ES2201915B1 - MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE. - Google Patents

MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE.

Info

Publication number
ES2201915B1
ES2201915B1 ES200201821A ES200201821A ES2201915B1 ES 2201915 B1 ES2201915 B1 ES 2201915B1 ES 200201821 A ES200201821 A ES 200201821A ES 200201821 A ES200201821 A ES 200201821A ES 2201915 B1 ES2201915 B1 ES 2201915B1
Authority
ES
Spain
Prior art keywords
solution
type material
obtaining
porous aluminosilicate
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200201821A
Other languages
Spanish (es)
Other versions
ES2201915A1 (en
Inventor
Javier Agundez Rodriguez
Isabel Diaz Carretero
Carlos Marquez Alvarez
Joaquin Perez Pariente
Enrique Sastre De Andres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES200201821A priority Critical patent/ES2201915B1/en
Priority to AU2003254515A priority patent/AU2003254515A1/en
Priority to PCT/ES2003/000397 priority patent/WO2004014798A1/en
Publication of ES2201915A1 publication Critical patent/ES2201915A1/en
Application granted granted Critical
Publication of ES2201915B1 publication Critical patent/ES2201915B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/205Faujasite type, e.g. type X or Y using at least one organic template directing agent; Hexagonal faujasite; Intergrowth products of cubic and hexagonal faujasite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Aluminosilicatos mesoporosos y microporosos con elevada actividad catalítica en reacciones de catálisis ácida y su procedimiento de preparación. Esta invención se refiere a nuevos materiales de tipo aluminosilicatos microporosos y mesoporosos con una composición química expresada por la siguiente fórmula (en moles de óxidos): AI203 : mSi02 : nM20 en donde el valor de m está comprendido entre 2 y 50, preferentemente entre 4 y 10; M representa los cationes Na+ o H+, y el valor de n está comprendido entre 0,01 y 2, preferentemente entre 0,1 y 1. Estos materiales poseen una distribución regular de poros cuyo diámetro promedio está comprendido entre 1,0 nm y 15 nm. Presentan asimismo una elevada actividad catalítica en reacciones de catálisis ácida. Se describe su procedimiento de preparación y su uso como catalizadores de reacciones de transformación de hidrocarburos, tales como craqueo, isomerización, transalquilación, alquilación, dimerización y polimerización.Mesoporous and microporous aluminosilicates with high catalytic activity in acid catalysis reactions and their preparation procedure. This invention relates to new microporous and mesoporous aluminosilicate materials with a chemical composition expressed by the following formula (in moles of oxides): AI203: mSi02: nM20 wherein the value of m is between 2 and 50, preferably between 4 and 10; M represents the Na + or H + cations, and the value of n is between 0.01 and 2, preferably between 0.1 and 1. These materials have a regular pore distribution whose average diameter is between 1.0 nm and 15 nm. They also have a high catalytic activity in acid catalysis reactions. Its preparation process and its use as catalysts for hydrocarbon transformation reactions, such as cracking, isomerization, transalkylation, alkylation, dimerization and polymerization, are described.

Description

Aluminosilicatos mesoporosos y microporosos con elevada actividad catalítica en reacciones de catálisis ácida y su procedimiento de preparación.Mesoporous and microporous aluminosilicates with high catalytic activity in acid catalysis reactions and its Preparation procedure

Sector de la técnicaTechnical sector

Esta invención se refiere a materiales de tipo aluminosilicatos microporosos y mesoporosos que poseen una elevada actividad catalítica en reacciones de catálisis ácida, su procedimiento de preparación y su uso como catalizador de reacciones de transformación de hidrocarburos, tales como craqueo, isomerización, transalquilación, alquilación, dimerización y polimerización.This invention relates to type materials microporous and mesoporous aluminosilicates that have a high catalytic activity in acid catalysis reactions, its preparation procedure and its use as a reaction catalyst  of hydrocarbon transformation, such as cracking, isomerization, transalkylation, alkylation, dimerization and polymerization.

Estado de la técnicaState of the art

Los materiales zeolíticos son ampliamente utilizados como catalizadores en las industrias de refino y petroquímica y en la síntesis de compuestos químicos de alto valor añadido. Su comportamiento catalítico se debe a la presencia en esos materiales de centros activos de elevada acidez, que permiten catalizar un gran número de reacciones de interés industrial.Zeolitic materials are widely used as catalysts in the refining industries and petrochemical and in the synthesis of high value chemical compounds added. Its catalytic behavior is due to the presence in those  materials of active centers of high acidity, which allow catalyze a large number of reactions of industrial interest.

Tanto las zeolitas (aluminosilicatos cristalinos) como los materiales zeolíticos en general poseen una estructura cristalina en la que existen cavidades y canales microporosos, cuyo acceso está limitado por aberturas cuyo diámetro es siempre inferior a 2,0 nm, y en la mayoría de los casos no excede de 0,8 nm. Aunque el tamaño de las cavidades y canales presentes en la estructura de las zeolitas y materiales zeolíticos es adecuado para transformar o producir moléculas que sean suficientemente pequeñas, por ejemplo producir un isómero excluyendo a otros posibles (propiedad conocida como selectividad de forma), es a menudo excesivamente pequeño para transformar moléculas voluminosas, que no pueden acceder al interior del sistema microporoso. Eso supone una severa limitación para el empleo de las zeolitas y materiales zeolíticos en numerosos procesos químicos de interés industrial.Both zeolites (crystalline aluminosilicates) as zeolitic materials in general have a structure crystalline in which there are microporous cavities and channels, whose access is limited by openings whose diameter is always less than 2.0 nm, and in most cases it does not exceed 0.8 nm. Although the size of the cavities and channels present in the structure of zeolites and zeolitic materials is suitable to transform or produce molecules that are sufficiently small, for example produce an isomer excluding others possible (property known as form selectivity), is a often too small to transform molecules bulky, which cannot access the inside of the system microporous That supposes a severe limitation for the use of zeolites and zeolitic materials in numerous chemical processes of industrial interest

En el año 1992 la compañía Mobil Oil dio a conocer la invención de una nueva familia de materiales mesoporosos ordenados, denominada M41S (WO Pat. 91/11390 (1991)). Estos materiales se caracterizan por poseer una distribución regular de poros cuyo tamaño, entre 2,0 nm y 10,0 nm, está comprendido dentro del rango del mesoporo, por lo que no presentan las limitaciones de las zeolitas para procesar moléculas voluminosas. Sin embargo, y a pesar de poseer una distribución regular de mesoporos, estos materiales son amorfos, es decir, el esqueleto inorgánico está constituido por una red de tetraedros de SiO_4 y AlO_4 enlazados entre sí de manera desordenada a través de los átomos de oxígeno. Por este motivo, la acidez de estos materiales se asemeja a la de las sílices-alúminas amorfas, siendo muy inferior a la de las zeolitas, al igual que su actividad catalítica. Estos factores limitan severamente el empleo de los materiales mesoporosos ordenados en numerosos procesos de interés industrial.In 1992 the Mobil Oil company gave know the invention of a new family of mesoporous materials ordered, called M41S (WO Pat. 91/11390 (1991)). These Materials are characterized by having a regular distribution of pores whose size, between 2.0 nm and 10.0 nm, is comprised within of the mesopore range, so they do not have limitations of zeolites to process bulky molecules. However, and Despite having a regular distribution of mesopores, these materials are amorphous, that is, the inorganic skeleton is constituted by a network of tetrahedra of SiO_4 and AlO_4 linked together in a disorderly manner through the atoms of oxygen. For this reason, the acidity of these materials resembles to that of the amorphous silica-aluminas, being very lower than that of zeolites, as well as their activity catalytic These factors severely limit the employment of mesoporous materials ordered in numerous processes of interest industrial.

