EP4355710A1 - Method for producing a sintered ceramic foam - Google Patents

Method for producing a sintered ceramic foam

Info

Publication number
EP4355710A1
EP4355710A1 EP22734298.7A EP22734298A EP4355710A1 EP 4355710 A1 EP4355710 A1 EP 4355710A1 EP 22734298 A EP22734298 A EP 22734298A EP 4355710 A1 EP4355710 A1 EP 4355710A1
Authority
EP
European Patent Office
Prior art keywords
foam
temperature
less
ceramic
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22734298.7A
Other languages
German (de)
French (fr)
Inventor
Laurent Pierrot
Laurie San-Miguel
Yannick MILLOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP4355710A1 publication Critical patent/EP4355710A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids

Definitions

  • the present invention relates to a process for the manufacture of a sintered ceramic foam, intended to filter a fluid, in particular to decontaminate the air, in particular the air of habitable closed spaces (homes, offices, passenger compartments of vehicles, ).
  • a first solution consists in mixing polymerizable monomers with the ceramic slip. Under particular conditions, the polymerization of the monomers leads to the consolidation of the foam. This process is described for example in patent EP 759 020 B1. On the other hand, the high cost of the monomers that can be used as well as the difficulty of controlling the polymerization conditions have prevented this technique from developing industrially.
  • One technique consists of mechanically introducing a gas into a slurry by stirring.
  • this process must be combined with a technique for consolidating the foam obtained.
  • One solution is to crosslink polymers in a ceramic slip.
  • this reticulation leads to the consolidation of the foam. This process is described for example in patent EP 330 963.
  • the high cost of the crosslinking agents that can be used as well as the difficulty of controlling the crosslinking conditions have prevented this technique from developing industrially.
  • FR 0408330 proposes a process for manufacturing a ceramic foam comprising the following successive steps: a) preparation of a mixture M containing a ceramic powder in suspension, at least one gelling agent and at least one foaming agent, a mixing temperature higher than the gelling temperature of said gelling agent, b) shearing of said mixture M at a foaming temperature higher than said gelling temperature, until a foam is obtained, c) gelling of said foam by cooling of said mixture M at a temperature below the gelation temperature of said gelling agent, d) drying of said gelled foam so as to obtain a preform, e) firing by treatment at high temperature of said preform so as to obtain a fired ceramic foam.
  • a stabilizing agent is added to said mixture M, the instantaneous viscosity of which, in Pa.s, increases by at least a factor of ten when a shear rate of said stabilizing agent decreases from 100 s 1 to 0 s 1 .
  • the inventors of the invention described in FR 0408330 have observed that the collapse of the foam during the implementation of the process according to EP 1 329 439 A1 occurs during a critical period extending between the end of the step of shearing and the onset of gelling. During this period, the gelling agent does not substantially contribute to the structural stabilization of the foam which, for thicknesses of more than 60 mm, collapses under its own weight.
  • the stabilizing agent is chosen for its ability to dramatically increase the viscosity of the mix as soon as the shear of the mix ceases, allowing the foam to be stiffened enough to prevent it from collapsing until the gelling agent gels and can exert its stabilizing function. It thus becomes possible to manufacture ceramic foam parts, of homogeneous density, having dimensions greater than or equal to 60 mm and/or having complex shapes (cone or hollow cylinder, portion of hollow sphere, etc.).
  • EP 1 778 601 A1 further improves this process in that the mixture M comprises silicon carbide and optionally a plasticizer, the firing being carried out under conditions allowing consolidation by the evaporation-recrystallization mechanism of said silicon carbide.
  • the direct foaming and gelling process is particularly suited to the production of large-sized parts.
  • An object of the invention is to meet, at least partially, this need.
  • the invention proposes a ceramic foam having a plurality of nested cells, delimited by ceramic walls and interconnected by interconnecting windows, the walls delimiting the cells being formed by sintering of grains, this agglomeration leaving interstices between the grains, the ceramic foam having a total porosity greater than 40%, preferably greater than 50%, preferably greater than 55%, or even greater than 60%, or even greater than 70% and preferably less than 90%, or even less than 85 %, or even less than 80%, the median pore size D50 preferably being less than 150 ⁇ m;
  • - pores larger than 300 ⁇ m representing less than 10%, preferably less than 5% by volume of said total porosity; and/or the D90 percentile by volume on the cumulative pore size distribution curve ranked in ascending order, measured by mercury porosimetry, is less than 250 ⁇ m, preferably less than 220 ⁇ m, preferably less than 200 ⁇ m, preferably less than 180 ⁇ m, and/or greater than 50 ⁇ m, preferably greater than 60 ⁇ m, preferably greater than 70 ⁇ m, preferably greater than 80 ⁇ m.
  • the ceramic foam also has one or more of the following characteristics: - the median pore size is between 1 and 400 ⁇ m;
  • the ceramic foam consists, for more than 80%, more than 90%, more than 95%, more than 99%, preferably substantially 100% of its mass, of a ceramic material, preferably of silicon carbide or cordierite or aluminum titanate or zirconia or alumina or mullite or silica, or a mixture of these materials, preferably silicon carbide, preferably recrystallized silicon carbide;
  • the ceramic foam consists, for more than 80%, more than 90%, more than 95%, more than 99%, preferably substantially 100% of its mass of a non-oxide ceramic material;
  • the ceramic foam comprises more than 80% by mass of recrystallized silicon carbide, the intergranular porosity preferably being greater than or equal to 5% and less than 25%, preferably greater than or equal to 10% and less than 20%;
  • the median pore size (D50 by volume, measured by mercury porosimetry) is greater than 1 ⁇ m, or even greater than 5 ⁇ m, greater than 7 ⁇ m, or even greater than 10 ⁇ m, preferably greater than 20 ⁇ m, preferably greater than 30 ⁇ m, preferably greater than 40 ⁇ m, or even greater than 50 ⁇ m, preferably greater than 60 ⁇ m, preferably greater than 70 ⁇ m, preferably greater than or equal to 75 ⁇ m and/or less than 145 ⁇ m, less than 140 ⁇ m , less than 130 ⁇ m, preferably less than 120 ⁇ m;
  • the percentile D10 by volume on the cumulative distribution curve of the pore sizes classified in ascending order, measured by mercury porosimetry, is preferably greater than 5 ⁇ m, preferably greater than 8 ⁇ m;
  • the D90 percentile by volume on the cumulative distribution curve of the pore sizes classified in ascending order, measured by mercury porosimetry, is preferably greater than 80 ⁇ m, preferably greater than 100 ⁇ m, and/or less than 250 ⁇ m, of preferably less than 180 ⁇ m;
  • the difference D90-D10 is less than 250 ⁇ m, or even less than 200 ⁇ m, or even less than 180 ⁇ m and/or greater than 40 ⁇ m, or even greater than 50 ⁇ m;
  • the (D90 - Dio)/Dso ratio is preferably less than 2, preferably less than 1.8, preferably less than 1.7, preferably less than 1.6, preferably less than 1.5, of preferably less than 1.4, preferably less than 1.2, preferably less than or equal to 1.1 and/or greater than 0.8, preferably greater than 0.9, preferably greater than 1.0;
  • the ceramic foam has a pore size distribution, measured with a mercury porosimeter, which is bimodal and has first and second peaks principal centers centered on first and second pore sizes comprised between 4 and 30 ⁇ m and between 40 and 180 ⁇ m, respectively, the intergranular porosity, represented by the first peak, being greater than or equal to 5% and less than 25%;
  • said second pore size is greater than 50 ⁇ m and/or less than 160 ⁇ m;
  • said first pore size is greater than 7 ⁇ m and less than 20 ⁇ m;
  • the tortuosity is greater than 1 and less than 2, or even less than 1.9, or even less than 1.8, or even less than 1.7, or even less than 1.6, preferably less than 1.5, preferably less than 1.3, preferably less than 1.2;
  • the ceramic foam comprises a surface layer having a total porosity of less than 0.95 times the porosity at the center of the ceramic foam, the pores of the surface layer preferably having a median size greater than 1 ⁇ m and less than 20 ⁇ m, the total porosity of the surface layer preferably being greater than 30% and less than 70%, the thickness of the surface layer preferably being between 5 and 500 ⁇ m;
  • all the grains preferably have an average aspect ratio, on average over all the grains, of less than 2, preferably less than 1.5, the aspect ratio being conventionally the ratio L/l where L denotes the grain length, i.e. its largest dimension, and 1 designates the width of the grain, i.e. its largest dimension in any transverse plane perpendicular to the direction of the length;
  • the ceramic foam has a thickness greater than 60 mm or greater than 80 mm;
  • - V is the speed of the fluid at the inlet of the foam in ms -1 relationship in which n is between 1 and 2, preferably n is less than 1.7, or even n is less than 1.5, and K is between 130 and 200, preferably between 140 and 180, more preferably between 140 and 160.
  • x is the sign “multiplied by”.
  • the invention also relates to a process for manufacturing a ceramic foam, and in particular a ceramic foam according to the invention, said process comprising the following successive steps: a) preparation of a mixture M containing at least one ceramic powder in suspension in water, at least one gelling agent and at least one foaming agent, at a mixing temperature higher than the gelling temperature of said gelling agent, b) shearing of said mixture M at a foaming temperature higher than said temperature gelation, until an intermediate foam is obtained, c) gelation of said intermediate foam by cooling said intermediate foam to a temperature at least twice, preferably at least three times, more preferably at least five times lower than the gelation temperature of the gelling agent, in °C, d) drying of said gelled foam so as to obtain a preform whose humidity after drying is preferably less than 1%, e) curing said preform at high temperature, preferably greater than 1300°C and less than 2300°C.
  • a method according to the invention advantageously allows the manufacture of a foam having a structure particularly well suited to filtration.
  • This structure is characterized in particular by a tight distribution of the size of the interconnection windows between the cells, with a limited quantity of large pores.
  • the method according to the invention also allows structural stabilization of the intermediate foam without having to resort to a stabilizer.
  • This stabilization allows good control of the porosity, but also the manufacture of a ceramic foam of great thickness, without sagging, in an industrial manner.
  • the method according to the invention also has one or more of the following characteristics:
  • step c) the cooling rate in step c) is greater than 20° C./minute, preferably greater than 30° C./minute;
  • the cooling is quenching, that is to say that the intermediate foam is directly subjected to the lower temperature at a temperature at least twice, preferably at least three times, more preferably at least five times lower as the gelation temperature of the gelling agent, in °C;
  • step c) the cooling rate in step c) is determined so that in less than 30 minutes, preferably in less than 15 minutes, the temperature at the heart of the intermediate foam is less than 0.5 times the gelation temperature , preferably less than 0.2 times the gelation temperature of the gelling agent;
  • step c) the gelation in step c) is preferably carried out in a climatic oven used in step d) for drying, or the gelled foam resulting from step c), still substantially at the temperature implemented at the step c), is placed in a climatic oven used in step d) for drying;
  • the gelled foam from step c) is preferably at least partly dried at controlled humidity and temperature;
  • step d) comprises a drying operation by gradually increasing the temperature, by controlling the humidity of the environment of the gelled foam
  • the gelled foam from step c) is preferably dried in a climatic oven under forced ventilation, preferably for a period greater than 1 hour, preferably greater than 24 hours, 48 hours , at 72 h, at 96 h, at 120 h, and/or less than 1 week, the temperature in the climatic oven being preferably gradually increased during step d), preferably in stages, everything being kept below the gelation temperature;
  • step d) in addition to or alternatively to drying in a climatic oven, the gelled foam from step c) is dried supercritically, preferably in an autoclave,
  • the gelled foam from step c) is preferably deep-frozen or deep-frozen;
  • the drying in a climatic oven and/or by supercritical means is preferably continued until the residual humidity of the gelled foam reaches an intermediate value, preferably less than 95%, preferably less than 90% of the initial humidity.
