lighter, temporarily collect and store energy from a radiating source. In both types of integrated circuits, we seek to reduce consumption to a minimum. In passive circuits this reduction is the factor that marks the range of the wireless device in which it is
integrated.

Además, en el caso de los circuitos pasivos, la alimentación suele venir de una capacidad que suministra una tensión variable, por lo que la respuesta de los circuitos que se alimentan de ella debe de ser insensible a esta variación.In addition, in the case of passive circuits, the power usually comes from a capacity that supplies a voltage variable, so the response of the circuits that are fed of it must be insensitive to this variation.

Se ha observado, por otra parte, que la electrónica basada en silicio es sensible a las variaciones de la temperatura. Por ejemplo, en el caso de los transistores CMOS la corriente que los atraviesa es directamente proporcional a la temperatura.It has been observed, on the other hand, that the Silicon-based electronics are sensitive to variations in the temperature. For example, in the case of CMOS transistors the current that crosses them is directly proportional to the temperature.

Por otra parte se ha constatado que durante el proceso de fabricación de un circuito integrado, pueden ocurrir dispersiones debido a desviaciones naturales en los materiales, así como dispersiones debidas al entorno de trabajo y/o a la maquinaria que lo fabrica. Estas dispersiones pueden afectar al nivel de dopado de los semiconductores y/o a la anchura de cada una de las capas, afectando de esta forma al comportamiento de los transistores y por lo tanto del circuito.On the other hand it has been found that during the manufacturing process of an integrated circuit, may occur dispersions due to natural deviations in the materials as well as dispersions due to the work environment and / or machinery that manufactures it These dispersions can affect the level of doping of the semiconductors and / or the width of each of the layers, thus affecting the behavior of transistors and by So much of the circuit.

Sin embargo, el comportamiento de los dispositivos no debe depender de la temperatura, del proceso de fabricación ni de la tensión que lo alimenta; por lo que son necesarios circuitos insensibles a estos factores.However, the behavior of devices should not depend on the temperature, the process of manufacturing or the tension that feeds it; for what they are necessary circuits insensitive to these factors.

Los dos métodos principales que se pueden seguir para conseguir esto son: la insensibilidad uno a uno de todos los bloques electrónicos internos del dispositivo; o la sensibilidad controlada de bloques y su configuración de manera que estas sensibilidades se anulen las unas a las otras.The two main methods that can be followed to achieve this are: one-on-one insensitivity of all internal electronic blocks of the device; or sensitivity controlled block and its configuration so that these sensitivities cancel each other out.

En la presente invención, se presenta un generador de corriente que proporciona una corriente de salida constante con respecto a variaciones en la tensión de entrada y con una respuesta estable con respecto a variaciones en la temperatura y procesos fabricación. Así, se puede conseguir una corriente insensible o una sensibilidad concreta, pata insensibilizar bloques posteriores de diseño que sean alimentados por esta corriente.In the present invention, a current generator that provides an output current constant with respect to variations in the input voltage and with a stable response with respect to variations in temperature and manufacturing processes So, you can get a current insensitive or a specific sensitivity, to numb blocks design backs that are fed by this current.

Objeto de la invenciónObject of the invention

De acuerdo con la invención se propone un generador de corriente que está formado por 3 bloques alimentados por una misma tensión (V_{DD}) y que sufren la misma dispersión del proceso de fabricación y la mima temperatura.According to the invention, a current generator consisting of 3 blocks powered by the same voltage (V_ {DD}) and suffering the same dispersion of the manufacturing process and the same temperature.

El funcionamiento se basa en que se genera una señal de voltaje en un primer bloque, que es dependiente del proceso y de la temperatura. Dicha señal controla una corriente de referencia generada en un segundo bloque. Esta corriente de referencia es utilizada para alimentar tantos circuitos como se requiera, mediante el copiado y amplificación de dicha corriente de referencia utilizando sucesivos espejos de corriente en un tercer bloque.The operation is based on the generation of a voltage signal in a first block, which is process dependent and of the temperature. This signal controls a current of reference generated in a second block. This stream of reference is used to power as many circuits as requires, by copying and amplifying said current of reference using successive power mirrors in a third block.

