ES2291081B1 - CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE. - Google Patents

CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE. Download PDF

Info

Publication number
ES2291081B1
ES2291081B1 ES200501847A ES200501847A ES2291081B1 ES 2291081 B1 ES2291081 B1 ES 2291081B1 ES 200501847 A ES200501847 A ES 200501847A ES 200501847 A ES200501847 A ES 200501847A ES 2291081 B1 ES2291081 B1 ES 2291081B1
Authority
ES
Spain
Prior art keywords
ref
wind
controller
hydraulic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200501847A
Other languages
Spanish (es)
Other versions
ES2291081A1 (en
Inventor
Mario Garcia Sanz
Manuel Torres Martinez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Torres Disenos Industriales SA
Original Assignee
M Torres Disenos Industriales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Torres Disenos Industriales SA filed Critical M Torres Disenos Industriales SA
Priority to ES200501847A priority Critical patent/ES2291081B1/en
Priority to PCT/ES2006/000411 priority patent/WO2007012683A2/en
Publication of ES2291081A1 publication Critical patent/ES2291081A1/en
Application granted granted Critical
Publication of ES2291081B1 publication Critical patent/ES2291081B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/62Application for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Sistema de control de una turbina eólico-hidráulica de velocidad variable, para actuar un sistema de bombeo (5) que introduce agua a presión en un sistema hidráulico capaz de producir desalación por ósmosis inversa o generar energía eléctrica, incorporando un controlador (7) que comanda el funcionamiento para variar el caudal "Q" de agua que se inyecta al sistema hidráulico, y un controlador (9) que permite variar selectivamente la presión y "P_{r}" el caudal "Q_{f}," en el sistema hidráulico.Turbine control system wind-hydraulic variable speed, to act a pumping system (5) that introduces pressurized water into a system hydraulic capable of producing reverse osmosis desalination or generate electricity, incorporating a controller (7) that command the operation to vary the flow rate "Q" of water that the hydraulic system is injected, and a controller (9) that allows selectively vary the pressure and "P_ {r}" the flow rate "Q_ {f}," in the hydraulic system.

Description

Sistema de control de una turbina eólico-hidráulica de velocidad variable.Turbine control system wind-hydraulic variable speed.

Sector de la técnicaTechnical sector

La presente invención está relacionada con las turbinas eólico-hidráulicas en aerogeneradores y más concretamente con las turbinas eólico-hidráulicas de velocidad variable y los sistemas de control que se emplean en su funcionamiento.The present invention is related to wind-hydraulic turbines in wind turbines and more  specifically with wind-hydraulic turbines variable speed and control systems used in its operation

Estado de la técnicaState of the art

Se conocen turbinas generadoras que disponen de múltiples palas que transforman la energía del viento en un par mecánico que se emplea en la generación de energía eléctrica.Generating turbines are known that have multiple blades that transform wind energy into a pair mechanical that is used in the generation of electrical energy.

Por otro lado se conocen también turbinas generadoras que emplean la energía del viento en desalar agua marina, tal como se muestra en la Patente de Invención Española de número de solicitud 200402824.On the other hand, turbines are also known generators that use wind energy to desalinate water marine, as shown in the Spanish Invention Patent of application number 200402824.

Estos generadores de turbina habitualmente se controlan mediante sistemas de control electrónicos tales como los descritos en las Patentes americanas US 6 856 039, US 6 847 128 y US 6 600 240 de General Electric Company, sin embargo en estas soluciones únicamente se regula la velocidad del rotor en función de la fuerza del viento que incide contra las palas, así como el ángulo de calado de las mismas.These turbine generators are usually control by electronic control systems such as described in US Patents US 6 856 039, US 6 847 128 and US 6 600 240 from General Electric Company, however in these solutions only the rotor speed is regulated depending on of the force of the wind that hits the blades, as well as the draft angle of them.

Objeto de la invenciónObject of the invention

De acuerdo con la presente invención se propone un sistema de control hidráulico de turbinas eólicas que operan a velocidad variable, ante condiciones de viento cambiantes, que convierte la energía del viento en energía hidráulica que posteriormente se utiliza para desalar agua y/o producir energía eléctrica.In accordance with the present invention it is proposed a hydraulic control system of wind turbines operating at variable speed, in the face of changing wind conditions, which converts wind energy into hydraulic energy that subsequently used to desalinate water and / or produce energy electric

Este sistema de control hidráulico según la invención, permite además del control de la velocidad del rotor en función de la velocidad del viento, una variación del caudal inyectado por revolución "K" y de la Presión del circuito hidráulico "Pr", de forma que para unas revoluciones por minuto del rotor se pueden conseguir diferentes valores del caudal inyectado por revolución "K" y/o de la Presión del circuito hidráulico "Pr".This hydraulic control system according to the invention, in addition to controlling the speed of the rotor in wind speed function, a variation of the flow injected by revolution "K" and circuit pressure hydraulic "Pr", so that for revolutions by minute of the rotor different flow rates can be achieved injected by revolution "K" and / or circuit pressure hydraulic "Pr".

Un primer objetivo del sistema de control de la turbina eólico-hidráulica de velocidad variable es la maximización de la energía extraída al viento a cada velocidad de viento.A first objective of the control system of the variable speed wind-hydraulic turbine is the maximization of the energy extracted to the wind at each speed of wind.

Para ello la máquina gobierna el par mecánico antagonista que presenta al viento, modificando la velocidad de giro del rotor y los ángulos de calado de las palas. El par se controla a partir de la medición de la velocidad de rotor y la manipulación coordinada de unos mecanismos y unas válvulas de admisión que modifican el caudal por revolución "K" y la presión "P_{r}", además de los ángulos "\beta" de las palas.For this the machine governs the mechanical torque antagonist that presents to the wind, modifying the speed of Rotation of the rotor and the draft angles of the blades. The pair is controls from the rotor speed measurement and the coordinated manipulation of mechanisms and valves admission that modify the flow rate per revolution "K" and the pressure "P_ {r}", in addition to the angles "\ beta" of the Pallas.

Simultáneamente, otro objetivo de control de la turbina eólico-hidráulica es el gobierno de la presión y el caudal del circuito hidráulico secundario, y con ello el proceso de desalación o el sistema de generación de energía eléctrica. Para ello se utiliza un conjunto de bombas y válvulas capaces de modificar la presión y el caudal.Simultaneously, another objective of controlling the wind-hydraulic turbine is the government of the pressure and flow of the secondary hydraulic circuit, and with it the desalination process or the power generation system electric For this, a set of pumps and valves is used. able to modify the pressure and the flow rate.

Descripción de las figurasDescription of the figures

La figura 1 muestra un esquema representativo del comportamiento eólico-hidráulico de velocidad variable.Figure 1 shows a representative scheme of wind-hydraulic speed behavior variable.

La figura 2 muestra una gráfica representativa del valor del coeficiente aerodinámico.Figure 2 shows a representative graph of the aerodynamic coefficient value.