Sin embargo, por las razones expuestas, sería deseable disponer de materiales porosos que tuviesen una distribución regular de tamaño de poro y un diámetro medio de poro superior al de las zeolitas y una actividad catalítica semejante.However, for the reasons stated above, it would be desirable to have porous materials that had a regular distribution of pore size and an average pore diameter superior to zeolites and a catalytic activity similar.

Recientemente se ha descrito un método para obtener materiales mesoporosos a partir de disoluciones precursoras de cristales de la zeolita faujasita de tipo Y (WO 01/92154 Al; Y. Lin, W.Zhang, T.J.Pinnavaia, J. Am. Chem. Soc., 122, 8791 (2000)). Este método hace uso de disoluciones que sólo contienen cationes inorgánicos, preferentemente sodio. Los materiales mesoestructurados obtenidos mediante los procedimientos descritos en esas dos referencias poseen una estabilidad térmica e hidrotérmica superior a la de los materiales mesoporosos preparados mediante los procedimientos convencionales (WO Pat. 91/11390 (1991)). Sin embargo, esos materiales una vez calcinados presentan una actividad catalítica similar a la de los materiales mesoporosos convencionales que contienen aluminio, como por ejemplo AlMCM-41, obtenidos mediante procedimientos ya descritos anteriormente en la bibliografía, muy inferior por lo tanto de la actividad catalítica de las zeolitas.Recently a method has been described for obtain mesoporous materials from precursor solutions of crystals of the zeolite faujasite type Y (WO 01/92154 Al; Y. Lin, W. Zhang, T.J. Pinnavaia, J. Am. Chem. Soc., 122, 8791 (2000)). This method makes use of solutions that only contain cations inorganic, preferably sodium. Mesostructured materials obtained by the procedures described in those two references have a thermal and hydrothermal stability superior to that of mesoporous materials prepared by means of conventional procedures (WO Pat. 91/11390 (1991)). Without However, once calcined materials present an activity catalytic similar to that of mesoporous materials conventional containing aluminum, such as AlMCM-41, obtained by procedures already described earlier in the literature, much lower so both of the catalytic activity of zeolites.

Descripción de la invenciónDescription of the invention Descripción brevebrief description

Esta invención se refiere a nuevos materiales de tipo aluminosilicatos microporosos y mesoporosos con una composición química expresada por la siguiente fórmula (en moles de óxidos):This invention relates to new materials of type microporous and mesoporous aluminosilicates with a chemical composition expressed by the following formula (in moles of oxides):

Al_2O_3:m SiO_2:n M_2OAl_2O_3: m SiO_2: n M_2O

en donde el valor de m está comprendido entre 2 y 50, preferentemente entre 4 y 10; M representa los cationes Na^+ o H^+, y el valor de n está comprendido entre 0,01 y 2, preferentemente entre 0,1 y 1.where the value of m is between 2 and 50, preferably between 4 and 10; M represents the cations Na ^ + or H ^ +, and the value of n is between 0.01 and 2, preferably between 0.1 and 1.

Estos materiales poseen una distribución regular de poros cuyo diámetro promedio está comprendido entre 1,0 nm y 15 nm. Presentan asimismo una elevada actividad catalítica en reacciones de catálisis ácida. Se describe su procedimiento de preparación y su uso como catalizadores de reacciones de transformación de hidrocarburos, tales como craqueo, isomerización, transalquilación, alquilación, dimerización y polimerización.These materials have a regular distribution of pores whose average diameter is between 1.0 nm and 15 nm. They also have a high catalytic activity in acid catalysis reactions. Its procedure is described preparation and its use as catalysts for reactions of hydrocarbon transformation, such as cracking, isomerization, transalkylation, alkylation, dimerization and polymerization.

Descripción de la invenciónDescription of the invention

La presente invención se refiere a la preparación de estructuras porosas que poseen un retículo formado por la unión de tetraedros de SiO_4 y AlO_4, con una relación molar de silicio a aluminio comprendida entre 1 y 100, que presentan una distribución regular de poros cuyo diámetro promedio está comprendido entre 1,0 nm y 15,0 nm, al menos un pico de difracción de rayos X correspondiente a un espaciado comprendido entre 1,5 nm y 20,0 nm, una superficie BET comprendida entre 300 m^2/g y 1400 m^2/g, un volumen total de poro comprendido entre 0,2 cm^3/g y 2,0 cm^3/g, una acidez determinada mediante la cantidad de piridina retenida en la muestra después de calentada e vacío a 250ºC de al menos 10^{-5}\mumol/g_{\mathrm{s\acute{o}lido}}, una actividad catalítica en la transformación de m-xileno tal que para un valor de tiempo de contacto expresado como W/F (g h/mol) comprendido entre 0,5 y 1 la conversión de m-xileno es al menos del 5%, y a su empleo como catalizadores de reacciones de transformación de moléculas orgánicas que son catalizadas por centros ácidos.The present invention relates to the preparation of porous structures that have a lattice formed by the union of tetrahedra of SiO_4 and AlO_4, with a molar ratio of silicon to aluminum between 1 and 100, which have a regular distribution of pores whose average diameter It is between 1.0 nm and 15.0 nm, at least one X-ray diffraction peak corresponding to a spacing between 1.5 nm and 20.0 nm, a BET surface between 300 m ^ 2 / g and 1400 m ^ 2 / g, a total pore volume between 0.2 cm ^ 3 / g and 2.0 cm ^ 3 / g, an acidity determined by the amount of pyridine retained in the sample after heated and vacuum at 250 ° C of at least 10 -5 \ mumol / g_ {\ mathrm {s \ o {l}}, a catalytic activity in m- xylene transformation such that for a contact time value expressed as W / F (gh / mol) between 0.5 and 1 the conversion of m- xylene is at least 5%, and its use as reaction catalysts Transformation ions of organic molecules that are catalyzed by acid centers.

El procedimiento para la obtención de los materiales porosos objeto de la presente invención comprende un proceso en dos etapas. En la primera etapa, se prepara una disolución A, denominada "disolución precursora de la zeolita faujasita", cuya principal pero no única característica es que contiene el catión tetrametilamonio. En una segunda etapa, se prepara una disolución B cuya principal pero no única característica es que contiene un surfactante catiónico, que se mezcla con la disolución A.The procedure for obtaining Porous materials object of the present invention comprises a Two stage process. In the first stage, a solution A, called "zeolite precursor solution faujasita ", whose main but not only feature is that It contains the tetramethylammonium cation. In a second stage, it prepares a solution B whose main but not unique characteristic is that it contains a cationic surfactant, which mix with solution A.

La composición química de la disolución A se representa mediante la fórmula (en moles):The chemical composition of solution A is represented by the formula (in moles):

Al_2O_3:x SiO_2:y (TMA)_2O:z Na_2O:w H_2O:v ROHAl_2O_3: x SiO_2: y (TMA) _2O: z Na_2O: w H_2O: v ROH

La preparación de esta disolución comprende el tratamiento de una fuente de aluminio, tal como el hidróxido de aluminio, con una disolución acuosa de hidróxido de tetrametilamonio, en la que está presente una fuente de sodio, hasta lograr la disolución del hidróxido de aluminio. Ejemplos no limitantes de esa fuente de sodio son el hidróxido de sodio y diversas sales solubles de sodio, tales como el cloruro sódico, el sulfato sódico o el nitrato sódico. El hidróxido de aluminio empleado en la invención puede prepararse ventajosamente mediante su precipitación a partir de una disolución de una sal soluble de aluminio, tal como el sulfato de aluminio o el nitrato de aluminio, mediante mezclado de la misma con una disolución de una base, como por ejemplo el hidróxido amónico. Opcionalmente, se puede disolver aluminio metálico en la disolución de hidróxido de tetrametilamonio. El valor de y está comprendido entre 0,2 y 10, preferentemente entre 0,5 y 5. El valor de z está comprendido entre 0,001 y 0,2, preferentemente entre 0,01 y 0,1.The preparation of this solution comprises the treatment of an aluminum source, such as hydroxide aluminum, with an aqueous solution of hydroxide of tetramethylammonium, in which a source of sodium is present, up to achieve dissolution of aluminum hydroxide. Examples no Limitations of that source of sodium are sodium hydroxide and various soluble sodium salts, such as sodium chloride, the sodium sulfate or sodium nitrate. Aluminum hydroxide employed in the invention can be advantageously prepared by its precipitation from a solution of a soluble salt of aluminum, such as aluminum sulfate or aluminum nitrate,  by mixing it with a solution of a base, such as for example ammonium hydroxide. Optionally, it can be dissolved metallic aluminum in the hydroxide solution of tetramethylammonium The value of y is between 0.2 and 10, preferably between 0.5 and 5. The value of z is between 0.001 and 0.2, preferably between 0.01 and 0.1.