  • the drying is continued until the residual humidity of the gelled foam is less than 10%, preferably less than 5%.
  • the drying is preferably continued by heating, preferably at a temperature above 40° C., until the residual humidity of the gelled foam is less than 1%;
  • the supercritical drying is preferably continued until the residual humidity of the gelled foam is less than 3%, preferably less than 2%, preferably less than 1%;
  • the firing of the preform is preferably carried out in a non-oxidizing atmosphere, preferably under argon, preferably at a temperature above 1400°C.
  • step c) the intermediate foam is subjected, preferably at the start of step c), preferably for more than 10 h, preferably more than 20 h, and/or less than 72 h, preferably less than 48 h, preferably less than 30 h, at a temperature below 10°C, preferably below 6°C.
  • step d) comprises drying partially or totally carried out in a climatic oven and/or by supercritical means.
  • the drying, at least partially carried out in a climatic oven and/or by supercritical means preferably begins from the start of the drying, and preferably continues until the residual humidity of the gelled foam is less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 20%, preferably less than 10%, preferably less than 5%, preferably less than 3%, preferably less than 2%, preferably less at 1%, preferably at a temperature always below the solidification temperature of the intermediate foam.
  • the difference between the solidification temperature of the intermediate foam in step b) and the temperature at the heart of the gelled foam, that is to say at the barycenter of the gelled foam, is preferably always below 7°C.
  • the gelled foam is cooled to a temperature below -20°C, preferably below -30°C, preferably below or equal to -40°C.
  • step d) comprises supercritical drying
  • the intermediate foam is subjected, in step c), preferably at the start of step c), to a lower temperature at the solidification temperature of the intermediate foam and/or at the gelling temperature of the gelling agent, preferably until complete freezing of said intermediate foam.
  • the invention finally relates to the use of a porous ceramic according to the invention or of a ceramic foam produced by means of a process according to the invention, for catalysis supports, for the filtration of liquids or hot gases. , as a diffuser (heated part allowing the air/gas mixture necessary for combustion to pass) in a gas burner, in a solar volumetric receiver, or as a gazetteer part (cooking supports).
  • decontaminate we mean to deactivate, preferably eliminate, one or more human pathogens transmissible by the respiratory route and contained in the air.
  • “Ceramic” is any non-metallic and non-organic material.
  • recrystallized silicon carbide silicon carbide recrystallized by high temperature treatment of the ceramic foam, and in particular of the ceramic foam. Recrystallization is a well-known phenomenon corresponding to a consolidation by evaporation of the smallest grains of silicon carbide then condensation to form the bond with the largest grains.
  • the residual humidity can be evaluated by measuring the loss in weight of the gelled foam resulting from step c) due to heating to extract all the water therefrom, conventionally at atmospheric pressure, conventionally in a moisture meter or "desiccator".
  • the heating temperature is preferably lower than 150°C, preferably lower than 140°C, preferably lower than 130°C, preferably lower than 120°C, preferably about 110°C.
  • the residual moisture is expressed as a mass percentage based on the weight of the gelled foam obtained at the end of step c), that is to say is equal to (mo-mi)/mo, mo and nu denoting the weight of the gelled foam at the end of step c) and at after drying, respectively.
  • pores refers to all pores.
  • the pore size can be determined, for example, by tomography or using a mercury porosimeter.
  • a mercury porosimeter thus makes it possible to establish a distribution of pore sizes by volume, that is to say to determine, for each pore size , a volume occupied by the pores having this size.
  • a bimodal pore size distribution has two main peaks, i.e. which exhibit the highest peaks.
  • the pore size distribution can also be represented cumulatively, with pore sizes ranked in ascending order. Each pore size is thus associated with a percentile which corresponds, on the cumulative distribution curve, to the percentage of the volume of the total porosity which is constituted by pores having a size less than said cut. For example, 10%, by volume, of the pores have a size less than the 10th percentile and 90% of the pores, by volume, have a size greater than or equal to this percentile.
  • the Dio, D50 and D90 percentiles of the pore population are therefore the pore sizes corresponding respectively to the percentages of 10%, 50%, 90% on the cumulative distribution curve of pore size distribution classified in ascending order.
  • the 50th percentile is the median size of a pore population. This size divides, by volume, said population into two groups: a group representing 50% of the pore volume and whose pores have a size less than the median size and another group representing 50% of the pore volume and whose pores have a size greater than or equal to said median size.
  • the total porosity in percentage, is typically equal to 100 x (1 - the ratio of the geometric density divided by the absolute density).
  • the closed porosity typically represents less than 10% of the total porosity, preferably less than 5%, or even less than 1% of the total porosity.
  • the geometric density is measured according to standard ISO 5016:1997 or EN 1094-4 and expressed in g/cm 3 . It is conventionally equal to the ratio of the mass of the sample divided by the apparent volume.
  • the absolute density value is conventionally measured by dividing the mass of a sample by the volume of this ground sample so as to substantially eliminate the porosity.
  • Open porosity the porosity attributable to all the accessible pores. Open porosity can be measured according to ISO15901-1.
  • the tortuosity is measured by nano tomography.
  • the images have a resolution suitable for binarization.
  • the use of software such as iMorph ⁇ makes it possible to obtain a geometric characterization in three dimensions and to calculate the tortuosity.
  • the tortuosity is defined as the ratio between the length of the shortest path allowing the sample to cross in the direction of its thickness, within its porosity, and the length of the straight line segment joining the starting point and the starting point. arrival corresponding to this route, i.e. the distance between these points.
  • "Include”, “behave” and “present” shall be construed broadly and not limiting, unless otherwise specified.
  • EP 1 778 601 in particular provides sufficient technical details to implement steps a) to e).
  • step a the procedure is as follows: First, a slip A is prepared by dispersing the ceramic powder and a dispersant in water, according to a conventional technique,
  • the quantity of ceramic powder in the slip A is preferably between 50 and 90% by weight, preferably between 70 and 85% by weight, of the slip A.
  • the mixture M contains from 50 to 80%, of preferably 60 to 80%, by weight of ceramic particles.
  • the nature of the ceramic powder is adapted according to the ceramic foam to be manufactured.
  • the powder can be a mixture of particles or a silicon carbide powder whose particle size distribution is preferably bimodal.
  • the first mode is preferably less than 5 ⁇ m, more preferably less than 3 ⁇ m, preferably always less than 1 ⁇ m, and the second mode is preferably greater than 10 ⁇ m, preferably greater than 20 ⁇ m.
  • Such a particle size distribution advantageously makes it possible to obtain a ceramic foam having a particularly developed intergranular porosity.
  • the state of dispersion can be obtained by adjusting the pH of the slip in the aqueous phase comprising the mixture or the SiC mineral powder by adding sodium hydroxide.
  • the pH is adjusted to be between 10 and 11.
  • the dispersant for example a surfactant of the polyacrylate type, is chosen so as to be effective at the mixing temperature.
  • the viscosity of the slip is such that the flow rate in a DIN 4 CUP type die is between 20 and 40 seconds at 43° C., preferably between 30 and 36 seconds, and/or between 10 and 30 seconds at 53°C, preferably between 18 and 28 seconds, in particular for use with a premix B comprising a gelatin type gelling agent.
  • a premix B is also prepared by dissolving the gelling and foaming agents and optionally a stabilizing agent and/or a hardening agent and/or a plasticizing agent in water, at a temperature above the gelation temperature of the gelling agent, by solubilization in a liquid, preferably water.
  • the gelling agent is preferably a hydrocolloid of animal or plant origin capable of thermoreversibly gelling said composition after foaming, for example gelatin, carrageenan, or a mixture thereof.
  • the stabilizing agent can be any. Preferably, it has the property of having a viscosity which increases by at least a factor of ten when the gradient of its shear rate decreases from 100 s 1 to 0 s 1 . Preferably, the stabilizing agent is chosen so that the viscosity of the mixture M during the shearing is slightly increased due to its incorporation into this mixture.
  • the stabilizer is chosen to be reversible.
  • the stabilizing agent and the gelling agent are chosen so that:
  • the viscosity of the gelled foam is greater than or equal to that of a gelled foam obtained from a mixture identical to mixture M but which does not contain any stabilizing agent, and
  • the foaming agent preferably a soap
  • the foaming agent is preferably added to premix B in a proportion of between 25 and 75% by weight of said premix. More preferably, the quantity of foaming agent is determined so that its content in the mixture M is between 0.5 and 3% by weight.
  • a plasticizer preferably an addition based on glycerol, preferably glycerin, is preferably added to the premix B in a proportion of between 0.5 and 2.5%, preferably between 1 and 2% by weight of the mass of ceramic powder.
  • the hardening agent is chosen from polyvinyl alcohols.
  • the mixture M may also contain one or more thermoplastic binders usually used in ceramics. Slip A and the pre-mixture under mechanical stirring, the temperature, called “mixing temperature”, being maintained above the gelation temperature of the gelling agent.
  • the pre-mixtures A, and B are mixed immediately after their preparation to form the mixture M.
  • the pH of the pre-mixture B can be acidic, basic or neutral and is preferably chosen so as to allow good dispersion with premix A.
  • the aqueous premix B comprises the gelling agent consisting of gelatin, the foaming agent, a plasticizing agent such as glycerin and a hardener diluted in 50 to 70% demineralized water heated in a water bath at 55°C.
  • a stabilizer can be added, as described in EP 1 778 601, but the presence of a stabilizer is optional.
  • the mixture M contains no stabilizer.
  • An absence of stabilizer is advantageous in reducing the size of the cell porosity, which is beneficial when it comes to air filtration.
  • a plasticizer is added to said mixture M in an amount by weight of between 0.25 and 1 times that of said gelling agent.
  • the plasticizer is chosen to burn at a temperature above the evaporation temperature of the liquid used, in step a), to suspend the ceramic powder, generally and preferably water, preferably demineralised.
  • step b) the mixture M is sheared so as to foam. Shearing can result from mechanical agitation, gas blowing, or any combination of these two techniques. In the case of gas insufflation, it is preferable to use a membrane provided with calibrated holes.
  • Step b) if the viscosity of the stabilizer is reversible under the effect of shear, the shear reduces the viscosity of the mixture.
  • Step b) is carried out at a temperature higher than the gelation temperature of the gelling agent, for example the mixing temperature.
  • the shearing time is preferably greater than 25 min.
  • the viscosity of the mixture before mechanical stirring or foaming is between 1 and 6 Pa.s measured at a shear rate of 50 s 1 between 35 and 65°C, preferably between 38 and 55°C.
  • the shearing is stopped, then, optionally, the intermediate foam is poured into a mould.
  • step c) the intermediate foam is cooled as quickly as possible to a temperature, in °C, at least 2 times, even at least 3 times or even at least five times lower than the gelation temperature of the gelling agent, preferably up to a temperature below 10°C, preferably between 0.5 and 8°C.
  • Gelation advantageously makes it possible to obtain a gelled foam that is sufficiently rigid to be handled without degrading. The process therefore lends itself well to industrial implementation.
  • the intermediate foam obtained at the end of step b) is suddenly cooled (quenching), preferably at a cooling rate greater than 20° C./minute, preferably greater than 30° C./minute.