El primer bloque, dispone de un circuito start-up que arranca el sistema; una fuente de corriente de configuración cascodo y una resistencia por la que pasa la corriente obtenida, generando la señal de voltaje del primer bloque.The first block has a circuit start-up that starts the system; a source of hull configuration current and a resistance through which it passes the current obtained, generating the voltage signal of the first block.

En el segundo bloque, dicha señal del primer bloque polariza dos transistores, generando dos corrientes, que al ser restadas entre sí generan la corriente que se aplica al tercer bloque.In the second block, said signal from the first block polarizes two transistors, generating two currents, which at being subtracted from each other generate the current that is applied to the third block.

En el tercer bloque, la corriente que se aplica es amplificada para su adaptación al tipo de circuito y al número de circuitos que va a alimentar. Esto se consigue mediante sucesivos espejos de corriente, que dan lugar a corrientes de salida o entrada.In the third block, the current that is applied it is amplified for adaptation to the type of circuit and the number of circuits that will feed. This is achieved by successive power mirrors, which give rise to output currents or entry.

El bajo consumo que se obtiene en el conjunto de los bloques permite su aplicación en transpondedores RFID, o con mayor generalidad, en sensores inalámbricos.The low consumption obtained in the set of The blocks allow their application in RFID transponders, or with greater generality, in wireless sensors.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Descripción de las figurasDescription of the figures

La figura 1 representa el diagrama de bloques del generador de corriente objeto de la invención.Figure 1 represents the block diagram of the current generator object of the invention.

La figura 2 representa la arquitectura general del generador preconizado, con las interconexiones entre los bloque componentes.Figure 2 represents the general architecture of the recommended generator, with the interconnections between the blocks components.

La figura 3 representa la arquitectura del primer bloque del generador.Figure 3 represents the architecture of the First block of the generator.

La figura 4 representa la arquitectura del segundo bloque del generador.Figure 4 represents the architecture of the Second block of the generator.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Descripción detallada de la invenciónDetailed description of the invention

El objeto de la invención se refiere a un generador de corriente, según el diagrama de bloques representado en la figura 1, y el esquema eléctrico de la figura 2, en donde un primer bloque (1000) genera un voltaje (V_{CTRL}) independiente de la tensión de alimentación (V_{DD}) con una respuesta estable con las variaciones temperatura y procesos de fabricación. Este voltaje controla la corriente de salida (I_{REF}) de un segundo bloque (2000) que luego es amplificada y adaptada al tipo de fuente de corriente que queramos (donadora o receptora) mediante tantos espejos de corriente como sean necesarios para la cantidad de salidas necesarias en un tercer bloque (3000).The object of the invention relates to a current generator, according to the block diagram represented in Figure 1, and the electrical scheme of Figure 2, wherein a first block (1000) generates a voltage (V_ {CTRL}) independent of the supply voltage (V_ {DD}) with a stable response with Temperature variations and manufacturing processes. This voltage controls the output current (I_ {REF}) of a second block (2000) which is then amplified and adapted to the type of source of current we want (donor or recipient) through so many power mirrors as necessary for the amount of necessary outputs in a third block (3000).

La figura 3 representa la arquitectura del primer bloque (1000), que comprende un sub-bloque (1100) y un sub-bloque (1200), en donde el sub-bloque (1100) es un start-up que inicia el circuito y que evita que el circuito caiga en un punto de degeneración; mientras que el sub-bloque (1200) incluye una fuente de corriente de configuración cascodo (1201) y una resistencia (R_{3}) que convierte la corriente de este primer bloque (1000) en el voltaje (V_{CTRL}).Figure 3 represents the architecture of the first block (1000), which comprises a sub-block (1100) and a sub-block (1200), where the sub-block (1100) is a start-up that starts the circuit and prevents the circuit from falling at a point of degeneration; while the sub-block (1200) includes a hull configuration current source (1201) and a resistor (R 3) that converts the current of this first block (1000) in the voltage (V_ {CTRL}).