En el caso de que se emplee hidróxido de aluminio como fuente de aluminio, el tratamiento de dicho hidróxido con la disolución básica que contiene tetrametilamonio y una fuente de sodio se realiza a una temperatura comprendida entre 10ºC y 100ºC, preferentemente entre 20ºC y 60ºC, durante un tiempo comprendido entre 5 minutos y 5 horas, preferentemente entre 10 minutos y 1 hora. El objetivo de este tratamiento es lograr la completa disolución del hidróxido de aluminio.In the case where aluminum hydroxide is used as a source of aluminum, the treatment of said hydroxide with the basic solution containing tetramethylammonium and a source of sodium is made at a temperature between 10ºC and 100ºC, preferably between 20 ° C and 60 ° C, for a period of time between 5 minutes and 5 hours, preferably between 10 minutes and 1 hour. The goal of this treatment is to achieve complete aluminum hydroxide solution.

Una vez disuelta la fuente de aluminio en la disolución de hidróxido de tetrametilamonio, se mezcla la disolución resultante con una fuente de silicio, ejemplos no limitantes de la cual son la sílice coloidal, sílice precipitada, sílice pirogénica, o alcóxidos de silicio, tales como tetrametoxisilano y tetraetoxisilano. Opcionalmente, la fuente de silicio puede hacerse reaccionar con una parte de la disolución de hidróxido de tetrametilamonio utilizado en la preparación. En caso de que se emplee sílice coloidal como fuente de silicio, ésta puede tratarse opcionalmente con una resina de intercambio catiónico con el objeto de disminuir el contenido de cationes alcalinos, preferentemente sodio, que contiene. El valor de x está comprendido entre 2 y 10, preferentemente entre 3 y 5.Once dissolved the source of aluminum in the tetramethylammonium hydroxide solution, the resulting solution with a source of silicon, examples not limiting of which are colloidal silica, precipitated silica, pyrogenic silica, or silicon alkoxides, such as tetramethoxysilane and tetraethoxysilane. Optionally, the source of silicon can be reacted with a part of the solution of tetramethylammonium hydroxide used in the preparation. In case If colloidal silica is used as a source of silicon, it can optionally treated with a cation exchange resin with in order to decrease the content of alkali cations, preferably sodium, which it contains. The value of x is included between 2 and 10, preferably between 3 and 5.

Opcionalmente, la disolución A puede contener uno o más alcoholes (ROH) que posean un número de átomos de carbono comprendido entre 1 y 6, pueden ser lineales o ramificados, y preferentemente metanol, etanol o mezclas de ambos. El valor de v está comprendido entre 0 y 200, preferentemente entre 0 y 50.Optionally, solution A may contain one or more alcohols (ROH) that have a number of carbon atoms between 1 and 6, they can be linear or branched, and preferably methanol, ethanol or mixtures of both. The value of v it is between 0 and 200, preferably between 0 and 50.

El valor de w (moles de agua por cada mol de Al_2O_3 del gel) está comprendido entre 50 y 5000, preferentemente entre 200 y 1000.The value of w (moles of water per mole of Al_2O_3 of the gel) is between 50 and 5000, preferably between 200 and 1000.

Una vez preparada la disolución A, ésta se envejece a una temperatura comprendida entre 4ºC y 150ºC, preferentemente entre 60ºC y 110ºC, durante un tiempo comprendido entre 10 minutos y 7 días, preferentemente entre 1 hora y 48 horas. Es característico de la presente invención que el envejecimiento de la disolución A se realiza en condiciones de temperatura y tiempo tales que no se detecta la formación de cristales de faujasita al finalizar el envejecimiento. Por este motivo, a la disolución A se la denomina en la presente invención "disolución precursora de faujasita".Once solution A is prepared, it is ages at a temperature between 4ºC and 150ºC, preferably between 60 ° C and 110 ° C, for a period of time between 10 minutes and 7 days, preferably between 1 hour and 48 hours. It is characteristic of the present invention that the aging of solution A is carried out under conditions of temperature and time such that the formation of faujasite crystals is not detected at End the aging. For this reason, dissolution A se he calls it in the present invention "precursor solution of faujasita. "

La disolución B se prepara mediante disolución de uno o más surfactantes catiónicos en agua, en un disolvente orgánico o en una mezcla de ambos. El surfactante catiónico empleado en la presente invención se representa mediante la fórmula NR_1R_2R_3R_4, en donde R_2, R_3 y R_4 pueden ser iguales o distintos, y representan grupos orgánicos que contienen entre 1 y 6 átomos de carbono, siendo la composición preferida aquella en la que R_2 = R_3 = R_4 = CH_3; R_1 representa un grupo orgánico que contiene carbono e hidrógeno, saturado o insaturado, preferentemente una cadena alifática lineal o ramificada, que contiene un número de átomos de carbono comprendido entre 2 y 36, preferentemente entre 8 y 22. Ejemplos no restrictivos de este surfactante catiónico son el hexadeciltrimetilamonio, el dimetildidodecilamonio y el benciltrimetilamonio. Este catión puede emplearse bajo la forma de sales, ejemplos no limitantes de las cuales son el bromuro y el cloruro, o bien como hidróxido, o mezcla de ambos. La disolución B a la que hace referencia la invención puede contener uno o más de los surfactantes descritos, y su proporción en peso respecto al disolvente está comprendida entre el 2 y el 50%, preferentemente entre el 10% y el 30%. El disolvente preferido para preparar la disolución B es el agua, pero opcionalmente pueden emplearse un alcohol o mezcla de dos o más alcoholes, o una mezcla de alcoholes con agua. Los alcoholes empleados pueden contener un número de átomos de carbono comprendido entre 1 y 6, preferentemente metanol o etanol. Opcionalmente, la disolución B puede contener tetrametilamonio y opcionalmente también sodio, en una proporción no superior al 90% del tetrametilamonio y el 90% del sodio contenidos conjuntamente en las disoluciones A y B.Solution B is prepared by dissolving one or more cationic surfactants in water, in a solvent organic or in a mixture of both. The cationic surfactant used in the present invention is represented by the formula NR_1R_2R_3R_4, where R_2, R_3 and R_4 can be same or different, and represent organic groups that contain between 1 and 6 carbon atoms, the preferred composition being one in which R_2 = R_3 = R_4 = CH_3; R_1 represents an organic group containing carbon and hydrogen, saturated or unsaturated, preferably a linear aliphatic chain or branched, which contains a number of carbon atoms comprised between 2 and 36, preferably between 8 and 22. Examples not restrictive of this cationic surfactant are the hexadecyltrimethylammonium, dimethyldidodecylammonium and benzyltrimethylammonium. This cation can be used in the form of salts, non-limiting examples of which are bromide and chloride, or as hydroxide, or mixture of both. Solution B referred to in the invention may contain one or more of the surfactants described, and their proportion by weight with respect to solvent is between 2 and 50%, preferably between 10% and 30%. The preferred solvent to prepare the solution B is water, but optionally a alcohol or mixture of two or more alcohols, or a mixture of alcohols with water. The alcohols used may contain a number of carbon atoms between 1 and 6, preferably methanol or ethanol Optionally, solution B may contain tetramethylammonium and optionally also sodium, in a proportion not greater than 90% of tetramethylammonium and 90% of sodium contained jointly in solutions A and B.