La figura 3 muestra una gráfica representativa de la curva de potencia de la máquina respecto de la velocidad del viento.Figure 3 shows a representative graph of the machine power curve with respect to the speed of the wind.

La figura 4 muestra una gráfica representativa de la potencia mínima a vencer a caudal constante por revolución para desalar agua, y de la potencia máxima disponible a partir del viento, ambas en función de la velocidad del viento.Figure 4 shows a representative graph of the minimum power to overcome at constant flow per revolution to desalinate water, and the maximum power available from wind, both depending on the wind speed.

La figura 5 es un esquema representativo de la variación del caudal por revolución mediante control de longitud.Figure 5 is a representative scheme of the flow variation per revolution by controlling length.

La figura 6 es un esquema representativo de la variación del caudal por revolución mediante las válvulas de las bombas aspirantes-impelentes.Figure 6 is a representative scheme of the flow variation per revolution through the valves of the aspiring-impending pumps.

La figura 7 muestra un esquema representativo del sistema de control de una turbina eólico-hidráulica para una aplicación de desalación de agua marina.Figure 7 shows a representative scheme of the turbine control system wind-hydraulic for a desalination application of sea water.

La figura 8 muestra un esquema representativo del sistema de control de una turbina eólico-hidráulica para una aplicación de generación de energía eléctrica.Figure 8 shows a representative scheme of the turbine control system wind-hydraulic for a generation application electric power

La figura 9 muestra una gráfica representativa de la Potencia de una turbina multi-cuchara Pelton en función de su rendimiento.Figure 9 shows a representative graph of the Power of a Pelton multi-spoon turbine depending on its performance.

La figura 10 muestra un diagrama de bloques del sistema de control de la Turbina eólico-hidráulica para una aplicación de desalación.Figure 10 shows a block diagram of the Wind-turbine control system for a desalination application.

La figura 11 muestra un diagrama de bloques del sistema de control de la Turbina eólico-hidráulica para una aplicación de generación de energía eléctrica.Figure 11 shows a block diagram of the Wind-turbine control system for an electric power generation application.

Descripción detallada de la invenciónDetailed description of the invention

La presente invención propone un sistema de control hidráulico para turbinas eólico-hidráulicas que gracias a sus características constructivas y/o funcionales resulta realmente ventajoso para esta aplicación frente a las soluciones convencionales conocidas.The present invention proposes a system of hydraulic control for wind-hydraulic turbines that thanks to its constructive and / or functional characteristics It is really advantageous for this application compared to known conventional solutions.

El comportamiento dinámico de la turbina eólico- hidráulica de velocidad variable se explica mediante la Figura 1 y las ecuaciones matemáticas asociadas siguientes:The dynamic behavior of the wind turbine- Variable speed hydraulics is explained by Figure 1 and the following associated mathematical equations:

El par mecánico "T_{V}" aportado por el viento al eje (2) del rotor se rige según la ecuación:The mechanical torque "T_ {V}" provided by the Wind to the shaft (2) of the rotor is governed by the equation:

1one

donde "T_{v}" [Nm] es el par en el eje, aportado por el viento; "\rho" [Kg/m^{3}] es la densidad del aire; "A" [m^{2}] es el área barrida por el rotor: "A = \Pi R^{2}" (R [m] es el radio de las palas (1)); "V" [m/s] es la velocidad del viento; "\Omega" [rad/s] es la velocidad de giro del rotor; "\varphi" [rad] es el ángulo de orientación del rotor (2) a la dirección del viento; y "C_{p}" es el coeficiente aerodinámico.where "T_ {v}" [Nm] is the pair on the axis, contributed by the wind; "\ rho" [Kg / m3] is the air density; "A" [m2] is the area swept by the rotor: "A = \ Pi R 2" (R [m] is the radius of the blades (one)); "V" [m / s] is the wind speed; "\Omega" [rad / s] is the rotational speed of the rotor; "\ varphi" [rad] is the orientation angle of the rotor (2) to the direction of the wind; and "C_ {p}" is the coefficient aerodynamic.

El coeficiente aerodinámico "C_{p}" depende de la velocidad del viento "V" y de la velocidad de giro "\Omega" del rotor (2) para cada ángulo "\beta" [rad] de calado de las palas (1), según la ecuación (2ª) y la Figura 2.The aerodynamic coefficient "C_ {p}" it depends on the wind speed "V" and the speed of rotation "\ Omega" of the rotor (2) for each angle "\ beta" [rad] of draft of the blades (1), according to equation (2nd) and the Figure 2

22

La velocidad del rotor "\Omega" depende de los pares dados por el viento "T_{v}" y el par mecánico antagonista "T_{m}", tal que:The rotor speed "\ Omega" depends of the pairs given by the wind "T_ {v}" and the mechanical torque antagonist "T m", such that:

33

donde "\Omega_{(0)}" es la velocidad en el punto de trabajo estacionario, "J_{turbina}" es la inercia del rotor de la turbina eólica y "s" la variable de Laplace.where "\ Omega _ (0)}" is the speed at the stationary work point, "J_ {turbine}" is the inertia of the wind turbine rotor and "s" the variable from Laplace.

De esta forma, cuando el sistema se encuentra en el punto de trabajo (\Omega_{0}, V_{0}, \beta_{0}) de máximo coeficiente aerodinámico "C_{pmax}", ver la Figura 2, si la velocidad del viento "V" disminuye, entonces "\lambda" aumenta, y por tanto "C_{p}" disminuye, y con ello "T_{v}" disminuye según la ecuación (1ª). Todo esto trae consigo una deceleración de la velocidad "\Omega" del rotor (2) según la ecuación (3ª) que hace que "\lambda" disminuya. El sistema busca entonces otro punto de equilibrio tal que "T_{v} = T_{m}". Pero si "T_{m}" se mantiene constante el sistema acaba parando en la práctica.In this way, when the system is in  the working point (\ Omega_ {0}, V_ {0}, \ beta_ {0}) of maximum aerodynamic coefficient "C_ {pmax}", see Figure 2, if the wind speed "V" decreases, then "\ lambda" increases, and therefore "C_ {p}" decreases, and with it "T_ {v}" decreases according to equation (1st). All this brings I get a deceleration of the "\ Omega" speed of the rotor (2) according to equation (3rd) that causes "\ lambda" to decrease. The system then looks for another point of equilibrium such that "T_ {v} = T_ {m}". But if "T_ {m}" remains constant the system ends up stopping in practice.

