ES2294924B1 - METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES. - Google Patents

METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES. Download PDF

Info

Publication number
ES2294924B1
ES2294924B1 ES200600915A ES200600915A ES2294924B1 ES 2294924 B1 ES2294924 B1 ES 2294924B1 ES 200600915 A ES200600915 A ES 200600915A ES 200600915 A ES200600915 A ES 200600915A ES 2294924 B1 ES2294924 B1 ES 2294924B1
Authority
ES
Spain
Prior art keywords
coil
inductor
frequency
inductive
cylindrical metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES200600915A
Other languages
Spanish (es)
Other versions
ES2294924A1 (en
Inventor
Jose Ignacio Iñiguez De La Torre Bayo
Victor Raposo Funcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Salamanca
Original Assignee
Universidad de Salamanca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Salamanca filed Critical Universidad de Salamanca
Priority to ES200600915A priority Critical patent/ES2294924B1/en
Publication of ES2294924A1 publication Critical patent/ES2294924A1/en
Application granted granted Critical
Publication of ES2294924B1 publication Critical patent/ES2294924B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Método y aparato para medir la conductividad eléctrica así como para efectuar una caracterización estructural y dimensional de muestras metálicas cilíndricas por técnicas inductivas. Método para medir la conductividad eléctrica así como para efectuar una caracterización estructural y dimensional de muestras metálicas cilíndricas por técnicas inductivas utilizando un aparato que comprende un puente LCR de frecuencia variable o cualquier otro medidor capaz de detectar diferencias de fase entre dos señales alternas, una primera bobina inductora, al menos una segunda bobina sensora que se dispone dentro de la primera bobina inductora, el material problema, que se encuentra colocado entre la primera bobina inductora y la segunda bobina sensora y un elemento que registra la frecuencia y la corriente de la bobina inductora así como el voltaje inducido en la bobina detectora.Method and apparatus for measuring electrical conductivity as well as for structural and dimensional characterization of cylindrical metal samples by inductive techniques. Method for measuring electrical conductivity as well as for structural and dimensional characterization of cylindrical metal samples by inductive techniques using an apparatus comprising a variable frequency LCR bridge or any other meter capable of detecting phase differences between two alternating signals, a first inductor coil, at least a second sensor coil that is disposed within the first inductor coil, the problem material, which is placed between the first inductor coil and the second sensor coil and an element that records the frequency and current of the coil inductor as well as the induced voltage in the detector coil.

Description

Método y aparato para medir la conductividad eléctrica así como para efectuar una caracterización estructural y dimensional de muestras metálicas cilíndricas por técnicas inductivas.Method and apparatus for measuring conductivity electrical as well as to effect a structural characterization and dimensional cylindrical metal samples by techniques inductive

Campo de la invenciónField of the Invention

La presente invención hace referencia a un método y un aparato para medir la conductividad eléctrica aplicable a tubos conductores no magnéticos así como a la caracterización de materiales metálicos magnéticos y no magnéticos, por técnicas inductivas.The present invention refers to a method and apparatus for measuring the applicable electrical conductivity to non-magnetic conductive tubes as well as to the characterization of magnetic and non-magnetic metal materials, by techniques inductive

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Antecedentes de la invenciónBackground of the invention

La medida precisa de la conductividad eléctrica en materiales conductores no es sencilla. Por lo general se requiere del uso de métodos como el de cuatro puntas, en el que es necesario establecer unos puntos físicos de unión o contactos sobre muestras de geometría muy simple. Esos contactos, muchas veces formados por resinas conductoras de plata, resultan críticos a la hora de efectuar la medida y limitan la precisión del resultado ya que introducen alteraciones en la interfase material-contacto, lo que afecta a la medida de la conductividad. Además existen medidas especiales, como las de materiales superconductores a baja temperatura, en la que no es adecuado aplicar este tipo de métodos. Por esta razón se han desarrollado diferentes técnicas que buscan medir la conductividad eléctrica mediante métodos inductivos. Este tipo de técnicas presenta la ventaja de rapidez y simplicidad, ya que carecen de la necesidad de establecer contactos eléctricos y permiten la detección en línea en materiales incluso a altas temperaturas.The precise measurement of electrical conductivity in conductive materials it is not simple. It is usually requires the use of methods such as the four-pointed one, in which it is it is necessary to establish physical points of union or contacts on Very simple geometry samples. Those contacts, many times formed by silver conductive resins, they are critical to the time to measure and limit the accuracy of the result already that introduce alterations in the interface material-contact, which affects the extent of the conductivity. There are also special measures, such as those of superconducting materials at low temperature, in which it is not It is appropriate to apply these types of methods. For this reason they have developed different techniques that seek to measure conductivity Electrical by inductive methods. This type of techniques it has the advantage of speed and simplicity, since they lack the need to establish electrical contacts and allow the online detection in materials even at high temperatures.