La relación molar entre la sílice de la disolución A y el surfactante catiónico de la disolución B (relación sílice/surfactante) está comprendida entre 0,1 y 15, preferentemente entre 0,5 y 5. La disolución B puede contener una proporción del total de disolvente empleado en la preparación comprendido entre 1% y 95%, preferentemente entre 10% y 50%.The molar relationship between the silica of the solution A and the cationic surfactant of solution B (silica / surfactant ratio) is between 0.1 and 15, preferably between 0.5 and 5. Solution B may contain a proportion of the total solvent used in the preparation between 1% and 95%, preferably between 10% and 50%.

El gel resultante de la mezcla de las disoluciones A y B se caliente a una temperatura comprendida entre 20ºC y 200ºC, preferentemente entre 100ºC y 180ºC, durante un tiempo comprendido entre 30 minutos y 7 días, preferentemente entre 1 hora y 48 horas. El producto sólido obtenido después de esta etapa de calentamiento se filtra, se lava con agua desionizada y se seca.The gel resulting from the mixture of solutions A and B are heated to a temperature between 20ºC and 200ºC, preferably between 100ºC and 180ºC, during a time between 30 minutes and 7 days, preferably between 1 hour and 48 hours. The solid product obtained after this heating stage is filtered, washed with deionized water and dries up

El producto así obtenido se calienta en aire a temperaturas comprendidas entre 400ºC y 800°C, preferentemente entre 500ºC y 700ºC, con el fin de eliminar la materia orgánica que contiene. Opcionalmente, la calcinación puede llevarse a cabo en una atmósfera de un gas inerte, tal como nitrógeno, seguido opcionalmente de una calcinación en aire.The product thus obtained is heated in air to temperatures between 400 ° C and 800 ° C, preferably between 500ºC and 700ºC, in order to eliminate the organic matter that contains Optionally, calcination can be carried out in an atmosphere of an inert gas, such as nitrogen, followed optionally of a calcination in air.

El material calcinado obtenido mediante el procedimiento descrito en la presente invención se caracteriza por tener una composición química expresada por la siguiente fórmula (en moles de óxidos):The calcined material obtained by procedure described in the present invention is characterized by have a chemical composition expressed by the following formula (in moles of oxides):

Al_2O_3:m SiO_2:n M_2OAl_2O_3: m SiO_2: n M_2O

en donde el valor de m está comprendido entre 2 y 50, preferentemente entre 4 y 10; M representa los cationes Na^+ o H^+, y su valor n está comprendido entre 0,01 y 2, preferentemente entre 0,1 y 1,9.where the value of m is between 2 and 50, preferably between 4 and 10; M represents the cations Na ^ + or H ^ +, and its value n is between 0.01 and 2, preferably between 0.1 and 1.9.

Además de su composición química, el material poroso obtenido según el procedimiento descrito en la presente invención se distingue por poseer las siguientes características:In addition to its chemical composition, the material Porous obtained according to the procedure described herein invention is distinguished by having the following features:

1)one)
Al menos un pico de difracción de rayos X correspondiente a un valor de espaciado comprendido entre 1,5 nm y 20 nm.At least a peak of X-ray diffraction corresponding to a spacing value between 1.5 nm and 20 nm.

2)2)
Un volumen total de poro comprendido entre 0,2 cm^3/g y 2,0 cm^3/g.A total volume of pore between 0.2 cm ^ 3 / g and 2.0 cm ^ 3 / g.

3)3)
Una superficie BET comprendida entre 300 m^2/g y 1.400 m^2/g.A BET surface between 300 m ^ 2 / g and 1,400 m ^ 2 / g.

4)4)
Un diámetro medio de poro (expresado como 4V/A) comprendido entre 1,0 nm y 15,0 nm.An average diameter pore (expressed as 4V / A) between 1.0 nm and 15.0 nm.

5)5)
Una acidez determinada mediante espectroscopia infrarroja tal que después de adsorber piridina sobre una muestra de material a temperatura ambiente y evacuar la muestra a una temperatura de 250ºC durante 1 hora, la concentración de piridina que permanece adsorbida, determinada a partir de la banda a 1545 cm^{-1} correspondiente al ión piridinio, es igual o superior a 10^{-5} \mumol/g_{\mathrm{s\acute{o}lido}}.Acidity determined by infrared spectroscopy such that after adsorb pyridine on a sample of material at temperature ambient and evacuate the sample at a temperature of 250 ° C for 1 hour, the concentration of pyridine that remains adsorbed, determined from the band at 1545 cm -1 corresponding to the pyridinium ion, is equal to or greater than 10-5 \ mumol / g _ {\ mathrm {s \ acute {o} lido}}.

6)6)
Una característica inherente al material que se reivindica en la presente invención es su elevada actividad catalítica en reacciones que son catalizadas por sólidos ácidos. En la presente invención esa actividad catalítica se expresa a modo de ejemplo no limitante en el grado de conversión del m-xileno cuando éste se pone en contacto con una cierta cantidad de reactivo que se hace fluir en un reactor tubular a través de un lecho que contiene una cierta cantidad de material calentado a una cierta temperatura. Más específicamente, es una característica inherente del material el hecho de que en un reactor tubular de lecho fijo empleando nitrógeno como gas portador (relación molar N_2/m-xileno = 4), a un tiempo de contacto W/F (W/F se expresa en gramos de catalizador por hora y por mol de m-xileno) comprendido entre 0,5 y 1 y a una temperatura de 400ºC, permite obtener una conversión de m-xileno igual o superior al 5%.A characteristic inherent to the material claimed in the present invention is its high catalytic activity in reactions that are catalyzed by acid solids. In the present invention, this catalytic activity is expressed by way of non-limiting example in the degree of conversion of m- xylene when it is contacted with a certain amount of reagent that is flowed in a tubular reactor through a bed which It contains a certain amount of material heated to a certain temperature. More specifically, the fact that in a fixed bed tubular reactor using nitrogen as a carrier gas (molar ratio N_2 / m- xylene = 4), at a contact time W / F (W / F is Expressed in grams of catalyst per hour and per mole of m- xylene) between 0.5 and 1 and at a temperature of 400 ° C, allows to obtain a conversion of m- xylene equal to or greater than 5%.

Es característico del material obtenido de acuerdo al procedimiento descrito en la presente invención el poseer simultáneamente todas las características indicadas anteriormente, lo que lo distingue de otros materiales descritos anteriormente en la bibliografía que pueden poseer una o más, pero no todas, las características del material reivindicado en la presente invención.It is characteristic of the material obtained from according to the procedure described in the present invention the simultaneously possess all the indicated characteristics above, which distinguishes it from other materials described earlier in the bibliography they may own one or more, but not all, the characteristics of the material claimed in the present invention

El material descrito en la invención puede emplearse en una amplia variedad de reacciones de transformación de hidrocarburos, entre las que se pueden mencionar como ejemplos el craqueo catalítico, la isomerización, hidroisomerización, hidrocraqueo, alquilación, dimerización y polimerización, y entre ellas cabe destacar como ejemplo no limitante la conversión de m-xileno.The material described in the invention can be used in a wide variety of hydrocarbon transformation reactions, among which are examples of catalytic cracking, isomerization, hydroisomerization, hydrocracking, alkylation, dimerization and polymerization, and among them, non-limiting example the conversion of m- xylene.