Del mismo modo, cuando el sistema está en el punto de trabajo (\Omega_{0}, V_{0}, \beta_{0}) de máximo coeficiente aerodinámico "C_{pmax}", según la Figura 2, si la velocidad del viento "V" aumenta, entonces "\lambda" disminuye, y por tanto "C_{p}" disminuye, y con ello "T_{v}" disminuye según la ecuación (1ª). Todo esto trae consigo una deceleración de la velocidad "\Omega" del rotor (2) según la ecuación (3ª) que hace que "\lambda" disminuya. El sistema busca otro punto de equilibrio tal que "T_{v} = T_{m}" . Pero si "T_{m}" se mantiene constante el sistema acaba parando en la práctica.Similarly, when the system is in the working point (\ Omega_ {0}, V_ {0}, \ beta_ {0}) of maximum aerodynamic coefficient "C_ {pmax}", according to Figure 2, if the wind speed "V" increases, then "\ lambda" decreases, and therefore "C_ {p}" decreases, and with it "T_ {v}" decreases according to equation (1st). All this brings I get a deceleration of the "\ Omega" speed of the rotor (2) according to equation (3rd) that causes "\ lambda" to decrease. The system looks for another equilibrium point such that "T_ {v} = T_ {m} ". But if" T_ {m} "remains constant the system ends up stopping in practice.

En ambos casos el sistema acaba parando. Para devolver el sistema al punto de máximo coeficiente aerodinámico, "C_{pmax}", hay que controlar el par mecánico antagonista "T_{m}", de modo que disminuyéndolo o aumentándolo se modifique la velocidad del rotor (2) hasta llegar a "C_{pmax}" de nuevo.In both cases the system ends up stopping. For return the system to the point of maximum aerodynamic coefficient, "C_ {pmax}", the antagonistic mechanical torque must be controlled "T_ {m}", so decreasing or increasing it modify the rotor speed (2) until you reach "C_ {pmax}" again.

       \newpage\ newpage
    

La curva de potencia "P" de la máquina respecto a la velocidad "V" del viento sigue una función cúbica (Zona 1) o recta (Zona 2), tal como se desprende de las ecuaciones (4ª) y (5ª) y de la Figura 3.The power curve "P" of the machine with respect to the speed "V" of the wind follows a function cubic (Zone 1) or straight (Zone 2), as follows from the equations (4th) and (5th) and of Figure 3.

44

55

donde "P" [w] es la potencia mecánica dada por el viento, "P_{Nom}" la potencia nominal y "V_{Nom}" la velocidad nominal del viento.where "P" [w] is the power mechanical given by the wind, "P_ {Nom}" the nominal power and "V_ {Nom}" the nominal speed of the wind.

En la zona de velocidad de viento menor que la velocidad nominal ("V" \leq "V_{Nom}", Zona 1), el controlador de par y velocidad del rotor (7) trata de mantener a la turbina eólica sobre el máximo coeficiente aerodinámico "C_{pmax}", obteniendo así la máxima potencia para cada velocidad de viento.In the wind speed zone less than the nominal speed ("V" \ leq "V_ {Nom}", Zone 1), the rotor torque and speed controller (7) tries to keep the  wind turbine over the maximum aerodynamic coefficient "C_ {pmax}", thus obtaining maximum power for each wind speed

De esta forma, estando el sistema a máxima "C_{p}" (Figura 2), al variar la velocidad de viento "V", y por tanto ir a una nueva posición "\lambda = \OmegaR/V" disminuyendo el coeficiente "C_{p}", el sistema de control modifica el par mecánico antagonista "T_{m}" según un algoritmo de control específico que modifica la velocidad "\Omega" de giro del rotor (2) según la ecuación (3ª) . Con ello la turbina eólica retorna a la posición "\lambda = \OmegaR/V" original y por tanto al punto de máximo rendimiento aerodinámico "C_{pmax}", resultando que cada velocidad de viento "V" tiene su velocidad "\Omega" de giro del rotor (2) correspondiente (\lambda = \OmegaR/V = constante) para estar en el punto de "C_{pmax}". Para ello el sistema de control gobierna de modo coordinado los mecanismos (4.1, 4.2 y 1 6) y las válvulas (5.1.1) del circuito hidráulico.In this way, the system being at maximum "C_ {p}" (Figure 2), as the wind speed varies "V", and therefore go to a new position "\ lambda = \ OmegaR / V "decreasing the coefficient" C_ {p} ", the control system modifies the antagonistic mechanical torque "T_ {m}" according to a specific control algorithm that modify the "\ Omega" speed of rotation of the rotor (2) according to the equation (3rd). With this the wind turbine returns to the position "\ lambda = \ OmegaR / V" original and therefore to the point of maximum aerodynamic performance "C_ {pmax}", resulting in each wind speed "V" has its speed "\ Omega" of rotation of the corresponding rotor (2) (\ lambda = \ OmegaR / V = constant) to be at the point of "C_ {pmax}". For this, the control system governs so coordinated mechanisms (4.1, 4.2 and 1 6) and valves (5.1.1) of the hydraulic circuit.

En la zona de velocidad de viento mayor que la velocidad nominal ("V" > "V_{Nom}", Zona 2), el controlador de par y velocidad del rotor (7) trata de mantener una velocidad "\Omega" de giro del rotor (2) constante, y una potencia constante, para ello gobierna de modo coordinado los mecanismos (4.1, 4.2 y 6) y las válvulas (5.1.1) del circuito hidráulico, para obtener "T_{m}" constante, y los ángulos de calado de las palas "\beta" de la turbina eólica, para obtener "\Omega" constante.In the wind speed zone greater than the nominal speed ("V"> "V_ {Nom}", Zone 2), the rotor torque and speed controller (7) tries to maintain a constant "\ Omega" speed of rotor rotation (2), and a constant power, for this governs in a coordinated way the mechanisms (4.1, 4.2 and 6) and the valves (5.1.1) of the circuit hydraulic, to obtain constant "T_ {m}", and the angles of draft of the "β" blades of the wind turbine, for get "\ Omega" constant.

La potencia "P" dada por el viento al eje del rotor es:The power "P" given by the wind to the axis The rotor is:

66

siendo "T_{m}" el par mecánico y "\Omega" la velocidad del rotor.where "T_ {m}" is the pair mechanic and "\ Omega" the speed of rotor.

La potencia "P_{h}" aportada al sistema hidráulico es:The power "P_ {h}" contributed to the system hydraulic is:

77

siendo "P_{r}" la presión y "Q" el caudal."P_ {r}" being the pressure and "Q" on flow.

El caudal "Q" depende de la velocidad del rotor (2), tal que:The flow rate "Q" depends on the speed of the rotor (2), such that:

88

siendo "K" el caudal inyectado por revolución, donde:"K" being the flow injected by revolution, where:

99

y "V_{ol}" es el volumen de agua inyectado por cada bomba aspirante-impelente constituidas por los cilindros (5.1 a 5.n), siendo "n" el número de cilindros, "r_{1}" el radio de la corona (3.1) conectada al eje de la turbina eólica y "r_{2}" el radio del piñón engranado a la corona (3.1), ver figuras 7 y 8.and "V_ {ol}" is the volume of water injected by each suction pump constituted by the cylinders (5.1 to 5.n), being "n" the number of cylinders, "r_ {1}" the crown radius (3.1) connected to the axis of the wind turbine and "r_ {2}" the radius of the crown gear pinion (3.1), see figures 7 and 8.