Estas técnicas se basan en la aplicación de un campo magnético sinusoidal cercano a la superficie del material a analizar, que se genera por medio de una bobina inductora.These techniques are based on the application of a sinusoidal magnetic field close to the surface of the material a analyze, which is generated by means of an inductor coil.

Dicho campo se ve afectado por la presencia del material problema, siendo registrada esa alteración por medio de la propia bobina inductora o por una segunda bobina acoplada inductivamente a la primera.This field is affected by the presence of the problem material, this alteration being registered through the own inductor coil or by a second coupled coil inductively to the first.

Cuando la técnica emplea una única bobina para inducir y detectar el cambio de impedancia generado por la presencia del metal próximo a la bobina, las variaciones observadas son muy pequeñas, a no ser que se empleen frecuencias muy elevadas, lo que dificulta la posibilidad de obtener medidas precisas.When the technique uses a single coil to induce and detect the impedance change generated by the presence of the metal next to the coil, the variations observed they are very small, unless very high frequencies are used, which hinders the possibility of obtaining precise measurements.

Sin embargo, la utilización de dos o más bobinas permite obviar estos problemas y se incrementa la precisión de la medida. No obstante, para obtener resultados precisos es necesario alinear adecuadamente las bobinas.However, the use of two or more coils it allows to avoid these problems and increases the accuracy of the measure. However, to obtain accurate results it is necessary properly align the coils.

Esto obliga a fijar la geometría de las bobinas siendo necesario en ocasiones el ajuste o el desmontaje de las muestras a analizar, dificultando y retrasando el proceso de medida.This forces to fix the geometry of the coils sometimes the adjustment or disassembly of the samples to analyze, hindering and delaying the process of measure.

Todos estos problemas se ven solucionados en la presente invención, ya que en ella se describe una técnica y un aparato de medida basado en métodos inductivos en el que prácticamente no existe limitación por el alineamiento de las bobinas, ya que la conductividad y las características del metal se determinan midiendo simplemente la variación de un ángulo de fase, lo que permite realizar medidas precisas y rápidas sin necesidad de desmontar y montar constantemente el dispositivo y las muestras a medir. Además, la utilización de corriente alterna de baja frecuencia simplifica y abarata los elementos de medida empleados.All these problems are solved in the present invention, since it describes a technique and a measuring device based on inductive methods in which there is practically no limitation for the alignment of the coils, since the conductivity and characteristics of the metal are determined by simply measuring the variation of a phase angle, what allows to realize precise and fast measures without need of constantly disassemble and mount the device and samples to to size. In addition, the use of low alternating current frequency simplifies and reduces the measurement elements employees.

       \vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
    
Breve descripción de la invenciónBrief Description of the Invention

En un primer aspecto la presente invención se refiere a un aparato (en adelante aparato de la invención) para medir la conductividad eléctrica de materiales metálicos no magnéticos con geometría cilíndrica hueca (en adelante muestra problema) de forma inductiva que comprende:In a first aspect the present invention is refers to an apparatus (hereinafter apparatus of the invention) for measure the electrical conductivity of metallic materials not magnetic with hollow cylindrical geometry (hereinafter shows problem) inductively comprising:

a.to.
un puente LCR de frecuencia variable o cualquier otro medidor capaz de detectar diferencias de fase entre dos señales alternas, que incluye, sin carácter limitante a lock-in, osciloscopio o analizador de redes.a variable frequency LCR bridge or any other meter capable of detect phase differences between two alternate signals, which includes, without limitation to lock-in, oscilloscope or network analyzer.