  • the intermediate foam is cooled immediately after the end of step b), preferably less than 5 minutes after the end of step b).
  • step c) the intermediate foam is subjected, preferably at the start of step c), to a temperature below the solidification temperature of the intermediate foam, preferably until freezing. complete with said intermediate foam.
  • freezing is particularly useful when step d) includes supercritical drying.
  • the solidification temperature of the intermediate foam is generally substantially equal to the gelling temperature of the gelling agent.
  • the intermediate foam is placed in a climatic oven before being cooled, and in particular in a climatic oven used in step d).
  • the rapid cooling advantageously makes it possible to gel the intermediate foam without substantially modifying its structure.
  • step d) the gelled foam from step c) is preferably dried so as not to modify the structure of the gelled foam obtained at the end of step c).
  • this structure is modified when at least part of the drying, in particular at the start of the drying, is carried out at a temperature higher than the gelation temperature of the gelling agent or the solidification temperature of the foam intermediate.
  • this structure is however modified when the drying time is long, for example when the drying is carried out at a temperature below said gelation or solidification temperature, in the open air.
  • Drying carried out in a climatic oven and/or by supercritical means advantageously makes it possible to preserve the structure of the gelled foam, even in the absence of stabilizer.
  • the drying in a climatic oven and/or the sublimation by the supercritical route is/are continued until the residual humidity of the gelled foam is less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 20%, preferably less than 10%.
  • the drying in a climatic oven and/or the sublimation by supercritical means is/are continued until the residual humidity of the gelled foam is less than 10%, preferably less than 5%, more preferably still less 2% or even less than 1%.
  • the drying is carried out in an autoclave, preferably in a freeze-dryer, and is continued until the hygrometry of the enclosure of the autoclave or of the freeze-dryer is lower to 500, preferably less than 400, preferably less than 300 ppm by mass of water in the enclosure.
  • Drying in a climatic oven consists of placing the gelled foam in an environment with a water vapor pressure higher than the water vapor pressure of the free air, preferably at a water vapor pressure close to the saturation pressure. By maintaining this pressure, the gelled foam dries slowly and very evenly, without skin effect, as when drying in the open air. This results in a reduction of the stresses on the gelled foam.
  • Supercritical drying consists of placing the gelled foam in an environment in which the liquid phase, mainly consisting of water, and previously frozen, is sublimated or “freeze-dried”. Sublimation advantageously makes it possible to avoid degradation of the structure due to the movements of the liquid phase, in particular by gravity. In particular, it avoids any softening, even local, of the gelled foam.
  • Sublimation conditions can be determined conventionally, by producing a phase diagram. On such a diagram, the sublimation conditions correspond to a set of points each defining a critical pressure and a critical temperature in which sublimation occurs.
  • a critical temperature of the liquid phase of gelled foams is typically around -15°C to -20°C for a pressure of 1 mbar.
  • the temperature at the core of the gelled foam can increase, but is preferably controlled, preferably by regulating the vacuum or "residual" pressure in the enclosure, so as to always remain below the gelling temperature of the gelling agent (or at the solidification temperature of the intermediate foam) and at the critical temperature Te of the liquid phase of the gelled foam, and so that the difference, in absolute value, between these temperatures is preferably less than 7°C, and preferably greater than 1°C, or even greater than 2°C.
  • This limitation of the temperature difference advantageously makes it possible to accelerate the drying without weakening the alveolar structure of the foam.
  • the vacuum pressure is conventionally imposed by means of a pump which ensures the vacuum and the evacuation of the water vapor extracted from the gelled foam.
  • the temperature of the enclosure of the freeze-dryer is left to evolve freely, the initial temperature being low enough for the residual humidity of the gelled foam to reach the desired level without the temperature at the heart of the foam not exceeds the gelling temperature of the gelling agent (or at the solidification temperature of the intermediate foam) nor the critical temperature, the difference, in absolute value, between these temperatures remaining below 7°C, preferably below 5°C and preferably above 1°C, or even above 2 °C.
  • Supercritical drying advantageously makes it possible to quickly reach a low residual humidity, preferably less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 20%, preferably less than 10% , for example in less than 7 days, less than 5 days, less than 3 days, less than 2 days, or even less than 1 day, or less than 12 hours.
  • the drying time depends on the capacity of the autoclave or freeze dryer, the porosity of the gelled foam and the dimensions of the gelled foam to be dried.
  • the application of the critical pressure and the temperature control can be carried out in a vacuum chamber equipped with heating plates.
  • Lyophilizers such as those supplied by the company Cryotec, for example described on the page http://www.cryotec.fr/nos-produits/lyophiliseur/ may be suitable.
  • the sublimation step is preceded by a slow reduction in temperature, preferably at a rate of less than 10°C/h, preferably less than 7°C/h, preferably less than 5°C /h up to a temperature preferably below
  • the first process includes the following two operations:
  • a first drying operation consists in gradually increasing the temperature while maintaining it below the gelation temperature, preferably in a climatic oven, preferably in the climatic oven used for the gelation.
  • the temperature and the humidity are regulated, preferably until the interior of the oven is substantially saturated with humidity, and a forced ventilation makes it possible to extract the water.
  • the temperature is preferably increased as the residual moisture of the gelled foam decreases, without exceeding the gelling temperature.
  • the temperature is preferably increased for a period of more than 1 hour, from preferably greater than 24 h, 48 h, 72 h, 96 h, 120 h, and/or less than 1 week. It can be increased in steps or gradually, preferably in steps.
  • This first drying operation is preferably continued until the residual humidity of the gelled foam reaches an intermediate value, preferably less than 95%, preferably less than 90% of the initial humidity.
  • the first drying operation is continued until the residual humidity of the gelled foam is less than 10%, preferably less than 5%, and/or greater than 2%, preferably greater than 3% or 4%.
  • the gelled foam is placed in a climatic oven under forced ventilation according to the following cycle:
  • step c at 25°C at 80% humidity until at least 70% preferably at least 89%, more preferably at least 90% humidity loss, based on foam humidity gel obtained at the end of step c).
  • the first drying operation may comprise supercritical drying, preferably in an autoclave, preferably in a lyophilizer.
  • the intermediate foam is frozen beforehand, so as to solidify the entire liquid phase.
  • Supercritical drying conventionally consists in slowly increasing the temperature and the pressure surrounding the intermediate foam before depressurizing preferably at constant temperature, after passing above the critical point of the liquid phase.
  • the second drying operation preferably immediately follows the first drying operation. It preferably comprises drying at a temperature above 40°C, at 50°C, 60°C, 80°C or 100°C, preferably until the residual moisture is reduced to less than 1%.
  • the second drying operation preferably carried out in a drying oven, is carried out according to the following cycle:
  • the preferred drying conditions described above advantageously make it possible to freeze the structure of the foam, even in the absence of stabilizing agent, which facilitates the control of this structure and in particular makes it possible to limit the size of the pores, in particular of so that the pores larger than 300 ⁇ m represent less than 10% by volume of the porosity.
  • intergranular porosity can be increased by increasing the particle size of the ceramic powder.
  • the second process includes the following three operations:
  • the gelled foam resulting from step c) is placed in a lyophilizer.
  • the temperature of the foam in step c) is preferably a temperature below 8° C. and preferably above 0.5° C. in order to allow easy handling in an industrial environment.
  • the intermediate foam is cooled immediately after the end of step b), preferably in the enclosure of the lyophilizer at normal pressure of 1 bar.
  • the temperature of the freeze dryer is then lowered to a temperature below the critical temperature of the foam, preferably to a temperature below -20°C, preferably below -30°C, depending on the dimensions of the foam, the density of foam and freeze dryer load.
  • the pressure of the freeze dryer is lowered in order to obtain a partial vacuum corresponding to a residual pressure of less than 5 millibars, preferably less than 2 millibars.
  • the residence time in the vacuum chamber is between two hours and 1 week.
  • the second operation can be stopped when the residual water in the foam has been completely eliminated, i.e. when the freeze-dryer pump no longer extracts water and/or when the temperature difference between the core foam and the enclosure is below 5°C and/or the humidity in the enclosure is substantially zero (less than 200 to 300 ppm by mass of water).
  • the temperature of the freeze-dryer enclosure is maintained until room temperature (20°C), the foam can then be extracted from the freeze-dryer.
  • the ceramic foam After stoving and before or after firing by high temperature treatment, the ceramic foam can be machined to obtain a part with the desired dimensions.
  • step e) the preform from step d) is calcined in air, at its sintering temperature, namely 1200-1500°C for cordierite and 1400-2300°C for alumina, mullite or zirconia or silicon carbide.
  • sintering temperature namely 1200-1500°C for cordierite and 1400-2300°C for alumina, mullite or zirconia or silicon carbide.
  • Possible conditions for the high temperature sintering of silicon carbide are for example described in FR 2 313 331.
  • the conditions for firing in step e) making it possible to manufacture ceramic foams according to the invention are well known, the recrystallization of silicon carbide being an old technique.
  • the preform is calcined under a non-oxidizing atmosphere, preferably under a neutral atmosphere, more preferably under argon, at a temperature making it possible to obtain recrystallized silicon carbide, preferably between 1800 and 2500° C., preferably between 2050 and 2350°C.
  • the ceramic powder used in step a) comprises or consists of non-oxide ceramic material
  • the firing of said preform in step e) is preferably carried out under a non-oxidizing atmosphere, preferably under argon, at a temperature above 1400°C and below 2300°C.
  • the ceramic foam has cells, of generally spherical shape, formed by agglomeration of grains, this agglomeration leaving interstices, or “intergranular pores” between the grains.
  • the walls thus have a so-called “intergranular” porosity.
  • the intergranular porosity is therefore constituted by the interstitial spaces that necessarily create between grains the agglomeration of these grains.
  • the cells are interconnected by interconnect windows.
  • Surface cells emerge through openings to the outside.
  • Interconnection porosity is created by "cellular pores", namely the interconnection windows between cells and the outward openings of surface cells.
  • the intergranular porosity is a function of the grain size of the ceramic powder, in particular of silicon carbide, used.
  • the interconnection porosity is a function of the foaming agent used, in particular according to its quantity in the starting charge which is shaped to form the preform.
  • intergranular porosity indeed confers both a very large available surface and a low density. Foams with intergranular porosity are therefore effective for filtration and/or as support for a coating for inactivating one or more pathogenic agents, and/or as catalyst support, while being light.
  • the median size of the intergranular pores is 10 to 100 times smaller than that of the cellular pores.
  • the pore size distribution is bimodal. More specifically, the porosity distribution, measured with a mercury porosimeter, has a first main peak centered on a first pore size and a second main peak centered on a second pore size.
  • the first pore size is taken as the median intergranular pore size, and is representative of the intergranular porosity. It is preferably less than 25 ⁇ m, or even less than 20 ⁇ m and greater than 4 ⁇ m, preferably greater than 7 ⁇ m, preferably greater than 10 ⁇ m, preferably greater than 13 ⁇ m.
  • the intergranular porosity is at least 5%, preferably at least 8%, more preferably at least 10% and/or less than 25%, or even less than 20%.
  • the second pore size is taken as the median cellular pore size and is representative of an interconnecting porosity, substantially constituting the complement to 100% of the intergranular porosity. It is preferably less than 400 ⁇ m, even less than 300 ⁇ m, even less than 200 ⁇ m, even less than 180 ⁇ m, even less than 160 ⁇ m, preferably less than 150 ⁇ m, even less than 140 ⁇ m, preferably less than 130 ⁇ m, and preferably greater than 40 ⁇ m, or even greater than 50 ⁇ m, or even greater than 80 ⁇ m.