Suponiendo que no existen pérdidas de rendimiento se puede igualar las ecuaciones (6ª) y (7ª), tal que:Assuming there are no losses of performance can match equations (6th) and (7th), such that:

1010

y sustituyendo la ecuación (8ª) en la ecuación (9ª) queda:and replacing equation (8th) in the equation (9th) remains:

11eleven

Es decir:That is to say:

1212

Si el sistema tiene un caudal por revolución "K" constante y una presión "P_{r}" constante, entonces el par "T_{m}" antagonista al viento es constante, el mismo para toda velocidad "V" de viento y el mismo para toda velocidad "\Omega" del rotor.If the system has a flow rate per revolution "K" constant and a constant pressure "P_ {r}", then the pair "T_ {m}" wind antagonist is constant, the same for full speed "V" of wind and the same for all speed "\ Omega" of the rotor.

Este hecho hace que la máquina no pueda arrancar, y si lo hace, ante la primera variación de viento se pare. La máquina sólo puede funcionar en la Zona 2, ver Figura 3.This fact means that the machine cannot start, and if it does, before the first wind variation it stop The machine can only work in Zone 2, see Figure 3.

La potencia mínima "P_{min}" necesaria para desalar agua es:The minimum power "P_ {min}" required to desalinate water is:

1313

siendo la presión osmótica, "\Pi_{osmotica}", constante para cada sistema de membranas.being the osmotic pressure, "\ Pi_ {osmotica}", constant for each system of membranes

Así introduciendo la ecuación (8ª) en la ecuación (12ª) queda:Thus entering the equation (8th) in the equation (12th) is:

1414

Si se mantiene el caudal por revolución "K" constante, y se controla la presión "P_{r}" para así poder alcanzar un par mecánico "T_{m}" variable a cada velocidad de viento "V", tal como se desprende de la ecuación (11ª), entonces, debido a que la presión osmótica "\Pi_{osmotica}" es constante y a que "K" es constante, la potencia "P_{min}" es una recta (ecuación (13ª)). Si se compara dicha recta con la potencia máxima "P" que se puede extraer al viento a cada velocidad de viento, ecuación (4ª) con "C_{pmax}", se obtiene la figura 4.If the flow rate is maintained by revolution "K"  constant, and the pressure "P_ {r}" is controlled so that reach a mechanical torque "T_ {m}" variable at each speed of wind "V", as follows from equation (11th), then, because the osmotic pressure "\ Pi_ {osmotica}" is constant and to which "K" is constant, the power "P_ {min}" is a straight line (equation (13th)). If this line is compared with the maximum power "P" that can be extracted to the wind at each wind speed, equation (4th) with "C_ {pmax}", figure 4 is obtained.

Si sólo se hace variable la presión "P_{r}" del circuito hidráulico, como el caudal "K" por revolución está fijo y la presión mínima es la osmótica \Pi_{osmotica}, entonces hay una potencia mínima "P_{min}" que vencer a cada velocidad "V" de viento según la recta de la Figura 4. Utilizando por ejemplo los datos de dicha Figura 4, la máquina no empieza a funcionar hasta los 8 m/s (V_{1}) de velocidad de viento aproximadamente.If only the pressure is changed "P_ {r}" of the hydraulic circuit, such as the flow rate "K" by revolution is fixed and the minimum pressure is the osmotic \ Pi_ {osmotica}, then there is a minimum power "P_ {min}" to beat each wind "V" speed according to the line in Figure 4. Using for example the data of said Figure 4, the machine does not start operating until 8 m / s (V_ {1}) of wind speed approximately.

Esto hace que sea necesario controlar el caudal "K" por revolución (es decir el volumen "V_{ol}" de agua inyectado por cada bomba aspirante-impelente (5.1 a 5.n) en cada revolución) si se desea trabajar a velocidades de viento menores de V_{1}.This makes it necessary to control the flow "K" per revolution (ie the volume "V_ {ol}" of water  injected by each suction pump-impeller (5.1 a  5.n) in each revolution) if you want to work at speeds of wind less than V_ {1}.

El caudal "K" por revolución se puede hacer variable variando el volumen "V_{ol}" de agua inyectado por cada cilindro en cada revolución de varias maneras:The flow rate "K" per revolution can be made  variable varying the volume "V_ {ol}" of water injected by each cylinder in each revolution in several ways:

- Mediante una variación controlada a través del depósito variador (6) de la longitud de las varillas (4.1 y 4.2) que unen el distribuidor (3) con las bombas aspirantes-impelentes (5.1 a 5.n), ver Figura 5.- Through a controlled variation through  variator tank (6) of the length of the rods (4.1 and 4.2) that connect the distributor (3) with the pumps aspirant-impellers (5.1 to 5.n), see Figure 5.

- Mediante un controlador que, al aspirar, retrase el cierre de las válvulas (5.1.1) situadas en el pistón (5.2.1) de los cilindros que constituyen las bombas aspirantes-impelentes (5.1 a 5.n), ver Figura 6.- Through a controller that, when aspirating, delay the closing of the valves (5.1.1) located in the piston (5.2.1) of the cylinders that constitute the pumps aspirant-impellers (5.1 to 5.n), see Figure 6.

Ambos métodos consiguen un caudal inyectado por revolución variable, "K" variable, y en definitiva un par antagonista "T_{m}" variable y controlable.Both methods achieve a flow injected by variable revolution, "K" variable, and ultimately a pair antagonist "T_ {m}" variable and controllable.

Otro de los elementos clave del sistema de control es el depósito de presión hidráulico (18) llamado pulmón. Dicho elemento es capaz de desacoplar las dinámicas de los circuitos primario (eólico-mecánico-hidráulico) y secundario (hidráulico-desalación o hidráulico-eléctrico) del conjunto, atenuando los impulsos dados por las bombas (5.1 a 5.n) gracias a su carácter amortiguador.Another of the key elements of the system Control is the hydraulic pressure reservoir (18) called the lung. This element is able to decouple the dynamics of the primary circuits (wind-mechanical-hydraulic) and secondary (hydraulic-desalination or hydraulic-electric) of the set, attenuating the impulses given by the pumps (5.1 to 5.n) thanks to their character shock absorber.

El sistema de control presenta una estructura jerárquica tal que en su primer nivel se encuentra un control central (8) cuya misión es la supervisión y envío de consignas, "U_{B\_ref}", "T_{m\_ref}", "\Omega_{ref}", "P_{r\_ref}" y "Q_{f\_ref}", a los niveles de control inferiores (7 y 9), ver figuras 10 y 11.The control system has a structure hierarchical such that in its first level is a control central (8) whose mission is the supervision and sending of slogans, "U_ {B \ _ref}", "T_ {m \ _ref}", "\ Omega_ {ref}", "P_ {r \ _ref}" and "Q_ {f \ _ref}", at the control levels lower (7 and 9), see figures 10 and 11.