b.b.
una primera bobina inductora.a First inductor coil.

c.C.
al menos un segunda bobina sensora que se dispone dentro de la primera bobina inductora, y acoplado inductivamente a la primera bobina, siendo la disposición no limitante para la medida de la conductividad.to the minus a second sensor coil that is disposed within the first inductor coil, and inductively coupled to the first coil, being the non-limiting provision for the measurement of conductivity.

d.d.
el material problema, que se encuentra colocado entre la primera bobina inductora y la segunda bobina sensora yhe problem material, which is placed between the first inductor coil and the second sensor coil and

e.and.
un elemento que registra la frecuencia y la corriente de la bobina inductora así como el voltaje inducido en la bobina detectora.a element that records the frequency and current of the coil inductor as well as the induced voltage in the coil detector

En un segundo aspecto de la presente invención se refiere al método de medida (en adelante método de la invención) de la conductividad eléctrica sin contactos de materiales metálicos no magnéticos con forma cilíndrica hueca utilizando el aparato de la invención que comprende las etapas de:In a second aspect of the present invention refers to the measurement method (hereinafter method of the invention) of the contactless electrical conductivity of metallic materials non-magnetic hollow cylindrical shape using the device The invention comprising the steps of:

a.to.
situar la muestra problema entre la primera bobina (inductora) y la segunda bobina (detectora),place the problem sample between the first coil (inductor) and the second coil (detector),

b.b.
aplicar una corriente alterna típicamente comprendida, aunque sin carácter limitante, entre 10 Hz y 10 kHz y medir el voltaje inducido en la segunda bobina, teniendo en cuenta que el material problema debe tener unas paredes con un espesor claramente inferior a la profundidad de penetración por efecto "skin".apply an alternating current typically included, but not limited to, between 10 Hz and 10 kHz and measure the voltage induced in the second coil, having Note that the problem material must have walls with a thickness clearly less than the penetration depth by skin effect

c.C.
medir el desfase entre el voltaje inducido y la corriente inductora en función de la frecuencia de la corriente inductora y efectuar una regresión lineal de la cotangente de ese desfase medido en función de la frecuencia.to size the lag between the induced voltage and the inductive current in function of the inductor current frequency and perform a linear regression of the cotangent of that offset measured as a function of the frequency

En un tercer aspecto de la invención se refiere al uso del aparato de la invención para determinar la geometría de materiales metálicos no magnéticos de conductividad conocida con forma cilíndrica hueca.In a third aspect of the invention it refers to the use of the apparatus of the invention to determine the geometry of non-magnetic metallic materials of known conductivity with hollow cylindrical shape.

En un cuarto aspecto de la presente invención se refiere al uso del método de la invención para medir las características estructurales del material problema como son pero sin limitarnos a la determinación de fracturas y grietas o análisis de inhomogeneidades.In a fourth aspect of the present invention, refers to the use of the method of the invention to measure the structural characteristics of the problem material as they are but without limiting ourselves to the determination of fractures and cracks or analysis of inhomogeneities.

Un último aspecto de la invención se refiere al uso del aparato de la invención para evaluar la presencia de alteraciones en materiales magnéticos y no magnéticos que comprende medir el desfase entre el voltaje inducido y la corriente alterna en un rango de frecuencias comprendido entre 10 Hz y 1 MHz y efectuar un análisis en frecuencia de los resultados obtenidos comparando las muestras problemas con muestras calibradas.A final aspect of the invention relates to use of the apparatus of the invention to evaluate the presence of alterations in magnetic and non-magnetic materials comprising measure the offset between the induced voltage and the alternating current in a frequency range between 10 Hz and 1 MHz and carry out a frequency analysis of the results obtained comparing the problem samples with calibrated samples.

Otros aspectos referidos al aparato de medida así como al método de medida se describen detalladamente a continuación.Other aspects related to the measuring device as well as the measurement method are described in detail to continuation.