Descripción de las figurasDescription of the figures

Figura 1. Difractograma de rayos X de la muestra calcinada obtenida de acuerdo al procedimiento descrito en el ejemplo 1. En el recuadro que aparece en el interior de la figura se incluye el difractograma en la región de valores de 2\theta entre 4º y 40º.Figure 1. X-ray diffractogram of the sample calcined obtained according to the procedure described in the Example 1. In the box that appears inside the figure the diffractogram is included in the region of values of 2? between 4th and 40th.

Figura 2. Espectro de Resonancia Magnética Nuclear de ^{27}Al con Rotación de Ángulo Mágico de la muestra calcinada obtenida de acuerdo al procedimiento descrito en el ejemplo 1.Figure 2. Magnetic Resonance Spectrum Nuclear of 27 Al with Magic Angle Rotation of the sample calcined obtained according to the procedure described in the Example 1.

Ejemplos de realizaciónExamples of realization

Los siguientes ejemplos ilustran la invención, sin que constituyan por ello una limitación de la invención.The following examples illustrate the invention, without constituting a limitation of the invention.

Ejemplo 1Example 1

Se prepara una disolución A con la siguiente composición:A solution A is prepared with the following composition:

Al_2O_3:1,53(TMA)_2O:0,088 Na_2O:3,62SiO_2:246
H_2O
Al_2O_3: 1.53 (TMA) _2O: 0.088 Na_2O: 3.62 SiO_2: 246
H_2O

Para ello, se prepara una disolución de 53,20g de sulfato de aluminio en 135g de agua milliQ. Se precipita el Al(OH)_3 añadiendo a la disolución 60,01g de NH_4OH (30%), se filtra y se lava con agua desionizada.To do this, a solution of 53.20g of Aluminum sulfate in 135g of milliQ water. The precipitates Al (OH) _3 adding to the solution 60.01g of NH_4OH (30%), filtered and washed with deionized water.

Se introducen en un bote de polipropileno (PP) 89,64 g de TMAOH (disolución acuosa al 25% en peso), 142,42 g de agua milliQ y 15,08 g de NaOH. Se agita durante 15 minutos y a continuación se añade el Al(OH)_3. Se agita hasta disolver totalmente el hidróxido, lo que ocurre en 20 minutos. Se añaden entonces 57,89g de SiO_2Ludox S30 que previamente ha sido intercambiado con resina Dowex HCR-S para retirar el Na que contenga. Se agita el gel resultante 30 minutos más, y se envejece a una temperatura de 100ºC durante 24 horas.They are introduced in a polypropylene (PP) boat 89.64 g of TMAOH (25% by weight aqueous solution), 142.42 g of MilliQ water and 15.08 g of NaOH. Stir for 15 minutes and at Then Al (OH) _3 is added. Stir until completely dissolve the hydroxide, which occurs in 20 minutes. Be then add 57.89g of SiO_2Ludox S30 that has previously been exchanged with Dowex HCR-S resin to remove the Na that contains. The resulting gel is stirred an additional 30 minutes, and age at a temperature of 100 ° C for 24 hours.

Al cabo de este tiempo, se deja enfriar hasta temperatura ambiente y se añade una disolución acuosa de bromuro de cetiltrimetilamonio (CTAB) (20% en peso), denominada disolución B. La mezcla resultante, que tiene una relación molar SiO_2/ CTAB=2,59, se calienta a una temperatura de 150ºC durante 24 horas. Al cabo de este tiempo, se filtra la suspensión resultante, y el sólido se lava y se seca.After this time, let it cool until room temperature and an aqueous solution of bromide of cetyltrimethylammonium (CTAB) (20% by weight), called solution B. The resulting mixture, which has a SiO_2 / molar ratio CTAB = 2.59, heated at a temperature of 150 ° C for 24 hours. After this time, the resulting suspension is filtered, and the solid is washed and dried.

El producto sólido seco se calcina a una temperatura de 550ºC en flujo de N_2 durante 1 h, seguido de aire a la misma temperatura durante 6 h.The dry solid product is calcined at 550 ° C temperature in N_2 flow for 1 h, followed by air at the same temperature for 6 h.

El diagrama de difracción de rayos X del sólido calcinado se presenta en la figura 1, en el que se puede observar la presencia de un pico intenso que corresponde a un valor de espaciado d=2,4 nm. En la región de valores de 2\theta comprendida entre 4º y 40º se observa la presencia de picos de difracción al nivel de trazas correspondiente a la zeolita tipo A. La superficie BET de la muestra es de 692m^2/g, su volumen de poro de 0,37 cm^3/g y su diámetro promedio de poro de 2,0 nm. La composición química del sólido (en peso) es: 73,7% de SiO_2, 25,3% de Al_2O_3 y 1,0% de Na_2O. La figura 2 muestra el espectro de resonancia magnética nuclear con rotación de ángulo mágico de ^{27}Al, en el que se observa la presencia de 3 señales. La señal a 1 ppm es característica de átomos de aluminio que se encuentran en un entorno octaédrico extrareticular, mientras que la señal a 55 ppm indica la presencia de aluminio tetraédrico, es decir, perteneciente al esqueleto inorgánico del material. La señal a 27 ppm se puede atribuir a aluminio pentacoordinado o bien a aluminio en coordinación tetraédrica fuertemente distorsionada. En cualquier caso, la detección de señales correspondientes a aluminio que no pertenece al esqueleto inorgánico formado por los tetraedros de SiO_4 y AlO_4 distingue claramente este material de otros descritos anteriormente, como por ejemplo el reivindicado en PCT WO 01/92154 A1 (Pinnavaia y col.), en el que sólo se detecta una señal en el rango de 57 ppm a 65 ppm perteneciente a aluminio en coordinación tetraédrica. Después de adsorber piridina sobre el material a temperatura ambiente y evacuar la muestra a una temperatura de 250ºC durante 1 hora, la concentración de piridina que permanece adsorbida determinada a partir de la banda a 1545 cm^{-1} correspondiente al ión piridinio, es de 2,1x10^{-5} \mumol/g_{\mathrm{s\acute{o}lido}}. En la reacción de transformación de m-xileno, a 400ºC y a un tiempo de contacto (expresado como W/F (mol g/h)) de 0,59, esta muestra produce una conversión del reactivo del 21%.The X-ray diffraction diagram of the calcined solid is presented in Figure 1, in which the presence of an intense peak corresponding to a spacing value d = 2.4 nm can be observed. In the region of 2 valores values between 4º and 40º the presence of diffraction peaks is observed at the level of traces corresponding to type A zeolite. The BET surface of the sample is 692m ^ 2 / g, its volume of pore of 0.37 cm ^ 3 / g and its average pore diameter of 2.0 nm. The chemical composition of the solid (by weight) is: 73.7% of SiO_2, 25.3% of Al_2O_3 and 1.0% of Na_2O. Figure 2 shows the nuclear magnetic resonance spectrum with magic angle rotation of 27 Al, in which the presence of 3 signals is observed. The 1 ppm signal is characteristic of aluminum atoms that are in an extrareticular octahedral environment, while the 55 ppm signal indicates the presence of tetrahedral aluminum, that is, belonging to the inorganic skeleton of the material. The signal at 27 ppm can be attributed to pentacoordinated aluminum or to aluminum in severely distorted tetrahedral coordination. In any case, the detection of signals corresponding to aluminum that does not belong to the inorganic skeleton formed by the tetrahedra of SiO_4 and AlO_4 clearly distinguishes this material from others described above, such as the one claimed in PCT WO 01/92154 A1 (Pinnavaia et al. .), in which only one signal is detected in the range of 57 ppm to 65 ppm belonging to aluminum in tetrahedral coordination. After adsorbing pyridine on the material at room temperature and evacuating the sample at a temperature of 250 ° C for 1 hour, the concentration of pyridine that remains adsorbed determined from the band at 1545 cm -1 corresponding to the pyridinium ion, is 2.1x10 <-5} [mu] m / g_ {\ mathrm {s \ o {l}}. In the m- xylene transformation reaction, at 400 ° C and at a contact time (expressed as W / F (mol g / h)) of 0.59, this sample produces a reagent conversion of 21%.