Mediante la fuente de corriente (1201), se obtiene una misma corriente (I_{1}), (I_{2}) e (I_{3}), por las ramas de las resistencias (R_{1}) y (R_{3}) y por la rama del transistor (1202). Esta corriente es independiente de (V_{DD}) y de la resistencia (R_{3}), pero dependiente del proceso y de la temperatura. A su vez, la resistencia (R_{3}) es dependiente de la temperatura y del proceso de fabricación por lo que la dependencia del voltaje (V_{CTRL}) (producto de (I3) y la resistencia (R_{3})) con respecto a la temperatura y el proceso, dependerá de la dependencia que presentan (I_{3}) y (R_{3}). Una señal (V_{CTRL}) con una dependencia concreta con respecto a la temperatura y al proceso de fabricación es necesaria para conseguir la corriente (I_{REF}) objetivo en el segundo bloque (2000).By means of the current source (1201), obtains the same current (I_ {1}), (I_ {2}) and (I_ {3}), by the branches of the resistors (R_ {1}) and (R_ {3}) and by the branch of the transistor (1202). This current is independent of (V_ {DD}) and resistance (R_ {3}), but dependent on the process and the temperature. In turn, the resistance (R 3) is dependent on the temperature and manufacturing process so the dependence of voltage (V_ {CTRL}) (product of (I3) and resistance (R_ {3}) with respect to temperature and process, will depend on the dependence presented by (I 3) and (R 3). A signal (V_ {CTRL}) with a specific dependency on the temperature and the manufacturing process is necessary to get the target current (I_ {REF}) in the second block (2000).

Los principales elementos a modificar para obtener la dependencia del voltaje (V_{CTRL}) deseada y su efecto sobre la corriente (I_{REF}) se resumen en La siguiente tabla:The main elements to modify for get the dependence of the desired voltage (V_ {CTRL}) and its effect over current (I_ {REF}) are summarized in The following table:

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

1one

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    

La dependencia con respecto a las variaciones en proceso se pueden ajustar variando el ancho de las resistencias (R_{1}) y (R_{3}) y variando la W (anchura del canal) y la L (longitud del canal) de los transistores (1204) y (1202).Dependence with respect to variations in process can be adjusted by varying the width of the resistors (R1) and (R3) and varying the W (channel width) and the L (channel length) of transistors (1204) and (1202).

La Figura 4 representa la arquitectura del segundo bloque (2000) que transforma el voltaje de control (V_{CTRL}) en la corriente de salida (I_{REF}) Y que en algunos casos compensa parte del proceso.Figure 4 represents the architecture of the second block (2000) that transforms the control voltage (V_ {CTRL}) in the output current (I_ {REF}) And that in some cases compensates part of the process.

       \newpage\ newpage
    

La señal (V_{CTRL}) que proviene del primer bloque (1000) polariza los transistores (M_{1}) y (M_{2}), generando las corrientes (I_{4}) e (I_{5}), de las cuales (I_{4}) está definida por la señal (V_{CTRL}), el transistor (M_{1}) y la resistencia (R_{4}); mientras que la corriente (I_{5}) está definida por la señal (V_{CTRL}), el transistor (M_{2}) y la resistencia (R_{5}).The signal (V_ {CTRL}) that comes from the first block (1000) polarizes transistors (M1) and (M2), generating the currents (I_ {4}) and (I_ {5}), of which (I_ {4}) is defined by the signal (V_ {CTRL}), the transistor (M1) and resistance (R4); while the current (I_ {5}) is defined by the signal (V_ {CTRL}), the transistor (M 2) and resistance (R 5).