  • At least part of the surface defined by the porous network of the ceramic foam is coated with a coating for inactivating one or more pathogenic agents, and/or with a catalytic coating suitable for a reaction of at least one air pollutant.
  • Ceramic foam also has the advantage of being able to be cleaned and/or purified to be reused. It therefore generates little waste.
  • one or more surface layers can be deposited superimposed on the surface of the ceramic foam.
  • the ceramic foam may comprise a porous body coated with one or more surface layers, the total porosity and/or the median pore size of the surface layers being different, preferably less than the total porosity at the barycentre of the porous body.
  • the total porosity of the surface layer is less than 0.95, 0.90 or 0.8 times the total porosity at the barycenter of the porous body.
  • the total porosity of the surface layer is greater than 30%, or even greater than 35% and preferably less than 70%, or even less than 60%, or even less than 50%.
  • the pores of the surface layer have a median size greater than 1 ⁇ m, or even greater than 2 ⁇ m, or even greater than 3 ⁇ m and less than 20 ⁇ m, or even less than 10 ⁇ m, or even less than 5 ⁇ m.
  • the thickness of the surface layer is preferably between 5 and 500 ⁇ m, preferably greater than 10 ⁇ m and/or less than 400 ⁇ m, or even less than 200 ⁇ m, or even less than 100 ⁇ m.
  • the ceramic foam comprises several said superimposed superficial layers starting from the surface of the porous body, the superimposed superficial ceramic layers having respective total porosities and/or different median pore sizes.
  • the surface layer(s) may be spaced from the porous body.
  • the total porosity and/or the median pore size is lower the further the surface layer is from the porous body. There is thus a total porosity gradient, the total porosity and the median size of the layer defining the inlet face of the fluid to be filtered being lower than those of the other layer(s).
  • the total porosity of a surface layer is greater than 30%, or even greater than 35% and preferably less than 70%, or even less than 60%, or even less than 50%.
  • the pores of a surface layer preferably of each surface layer, have a median size greater than 1 ⁇ m, or even greater than 2 ⁇ m, or even greater than 3 ⁇ m and less than 20 ⁇ m, or even less than 10 ⁇ m, or even less than 5 pm.
  • the thickness of a surface layer is preferably between 5 and 500 ⁇ m, preferably greater than 10 ⁇ m and/or less than 400 ⁇ m, or even less than 200 ⁇ m, or even less at 100 p.m.
  • the different layers can result from the juxtaposition of different unitary ceramic foams or from the projection of an adherent coating on the surface of the porous body or from the impregnation of a part of the porous body in order to locally modify its porosity. .
  • a so-called surface layer can be obtained by impregnating part of the thickness of the preform with a slip based on silicon carbide.
  • the slip may optionally include blowing agents such as a foaming agent. The slip then at least partially fills the pores. After sintering, it thus leads to a so-called surface layer.
  • the impregnated part extends from the inlet face of the fluid to be filtered.
  • a variable porosity depending on the depth advantageously makes it possible to mechanically trap particles of different sizes, and therefore to broaden the spectrum of possible applications.
  • the ceramic foam does not have a coating. It then acts as a pure filter.
  • the raw materials used have been chosen from:
  • RHODOVIOL(R) 4/125 a hardener based on polyvinyl alcohol with a low rate of hydrolysis (88 mol%) marketed by Rhodia PPMC;
  • the proportions of the silicon carbide powders and the additives used to make the foam mixtures are provided in the following Table 1.
  • SiCi, S1C2, and S1C3 designate the mass percentages of the three silicon carbide powders used, based on the mineral material.
  • the percentages of the additives are provided on the basis of the mass of the mineral material (SiC).
  • the ceramic foam of example 1 was made from the teaching of W02006018536A1, in particular examples 21 to 23.
  • the aqueous premix B comprising the gelatin, the foaming agent, the glycerin and the hardener diluted in 58% demineralized water was heated in a water bath at 55°C.
  • the slip in aqueous phase A comprising the SiC mineral powders, the mass load of which is 80% and the pH of which has been adjusted by adding sodium hydroxide to 10.5, was added to the premix B.
  • step b) After constant mechanical stirring for 28 minutes (step b)), the intermediate foam obtained was cast, at ambient temperature (20° C.), in a mold making it possible to manufacture a preform of dimensions 600mm ⁇ 400mm ⁇ 65mm.
  • the mold was placed in a climatic oven under forced ventilation.
  • the temperature in the oven was lowered to 5°C to gel the intermediate foam (step c)).
  • step d the gelled foam obtained was dried (step d)), in the climatic oven, according to the following cycle (first drying operation):
  • the mold was then placed in a conventional drying oven according to the following cycle (second drying operation): rise at 25°C/h up to 100°C; hold for 4 hours at 100°C; free descent down to 20°C.
  • the foam thus dried had a residual humidity of less than 1%, measured on a sample using a Mettler humidity meter at 110°C. After demoulding, the preform resulting from the drying was baked at 2240°C for 3 hours under Argon in order to obtain a recrystallized silicon carbide foam plate (step e))
  • the ceramic foam of example 2 was made according to the same process as the foam of example 1, but the mechanical agitation during the foaming step was carried out for 20 minutes.
  • the foam of Example 2 therefore incorporates less air.
  • the ceramic foam of Example 3 was produced using the same process as the foam of Example 2 but, unlike Example 2, after pouring the foamy mixture, the mold was placed in an oven at 15 °C in order to cool and gel it without ventilation.
  • the foam temperature of approximately 15°C was reached between 12 and 24 hours before drying without ventilation at 110°C for 24 hours.
  • the foam thus dried had a residual humidity of less than 1%, measured on a sample using a Mettler humidity meter at 110°C.
  • the ceramic foam of example 4 was produced using the same process as the foam of example 2 but unlike example 2, after casting the foamy mixture of a sample of 300mm x 400mm x 65mm, the mold was placed for 24 h in a pilot freeze-dryer supplied by Cryotec, initially set at 5° C. and at atmospheric pressure, then the temperature of the freeze-dryer enclosure was reduced to -40° C. in 10 h. A vacuum was then created in order to maintain a residual pressure of 1 mbar +/-0.5 mbar. The vacuum was maintained for 48 h until the pump had evacuated all the residual water. It was noted that at this time, the temperature difference between the core of the foam and the temperature of the enclosure was less than 5°C.
  • the temperature of the freeze-dryer enclosure was around 20°C.
  • the pressure was gradually raised, in around 10 minutes, to reach atmospheric pressure before the foam came out and was removed from the mould.
  • the foam thus dried had a residual humidity of less than 1%, measured on a sample using a Mettler humidity meter at 110°C.
  • the foams have the classic cellular or "honeycomb" structure of foams.
  • they have a structure in which the cells are dispersed substantially randomly in the three dimensions of space.
  • the diameter of the cells is of the order of a hundred micrometers.
  • foams finally exhibit high macropore connectivity and high specific surface area, which leads to high permeability.
  • the cells each define a volume of generally spherical shape because they are formed by the agglomeration of ceramic grains around air bubbles.
  • Pore volume and size were measured according to ISO 15901-1.2005 standard using an Autopore IV series 9500 Micromeritics porosimeter, by Mercury intrusion, up to
  • the pore size distribution curve shows two main peaks centered on the first and second pore sizes, reported in Table 1.
  • the area of the 1st peak corresponds to the volume of intergranular pores of the walls delimiting the foam cells .
  • the pressure drop was measured at a temperature of 20°C and under a flow of dry air of 60 liters / minute, on average over 5 pellets of 36 mm in diameter and 4 mm in height taken from the heart of each plate of mousse. The lower the pressure drop, the better the performance.
  • the equibiaxial bending strength was measured according to the ASTM C 1499 2009 standard, on average on 5 pellets of 36 mm in diameter and 4 mm in height taken from the core of each foam plate. The higher the mechanical strength, the better the performance.
  • the filtration efficiency was evaluated with regard to the NF-EN 14683 standard.
  • examples 1, 2 and 4 are particularly suited to the intended application. In particular, they have very good filtration efficiency and mechanical resistance. Examples 1 and 4 also have a very low pressure drop. Example 3 is not preferred due to high pressure drop.
  • the inventors explain the remarkable performances of the ceramic foams according to the invention, with bimodal distribution of the pores, by the very specific structure of the cells of the foam.
  • the interconnection windows between the cells indeed make it possible to provide tortuous channels through the foam. These tortuous channels reduce pressure drop and yet are effective in filtering particles much smaller than their cross sections. Filtration therefore does not necessarily result blocking of particles when they are pushed by the air flow through pores of smaller dimensions, as in conventional sintered material filters used for example to filter exhaust gases.
  • the shape of the tortuous channels would explain the efficiency of the filtration.
  • Examples 1 and 2 are also associated with a specific pore size distribution, and in particular with a limited number of large cells, and in particular at a D90 of less than 250 ⁇ m, preferably less than 200 ⁇ m.
  • the sintered ceramic foams according to the invention thus offer both remarkable filtration efficiency, but also a very low pressure drop. This compromise makes it possible to limit the energy required to circulate the air through the ceramic foam. It also allows ceramic foam to be used in applications where the air circulation results from a simple inhalation, for example in an individual breathing mask.
  • the invention makes it possible to optimize the filtration, and in particular the treatment of air, in particular the air of habitable closed spaces such as dwellings, offices and the passenger compartments of vehicles.
  • a ceramic foam according to the invention allows both the filtration of particles efficiently and with a low pressure drop, the inactivation of pathogenic agents and the elimination of polluting organic substances.
  • the ceramic foam used is advantageously reusable, even imperishable, and recyclable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

The invention relates to a method for producing a sintered ceramic foam according to the following successive steps: a) preparing a mixture M containing at least one ceramic powder suspended in water, at least one gelling agent and at least one foaming agent, at a mixing temperature above the gelling temperature of said gelling agent, b) shearing said mixture M at a foaming temperature above said gelling temperature, until an intermediate foam is obtained, c) gelling said intermediate foam by cooling said intermediate foam to a temperature at least half that of the gelling temperature of the gelling agent, in °C, d) drying said gelled foam in a climatic oven, preferably under forced ventilation and/or by supercritical autoclaving, e) firing said preform at a temperature above 1300°C and below 2300°C.

Description

Description Description
Titre : Procédé de fabrication d’une mousse céramique frittée Title: Process for manufacturing a sintered ceramic foam
Domaine technique Technical area
La présente invention se rapporte à un procédé de fabrication d’une mousse céramique frittée, destinée à filtrer un fluide, notamment pour décontaminer de l’air, notamment de l’air d’espaces clos habitables (habitations, bureaux, habitacles de véhicules, ...). The present invention relates to a process for the manufacture of a sintered ceramic foam, intended to filter a fluid, in particular to decontaminate the air, in particular the air of habitable closed spaces (homes, offices, passenger compartments of vehicles, ...).
Technique antérieure Prior technique
Il existe plusieurs procédés de fabrication permettant d'obtenir des mousses céramiques poreuses. There are several manufacturing processes that make it possible to obtain porous ceramic foams.