Ejemplo 2Example 2

Se prepara una disolución A con la siguiente composición:A solution A is prepared with the following composition:

Al_2O_3:1,53 (TMA)_2O:0,088 Na_2O:3,62 SiO_2:246 H_2OAl_2O_3: 1.53 (TMA) _2O: 0.088 Na_2O: 3.62 SiO_2: 246 H_2O

A una disolución de 26,60g de sulfato de aluminio en 67,5g de agua milliQ se añaden 30,05g de NH_4OH (30%). El Al(OH)_3 formado se filtra y se lava con agua desionizada y se añade a una disolución que contiene 44,82g de TMAOH (disolución acuosa al 25% en peso), 70,90g de agua milliQ y 7,54g de NaOH. La mezcla se agita hasta disolver totalmente el hidróxido y tener una disolución transparente. Se añaden 28,94g de SiO_2 Ludox S30 que previamente ha sido intercambiada con resina Dowex HCR-S para retirar el sodio que contenga.At a solution of 26.60g of aluminum sulfate In 67.5g of milliQ water, 30.05g of NH_4OH (30%) are added. He Al (OH) _3 formed is filtered and washed with water deionized and added to a solution containing 44.82g of TMAOH  (25% aqueous solution by weight), 70.90g of milliQ water and 7.54g NaOH The mixture is stirred until the hydroxide is completely dissolved and have a transparent solution. 28.94g of SiO_2 are added Ludox S30 that has previously been exchanged with Dowex resin HCR-S to remove the sodium it contains.

El gel así preparado se envejece a temperatura de 100ºC durante 24 horas.The gel thus prepared is aged at the temperature of 100 ° C for 24 hours.

Al cabo de este tiempo de tratamiento se deja enfriar hasta temperatura ambiente y se añade una disolución acuosa de CTAB (20% en peso). El gel resultante tiene una composición SiO_2/CTAB=2,59. La mezcla se calienta a una temperatura de 175ºC durante 3 horas. El producto obtenido se filtra, se lava con agua desionizada y se seca.After this treatment time it is left cool to room temperature and an aqueous solution is added CTAB (20% by weight). The resulting gel has a composition SiO_2 / CTAB = 2.59. The mixture is heated to a temperature of 175 ° C during 3 hours. The product obtained is filtered, washed with water deionized and dried.

El sólido seco se calcina a 550ºC en flujo de N_2 durante 1 h, seguido de aire a la misma temperatura durante 6 h.The dried solid is calcined at 550 ° C in flow of N_2 for 1 h, followed by air at the same temperature for 6 h.

El diagrama de difracción de rayos X del sólido calcinado presenta un pico intenso a un valor de espaciado de 2,5 nm; un área BET de 687 m^2/g; un volumen de poro de 0,37 cm^3/g y m diámetro medio de poro de 2,2 nm. La composición química del sólido en peso es de 74,2% de SiO_2, 24,8% de Al_2O_3 y 1,0% de Na_2O. Después de adsorber piridina sobre una muestra del material a temperatura ambiente y evacuar la muestra a una temperatura de 250ºC durante 1 hora, la concentración de piridina que permanece adsorbida determinada a partir de la banda a 1545 cm^{-1} correspondiente al ión piridinio, es de 1,7x10^{-5}\mumol/g_{\mathrm{s\acute{o}lido}}. En la reacción de transformación de m-xileno, a 400ºC y a un tiempo de contacto (expresado como W/F (mol g/h)) de 0,86, esta muestra produce una conversión del reactivo de 16%.The X-ray diffraction diagram of the calcined solid has an intense peak at a spacing value of 2.5 nm; a BET area of 687 m ^ 2 / g; a pore volume of 0.37 cm ^ 3 / g and m average pore diameter of 2.2 nm. The chemical composition of the solid by weight is 74.2% SiO_2, 24.8% Al_2O_3 and 1.0% Na_2O. After adsorbing pyridine on a sample of the material at room temperature and evacuating the sample at a temperature of 250 ° C for 1 hour, the concentration of pyridine that remains adsorbed determined from the band at 1545 cm -1 corresponding to the pyridinium ion , is 1.7x10 <-5} / mumol / g_ {mathrm {s {o} lido}}. In the m- xylene transformation reaction, at 400 ° C and at a contact time (expressed as W / F (mol g / h)) of 0.86, this sample produces a reagent conversion of 16%.

Claims (15)