22

33

La W de los transistores de (2106) es dos veces mayor que la W de los transistores (2105), por lo que:The W of the transistors of (2106) is twice greater than the W of the transistors (2105), so:

44

Además:Further:

55

Y por lo tanto:And therefore:

66

La resta que se realiza entre estas dos corrientes (I_{7}) e (I_{5}) para obtener la intensidad (I_{REF}) permite realizar en este punto un ajuste de las dispersiones en fabricación o en temperatura aprovechando el diferente efecto que tendrán estas variables sobre las corrientes (I_{4}) e (I_{5}). La corriente de salida (I_{REF}) será constante cuando se cumpla:The subtraction that is done between these two currents (I_ {7}) and (I_ {5}) to obtain the intensity (I_ {REF}) allows you to make an adjustment of the manufacturing or temperature dispersions taking advantage of the different effect that these variables will have on the currents (I_ {4}) and (I_ {5}). The output current (I_ {REF}) will be constant when it is met:

77

El ajuste deseado se consigue variando el ancho de canal W y la longitud de canal L de los transistores (M_{1}) y (M_{2}) o el tipo, valor nominal o anchura de las resistencias (R_{4}) y (R_{5}).The desired setting is achieved by varying the width of channel W and the length of channel L of the transistors (M_ {1}) and (M_ {2}) or the type, nominal value or width of the resistors (R 4) and (R 5).

Claims (3)

1. Generador de corriente estable, del tipo destinado para aplicaciones de bajo consumo, con capacidad para compensar el efecto de las dispersiones debidas al proceso de fabricación y las variaciones de temperatura y de la tensión de alimentación, caracterizado porque comprende tres bloques (1000), (2000) y (3000) que se alimentan con una misma tensión (V_{DD}), generando el primer bloque (1000) un voltaje (V_{CTRL}) que es independiente de la tensión de alimentación (V_{DD}), mediante el cual se determina una corriente de salida estable (I_{REF}) en el segundo bloque (2000), la cual es amplificada en el tercer bloque (3000) para su adaptación a la aplicación que se destine.1. Stable current generator, of the type intended for low consumption applications, with the capacity to compensate for the effect of dispersions due to the manufacturing process and variations in temperature and supply voltage, characterized in that it comprises three blocks (1000) , (2000) and (3000) that are fed with the same voltage (V_ {DD}), generating the first block (1000) a voltage (V_ {CTRL}) that is independent of the supply voltage (V_ {DD} ), by which a stable output current (I_ {REF}) is determined in the second block (2000), which is amplified in the third block (3000) for adaptation to the intended application. 2. Generador de corriente estable, de acuerdo con la primera reivindicación, caracterizado porque el primer bloque (1000) conste de un start-up de arranque (1100), una fuente de corriente (1201) de configuración cascodo y una resistencia (R_{3}) que determina el voltaje (V_{CTRL}).2. Stable current generator, according to the first claim, characterized in that the first block (1000) consists of a start-up start-up (1100), a source of current (1201) with a casted configuration and a resistor (R_ { 3}) that determines the voltage (V_ {CTRL}). 3. Generador de corriente estable, de acuerdo con la primera reivindicación, caracterizado porque el segundo bloque (2000) comprende una arquitectura que determina la corriente de salida estable (I_{REF}) en función de dos corrientes (I_{4}) e (I_{5}), las cuales son adaptables variando el ancho de canal W y la longitud de canal L de sendos transistores (M_{1}) y (M_{2}) y el valor de unas correspondientes resistencias (R_{4}) y (R_{5}).3. Stable current generator, according to the first claim, characterized in that the second block (2000) comprises an architecture that determines the stable output current (I_ {REF}) based on two currents (I_ {4}) and (I_ {5}), which are adaptable by varying the channel width W and the channel length L of two transistors (M_ {1}) and (M_ {2}) and the value of corresponding resistors (R_ {4 }) and (R5).
ES200801573A 2008-05-27 2008-05-27 STABLE CURRENT GENERATOR. Expired - Fee Related ES2339089B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200801573A ES2339089B1 (en) 2008-05-27 2008-05-27 STABLE CURRENT GENERATOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200801573A ES2339089B1 (en) 2008-05-27 2008-05-27 STABLE CURRENT GENERATOR.