Le plus simple de ces procédés comprend l'addition d'un agent porogène dans une barbotine céramique ou un mélange à presser. Le tout est mis en forme puis subit un cycle de cuisson qui permet de brûler l'agent porogène. En brûlant, l'agent porogène laisse place à une porosité. Ce procédé est décrit par exemple dans le brevet EP 1 140 731 B 1. Il présente l'inconvénient de conduire à un dégagement gazeux (éventuellement toxique) dû à la pyrolyse de l'agent porogène. Par ailleurs, il est difficile de fabriquer des pièces épaisses, car le dégagement gazeux est alors difficile à effectuer (il faut pouvoir évacuer le gaz de manière homogène). The simplest of these processes involves adding a blowing agent to a ceramic slip or press mix. Everything is shaped and then undergoes a firing cycle which burns off the pore-forming agent. When burning, the pore-forming agent gives way to porosity. This process is described for example in patent EP 1 140 731 B 1. It has the disadvantage of leading to gaseous evolution (possibly toxic) due to the pyrolysis of the pore-forming agent. Furthermore, it is difficult to manufacture thick parts, because the gas evolution is then difficult to perform (it is necessary to be able to evacuate the gas in a homogeneous manner).
Une autre technique est la réplication d'une mousse en polymère, polyuréthane par exemple. Cette mousse est recouverte d'une barbotine céramique. Le tout subit ensuite un cycle de cuisson qui permet de brûler la mousse polyuréthane et de fritter la mousse céramique dont la structure est induite par la mousse polyuréthane de départ. Ce procédé est décrit par exemple dans le brevet US 4,024,212. On retrouve les inconvénients liés au dégagement gazeux (en brûlant, le polyuréthane dégage des gaz à liaison C-N qui sont dangereux). Par ailleurs, il est difficile de réaliser des pièces avec des pores de dimensions inférieures à 200 pm. Une technique alternative est la création de porosités par la formation de gaz par réaction chimique entre différents additifs d'une barbotine de céramique. Ce procédé est décrit par exemple dans les brevets US 5,643,512 ou US 5,705,448. Là encore, on retrouve les inconvénients liés au dégagement de gaz. Another technique is the replication of a polymer foam, polyurethane for example. This foam is covered with a ceramic slip. The whole then undergoes a firing cycle which burns the polyurethane foam and sinters the ceramic foam, the structure of which is induced by the starting polyurethane foam. This process is described for example in US Pat. No. 4,024,212. We find the disadvantages related to gas release (when burning, polyurethane releases C-N bond gases which are dangerous). Furthermore, it is difficult to produce parts with pores of dimensions less than 200 μm. An alternative technique is the creation of porosities by the formation of gas by chemical reaction between different additives of a ceramic slip. This process is described for example in US patents 5,643,512 or US 5,705,448. Here again, we find the disadvantages associated with the release of gas.
De plus, il faut associer à ce procédé une technique de consolidation de la mousse. Parmi les techniques de consolidation de mousse pouvant être utilisées pour la mise en œuvre des deux dernières techniques mentionnées ci-dessus, il existe aussi plusieurs possibilités. Une première solution consiste à mélanger des monomères polymérisables à la barbotine céramique. Dans des conditions particulières, la polymérisation des monomères entraîne la consolidation de la mousse. Ce procédé est décrit par exemple dans le brevet EP 759 020 Bl. Par contre, le coût élevé des monomères utilisables ainsi que la difficulté de maîtriser les conditions de polymérisation ont empêché cette technique de se développer de manière industrielle. In addition, this process must be combined with a foam consolidation technique. Among the foam consolidation techniques that can be used for the implementation of the two last techniques mentioned above, there are also several possibilities. A first solution consists in mixing polymerizable monomers with the ceramic slip. Under particular conditions, the polymerization of the monomers leads to the consolidation of the foam. This process is described for example in patent EP 759 020 B1. On the other hand, the high cost of the monomers that can be used as well as the difficulty of controlling the polymerization conditions have prevented this technique from developing industrially.
Une technique consiste à introduire mécaniquement un gaz dans une barbotine par brassage. Là encore, il faut combiner ce procédé avec une technique de consolidation de la mousse obtenue. Une solution consiste à réticuler des polymères dans une barbotine céramique. Comme pour la technique précédente, cette réticulation entraîne la consolidation de la mousse. Ce procédé est décrit par exemple dans le brevet EP 330 963. Par contre, le coût élevé des agents de réticulation utilisables ainsi que la difficulté de maîtriser les conditions de réticulation ont empêché cette technique de se développer de manière industrielle. One technique consists of mechanically introducing a gas into a slurry by stirring. Here again, this process must be combined with a technique for consolidating the foam obtained. One solution is to crosslink polymers in a ceramic slip. As for the previous technique, this reticulation leads to the consolidation of the foam. This process is described for example in patent EP 330 963. On the other hand, the high cost of the crosslinking agents that can be used as well as the difficulty of controlling the crosslinking conditions have prevented this technique from developing industrially.
Un procédé de fabrication de céramiques poreuses plus récent est décrit dans la demande de brevet EP 1 329 439 Al. Ce procédé comporte les étapes suivantes : A more recent process for manufacturing porous ceramics is described in patent application EP 1 329 439 Al. This process comprises the following steps:
1) Préparation d'une suspension d'une poudre céramique dans un dispersant, 1) Preparation of a suspension of a ceramic powder in a dispersant,
2) Préparation d'une solution contenant un biogel, encore appelé " hydrocolloïde ", et maintien à une température supérieure à la température de gélification de la solution,2) Preparation of a solution containing a biogel, also called "hydrocolloid", and maintenance at a temperature above the gelation temperature of the solution,
3) Mélange de ladite suspension et de ladite solution, avec ajout d'un agent moussant, jusqu'à obtention d'une mousse, la température étant maintenue suffisamment élevée pour éviter la gélification du biogel, 3) Mixing said suspension and said solution, with the addition of a foaming agent, until a foam is obtained, the temperature being kept high enough to prevent the biogel from gelling,
4) Coulage de la mousse dans un moule, 4) Pouring the foam into a mould,
5) Refroidissement jusqu'à gélification du biogel, 5) Cooling until gelling of the biogel,
6) Séchage puis cuisson de la mousse obtenue. 6) Drying then cooking of the foam obtained.
L'utilisation d'un biogel pour consolider la mousse permet d'éviter les problèmes de toxicité évoqués précédemment. Cependant, il s'avère que si la mousse coulée dans le moule a une épaisseur supérieure à 60 mm, la mousse n'a pas une structure homogène. De plus, selon ce procédé, la quantité d'eau dans le mélange final est importante (45 à 50% en poids) ce qui entraîne des difficultés de séchage, en particulier pour les pièces de grandes dimensions. Il n'est donc pas possible de fabriquer des pièces céramiques poreuses de structure homogène et présentant de telles dimensions. The use of a biogel to consolidate the foam makes it possible to avoid the problems of toxicity mentioned above. However, it turns out that if the foam poured into the mold has a thickness greater than 60 mm, the foam does not have a homogeneous structure. Moreover, according to this method, the quantity of water in the final mixture is high (45 to 50% by weight) which leads to drying difficulties, in particular for large-sized parts. He It is therefore not possible to manufacture porous ceramic parts of homogeneous structure and having such dimensions.
La demande de brevet français déposée par la Société Saint-Gobain Centre de Recherches et d'Etudes Européen sous le numéro FR 0408330 décrit un procédé amélioré permettant de fabriquer des pièces en mousse céramique, de densité homogène, ayant des dimensions supérieures ou égales à 60 mm. A cet effet, FR 0408330 propose un procédé de fabrication d'une mousse céramique comprenant les étapes successives suivantes : a) préparation d'un mélange M contenant une poudre céramique en suspension, au moins un agent gélifiant et au moins un agent moussant, à une température de mélange supérieure à la température de gélification dudit agent gélifiant, b) cisaillement dudit mélange M à une température de moussage supérieure à ladite température de gélification, jusqu'à obtention d'une mousse, c) gélification de ladite mousse par refroidissement dudit mélange M à une température inférieure à la température de gélification dudit agent gélifiant, d) séchage de ladite mousse gélifiée de manière à obtenir une préforme, e) cuisson par traitement à haute température de ladite préforme de manière à obtenir une mousse céramique cuite. The French patent application filed by the Saint-Gobain Center de Recherches et d'Etudes Européen under number FR 0408330 describes an improved process for manufacturing ceramic foam parts, of homogeneous density, having dimensions greater than or equal to 60 mm. To this end, FR 0408330 proposes a process for manufacturing a ceramic foam comprising the following successive steps: a) preparation of a mixture M containing a ceramic powder in suspension, at least one gelling agent and at least one foaming agent, a mixing temperature higher than the gelling temperature of said gelling agent, b) shearing of said mixture M at a foaming temperature higher than said gelling temperature, until a foam is obtained, c) gelling of said foam by cooling of said mixture M at a temperature below the gelation temperature of said gelling agent, d) drying of said gelled foam so as to obtain a preform, e) firing by treatment at high temperature of said preform so as to obtain a fired ceramic foam.
Selon ce procédé, on ajoute audit mélange M un agent stabilisant dont la viscosité instantanée, en Pa.s, augmente d'au moins un facteur dix quand une vitesse de cisaillement dudit agent stabilisant diminue de 100 s 1 à 0 s 1. Les inventeurs de l'invention décrite dans FR 0408330 ont observé que l'affaissement de la mousse lors de la mise en œuvre du procédé selon EP 1 329 439 Al se produit pendant une période critique s'étendant entre la fin de l'étape de cisaillement et le début de la gélification. Pendant cette période, l'agent gélifiant ne contribue sensiblement pas à la stabilisation structurelle de la mousse qui, pour des épaisseurs de plus de 60 mm, s'effondre sous son propre poids. Etant parvenus à identifier la cause de l'affaissement, ils ont proposé d'ajouter un agent stabilisant dans le mélange. L'agent stabilisant est choisi pour sa capacité à augmenter considérablement la viscosité du mélange dès que le cisaillement du mélange cesse, ce qui permet de rigidifier suffisamment la mousse pour éviter son effondrement jusqu'à ce que l'agent gélifiant se gélifie et puisse exercer sa fonction de stabilisation. Il devient ainsi possible de fabriquer des pièces en mousse céramique, de densité homogène, ayant des dimensions supérieures ou égales à 60 mm et/ou présentant des formes complexes (cône ou cylindre creux, portion de sphère creuse, ...). EP 1 778 601 Al vient encore améliorer ce procédé en ce que le mélange M comporte du carbure de silicium et optionnellement un agent plastifiant, la cuisson étant effectuée dans des conditions permettant une consolidation par mécanisme d'évaporation-recristallisation dudit carbure de silicium. According to this method, a stabilizing agent is added to said mixture M, the instantaneous viscosity of which, in Pa.s, increases by at least a factor of ten when a shear rate of said stabilizing agent decreases from 100 s 1 to 0 s 1 . The inventors of the invention described in FR 0408330 have observed that the collapse of the foam during the implementation of the process according to EP 1 329 439 A1 occurs during a critical period extending between the end of the step of shearing and the onset of gelling. During this period, the gelling agent does not substantially contribute to the structural stabilization of the foam which, for thicknesses of more than 60 mm, collapses under its own weight. Having managed to identify the cause of the sagging, they suggested adding a stabilizing agent to the mix. The stabilizing agent is chosen for its ability to dramatically increase the viscosity of the mix as soon as the shear of the mix ceases, allowing the foam to be stiffened enough to prevent it from collapsing until the gelling agent gels and can exert its stabilizing function. It thus becomes possible to manufacture ceramic foam parts, of homogeneous density, having dimensions greater than or equal to 60 mm and/or having complex shapes (cone or hollow cylinder, portion of hollow sphere, etc.). EP 1 778 601 A1 further improves this process in that the mixture M comprises silicon carbide and optionally a plasticizer, the firing being carried out under conditions allowing consolidation by the evaporation-recrystallization mechanism of said silicon carbide.