1. Un material de tipo aluminosilicato poroso que posee una alta actividad en reacciones de transformación de moléculas orgánicas catalizadas por centros ácidos, y caracterizado porque posee la composición química expresada por la siguiente fórmula (en moles de óxidos):1. A porous aluminosilicate type material that has a high activity in transformation reactions of organic molecules catalyzed by acid centers, and characterized in that it has the chemical composition expressed by the following formula (in moles of oxides): Al_2O_3:m SiO_2:n M_2OAl_2O_3: m SiO_2: n M_2O en donde el valor de m está comprendido entre 2 y 50, preferentemente entre 4 y 10; M representa los cationes Na^+ o H^+, y el valor de n está comprendido entre 0,01 y 2, preferentemente entre 0,1 y 1,0, y que se caracteriza además por presentar las siguientes propiedades:where the value of m is between 2 and 50, preferably between 4 and 10; M represents the cations Na ^ + or H ^ +, and the value of n is between 0.01 and 2, preferably between 0.1 and 1.0, and which is further characterized by present the following properties:
a)to)
al menos un pico de difracción de rayos X correspondiente a un valor de espaciado comprendido entre 1,5 nm y 20 nm,at least a peak of X-ray diffraction corresponding to a spacing value between 1.5 nm and 20 nm,
b)b)
un volumen total de poro comprendido entre 0,2 cm^3/g y 2,0 cm^3/g,a total volume of pore between 0.2 cm ^ 3 / g and 2.0 cm ^ 3 / g,
c)C)
una superficie BET comprendida entre 300 m^2/g y 1.400 m^2/g,a BET surface between 300 m ^ 2 / g and 1,400 m ^ 2 / g,
d)d)
un diámetro medio de poro comprendido entre 1,0 nm y 15,0 nm,an average diameter Pore between 1.0 nm and 15.0 nm,
e)and)
una acidez igual o superior a 10^{-5}\mumol_{piridina}/g determinada después de adsorber piridina y evacuar la muestra a una temperatura de 250ºC, yequal acidity or greater than 10-5 µmpyridine / g determined after adsorb pyridine and evacuate the sample at a temperature of 250 ° C, Y
f)F)
una actividad catalítica en la transformación de m-xileno tal que para un valor de W/F (g.h/mol) comprendido entre 0,5 y 1 la conversión de m-xileno es al menos el 5%.a catalytic activity in the transformation of m- xylene such that for a value of W / F (gh / mol) between 0.5 and 1 the conversion of m- xylene is at least 5%.
2. Un procedimiento para la obtención del material de tipo aluminosilicato poroso según la reivindicación 1 caracterizado porque se realiza mediante la mezcla de una disolución A denominada "disolución precursora de la zeolita faujasita", y una disolución B, caracterizada porque contiene un surfactante catiónico.2. A process for obtaining the porous aluminosilicate type material according to claim 1 characterized in that it is carried out by mixing a solution A called "precursor solution of the zeolite faujasite", and a solution B, characterized in that it contains a cationic surfactant. 3. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 según la reivindicación 2 caracterizado por los siguientes pasos:3. A process for obtaining the porous aluminosilicate type material according to claim 1 according to claim 2 characterized by the following steps:
a)to)
calentamiento del gel resultante de la mezcla de las disoluciones A y B a una temperatura comprendida entre 20ºC y 200ºC, preferentemente entre 100ºC y 180ºC, durante un tiempo comprendido entre 30 minutos y 7 días, preferentemente entre 1 hora y 48 horas,heating of gel resulting from the mixture of solutions A and B at a temperature between 20ºC and 200ºC, preferably between 100ºC and 180ºC, for a time between 30 minutes and 7 days, preferably between 1 hour and 48 hours,
b)b)
el producto sólido obtenido en a) se filtra, lava con agua desionizada y se seca, ythe solid product obtained in a) it is filtered, washed with deionized water and dried, Y
c)C)
el producto así obtenido se calienta en aire a temperaturas comprendidas entre 400ºC y 800ºC, con el fin de eliminar la materia orgánica que contiene. Opcionalmente, la calcinación puede llevarse a cabo en una atmósfera de un gas inerte, tal como nitrógeno, que opcionalmente puede continuarse con una calcinación en aire.the product as well obtained is heated in air at temperatures between 400ºC and 800ºC, in order to eliminate the organic matter that contains Optionally, calcination can be carried out in a  atmosphere of an inert gas, such as nitrogen, which optionally You can continue with an air calcination.
4. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 caracterizado porque la preparación de la disolución A según las reivindicaciones 2 y 3 consiste en los siguientes pasos:4. A process for obtaining the porous aluminosilicate type material according to claim 1 characterized in that the preparation of solution A according to claims 2 and 3 consists of the following steps:
a)to)
tratamiento de una fuente de aluminio, tal como el hidróxido de aluminio, o sales solubles de aluminio, tales como el sulfato de aluminio o el nitrato de aluminio, o aluminio metálico, con una disolución acuosa de hidróxido de tetrametilamonio que además contiene una fuente de sodio, como por ejemplo hidróxido sódico, cloruro sódico o sulfato sódico, hasta obtener una disolución,treatment of a aluminum source, such as aluminum hydroxide, or salts soluble aluminum, such as aluminum sulfate or nitrate of aluminum, or metallic aluminum, with an aqueous solution of tetramethylammonium hydroxide which also contains a source of sodium, such as sodium hydroxide, sodium chloride or sulfate sodium, until a solution is obtained,
b)b)
mezcla de la disolución de a) con una fuente de silicio, como por ejemplo sílice coloidal, sílice precipitada, sílice pirogénica o alcóxidos de silicio como por ejemplo tetrametoxisilano y tetraetoxisilano, ymix of the dissolution of a) with a source of silicon, such as silica colloidal, precipitated silica, pyrogenic silica or alkoxides of silicon such as tetramethoxysilane and tetraethoxysilane, Y
c)C)
envejecimiento de la disolución así obtenida a una temperatura comprendida entre 4ºC y 150ºC, preferentemente entre 60ºC y 110ºC, durante un tiempo comprendido entre 10 minutos y 7 días, preferentemente entre 1 hora y 48 horas.aging of the solution thus obtained at a temperature between 4 ° C and 150 ° C, preferably between 60 ° C and 110 ° C, for a time between 10 minutes and 7 days, preferably between 1 hour and 48 hours
5. Un procedimiento para la obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado como se describe en las reivindicaciones 2 a 4 caracterizado porque la composición química de la disolución A se representa mediante la fórmula (en moles):5. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared as described in claims 2 to 4 characterized in that the chemical composition of solution A is represented by the formula (in moles): Al_2O_3:x SiO_2:y (TMA)_2O:z Na_2O:w H_2O:v ROHAl_2O_3: x SiO_2: y (TMA) _2O: z Na_2O: w H_2O: v ROH en la que el valor de x está comprendido entre 2 y 10; el valor de y está comprendido entre 0,2 y 10; el valor de z está comprendido entre 0,001 y 0,2; el valor de w está comprendido entre 50 y 5000 y el valor de v está comprendido entre 0 y 200.in which the value of x is between 2 and 10; the value of y is between 0.2 and 10; the value of z it is between 0.001 and 0.2; the value of w is included between 50 and 5000 and the value of v is between 0 and 200. 6. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado como se describe en las reivindicaciones 2 a 5 caracterizado porque la disolución A puede contener uno o más alcoholes lineales o ramificados, representados por la expresión ROH en la fórmula de la reivindicación 5, que contengan un número de átomos de carbono comprendido entre 1 y 6.6. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared as described in claims 2 to 5 characterized in that the solution A may contain one or more linear or branched alcohols, represented by the expression ROH in the formula of claim 5, containing a number of carbon atoms between 1 and 6. 7. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado como se describe en las reivindicaciones 2 a 6 caracterizado porque la disolución B se prepara mediante la disolución de uno o más surfactantes catiónicos en agua, en un disolvente orgánico o en una mezcla de ambos; de forma general los surfactantes catiónicos empleados se representan mediante la fórmula NR_1R_2R_3R_4, en donde R_2, R_3 y R_4 pueden ser iguales o distintos, y representan grupos orgánicos que contienen entre 1 y 6 átomos de carbono, siendo la composición preferida aquella en la que R_2=R_3=R_4=CH_3; R_1 representa un grupo orgánico que contiene carbono e hidrógeno, saturado o insaturado, preferentemente una cadena alifática lineal o ramificada, que contiene un número de átomos de carbono comprendido entre 2 y 36.7. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared as described in claims 2 to 6 characterized in that the solution B is prepared by dissolving one or more cationic surfactants in water, in an organic solvent or in a mixture of both; in general, the cationic surfactants used are represented by the formula NR_1R_2R_3R_4, where R_2, R_3 and R_4 can be the same or different, and represent organic groups containing between 1 and 6 carbon atoms, the preferred composition being that in which R_2 = R_3 = R_4 = CH_3; R_1 represents an organic group containing carbon and hydrogen, saturated or unsaturated, preferably a linear or branched aliphatic chain, containing a number of carbon atoms between 2 and 36. 8. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado según la reivindicación 7 caracterizado porque el surfactante catiónico se selecciona, entre otros, del siguiente grupo: hexadeciltrimetilamonio, el dimetildidodecilamonio, el benciltrimetilamonio, sales de dichos cationes, entre otros, sales de bromuro, cloruro, o bien como hidróxido, o mezcla de ambos.8. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared according to claim 7 characterized in that the cationic surfactant is selected, among others, from the following group: hexadecyltrimethylammonium, dimethyldidodecylammonium, benzyltrimethylammonium, salts of said cations, among others, bromide salts, chloride, or as hydroxide, or mixture of both. 9. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 según las reivindicaciones 7 y 8 caracterizado porque la disolución B puede contener uno o más de los surfactantes descritos, y la proporción en peso de éstos respecto al disolvente está comprendida entre el 2% y el 50%.9. A process for obtaining the porous aluminosilicate type material according to claim 1 according to claims 7 and 8, characterized in that the solution B may contain one or more of the surfactants described, and the proportion by weight of these relative to the solvent is comprised between 2% and 50%. 10. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado según las reivindicaciones 2 a la 9 caracterizado porque la relación molar entre la sílice y el surfactante catiónico (sílice/surfactante) está comprendida entre 0,1 y 15.10. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared according to claims 2 to 9, characterized in that the molar ratio between the silica and the cationic surfactant (silica / surfactant) is between 0.1 and 15. 11. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado según las reivindicaciones 2 a 10 caracterizado porque la disolución B puede contener una proporción del total de disolvente empleado en la preparación comprendida entre el 1% y el 95%.11. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared according to claims 2 to 10 characterized in that the solution B may contain a proportion of the total solvent used in the preparation comprised between 1% and 95%. 12. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado según las reivindicaciones 2 a la 11 caracterizado porque el disolvente empleado para preparar la disolución B puede ser agua, uno o más alcoholes o una mezcla de agua y alcoholes; estos alcoholes pueden ser lineales o ramificados, y pueden contener un número de átomos de carbono comprendido entre 1 y 6.12. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared according to claims 2 to 11, characterized in that the solvent used to prepare solution B may be water, one or more alcohols or a mixture of water and alcohols; These alcohols can be linear or branched, and can contain a number of carbon atoms between 1 and 6. 13. Un procedimiento de obtención del material de tipo aluminosilicato poroso según la reivindicación 1 preparado según las reivindicaciones 2 a la 12 caracterizado porque la disolución B puede contener tetrametilamonio y opcionalmente también sodio, en una proporción no superior al 90% del tetrametilamonio y el 90% del sodio contenido en total en las disoluciones A y B.13. A process for obtaining the porous aluminosilicate type material according to claim 1 prepared according to claims 2 to 12 characterized in that the solution B may contain tetramethylammonium and optionally also sodium, in a proportion not exceeding 90% of the tetramethylammonium and 90 % of sodium contained in total in solutions A and B. 14. Utilización del material de tipo aluminosilicato poroso según la reivindicación 1 obtenido de acuerdo al procedimiento descrito en las reivindicaciones 2 a la 13, como catalizador de reacciones de transformación de hidrocarburos, tales como craqueo, isomerización, transalquilación, alquilación, dimerización y polimerización.14. Use of type material porous aluminosilicate according to claim 1 obtained from according to the procedure described in claims 2 to 13,  as a catalyst for hydrocarbon transformation reactions, such as cracking, isomerization, transalkylation, alkylation, dimerization and polymerization. 15. Utilización del material de tipo aluminosilicato poroso según la reivindicación 1 obtenido según el procedimiento descrito en las reivindicaciones 2 a la 13, como catalizador en la reacción de transformación de xilenos.15. Use of type material porous aluminosilicate according to claim 1 obtained according to the procedure described in claims 2 to 13, as catalyst in the xylenes transformation reaction.
ES200201821A 2002-08-01 2002-08-01 MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE. Expired - Fee Related ES2201915B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES200201821A ES2201915B1 (en) 2002-08-01 2002-08-01 MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE.
AU2003254515A AU2003254515A1 (en) 2002-08-01 2003-07-31 Mesoporous and microporous aluminosilicates with high catalytic activity in acid catalytic reaction and method for the production thereof
PCT/ES2003/000397 WO2004014798A1 (en) 2002-08-01 2003-07-31 Mesoporous and microporous aluminosilicates with high catalytic activity in acid catalytic reaction and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200201821A ES2201915B1 (en) 2002-08-01 2002-08-01 MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE.