En un segundo nivel del sistema de control objeto de la invención, se encuentra el primer control de par y velocidad del rotor (7) cuya misión es el gobierno de la velocidad de giro "\Omega" del rotor (2) y el control del par mecánico "T_{m}" que se opone al par del viento "T_{v}" a cada velocidad de viento "V", para lo que utiliza las medidas de velocidad de giro "\Omega" del rotor (2), y mediante los algoritmos de control correspondientes, actúa, "K_{ref}", sobre los mecanismos y/o las válvulas que gobiernan el caudal por revolución que entra desde el circuito primario y actúa, "\beta_{ref}", también sobre los ángulos "\beta" de las palas (1) consiguiendo una velocidad "\Omega" de rotor variable, capaz de seguir al viento y optimizar el rendimiento aerodinámico "C_{p}" a cada velocidad de viento.In a second level of the control system object of the invention, is the first torque control and rotor speed (7) whose mission is speed government Rotation "\ Omega" of the rotor (2) and mechanical torque control "T_ {m}" that opposes the wind torque "T_ {v}" to each wind speed "V", for which it uses the measures of rotational speed "\ Omega" of the rotor (2), and by means of corresponding control algorithms, acts, "K_ {ref}", on the mechanisms and / or valves that govern the flow rate by revolution that enters from the primary circuit and acts, "\ beta_ {ref}", also on the angles "\ beta" of the blades (1) getting a rotor speed "\ Omega" variable, able to follow the wind and optimize performance aerodynamic "C_ {p}" at each wind speed.

Mientras que en un tercer nivel jerárquico de funcionamiento, dependiente del segundo nivel, se sitúan los sistemas de control de pitch (22) (cuya entrada es "\beta_{ref}" y cuya salida es el ángulo de pitch "\beta"), de control de varillas (4.1, 4.2) y/o bombas (5.1 a 5.n) (cuya entrada es "K_{ref}" y cuya salida es el caudal por revolución "K"), y de control del circuito secundario (21) (cuyas entradas son "B_{e\_ref}", "V_{f\_ref}" o "V_{i\_ref}", y "V_{R\_ref}" o "D_{i\_ref}", y cuyas salidas son la presión "P_{r}" y el caudal "Q_{f}") de desalación y/o de generación de energía eléctrica, cuya misión es el gobierno de la presión "P_{r}" y el caudal final "Q_{f}" de alimentación de los elementos (11.1 a 11.m.) de la figura 7; o de los elementos (19.1 a 19.n) de la figura 8; para lo cual actúa sobre válvulas (10.1 a 10.n.) y las bombas (16) en la figura 7; o sobre las válvulas (20), deflectores (D) y las bombas (16) en la figura 8.While in a third hierarchical level of operation, depending on the second level, the pitch control systems (22) (whose input is "\ beta_ {ref}" and whose output is the pitch angle "β"), of control of rods (4.1, 4.2) and / or pumps (5.1 to 5.n) (whose input is "K_ {ref}" and whose output is the flow rate by revolution "K"), and control of the secondary circuit (21) (whose entries are "B_ {e \ _ref}", "V_ {f \ _ref}" or "V_ {i \ _ref}", and "V_ {R \ _ref}" or "D_ {i \ _ref}", and whose outputs are the pressure "P_ {r}" and the flow "Q_ {f}") of desalination and / or power generation electric, whose mission is the government of pressure "P_ {r}" and the final flow rate "Q_ {f}" of feeding the elements (11.1 to 11.m.) of Figure 7; or of the elements (19.1 to 19.n) of figure 8; for which it acts on valves (10.1 to 10.n.) and the pumps (16) in figure 7; or over the valves (20), baffles (D) and the pumps (16) in Figure 8.

Además de las necesarias válvulas de seguridad, tanto en el circuito primario como en el secundario existe un sistema independiente de supervisión y control de la presión, de modo que si se desea un procedimiento de arranque o parada concreto, los sistemas accionan (figura 7) las correspondientes válvulas de descarga (17 y (12.1 a 12.n)), modificando la presión respectiva.In addition to the necessary safety valves, in both the primary and secondary circuits there is a independent pressure monitoring and control system, of so if a start or stop procedure is desired specifically, the systems operate (figure 7) corresponding discharge valves (17 and (12.1 to 12.n)), changing the pressure respective.

Como ya se ha mencionado anteriormente la energía hidráulica generada por la turbina eólica puede emplearse en diferentes aplicaciones entre las que destacan la desalación de agua marina y la generación de energía eléctrica.As already mentioned above the hydraulic energy generated by the wind turbine can be used in different applications among which desalination of Marine water and electric power generation.

El sistema de desalación es de ósmosis inversa y su correcto funcionamiento exige unos niveles de presión "P_{r}" y caudal "Q_{f}" controlados dentro de unos márgenes.The desalination system is reverse osmosis and  correct operation requires pressure levels "P_ {r}" and flow rate "Q_ {f}" controlled within margins

A partir de la Figura 7 los caudales de agua dulce producto "q_{p}" y de agua salada rechazada "q_{R}" son:From Figure 7 the water flows sweet product "q_ {p}" and salt water rejected "q_ {R}" are:

15fifteen

donde "f_{T}" es el factor de corrección por temperatura, "f_{t}" el factor de corrección por envejecimiento, "K_{m}" una constante característica de cada membrana de ósmosis inversa, "P_{rp}" la presión del agua producto (desalada), "\DeltaP_{mod}" las pérdidas de presión en los módulos de las membranas, "\Pi_{osmosis}" la presión osmótica del conjunto alimentación-salmuera.where "f_ {T}" is the factor of temperature correction, "f_ {t}" the factor of aging correction, "K_ {m}" a constant characteristic of each reverse osmosis membrane, "P_ {rp}" product water pressure (desalted), "\ DeltaP_ {mod}" pressure losses in membrane modules, "\ Pi_ {osmosis}" the osmotic pressure of the set brine feed.

El Sistema de control de presión y caudal (9) de alimentación de los elementos finales gobierna la presión y el caudal que se aplica a las membranas desaladoras. Para ello se mide la presión "P_{r}" y caudal "Q_{f}" (Figura 7) y, mediante un algoritmo de control adecuado, se mueven las bombas "B_{i}" eléctricas aspirantes y las válvulas de admisión (10.1 a 10.n) y de rechazo (12.1 a 12.n) de los elementos de desalación, modificando finalmente dicha presión "P_{r}" y caudal "Q_{f}".The pressure and flow control system (9) of  feeding of the final elements governs the pressure and the flow rate that is applied to desalination membranes. This is measured the pressure "P_ {r}" and flow rate "Q_ {f}" (Figure 7) and, by means of an appropriate control algorithm, the pumps are moved "B_ {i}" electric suction and intake valves (10.1 to 10.n) and rejection (12.1 to 12.n) of the elements of desalination, finally modifying said pressure "P_ {r}" and flow rate "Q_ {f}".