Le procédé par moussage direct et gélification est particulièrement adapté à la réalisation de pièces de grandes dimensions. The direct foaming and gelling process is particularly suited to the production of large-sized parts.
Il existe cependant un besoin permanent pour améliorer le compromis entre la perte de charge, l’efficacité de filtration et la résistance mécanique. However, there is a permanent need to improve the compromise between pressure drop, filtration efficiency and mechanical resistance.
Un but de l’invention est de répondre, au moins partiellement, à ce besoin. An object of the invention is to meet, at least partially, this need.
Exposé de l’invention Disclosure of Invention
L’invention propose une mousse céramique présentant une pluralité de cellules imbriquées, délimitées par des parois céramiques et connectées entre elles par des fenêtres d’interconnexion, les parois délimitant les cellules étant formées par frittage de grains, cette agglomération laissant subsister des interstices entre les grains, la mousse céramique présentant une porosité totale supérieure à 40%, de préférence supérieure à 50%, préférence supérieure à 55%, voire supérieure à 60%, voire supérieure à 70% et de préférence inférieure à 90%, voire inférieure à 85%, voire inférieure à 80%, la taille médiane D50 de pores étant de préférence inférieure à 150 pm ; The invention proposes a ceramic foam having a plurality of nested cells, delimited by ceramic walls and interconnected by interconnecting windows, the walls delimiting the cells being formed by sintering of grains, this agglomeration leaving interstices between the grains, the ceramic foam having a total porosity greater than 40%, preferably greater than 50%, preferably greater than 55%, or even greater than 60%, or even greater than 70% and preferably less than 90%, or even less than 85 %, or even less than 80%, the median pore size D50 preferably being less than 150 μm;
- les pores de taille supérieure à 300 pm représentant moins de 10%, de préférence moins de 5% en volume de ladite porosité totale ; et/ou le percentile D90 en volume sur la courbe de distribution cumulée des tailles de pores classées par ordre croissant, mesurée par porosimétrie mercure, est inférieur à 250 pm, de préférence inférieur à 220 pm, de préférence inférieur à 200 pm, de préférence inférieur à 180 pm, et/ou supérieur à 50 pm, de préférence supérieur à 60 pm, de préférence supérieur à 70 pm, de préférence supérieur à 80 pm. - pores larger than 300 μm representing less than 10%, preferably less than 5% by volume of said total porosity; and/or the D90 percentile by volume on the cumulative pore size distribution curve ranked in ascending order, measured by mercury porosimetry, is less than 250 μm, preferably less than 220 μm, preferably less than 200 μm, preferably less than 180 μm, and/or greater than 50 μm, preferably greater than 60 μm, preferably greater than 70 μm, preferably greater than 80 μm.
Les inventeurs ont découvert que cette distribution des pores, qui traduit une faible quantité de pores de grandes tailles conduit à un très bon compromis entre la perte de charge, l’efficacité de filtration et la résistance mécanique. The inventors have discovered that this pore distribution, which reflects a small quantity of large-size pores, leads to a very good compromise between pressure drop, filtration efficiency and mechanical strength.
De préférence, la mousse céramique présente encore une ou plusieurs des caractéristiques suivantes : - la taille médiane des pores est comprise entre 1 et 400 pm ; Preferably, the ceramic foam also has one or more of the following characteristics: - the median pore size is between 1 and 400 μm;
- la mousse céramique est constituée, pour plus de 80%, plus de 90%, plus de 95%, plus de 99%, de préférence sensiblement 100% de sa masse, en un matériau céramique, de préférence en carbure de silicium ou en cordiérite ou en titanate d’aluminium ou en zircone ou en alumine ou en mullite ou de silice, ou en un mélange de ces matériaux, de préférence en carbure de silicium, de préférence en carbure de silicium recristallisé ; - the ceramic foam consists, for more than 80%, more than 90%, more than 95%, more than 99%, preferably substantially 100% of its mass, of a ceramic material, preferably of silicon carbide or cordierite or aluminum titanate or zirconia or alumina or mullite or silica, or a mixture of these materials, preferably silicon carbide, preferably recrystallized silicon carbide;
- la mousse céramique est constituée, pour plus de 80%, plus de 90%, plus de 95%, plus de 99%, de préférence sensiblement 100% de sa masse en un matériau céramique non oxyde ;- the ceramic foam consists, for more than 80%, more than 90%, more than 95%, more than 99%, preferably substantially 100% of its mass of a non-oxide ceramic material;
- la mousse céramique comporte plus de 80% en masse de carbure de silicium recristallisé, la porosité intergranulaire étant de préférence supérieure ou égale à 5 % et inférieure à 25%, de préférence supérieure ou égale à 10 % et inférieure à 20% ; - the ceramic foam comprises more than 80% by mass of recrystallized silicon carbide, the intergranular porosity preferably being greater than or equal to 5% and less than 25%, preferably greater than or equal to 10% and less than 20%;
- la taille médiane des pores (D50 en volume, mesuré par porosimétrie mercure) est supérieure à 1 pm, voire supérieure à 5 pm, supérieure à 7 pm, voire supérieure à 10 pm, de préférence supérieure à 20 pm, de préférence supérieure à 30 pm, de préférence supérieure à 40 pm, voire supérieure à 50 pm, de préférence supérieure à 60 pm, de préférence supérieure à 70 pm, de préférence supérieure ou égale à 75 pm et/ou inférieure à 145 pm, inférieure à 140 pm, inférieure à 130 pm, de préférence inférieure à 120 pm ; - the median pore size (D50 by volume, measured by mercury porosimetry) is greater than 1 μm, or even greater than 5 μm, greater than 7 μm, or even greater than 10 μm, preferably greater than 20 μm, preferably greater than 30 μm, preferably greater than 40 μm, or even greater than 50 μm, preferably greater than 60 μm, preferably greater than 70 μm, preferably greater than or equal to 75 μm and/or less than 145 μm, less than 140 μm , less than 130 μm, preferably less than 120 μm;
- le percentile D10 en volume sur la courbe de distribution cumulée des tailles de pores classées par ordre croissant, mesurée par porosimétrie mercure, est de préférence supérieur à 5 pm, de préférence supérieur à 8 pm ; - the percentile D10 by volume on the cumulative distribution curve of the pore sizes classified in ascending order, measured by mercury porosimetry, is preferably greater than 5 μm, preferably greater than 8 μm;
- le percentile D90 en volume sur la courbe de distribution cumulée des tailles de pores classées par ordre croissant, mesurée par porosimétrie mercure, est de préférence supérieur à 80 pm, de préférence supérieur à 100 pm, et/ou inférieur à 250 pm, de préférence inférieur à 180 pm ; - the D90 percentile by volume on the cumulative distribution curve of the pore sizes classified in ascending order, measured by mercury porosimetry, is preferably greater than 80 μm, preferably greater than 100 μm, and/or less than 250 μm, of preferably less than 180 μm;
- de préférence, la différence D90-D10 est inférieure à 250 pm, voire inférieure à 200 pm, voire inférieure à 180 pm et/ou supérieure à 40 pm, voire supérieure à 50 pm ; - preferably, the difference D90-D10 is less than 250 μm, or even less than 200 μm, or even less than 180 μm and/or greater than 40 μm, or even greater than 50 μm;
- le rapport (D90 - Dio)/Dso est de préférence inférieur à 2, de préférence inférieur à 1,8, de préférence inférieur à 1,7, de préférence inférieur à 1,6, de préférence inférieur à 1,5, de préférence inférieur à 1,4, de préférence inférieur à 1,2, de préférence inférieur ou égal à 1,1 et/ou supérieur à 0,8, de préférence supérieur à 0,9, de préférence supérieur à 1,0 ; - the (D90 - Dio)/Dso ratio is preferably less than 2, preferably less than 1.8, preferably less than 1.7, preferably less than 1.6, preferably less than 1.5, of preferably less than 1.4, preferably less than 1.2, preferably less than or equal to 1.1 and/or greater than 0.8, preferably greater than 0.9, preferably greater than 1.0;
- la mousse céramique présente une distribution de la taille des pores, mesurée avec un porosimètre au mercure, qui est bimodale et qui comporte des premier et deuxièmes pics principaux centrés sur des première et deuxième tailles de pore comprises entre 4 et 30 pm et entre 40 et 180 pm, respectivement, la porosité intergranulaire, représentée par le premier pic, étant supérieure ou égale à 5 % et inférieure à 25% ; - the ceramic foam has a pore size distribution, measured with a mercury porosimeter, which is bimodal and has first and second peaks principal centers centered on first and second pore sizes comprised between 4 and 30 μm and between 40 and 180 μm, respectively, the intergranular porosity, represented by the first peak, being greater than or equal to 5% and less than 25%;
- ladite deuxième taille de pore est supérieure à 50 pm et/ou inférieure à 160 pm ; - said second pore size is greater than 50 μm and/or less than 160 μm;
- ladite première taille de pore est supérieure à 7 pm et inférieure à 20 pm ; - said first pore size is greater than 7 μm and less than 20 μm;
- la tortuosité est supérieure à 1 et inférieure à 2, voire inférieure à 1,9, voire inférieure à 1,8, voire inférieure à 1,7, voire inférieure à 1,6, de préférence inférieure à 1,5, de préférence inférieur à 1,3, de préférence inférieur à 1,2 ; - the tortuosity is greater than 1 and less than 2, or even less than 1.9, or even less than 1.8, or even less than 1.7, or even less than 1.6, preferably less than 1.5, preferably less than 1.3, preferably less than 1.2;
- la mousse céramique comporte une couche superficielle présentant une porosité totale inférieure à 0,95 fois la porosité au centre de la mousse céramique, les pores de la couche superficielle présentant de préférence une taille médiane supérieure à 1 pm et inférieure à 20 pm, la porosité totale de la couche superficielle étant de préférence supérieure à 30% et inférieure à 70%, l’épaisseur de la couche superficielle étant de préférence comprise entre 5 et 500 pm ; - the ceramic foam comprises a surface layer having a total porosity of less than 0.95 times the porosity at the center of the ceramic foam, the pores of the surface layer preferably having a median size greater than 1 μm and less than 20 μm, the total porosity of the surface layer preferably being greater than 30% and less than 70%, the thickness of the surface layer preferably being between 5 and 500 μm;
- l’ensemble des grains présente de préférence un rapport de forme moyen, en moyenne sur l’ensemble des grains, inférieur 2, de préférence inférieur à 1,5, le rapport de forme étant classiquement le rapport L/l ou L désigne la longueur du grain, c'est-à-dire sa plus grande dimension, et 1 désigne la largeur du grain, c'est-à-dire sa plus grande dimension dans un plan transversal quelconque perpendiculaire à la direction de la longueur ; - all the grains preferably have an average aspect ratio, on average over all the grains, of less than 2, preferably less than 1.5, the aspect ratio being conventionally the ratio L/l where L denotes the grain length, i.e. its largest dimension, and 1 designates the width of the grain, i.e. its largest dimension in any transverse plane perpendicular to the direction of the length;
- la mousse céramique présente une épaisseur supérieure à 60 mm ou supérieure à 80 mm ;- the ceramic foam has a thickness greater than 60 mm or greater than 80 mm;
- la mousse céramique obtenue selon le procédé de l’invention satisfait la relation mathématique suivante : - the ceramic foam obtained according to the process of the invention satisfies the following mathematical relationship:
Delta Delta
- où : - where :
- d est la deuxième taille de pores ou diamètre médian des pores d’interconnexion en mètre (m) - d is the second pore size or median diameter of interconnecting pores in meter (m)
- e est la porosité totale de la mousse céramique en % volumique - e is the total porosity of the ceramic foam in % by volume
- L’ est l’épaisseur de mousse en mètre (m) - L is the foam thickness in meters (m)
- p est la masse volumique du fluide traversant la mousse en kg.m 3 - p is the density of the fluid passing through the foam in kg.m 3
- m est la viscosité dynamique du fluide traversant la mousse, en Pa.s ou en kg.m 1. s 1 - m is the dynamic viscosity of the fluid passing through the foam, in Pa.s or in kg.m 1 . sec 1
- Delta P est la perte de charge mesurée de part et d’autre de l’épaisseur L’ en Pa ou en kg. m_1.s 2 - Delta P is the pressure drop measured on either side of the thickness L' in Pa or in kg. m _1 .s 2
- V est la vitesse du fluide à l’entrée de la mousse en m.s-1 relation dans laquelle n est compris entre 1 et 2, de préférence n est inférieur à 1,7, voire n est inférieur à 1,5, et K est compris entre 130 et 200, de préférence entre 140 et 180, de manière plus préférée entre 140 et 160. Dans cette relation, x est le signe « multiplié par ». - V is the speed of the fluid at the inlet of the foam in ms -1 relationship in which n is between 1 and 2, preferably n is less than 1.7, or even n is less than 1.5, and K is between 130 and 200, preferably between 140 and 180, more preferably between 140 and 160. In this relation, x is the sign “multiplied by”.