Descripción de las figurasDescription of the figures

Fig. 1 Descripción esquemática del sistema de medida propuesto en la invención. Donde 1 es la bobina inductora, 2 la bobina detectora, 3 es un puente LCR o medidor de fase análogo, 4 es el material problema y 5 es el sistema de adquisición y registro de datos.Fig. 1 Schematic description of the system measure proposed in the invention. Where 1 is the inductor coil, 2 the detector coil, 3 is an LCR bridge or analog phase meter, 4 is the problem material and 5 is the acquisition system and data register.

Fig. 2 Diagrama de los resultados obtenidos por el sistema en la medida de un tubo de cobre; de la pendiente de la recta se obtiene la conductividad del material con un resultado de 59,6x10^{6} S/m.Fig. 2 Diagram of the results obtained by the system to the extent of a copper tube; of the slope of the straight the conductivity of the material is obtained with a result of 59.6x106 S / m.

Ejemplos de realización de la invenciónExamples of embodiment of the invention

Los siguientes ejemplos y figuras sirven para ilustrar pero no limitan la presente invención.The following examples and figures serve to illustrate but do not limit the present invention.

Ejemplo 1Example 1 Determinación de la conductividad en muestras problemaDetermination of conductivity in test samples

La realización de las medidas de conductividad se efectúa en un sistema como el mostrado en la figura 1. Éste comprende dos bobinas acopladas, una larga bobina inductora (1) que envuelve el tubo problema y otra pequeña bobina detectora (2) que se encuentra localizada dentro del tubo, a una distancia de su borde de al menos cinco veces su radio. A través de la boina inductora se hace pasar una corriente eléctrica alterna que es ajustada en frecuencia e intensidad mediante un puente LCR o medidor de fase análogo de frecuencia variable (3), esta corriente alterna genera un voltaje inducido en la bobina detectora (2) que depende de la naturaleza del material problema y su geometría (4). Dicho voltaje se registra y almacena en un ordenador (5) que evalúa los datos en tiempo real.Conductivity measurements it is carried out in a system like the one shown in figure 1. This It comprises two coupled coils, a long inductor coil (1) that wrap the test tube and another small detector coil (2) that It is located inside the tube, at a distance from its Edge of at least five times your radius. Through the beret inductor is passed an alternating electric current that is adjusted in frequency and intensity via an LCR bridge or variable frequency analog phase meter (3), this current alternating generates an induced voltage in the detector coil (2) that It depends on the nature of the problem material and its geometry (4). Said voltage is recorded and stored in a computer (5) that evaluates Real time data.

La medida de la conductividad se realiza colocando la muestra problema, en el dispositivo de medida de acuerdo a la figura 1, entre la bobina inductora y la detectora.The conductivity measurement is performed placing the sample problem, in the measuring device of according to figure 1, between the inductor coil and the detector

El material problema debe tener unas paredes con un espesor claramente inferior a la profundidad de penetración por efecto "skin", lo que aconsejará sobre el intervalo de frecuencias a utilizar.The problem material must have walls with a thickness clearly less than the depth of penetration by "skin" effect, which will advise on the interval of frequencies to use

Esta geometría simplifica la resolución del sistema, evitando realizar una constante realineación de las bobinas. Ello permite trabajar con piezas de diferentes tamaños sin necesidad de desmontarlas.This geometry simplifies the resolution of the system, avoiding a constant realignment of the coils This allows working with pieces of different sizes without need to disassemble them.

Colocada la muestra, las medidas de conductividad se efectúan aplicando una corriente eléctrica alterna a través de la bobina inductora, barriendo en un rango de frecuencias que comprende típicamente, pero no se limita, entre
10 Hz y 10 kHz.
Placed the sample, the conductivity measurements are made by applying an alternating electric current through the inductor coil, sweeping in a frequency range that typically comprises, but is not limited, between
10 Hz and 10 kHz.

De este modo se induce un campo eléctrico que produce un voltaje en la bobina detectora, el cual depende de la frecuencia de la corriente inductora, de la conductividad y de la geometría del material problema.In this way an electric field is induced that produces a voltage in the detector coil, which depends on the frequency of inductive current, conductivity and geometry of the problem material.