Con ello se mantiene la presión "P_{r}" dentro de los márgenes de funcionamiento "P_{r \ min}" \leq "P_{r}" \leq "P_{r \ max}" variando el caudal "Q_{f}" aportado a la desalación, siguiendo y complementando el caudal "Q" aportado por las bombas eólicas, y por tanto la potencia aportada por el viento, determinando todo ello el caudal de agua dulce producto "q_{p}".This keeps the pressure "P_ {r}" within the operating ranges "P_ {r \ min}" \ leq "P_ {r}" \ leq "P_ {r \ max}" by varying the flow rate "Q_ {f}" contributed to desalination, following and complementing the "Q" flow rate contributed by the wind pumps, and therefore the power provided by the wind, determining all the flow freshwater product "q_ {p}".

El sistema de generación de energía eléctrica está compuesto por un conjunto de grupos de turbina Pelton y generador eléctrico (19.1 a 19.n), ver Figura 8.The electric power generation system It is composed of a set of Pelton turbine groups and electric generator (19.1 to 19.n), see Figure 8.

El rendimiento de la turbina Pelton multi-cuchara depende de la velocidad de giro de la turbina "\omega" y de la velocidad del agua inyectada "V_{ai}", según la ecuación (16ª) y la Figura 9. Su potencia es:The performance of the Pelton turbine multi-spoon depends on the speed of rotation of the "\ omega" turbine and injected water speed "V_ {ai}", according to equation (16th) and Figure 9. Its power is:

1616

siendo "A_{v}" el área de la vena líquida inyectada, "\rho_{1}" la densidad del agua, "V_{ai}" la velocidad del agua inyectada, y "\omega" la velocidad de giro del rotor de la turbina."A_ {v}" being the area of the Injected liquid vein, "\ rho_ {1}" water density, "V_ {ai}" the speed of the injected water, and "\ omega" the rotational speed of the rotor of the turbine.

El Sistema de control (9) de presión y caudal de alimentación gobierna la velocidad del agua inyectada "V_{ai}" y de giro de la turbina "\omega" de modo que su relación "\frac{\omega}{V_{ai}}" es el valor de máximo rendimiento, según la Figura 9.The pressure and flow control system (9) of feed governs the speed of injected water "V_ {ai}" and turning the turbine "\ omega" so that its relation "\ frac {\ omega} {V_ {ai}}" is the maximum value performance, according to Figure 9.

Para ello mide dichas velocidades, "V_{ai}" y "\omega", y mediante un algogritmo de control adecuado actúa sobre las válvulas (20) y los deflectores (D) de las turbinas.For this measure these speeds, "V_ {ai}" and "\ omega", and using a algorithm of proper control acts on the valves (20) and the baffles (D) of the turbines.

La potencia transmitida por la turbina Pelton se rige según la ecuación (17ª), tal que,The power transmitted by the Pelton turbine is  governs according to equation (17th), such that,

1717

donde "V_{ai}" es la velocidad del agua inyectada, "\gamma" es el peso específico del agua (\gamma = \rho_{1} g), "\rho_{1}" la densidad del agua, "q_{e}" es el caudal de agua, "g" es la aceleración de la gravedad, y "\eta" es el rendimiento, dependiente de la relación "\frac{\omega}{V_{ai}}" y de otros factores adicionales.where "V_ {ai}" is the Injected water speed, "γ" is the specific weight of water (\ gamma = \ rho_ {1} g), "\ rho_ {1}" the density of water, "q_ {e}" is the water flow, "g" is the acceleration of gravity, and "η" is the yield, dependent on the relationship "\ frac {\ omega} {V_ {ai}}" and others factors additional.

Claims (9)