Publications (2)

Publication Number Publication Date
ES2201915A1 ES2201915A1 (en) 2004-03-16
ES2201915B1 true ES2201915B1 (en) 2005-06-01

Family

ID=31502888

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200201821A Expired - Fee Related ES2201915B1 (en) 2002-08-01 2002-08-01 MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE.

Country Status (3)

Country Link
AU (1) AU2003254515A1 (en)
ES (1) ES2201915B1 (en)
WO (1) WO2004014798A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678955B2 (en) 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
CN101003380B (en) * 2006-01-19 2010-05-12 中国石油化工股份有限公司 Method for synthesizing ZSM-5 zeolite with multilevel pore canals
KR101767658B1 (en) 2014-10-20 2017-08-14 주식회사 엘지화학 Core material for vacuum insulation panel comprising porous aluminosilicate and vacuum insulation panel with the core material
CN107519933B (en) * 2016-06-21 2019-10-11 中国石油天然气股份有限公司 Y/EU-1/SBA-15/ASA/MOF composite material and preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
FR2802120B1 (en) * 1999-12-14 2002-02-01 Inst Francais Du Petrole MICRO AND MESOPOROUS SILICOALUMINATE SOLID, PROCESS FOR PREPARATION, USE AS A CATALYST AND IN CONVERSION OF HYDROCARBONS
US6746659B2 (en) * 2000-05-25 2004-06-08 Board Of Trustees Of Michigan State University Ultrastable porous aluminosilicate structures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUISNET, M. et al. "Mechanisms of xylene isomerization over acidic solid catalysts". Microporous and Mesoporous Materials. Abril 2000. Vol. 35-36, páginas 47-59. Todo el documento. *
MORIN, S. et al. "Influence of the framework composition of commercial HFAU zeolites on their activity and selectivity in m-xylene transformation". Applied Catalysis A: General. 08 enero 1998. Vol. 166, páginas 281-292. Todo el documento. *

Also Published As

Publication number Publication date
ES2201915A1 (en) 2004-03-16
AU2003254515A1 (en) 2004-02-25
WO2004014798A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
Tanev et al. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds
Kim et al. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences
Biz et al. Synthesis and characterization of mesostructured materials
ES2209786T3 (en) SILICOALUMINATE AND MESOPOROUS SOLID, PREPARATION PROCEDURE, USE AS A CATALYST AND IN CONVERSION OF HYDROCARBONS.
US6331500B1 (en) Functionalized molecular sieves
ES2910829T3 (en) SCM-15 molecular sieve, synthesis method therefor and use thereof
Kimura et al. Ordered mesoporous silica derived from layered silicates
WO1994029022A1 (en) Structure material of the zeolite type with ultralarge pores and a lattice comprised of silicone and titanium oxides; its synthesis and utilization for the selective oxidation of organic products
Takata et al. Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NOx with ammonia
ES2392048T3 (en) Porous crystalline material (ITQ-24 zeolite), its preparation procedure and its use in the catalytic conversion of organic compounds
Miletto et al. Hierarchical SAPO‐34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates
KR20150100677A (en) Small crystal zsm-5, its synthesis and use
WO2001037629A2 (en) High surface microporous materials which are active in oxidation reactions. tiq-6 and metiq-6
ES2368812T3 (en) SOLID CRYSTALLIZED IZM-3 AND CORRESPONDING PREPARATION PROCEDURE.
WO2002030820A1 (en) Microporous crystalline material (itq-15), method for the preparation thereof and its use in processes for separating and transforming organic compounds
Corregidor et al. Composite ZSM-5/MCM-41 material obtained from a green resource and its enhanced catalytic performance in the reaction of vinyl acetate and isoamyl alcohol
US5614166A (en) Crystalline solids having the RUB-13 structure
Vinu et al. Characterization and catalytic performances of three-dimensional mesoporous FeSBA-1 catalysts
WO2002092511A1 (en) Porous crystalline material (zeolite itq-21), the preparation method thereof and the use of same in the catalytic conversion of organic compounds
ES2201915B1 (en) MESOPOROUS AND MICROPOROUS ALUMINOSILICATES WITH HIGH CATALYTIC ACTIVITY IN REACTIONS OF ACID CATALYSIS AND ITS PREPARATION PROCEDURE.
Oliveira et al. Basic catalytic properties of as-synthesized molecular sieves
WO2008116958A1 (en) Method for preparation of an aluminosilicate with ferrierite structure from gels containing tetramethyl ammonium and benzylmethylpyrrolidine, and uses thereof
ES2379501T3 (en) IM-17 crystallized solid and its preparation procedure
ES2206064B1 (en) MESOPOROUS STRUCTURES WITH HIGH CATALYTIC ACTIVITY IN ACID CATALYSIS REACTIONS AND THEIR PREPARATION PROCEDURE.
Srinivasu et al. Three‐Dimensional Mesoporous Gallosilicate with Pm3n Symmetry and its Unusual Catalytic Performances

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20040316

Kind code of ref document: A1

FD2A Announcement of lapse in spain

Effective date: 20180808