Publications (2)

Publication Number Publication Date
ES2339089A1 true ES2339089A1 (en) 2010-05-14
ES2339089B1 ES2339089B1 (en) 2011-04-04

Family

ID=42126176

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200801573A Expired - Fee Related ES2339089B1 (en) 2008-05-27 2008-05-27 STABLE CURRENT GENERATOR.

Country Status (1)

Country Link
ES (1) ES2339089B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525598B1 (en) * 1999-01-29 2003-02-25 Cirrus Logic, Incorporated Bias start up circuit and method
US20060071703A1 (en) * 2004-08-20 2006-04-06 Stmicroelectronics Pvt. Ltd. On-chip voltage regulator
US20060103455A1 (en) * 2004-11-15 2006-05-18 Samsung Electronics Co., Ltd. Resistorless bias current generation circuit
EP1667004A2 (en) * 2004-11-25 2006-06-07 STMicroelectronics Pvt. Ltd Temperature compensated reference current generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525598B1 (en) * 1999-01-29 2003-02-25 Cirrus Logic, Incorporated Bias start up circuit and method
US20060071703A1 (en) * 2004-08-20 2006-04-06 Stmicroelectronics Pvt. Ltd. On-chip voltage regulator
US20060103455A1 (en) * 2004-11-15 2006-05-18 Samsung Electronics Co., Ltd. Resistorless bias current generation circuit
EP1667004A2 (en) * 2004-11-25 2006-06-07 STMicroelectronics Pvt. Ltd Temperature compensated reference current generator

Also Published As

Publication number Publication date
ES2339089B1 (en) 2011-04-04

Similar Documents

Publication Publication Date Title
TWI386773B (en) Operational amplifier, temperature-independent system and bandgap reference circuit
JP5836074B2 (en) Temperature detection circuit and adjustment method thereof
KR102252365B1 (en) Overheat protection circuit and voltage regulator
KR100674974B1 (en) Semiconductor temperature sensor capable of adjusting sensing temperature
US10648870B2 (en) Temperature sensor and calibration method thereof having high accuracy
ES2293476T3 (en) DEVICE FOR GENERATING AN ELECTRICAL VOLTAGE OF IMPROVED PRECISION REFERENCE AND CORRESPONDING INTEGRATED ELECTRONIC CIRCUIT.
JP6242274B2 (en) Band gap reference circuit and semiconductor device including the same
TW200636415A (en) Resistorless bias current generation circuit
TW200728956A (en) Reference voltage generation circuit, semiconductor integrated circuit and semiconductor integrated circuit device
TW201116968A (en) Pico-power reference voltage generator
WO2006109114A3 (en) Method and apparatus for current limitation in voltage regulators with improved circuitry for providing a control voltage
US8723595B1 (en) Voltage generator
TW200602834A (en) Constant voltage outputting circuit
US9568929B2 (en) Bandgap reference circuit with beta-compensation
JP5252221B2 (en) Piezoelectric oscillator
KR102498571B1 (en) Reference voltage generation circuit and method of driving the same
JP2007019631A (en) Fet bias circuit
ES2339089B1 (en) STABLE CURRENT GENERATOR.
JP2010003115A (en) Constant current circuit
KR101043044B1 (en) Reference voltage generator for providing reference voltage freefrom supply voltage change
TWI497255B (en) Bandgap reference voltage circuit and electronic device
EP2611262B1 (en) Vehicle lighting device
US8575912B1 (en) Circuit for generating a dual-mode PTAT current
JP2005234890A (en) Constant current circuit
JP2015153121A (en) Temperature compensation reference voltage circuit arrangement

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20100514

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2339089

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20110404

FD2A Announcement of lapse in spain

Effective date: 20180924