A partir de los datos obtenidos y representando la cotangente del ángulo de desfase existente entre el voltaje inducido y la corriente inductora frente al rango de frecuencias en el que se tomaron dichos ángulo, se obtiene una recta cuya pendiente es proporcional a la conductividad y permeabilidad magnética del material (es decir, prácticamente la del vacío) e inversamente proporcional al factor geométrico de la muestra problema. A partir de aquí y teniendo en cuenta que es conocida la permeabilidad magnética del vacío y que el factor geométrico para las muestras problema es:From the data obtained and representing the cotangent of the offset angle between the voltage induced and inductive current versus frequency range in the one who took said angle, you get a line whose slope is proportional to conductivity and permeability magnetic material (that is, virtually that of vacuum) and inversely proportional to the geometric factor of the sample trouble. From here and considering that the magnetic vacuum permeability and that the geometric factor for The samples problem is:

1one

siendo D el diámetro externo del tubo y d el diámetro interno, que son también conocidos, se determina la conductividad \sigma.where D is the outer diameter of the tube and d the internal diameter, which are also known, is determine the conductivity \sigma.

Para tubos en los que (D-d)/d\leq0.1, el factor geométrico puede aproximarse con una tolerancia mejor que 8\times10^{-4} por la expresión más simple:For tubes in which (D-d) /d\leq0.1, the geometric factor can approach with a tolerance better than 8 x 10 -4 by the simplest expression:

22

Ejemplo 2Example 2 Determinación del calibre de las muestras problemaDetermination of the caliber of the test samples

La determinación del calibre de las muestras problema cuya conductividad se conoce, se realiza de forma similar a la medida de la conductividad. Así, utilizando la pendiente de la recta obtenida de la cotangente del ángulo de desfase en función de la frecuencia, calculada de igual forma que en el ejemplo anterior, se puede obtener el factor geométrico, del que se puede derivar el calibre o grosor de pared de la muestra problema.The determination of the size of the samples problem whose conductivity is known, is performed similarly tailored to conductivity. Thus, using the slope of the line obtained from the cotangent of the offset angle as a function of the frequency, calculated in the same way as in the previous example, You can get the geometric factor, from which you can derive the gauge or wall thickness of the problem sample.

Ejemplo 3Example 3 Determinación de las características estructuralesDetermination of the structural characteristics

La determinación de las características estructurales puede derivarse de la conductividad medida en materiales problema cuya conductividad y geometría se conocen. De esta forma, a partir de los datos obtenidos de forma similar al experimento 1, es posible determinar la conductividad del material la cual se ve afectada por la presencia de inhomogeneidades, como por ejemplo óxidos, grietas de fabricación, fisuras por fatiga, muescas, fracturas, corrosión, etc., que provocan descensos en la conductividad cuando se compara con el valor de referencia.The determination of the characteristics structural can be derived from the conductivity measured in problem materials whose conductivity and geometry are known. From this way, from the data obtained in a similar way to experiment 1, it is possible to determine the conductivity of the material which is affected by the presence of inhomogeneities, such as for example oxides, manufacturing cracks, fatigue cracks, notches, fractures, corrosion, etc., which cause decreases in the conductivity when compared to the reference value.

Al objeto de efectuar esta comparación, cuando no se desea una medida absoluta de conductividad debe operarse a frecuencias mayores (típicamente hasta 1 MHz) utilizando dos bobinas detectoras idénticas en oposición de fase y midiendo el voltaje inducido en el conjunto. Estas bobinas pueden estar introducidas en el tubo problema o una en él y la otra en un tubo patrón. El análisis en frecuencia (eddyscope) de los resultados obtenidos, la simulación numérica del problema y la comparación con muestras calibradas permiten hacer la determinación de las características estructurales de la muestra problema.In order to make this comparison, when an absolute measure of conductivity is not desired should be operated at higher frequencies (typically up to 1 MHz) using two identical detector coils in phase opposition and measuring the induced voltage in the set. These coils can be inserted into the problem tube or one in it and the other in a tube Pattern. Frequency analysis (eddyscope) of the results obtained, the numerical simulation of the problem and the comparison with calibrated samples allow the determination of Structural characteristics of the problem sample.