1. Sistema de control de una turbina eólico-hidráulica de velocidad variable, del tipo de turbinas cuyo rotor mueve un mecanismo que transmite la energía a un sistema de bombeo ó circuito primario, el cual introduce agua a presión en un circuito hidráulico ó circuito secundario, capaz de producir la desalación del agua por ósmosis inversa ó la generación de energía eléctrica a través del correspondiente grupo de turbina y generador, caracterizado porque, en relación con el circuito primario y para el control del par y de la velocidad del rotor (2) de la turbina existe un primer controlador (7), a cuya orden el sistema es capaz de aumentar ó de disminuir el caudal "K" por revolución y por consiguiente el caudal "Q" de agua ó fluido inyectado al circuito hidráulico independientemente de la velocidad de giro "\Omega" del rotor (2); de manera que para un mismo número de revoluciones del rotor (2) el controlador (7) puede comandar que las correspondientes bombas aspirantes-impelentes (5.1 a 5.n) proporcionen al circuito hidráulico diferentes caudales "K" por revolución y por consiguiente diferentes caudales "Q" inyectados a dicho circuito hidráu-
lico.
1. Control system of a variable speed wind-hydraulic turbine, of the type of turbines whose rotor moves a mechanism that transmits energy to a pumping system or primary circuit, which introduces water under pressure into a hydraulic circuit or secondary circuit , capable of producing water desalination by reverse osmosis or the generation of electrical energy through the corresponding turbine and generator group, characterized in that, in relation to the primary circuit and for the control of the torque and the speed of the rotor (2 ) of the turbine there is a first controller (7), at whose order the system is able to increase or decrease the flow rate "K" per revolution and therefore the flow rate "Q" of water or fluid injected into the hydraulic circuit regardless of the rotational speed "\ Omega" of the rotor (2); so that for the same number of revolutions of the rotor (2) the controller (7) can command that the corresponding suction-impending pumps (5.1 to 5.n) provide the hydraulic circuit with different flow rates "K" per revolution and therefore different "Q" flows injected into said hydraulic circuit
liquor
2. Sistema de control de una turbina eólico-hidráulica de velocidad variable, según la primera reivindicación, caracterizado porque para el control de la presión y el caudal del circuito hidráulico existe un segundo controlador (9) dentro del circuito secundario; y porque este segundo controlador (9), coordinado con el primer controlador (7), es capaz de cursar instrucciones al sistema para variar selectivamente la presión del circuito hidráulico "P_{r}" y el caudal "Q_{f}".2. Control system of a variable speed wind-hydraulic turbine, according to the first claim, characterized in that for the control of the pressure and the flow of the hydraulic circuit there is a second controller (9) within the secondary circuit; and because this second controller (9), coordinated with the first controller (7), is capable of issuing instructions to the system to selectively vary the pressure of the hydraulic circuit "P_ {r}" and the flow rate "Q_ {f}". 3. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la primera y segunda reivindicaciones, caracterizado porque el primer controlador (7) mide la velocidad "\Omega" del rotor (2), la presión del circuito hidráulico "P_{r}" y el ángulo "\beta" de las palas, y en función de las mismas da instrucciones para aumentar ó disminuir el caudal inyectado por revolución "K_{ref}", de manera que se produce un par mecánico antagonista "T_{m}" variable; a la vez que varía coordinadamente el ángulo "\beta_{ref}" de las palas (1), que modifica el par aplicado por el viento "T_{v}", variando así el par acelerante del rotor "T_{v}-T_{m}", y con ello la velocidad de giro "\Omega" del rotor (2).3. Control system of a variable speed wind-hydraulic turbine, according to the first and second claims, characterized in that the first controller (7) measures the speed "\ Omega" of the rotor (2), the pressure of the hydraulic circuit "P_ {r}" and the angle "\ beta" of the blades, and depending on them gives instructions to increase or decrease the flow injected by revolution "K_ {ref}", so that an antagonistic mechanical torque is produced "T_ {m}"variable; while the angle "\ beta_ {ref}" of the blades (1) varies in coordination, which modifies the torque applied by the wind "T_ {v}", thus varying the accelerating torque of the rotor "T_ {v} - T_ {m} ", and with it the rotational speed" \ Omega "of the rotor (2). 4. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la primera reivindicación, caracterizado porque mediante la variación controlada de la longitud de unas varillas (4.1-4.2) que unen un distribuidor (3) con las bombas aspirantes-impelentes (5.1 a 5.n) se modifica el caudal inyectado por revolución "K" y se varía así el volumen "Vol" de agua ó fluido inyectado por cada bomba (5.1 a 5.n) en cada revolución y por consiguiente, el caudal "Q" inyectado al circuito.4. Control system of a variable speed wind-hydraulic turbine, according to the first claim, characterized in that by controlled variation of the length of some rods (4.1-4.2) connecting a distributor (3) with the suction pumps -impellent (5.1 to 5.n) the flow rate injected by revolution "K" is modified and the volume "Vol" of water or fluid injected by each pump (5.1 to 5.n) in each revolution is changed and therefore, the "Q" flow injected into the circuit. 5. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la primera reivindicación, caracterizado porque mediante el retraso ó el adelanto del cierre de unas válvulas 1 (5.1.1) situadas en el pistón (5.2.1) o en las camisas de los cilindros de las bombas aspirantes-impelentes (5.1 a 5.n) se modifica el caudal inyectado por revolución "K" y se varía así el volumen "Vol" de agua inyectado por cada bomba (5.1 a 5.n) en cada revolución y, por consiguiente, el caudal "Q" inyectado al circuito.5. Control system of a variable speed wind-hydraulic turbine, according to the first claim, characterized in that by delaying or advancing the closure of valves 1 (5.1.1) located in the piston (5.2.1) or in the cylinder liners of the aspirating-impending pumps (5.1 to 5.n) the flow injected by revolution "K" is modified and thus the volume "Vol" of water injected by each pump is varied (5.1 to 5. n) in each revolution and, consequently, the flow rate "Q" injected into the circuit. 6. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la segunda reivindicación, caracterizado porque el segundo controlador (9) mide la presión "P_{r}" y el caudal "Q_{f}" en el circuito hidráulico secundario y actúa sobre unas bombas auxiliares "B_{e\_ref}" (16) así como sobre unas válvulas de admisión "V_{f\_ref}" (10.1 a 10.m) y unas válvulas de rechazo "V_{R\_ref}" (12.1 a 12.m) ; válvulas estas conexionadas a los elementos de desalación (11.1 a 11.m); y porque dicho segundo controlador (9) corrige dinámicamente las desviaciones que "P_{r}" y "Q_{f}" presenten respecto de unos valores preestablecidos "P_{r\_ref}" Y "Q_{f\_ref}", en función del caudal/calidad de agua dulce producto deseado.6. Control system of a variable speed wind-hydraulic turbine, according to the second claim, characterized in that the second controller (9) measures the pressure "P_ {r}" and the flow rate "Q_ {f}" in the secondary hydraulic circuit and acts on auxiliary pumps "B_ {e \ _ref}" (16) as well as on intake valves "V_ {f \ _ref}" (10.1 to 10.m) and rejection valves "V_ { R \ _ref} "(12.1 to 12.m); valves are connected to the desalination elements (11.1 to 11.m); and because said second controller (9) dynamically corrects the deviations that "P_ {r}" and "Q_ {f}" present with respect to preset values "P_ {r \ _ref}" Y "Q_ {f \ _ref}", depending on the flow / quality of fresh water desired product. 7. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la segunda reivindicación, caracterizado porque el segundo controlador (9) mide la presión "P_{r}" y el caudal "Q_{f}" en el circuito hidráulico secundario y actúa sobre unas bombas auxiliares "B_{e\_ref}" (16) así como sobre unas válvulas de admisión "V_{i\_ref}" y unos difusores "D_{i\_ref}"; elementos estos conexionados a los sistemas de generación de energía eléctrica (19.1 a 19.n); y porque dicho segundo controlador (9) corrige dinámicamente las desviaciones que "P_{r}" y "Q_{f}" presenten respecto de unos valores preestablecidos "P_{r\_ref}" y "Q_{f\_ref}", en función de p la energía eléctrica demandada.7. Control system of a variable speed wind-hydraulic turbine, according to the second claim, characterized in that the second controller (9) measures the pressure "P_ {r}" and the flow rate "Q_ {f}" in the secondary hydraulic circuit and acts on auxiliary pumps "B_ {e \ _ref}" (16) as well as on intake valves "V_ {i \ _ref}" and diffusers "D_ {i \ _ref}"; elements these connected to the systems of electric power generation (19.1 to 19.n); and because said second controller (9) dynamically corrects the deviations that "P_ {r}" and "Q_ {f}" present with respect to preset values "P_ {r \ _ref}" and "Q_ {f \ _ref}", as a function of p the electricity demanded. 8. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la primera reivindicación, caracterizado porque tanto el primer controlador (7) que gobierna el par mecánico antagonista "T_{m}" y el par introducido por el viento "T_{v}", y con ello la velocidad de giro del rotor "\Omega", como el segundo controlador (9) que gobierna la presión del circuito hidráulico "P_{r}" y el caudal "Q_{f}" de alimentación de los elementos de desalación (11.1 a 11.m) ó de los elementos de generación de energía eléctrica (19.1 a 19.n), forman parte de un segundo nivel jerárquico de funcionamiento; mientras que en un primer nivel jerárquico de funcionamiento se sitúa un control central (8) que supervisa al primero y segundo controladores (7 y 9) del segundo nivel jerárquico de funcionamiento, a la vez que coordina y supervisa al sistema en su conjunto; mientras que en un tercer nivel jerárquico de funcionamiento, dependiente del segundo nivel, se sitúan los sistemas de control de pitch (22), (cuya entrada es "\beta_{ref}" y cuya salida es el ángulo de pitch "\beta"), de control de varillas y/o bombas (cuya entrada es "K_{ref}" y cuya salida es el caudal por revolución "K"), y de control del circuito secundario (21) (cuya entradas son "B_{e\_ref}", "V_{f\_ref}" o "V_{i\_ref}", y "V_{R\_ref}" o "D_{i\_ref}", y cuyas salidas son la presión "P_{f}" y el caudal "Q_{f}" del circuito secundario (21)).8. Control system of a variable speed wind-hydraulic turbine, according to the first claim, characterized in that both the first controller (7) that governs the antagonistic mechanical torque "T_ {m}" and the torque introduced by the wind "T_ {v}", and with it the rotational speed of the rotor "\ Omega", as the second controller (9) that governs the pressure of the hydraulic circuit "P_ {r}" and the flow rate "Q_ {f}" of supply of the desalination elements (11.1 to 11.m) or of the electric power generation elements (19.1 to 19.n), are part of a second hierarchical level of operation; while at the first hierarchical level of operation there is a central control (8) that supervises the first and second controllers (7 and 9) of the second hierarchical level of operation, while coordinating and supervising the system as a whole; while in a third hierarchical level of operation, dependent on the second level, are the pitch control systems (22), (whose input is "\ beta_ {ref}" and whose output is the pitch angle "\ beta" ), of control of rods and / or pumps (whose input is "K_ {ref}" and whose output is the flow per revolution "K"), and control of the secondary circuit (21) (whose inputs are "B_ {e \ _ref} "," V_ {f \ _ref} "or" V_ {i \ _ref} ", and" V_ {R \ _ref} "or" D_ {i \ _ref} ", and whose outputs are the pressure" P_ {f} "and the flow rate" Q_ {f} "of the secondary circuit (21)).
         \newpage\ newpage
      