L’invention concerne aussi un procédé de fabrication d'une mousse céramique, et en particulier d’une mousse céramique selon l’invention, ledit procédé comprenant les étapes successives suivantes : a) préparation d'un mélange M contenant au moins une poudre céramique en suspension dans de l’eau, au moins un agent gélifiant et au moins un agent moussant, à une température de mélange supérieure à la température de gélification dudit agent gélifiant, b) cisaillement dudit mélange M à une température de moussage supérieure à ladite température de gélification, jusqu'à obtention d'une mousse intermédiaire, c) gélification de ladite mousse intermédiaire par refroidissement de ladite mousse intermédiaire à une température au moins deux fois, de préférence au moins trois fois, de manière plus préférée au moins cinq fois plus faible que la température de gélification de l’agent gélifiant, en °C, d) séchage de ladite mousse gélifiée de manière à obtenir une préforme dont l’humidité après séchage est de préférence inférieure à 1%, e) cuisson de ladite préforme à haute température, de préférence supérieure à 1300°C et inférieure à 2300°C. The invention also relates to a process for manufacturing a ceramic foam, and in particular a ceramic foam according to the invention, said process comprising the following successive steps: a) preparation of a mixture M containing at least one ceramic powder in suspension in water, at least one gelling agent and at least one foaming agent, at a mixing temperature higher than the gelling temperature of said gelling agent, b) shearing of said mixture M at a foaming temperature higher than said temperature gelation, until an intermediate foam is obtained, c) gelation of said intermediate foam by cooling said intermediate foam to a temperature at least twice, preferably at least three times, more preferably at least five times lower than the gelation temperature of the gelling agent, in °C, d) drying of said gelled foam so as to obtain a preform whose humidity after drying is preferably less than 1%, e) curing said preform at high temperature, preferably greater than 1300°C and less than 2300°C.
Un procédé selon l’invention permet avantageusement la fabrication d’une mousse présentant une structure particulièrement bien adaptée à la filtration. Cette structure se caractérise en particulier par une distribution resserrée de la taille des fenêtres d’interconnexion entre les cellules, avec une quantité de pores de grandes tailles limitée.A method according to the invention advantageously allows the manufacture of a foam having a structure particularly well suited to filtration. This structure is characterized in particular by a tight distribution of the size of the interconnection windows between the cells, with a limited quantity of large pores.
Ce procédé permet également une stabilisation structurelle de la mousse intermédiaire sans avoir à recourir à un agent stabilisant. Cette stabilisation permet un bon contrôle de la porosité, mais aussi la fabrication d’une mousse céramique de grande épaisseur, sans affaissement, de manière industrielle. De préférence, le procédé selon l’invention présente encore une ou plusieurs des caractéristiques suivantes : This method also allows structural stabilization of the intermediate foam without having to resort to a stabilizer. This stabilization allows good control of the porosity, but also the manufacture of a ceramic foam of great thickness, without sagging, in an industrial manner. Preferably, the method according to the invention also has one or more of the following characteristics:
- la vitesse de refroidissement à l’étape c) est supérieure à 20°C/minute, de préférence supérieure à 30°C/minute ; - the cooling rate in step c) is greater than 20° C./minute, preferably greater than 30° C./minute;
- de préférence le refroidissement est une trempe, c’est à dire que la mousse intermédiaire est soumise directement à la température inférieure à une température au moins deux fois, de préférence au moins trois fois, de manière plus préférée au moins cinq fois plus faible que la température de gélification de l’agent gélifiant, en °C ; - preferably the cooling is quenching, that is to say that the intermediate foam is directly subjected to the lower temperature at a temperature at least twice, preferably at least three times, more preferably at least five times lower as the gelation temperature of the gelling agent, in °C;
- la vitesse de refroidissement à l’étape c) est déterminée de manière qu’en moins de 30 minutes, de préférence en moins de 15 minutes, la température au cœur de la mousse intermédiaire soit inférieure à 0,5 fois la température de gélification, de préférence inférieure à 0,2 fois la température de gélification du gélifiant ; - the cooling rate in step c) is determined so that in less than 30 minutes, preferably in less than 15 minutes, the temperature at the heart of the intermediate foam is less than 0.5 times the gelation temperature , preferably less than 0.2 times the gelation temperature of the gelling agent;
- la gélification à l’étape c) est de préférence réalisée dans une étuve climatique utilisée à l’étape d) pour le séchage, ou la mousse gélifiée issue de l’étape c), encore sensiblement à la température mise en œuvre à l’étape c), est disposée dans une étuve climatique utilisée à l’étape d) pour le séchage ; - the gelation in step c) is preferably carried out in a climatic oven used in step d) for drying, or the gelled foam resulting from step c), still substantially at the temperature implemented at the step c), is placed in a climatic oven used in step d) for drying;
- à l’étape d), la mousse gélifiée issue de l’étape c) est de préférence au moins en partie séchée à humidité et température contrôlées ; - in step d), the gelled foam from step c) is preferably at least partly dried at controlled humidity and temperature;
- de préférence, l’étape d) comporte une opération de séchage par augmentation progressive de la température, en contrôlant l’humidité de l’environnement de la mousse gélifiée ;- preferably, step d) comprises a drying operation by gradually increasing the temperature, by controlling the humidity of the environment of the gelled foam;
- à l’étape d), la mousse gélifiée issue de l’étape c) est de préférence séchée dans une étuve climatique sous ventilation forcée, de préférence pendant une durée supérieure à 1 heure, de préférence supérieure à 24 h, à 48 h, à 72 h, à 96 h, à 120 h, et/ou inférieure à 1 semaine, la température dans l’étuve climatique étant de préférence progressivement augmentée pendant l’étape d), de préférence par palier, tout étant maintenue inférieure à la température de gélification ; - in step d), the gelled foam from step c) is preferably dried in a climatic oven under forced ventilation, preferably for a period greater than 1 hour, preferably greater than 24 hours, 48 hours , at 72 h, at 96 h, at 120 h, and/or less than 1 week, the temperature in the climatic oven being preferably gradually increased during step d), preferably in stages, everything being kept below the gelation temperature;
- à l’étape d), en complément ou alternativement à un séchage dans une étuve climatique, la mousse gélifiée issue de l’étape c) est séchée par voie supercritique, de préférence en autoclave, - in step d), in addition to or alternatively to drying in a climatic oven, the gelled foam from step c) is dried supercritically, preferably in an autoclave,
- à une température inférieure à la température critique de la phase liquide du mélange M, formée par l’eau, l’agent gélifiant, l’agent moussant, et les autres additifs de moussage éventuels, et - à une pression inférieure à la pression critique de ladite phase liquide ; de préférence sous vide, ce qui permet avantageusement à la mousse gélifiée de conserver sa structure, tout en bénéficiant d’une rapidité de séchage ; - at a temperature below the critical temperature of the liquid phase of the mixture M, formed by the water, the gelling agent, the foaming agent, and the other possible foaming additives, and - at a pressure below the critical pressure of said liquid phase; preferably under vacuum, which advantageously allows the gelled foam to retain its structure, while benefiting from rapid drying;
- préalablement au séchage par voie supercritique, la mousse gélifiée issue de l’étape c) est de préférence surgelée ou congelée ; - prior to supercritical drying, the gelled foam from step c) is preferably deep-frozen or deep-frozen;
- à l’étape d), le séchage en étuve climatique et/ou par voie supercritique est de préférence poursuivi jusqu’à ce que l’humidité résiduelle de la mousse gélifiée atteigne une valeur intermédiaire, de préférence inférieure à 95%, de préférence inférieure à 90% de l’humidité initiale. De préférence, le séchage est poursuivi jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 10%, de préférence inférieure à 5%. Ensuite, le séchage est de préférence poursuivi par chauffage, de préférence à une température supérieure à 40°C, jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 1% ; - in step d), the drying in a climatic oven and/or by supercritical means is preferably continued until the residual humidity of the gelled foam reaches an intermediate value, preferably less than 95%, preferably less than 90% of the initial humidity. Preferably, the drying is continued until the residual humidity of the gelled foam is less than 10%, preferably less than 5%. Then, the drying is preferably continued by heating, preferably at a temperature above 40° C., until the residual humidity of the gelled foam is less than 1%;
- à l’étape d), le séchage par voie supercritique est de préférence poursuivi jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 3%, de préférence inférieure à 2%, de préférence inférieure à 1% ; - in step d), the supercritical drying is preferably continued until the residual humidity of the gelled foam is less than 3%, preferably less than 2%, preferably less than 1%;
- à l’étape e), la cuisson de la préforme est de préférence réalisée sous atmosphère non oxydante, de préférence sous argon, de préférence à une température supérieure à 1400°C.- in step e), the firing of the preform is preferably carried out in a non-oxidizing atmosphere, preferably under argon, preferably at a temperature above 1400°C.
Dans un mode de réalisation, à l’étape c), la mousse intermédiaire est soumise, de préférence au début de l’étape c), de préférence pendant plus de 10 h, de préférence plus de 20 h, et/ou moins de 72 h, de préférence moins de 48 h, de préférence moins de 30 h, à une température inférieure à 10°C, de préférence inférieure à 6°C. In one embodiment, in step c), the intermediate foam is subjected, preferably at the start of step c), preferably for more than 10 h, preferably more than 20 h, and/or less than 72 h, preferably less than 48 h, preferably less than 30 h, at a temperature below 10°C, preferably below 6°C.