Claims (4)

1. Aparato para medir la conductividad eléctrica de muestras metálicas cilíndricas por técnicas inductivas: que comprende:1. Apparatus for measuring electrical conductivity of cylindrical metal samples by inductive techniques: that understands:
a.to.
un puente LCR de frecuencia variable o cualquier otro medidor capaz de detectar diferencias de fase entre dos señales alternas.a variable frequency LCR bridge or any other meter capable of detect phase differences between two alternating signals.
b.b.
una primera bobina inductora.a First inductor coil.
c.C.
al menos un segunda bobina sensora que se dispone dentro de la primera bobina inductora, y acoplado inductivamente a la primera bobina, siendo la disposición no limitante para la medida de la conductividad.to the minus a second sensor coil that is disposed within the first inductor coil, and inductively coupled to the first coil, being the non-limiting provision for the measurement of conductivity.
d.d.
el material problema, que se encuentra colocado entre la primera bobina inductora y la segunda bobina sensora yhe problem material, which is placed between the first inductor coil and the second sensor coil and
e.and.
un elemento que registra la frecuencia y la corriente de la bobina inductora así como el voltaje inducido en la bobina detectora.a element that records the frequency and current of the coil inductor as well as the induced voltage in the coil detector
2. Método para medir la conductividad eléctrica de muestras metálicas cilíndricas por técnicas inductivas utilizando el aparato de la reivindicación primera que comprende las etapas de:2. Method to measure electrical conductivity of cylindrical metal samples by inductive techniques using the apparatus of the first claim comprising the stages of:
a.to.
situar la muestra problema entre la primera bobina (inductora) y la segunda bobina (detectora),place the problem sample between the first coil (inductor) and the second coil (detector),
b.b.
aplicar una corriente alterna y medir el voltaje inducido en la segunda bobina,apply an alternating current and measure the voltage induced in the second coil,
c.C.
medir el desfase entre el voltaje inducido y la corriente inductora en función de la frecuencia de la corriente inductora y efectuar una regresión lineal de la cotangente de ese desfase medido en función de la frecuencia.to size the lag between the induced voltage and the inductive current in function of the inductor current frequency and perform a linear regression of the cotangent of that offset measured as a function of the frequency
3. Método para efectuar una caracterización dimensional de muestras metálicas cilíndricas por técnicas inductivas utilizando el aparato de la reivindicación primera que comprende las etapas de:3. Method for characterization dimensional cylindrical metal samples by techniques inductive using the apparatus of claim one that It comprises the stages of:
a.to.
situar la muestra problema entre la primera bobina (inductora) y la segunda bobina (detectora),place the problem sample between the first coil (inductor) and the second coil (detector),
b.b.
aplicar una corriente alterna y medir el voltaje inducido en la segunda bobina,apply an alternating current and measure the voltage induced in the second coil,
c.C.
medir el desfase entre el voltaje inducido y la corriente inductora en función de la frecuencia de la corriente inductora; efectuar una regresión lineal de la cotangente de ese desfase medido en función de la frecuencia, obtener el factor geométrico de la muestra y derivar su calibre o espesor.to size the lag between the induced voltage and the inductive current in function of the frequency of the inductor current; make a linear regression of the cotangent of that offset measured as a function of the frequency, obtain the geometric factor of the sample and derive its gauge or thickness.
4. Método para efectuar una caracterización estructural de muestras metálicas cilíndricas por técnicas inductivas utilizando el aparato de la reivindicación primera, que comprende las etapas de:4. Method for characterization structural of cylindrical metal samples by techniques inductive using the apparatus of claim one, which It comprises the stages of:
a.to.
Medir el desfase entre el voltaje inducido y la corriente alterna en un rango de frecuencias comprendido entre 10 Hz y 1 MHz yTo size the lag between the induced voltage and the alternating current in a frequency range between 10 Hz and 1 MHz and
b.b.
Efectuar un análisis en frecuencia de los resultados obtenidos comparando las muestras problemas con muestras calibradas.Perform a frequency analysis of the results obtained comparing the samples problems with calibrated samples.
ES200600915A 2006-04-07 2006-04-07 METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES. Active ES2294924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES200600915A ES2294924B1 (en) 2006-04-07 2006-04-07 METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200600915A ES2294924B1 (en) 2006-04-07 2006-04-07 METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES.