9. Sistema de control de una turbina eólico-hidráulica de velocidad variable, de acuerdo con la primera reivindicación, caracterizado porque el agua introducida por la bombas (5.1 a 5.n) del mecanismo eólico de bombeo y que después se aplica a los elementos de desalación (11.1 a 11.m) y/ó de turbina-generador eléctrico (19.1 a 19.n) se almacena en un depósito de presión ó pulmón (18); y porque este depósito de presión ó pulmón (18) desacopla las dinámicas de control de par y de velocidad de la turbina eólica de las dinámicas de control de presión y caudal de los elementos de desalación (11.1 a 11.m) y/o de turbina-generador (19.1 a 19.n); amortiguando los efectos de un controlador sobre el otro (7 y 9) y atenuando los impulsos dados por las bombas (5.1 a 5.n).9. Control system of a variable speed wind-hydraulic turbine, according to the first claim, characterized in that the water introduced by the pumps (5.1 to 5.n) of the wind pumping mechanism and then applied to the elements desalination (11.1 to 11.m) and / or turbine-electric generator (19.1 to 19.n) is stored in a pressure or lung tank (18); and because this pressure or lung reservoir (18) decouples the torque and speed control dynamics of the wind turbine from the pressure and flow control dynamics of the desalination elements (11.1 to 11.m) and / or turbine-generator (19.1 to 19.n); damping the effects of one controller on the other (7 and 9) and attenuating the impulses given by the pumps (5.1 to 5.n).
ES200501847A 2005-07-28 2005-07-28 CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE. Expired - Fee Related ES2291081B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200501847A ES2291081B1 (en) 2005-07-28 2005-07-28 CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE.
PCT/ES2006/000411 WO2007012683A2 (en) 2005-07-28 2006-07-18 System for controlling a variable-speed water/wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200501847A ES2291081B1 (en) 2005-07-28 2005-07-28 CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE.

Publications (2)

Publication Number Publication Date
ES2291081A1 ES2291081A1 (en) 2008-02-16
ES2291081B1 true ES2291081B1 (en) 2008-12-01

Family

ID=37683697

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200501847A Expired - Fee Related ES2291081B1 (en) 2005-07-28 2005-07-28 CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE.

Country Status (2)

Country Link
ES (1) ES2291081B1 (en)
WO (1) WO2007012683A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1005565B (en) 2006-02-24 2007-06-19 Steady floating arrangement with limited oscillations
ES2361986B1 (en) * 2009-12-14 2012-03-28 Manuel Torres Mart�?Nez AEROGENERADOR EÓLICO-HIDR�? ULICO SYSTEM OF VARIABLE FLOW FOR REVOLUTION AND CONSTANT PRESSURE.
ES2351915A1 (en) * 2010-12-14 2011-02-14 Universidad Politecnica De Madrid Wind turbine (Machine-translation by Google Translate, not legally binding)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496846A (en) * 1982-06-04 1985-01-29 Parkins William E Power generation from wind
ES2117533B1 (en) * 1995-02-27 1999-03-16 Inst Tecnologico De Canarias S AEROMOTOR TO DESALINATE WATER WITH HYDRAULIC COUPLING ..
JP4166890B2 (en) * 1999-01-11 2008-10-15 株式会社日立エンジニアリング・アンド・サービス Operation device for seawater desalination device by wind power generator and seawater desalination method

Also Published As

Publication number Publication date
ES2291081A1 (en) 2008-02-16
WO2007012683A3 (en) 2007-04-26
WO2007012683A2 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
ES2612132T3 (en) Procedure to operate a wind turbine with step regulation
ES2291081B1 (en) CONTROL SYSTEM OF A VARIABLE SPEED EOLIC-HYDRAULIC TURBINE.
US9303619B2 (en) Hydrokinetic energy conversion system with buoyancy and ballast controls to harness underwater currents for the generation of electrical power
US20130221676A1 (en) Energy extraction device, group of energy extraction devices and operating methods
JPS5958170A (en) Apparatus and method for power generation due to wind force
US20030049128A1 (en) Wind turbine
WO2011148652A2 (en) Power generating apparatus of renewable energy type and method of operating the same
CA2895386A1 (en) Methods and systems to operate a wind turbine system using a non-linear damping model
ES2974296T3 (en) Autonomous sustainable wind unit, multi-blade lattice rotor, energy accumulator and converter and applications
JP6554520B2 (en) Drive device for a boat and method for operating a drive device for a boat
DE102010053372A1 (en) Altitude Aircraft
EP0025791B1 (en) A wind turbine
RU2392490C1 (en) Carousel-type wind-electric set (wes) with cyclic symmetric blades smoothly rotating in opposite phase to rotor
CN107524521A (en) Turbo-compressor air engine
Ciri et al. Large eddy simulation for an array of turbines with extremum seeking control
US9534583B2 (en) Methods and systems to operate a wind turbine
JP2017020545A (en) Fluid pressure gear transmission, regeneration energy type power generation device, and operational method thereof
Cui et al. Analysis of the passive yaw mechanism of small horizontal-axis wind turbines
US20210284312A1 (en) Method and Apparatus for Adjusting the Flow Properties of a Propeller
JP5502201B2 (en) Renewable energy power generator and method of operating the same
Greco et al. Simulation of a horizontal axis tidal turbine for direct driven reverse-osmosis desalination
US20200172210A1 (en) Vessel arrangement
RU2019115592A (en) Method for orienting turbine rotor blades
RU2642004C2 (en) Multimodulal high-altitude wind power plant
ES2361986A1 (en) Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20080216

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2291081B1

Country of ref document: ES

FD2A Announcement of lapse in spain

Effective date: 20180809