Publications (2)

Publication Number Publication Date
ES2294924A1 ES2294924A1 (en) 2008-04-01
ES2294924B1 true ES2294924B1 (en) 2009-02-16

Family

ID=39171410

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200600915A Active ES2294924B1 (en) 2006-04-07 2006-04-07 METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES.

Country Status (1)

Country Link
ES (1) ES2294924B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352784A (en) * 2016-09-30 2017-01-25 哈尔滨理工大学 MXT9030-based thin film thickness measurement system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH568569A5 (en) * 1974-02-06 1975-10-31 Bbc Brown Boveri & Cie
US4006405A (en) * 1975-01-13 1977-02-01 The Singer Company Method and apparatus for measuring parameters of a conductive material which can be used in independently determining thickness and conductivity
CA1212997A (en) * 1983-12-16 1986-10-21 Gerard Durou Frequency scanning eddy current non destructive testing method and system
SU1219966A1 (en) * 1984-04-29 1986-03-23 Ордена Трудового Красного Знамени Институт Физики Металлов Уральского Научного Центра Ан Ссср Method of measuring thickness and specific conductance of sheet materials
FR2660068B1 (en) * 1990-03-26 1993-12-03 Vallourec Industries METHOD AND DEVICE FOR MONITORING METAL TUBES BY EDGE CURRENT.
EP0543648A1 (en) * 1991-11-21 1993-05-26 Kaisei Engineer Co., Ltd. Inspection device using electromagnetic induction and method therefor

Also Published As

Publication number Publication date
ES2294924A1 (en) 2008-04-01

Similar Documents

Publication Publication Date Title
KR101941241B1 (en) Electromagnetic sensor and calibration thereof
US9146214B2 (en) Leakage magnetic flux flaw inspection method and device
US9709376B2 (en) High sensitivity inductive sensor for measuring blade tip clearance
Dziczkowski Elimination of coil liftoff from eddy current measurements of conductivity
KR20180030991A (en) Defect measurement method, defect measurement device and inspection probe
Espina-Hernandez et al. Rapid estimation of artificial near-side crack dimensions in aluminium using a GMR-based eddy current sensor
Lee et al. Multiparameter eddy-current sensor design for conductivity estimation and simultaneous distance and thickness measurements
Sreevatsan et al. Simultaneous detection of defect and lift-off using a modified pulsed eddy current probe
Angani et al. Transient eddy current oscillations method for the inspection of thickness change in stainless steel
Ribeiro et al. Inductive probe for flaw detection in non-magnetic metallic plates using eddy currents
KR102124713B1 (en) Method and apparatus for hot measurement of the size of a metal profile during rolling
ES2294924B1 (en) METHOD AND APPARATUS FOR MEASURING ELECTRICAL CONDUCTIVITY AS WELL AS TO PERFORM A STRUCTURAL AND DIMENSIONAL CHARACTERIZATION OF CYLINDRICAL METAL SAMPLES BY INDUCTIVE TECHNIQUES.
Khalilov et al. A combined liquid sodium flow measurement system
CN105319444B (en) A kind of conductive material electrical conductivity uniformity coefficient appraisal procedure
Belloni et al. On the experimental calibration of a potential drop system for crack length measurements in a compact tension specimen
JP2002014081A (en) Method and device for measuring hardness penetration
RU2687504C1 (en) Method and device for non-contact determination of specific electrical resistance of metals in high temperatures
Pokatilov et al. Inhomogeneity correction in calibration of electrical conductivity standards
RU2482444C2 (en) Method of setting up electromagnetic converter
Ramos et al. Determination of linear defect depths from eddy currents disturbances
Wang et al. Pulse eddy current testing thin metal thickness
Menezes et al. Evaluation of crack depth using eddy current techniques with GMR-based probes
Wang et al. Inductance calculation of planar eddy-current sensor coils in grating-type displacement measurement system
JP2015078942A (en) Leakage magnetic flux flaw detector
Rajotte Eddy‐current method for measuring the electrical conductivity of metals

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20080401

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2294924B1

Country of ref document: ES