Dans un mode de réalisation particulièrement avantageux, à l’étape d), l’étape d) comprend un séchage partiellement ou totalement réalisé en étuve climatique et/ou par voie supercritique. Le séchage au moins partiellement réalisé en étuve climatique et/ou par voie supercritique commence de préférence dès le début du séchage, et de préférence se poursuit jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 20%, de préférence inférieure à 10%, de préférence inférieure à 5%, de préférence inférieure à 3%, de préférence inférieure à 2%, de préférence inférieure à 1%, de préférence à une température toujours inférieure à la température de solidification de la mousse intermédiaire. Pendant le séchage en étuve climatique et/ou par voie supercritique, la différence entre la température de solidification de la mousse intermédiaire à l’étape b) et la température au cœur de la mousse gélifiée, c'est-à-dire au barycentre de la mousse gélifiée, est de préférence toujours inférieure à 7°C. De préférence, au début de l’étape d), la mousse gélifiée est refroidie à une température inférieure à -20°C, de préférence inférieure à -30°C, de préférence inférieure ou égale à -40 °C. In a particularly advantageous embodiment, in step d), step d) comprises drying partially or totally carried out in a climatic oven and/or by supercritical means. The drying, at least partially carried out in a climatic oven and/or by supercritical means, preferably begins from the start of the drying, and preferably continues until the residual humidity of the gelled foam is less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 20%, preferably less than 10%, preferably less than 5%, preferably less than 3%, preferably less than 2%, preferably less at 1%, preferably at a temperature always below the solidification temperature of the intermediate foam. During the drying in a climatic and/or supercritical oven, the difference between the solidification temperature of the intermediate foam in step b) and the temperature at the heart of the gelled foam, that is to say at the barycenter of the gelled foam, is preferably always below 7°C. Preferably, at the start of step d), the gelled foam is cooled to a temperature below -20°C, preferably below -30°C, preferably below or equal to -40°C.
Dans un mode de réalisation, et en particulier lorsque l’étape d) comporte un séchage par voie supercritique, la mousse intermédiaire est soumise, à l’étape c), de préférence au début de l’étape c), à une température inférieure à la température de solidification de la mousse intermédiaire et/ou à la température de gélification de l’agent gélifiant, de préférence jusqu’à congélation complète de ladite mousse intermédiaire. In one embodiment, and in particular when step d) comprises supercritical drying, the intermediate foam is subjected, in step c), preferably at the start of step c), to a lower temperature at the solidification temperature of the intermediate foam and/or at the gelling temperature of the gelling agent, preferably until complete freezing of said intermediate foam.
L'invention concerne enfin l'utilisation d'une céramique poreuse selon l'invention ou d'une mousse céramique fabriquée au moyen d'un procédé selon l'invention, pour des supports de catalyse, pour la filtration de liquides ou de gaz chauds, comme diffuseur (pièce chauffée laissant passer le mélange air/gaz nécessaire à la combustion) dans un brûleur à gaz, dans un récepteur volumétrique solaire, en anglais " solar volumétrie receiver ", ou comme pièce de gazetterie (supports de cuisson). The invention finally relates to the use of a porous ceramic according to the invention or of a ceramic foam produced by means of a process according to the invention, for catalysis supports, for the filtration of liquids or hot gases. , as a diffuser (heated part allowing the air/gas mixture necessary for combustion to pass) in a gas burner, in a solar volumetric receiver, or as a gazetteer part (cooking supports).
Définitions Definitions
Par « décontaminer », on entend désactiver, de préférence éliminer, un ou plusieurs agents pathogènes humains transmissibles par voie respiratoire et contenus dans l’air. By "decontaminate", we mean to deactivate, preferably eliminate, one or more human pathogens transmissible by the respiratory route and contained in the air.
On qualifie de « céramique » tout matériau non métallique et non organique. “Ceramic” is any non-metallic and non-organic material.
On appelle classiquement « frittage », la consolidation par traitement thermique d’une préforme, avec éventuellement une fusion, partielle ou totale, de certains de ses constituants (mais pas de tous ses constituants, de sorte que la préforme n’est pas transformée en une masse liquide). Conventionally called "sintering", the consolidation by heat treatment of a preform, possibly with a fusion, partial or total, of some of its constituents (but not of all its constituents, so that the preform is not transformed into a liquid mass).
Par « carbure de silicium recristallisé », on entend du carbure de silicium recristallisé par traitement à haute température de la mousse céramique, et en particulier de la mousse céramique. La recristallisation est un phénomène bien connu correspondant à une consolidation par évaporation des plus petits grains de carbure de silicium puis condensation pour former le lien avec les plus gros grains. L’humidité résiduelle peut être évaluée par la mesure de la perte de poids de la mousse gélifiée issue de l’étape c) du fait d’un chauffage pour en extraire toute l’eau, classiquement à pression atmosphérique, classiquement dans un humidimètre ou « dessiccateur ». By "recrystallized silicon carbide" is meant silicon carbide recrystallized by high temperature treatment of the ceramic foam, and in particular of the ceramic foam. Recrystallization is a well-known phenomenon corresponding to a consolidation by evaporation of the smallest grains of silicon carbide then condensation to form the bond with the largest grains. The residual humidity can be evaluated by measuring the loss in weight of the gelled foam resulting from step c) due to heating to extract all the water therefrom, conventionally at atmospheric pressure, conventionally in a moisture meter or "desiccator".
Pour éviter une dégradation de la mousse gélifiée, la température de chauffage est de préférence inférieure à 150°C, de préférence inférieure à 140°C, de préférence inférieure à 130°C, de préférence inférieure à 120°C, de préférence d’environ 110°C. To avoid degradation of the gelled foam, the heating temperature is preferably lower than 150°C, preferably lower than 140°C, preferably lower than 130°C, preferably lower than 120°C, preferably about 110°C.
L’humidité résiduelle est exprimée en pourcentage massique sur la base du poids de la mousse gélifiée obtenue à l’issue de l’étape c), c'est-à-dire est égale à (mo-mi)/mo, mo et nu désignant le poids de la mousse gélifiée à l’issue de l’étape c) et à après dessiccation, respectivement. The residual moisture is expressed as a mass percentage based on the weight of the gelled foam obtained at the end of step c), that is to say is equal to (mo-mi)/mo, mo and nu denoting the weight of the gelled foam at the end of step c) and at after drying, respectively.
Sauf indication contraire, le terme « pores » fait référence à l’ensemble des pores. Unless otherwise specified, the term “pores” refers to all pores.
La taille des pores peut être par exemple déterminée par tomographie ou à l’aide d’un porosimètre au mercure. The pore size can be determined, for example, by tomography or using a mercury porosimeter.
En application de la loi de Washburn mentionnée dans la norme ISO 15901-1.2005 part 1 un porosimètre à mercure permet ainsi d’établir une distribution de tailles des pores en volume, c'est-à-dire de déterminer, pour chaque taille de pore, un volume occupé par les pores présentant cette taille. In application of Washburn's law mentioned in standard ISO 15901-1.2005 part 1, a mercury porosimeter thus makes it possible to establish a distribution of pore sizes by volume, that is to say to determine, for each pore size , a volume occupied by the pores having this size.
Une distribution bimodale de tailles de pore comporte deux pics principaux, c'est-à-dire qui présentent les sommets les plus élevés. A bimodal pore size distribution has two main peaks, i.e. which exhibit the highest peaks.
Dans une mousse céramique fabriquée selon EP 1 778 601, une analyse à l’aide d’un porosimètre au mercure permet de mettre en évidence une répartition de la taille des pores bimodale, c’est-à-dire présentant des premier et deuxième pics principaux distincts. Ces pics sont représentatifs des deux familles de pores, à savoir les pores intergranulaires et les pores d’interconnexion et on considère que la taille médiane des pores de chacune des familles est donnée par la taille de pore correspondant au sommet de chaque pic. In a ceramic foam manufactured according to EP 1 778 601, an analysis using a mercury porosimeter makes it possible to highlight a distribution of the size of the bimodal pores, that is to say having first and second peaks distinct principals. These peaks are representative of the two families of pores, namely the intergranular pores and the interconnecting pores and it is considered that the median pore size of each of the families is given by the pore size corresponding to the apex of each peak.
La distribution de la taille des pores peut être également représentée de manière cumulée, les tailles de pore étant classées par ordre croissant. A chaque taille de pore est ainsi associé un percentile qui correspond, sur la courbe de distribution cumulée, au pourcentage du volume de la porosité totale qui est constitué par des pores ayant une taille inférieure à ladite taille. Par exemple, 10%, en volume, des pores ont une taille inférieure au percentile 10 et 90% des pores, en volume, ont une taille supérieure ou égale à ce percentile. The pore size distribution can also be represented cumulatively, with pore sizes ranked in ascending order. Each pore size is thus associated with a percentile which corresponds, on the cumulative distribution curve, to the percentage of the volume of the total porosity which is constituted by pores having a size less than said cut. For example, 10%, by volume, of the pores have a size less than the 10th percentile and 90% of the pores, by volume, have a size greater than or equal to this percentile.
Les percentiles Dio, D50 et D90 de la population de pores sont donc les tailles de pore correspondant respectivement aux pourcentages de 10%, 50%, 90% sur la courbe de distribution cumulée de distribution de tailles de pores classées par ordre croissant. The Dio, D50 and D90 percentiles of the pore population are therefore the pore sizes corresponding respectively to the percentages of 10%, 50%, 90% on the cumulative distribution curve of pore size distribution classified in ascending order.
Le percentile 50 est la taille médiane d’une population de pores. Cette taille partage, en volume, ladite population en deux groupes : un groupe représentant 50% du volume poreux et dont les pores présentent une taille inférieure à la taille médiane et un autre groupe représentant 50% du volume poreux et dont les pores présentent une taille supérieure ou égale à ladite taille médiane. The 50th percentile is the median size of a pore population. This size divides, by volume, said population into two groups: a group representing 50% of the pore volume and whose pores have a size less than the median size and another group representing 50% of the pore volume and whose pores have a size greater than or equal to said median size.
La porosité totale, en pourcentage, est classiquement égale à 100 x (1 - le rapport de la densité géométrique divisée par la densité absolue). Dans une mousse céramique selon l’invention, la porosité fermée représente typiquement moins de 10% de la porosité totale., de préférence moins de 5%, voire moins de 1% de la porosité totale. The total porosity, in percentage, is typically equal to 100 x (1 - the ratio of the geometric density divided by the absolute density). In a ceramic foam according to the invention, the closed porosity typically represents less than 10% of the total porosity, preferably less than 5%, or even less than 1% of the total porosity.
La densité géométrique est mesurée suivant la norme ISO 5016:1997 ou EN 1094-4 et exprimée en g/cm3. Elle est classiquement égale au rapport de la masse de l'échantillon divisée par le volume apparent. The geometric density is measured according to standard ISO 5016:1997 or EN 1094-4 and expressed in g/cm 3 . It is conventionally equal to the ratio of the mass of the sample divided by the apparent volume.
La valeur de densité absolue, exprimée en g/cm3, est classiquement mesurée en divisant la masse d'un échantillon par le volume de cet échantillon broyé de manière à sensiblement supprimer la porosité. The absolute density value, expressed in g/cm 3 , is conventionally measured by dividing the mass of a sample by the volume of this ground sample so as to substantially eliminate the porosity.
On appelle « porosité ouverte » la porosité imputable à l’ensemble des pores accessibles. La porosité ouverte peut être mesurée selon la norme ISO15901-1. We call “open porosity” the porosity attributable to all the accessible pores. Open porosity can be measured according to ISO15901-1.
La tortuosité est mesurée par nano tomographie. Les images ont une résolution apte à une binarisation. L’utilisation d’un logiciel comme iMorph© permet d’obtenir une caractérisation géométrique en trois dimensions et de calculer la tortuosité. La tortuosité est définie comme le rapport entre la longueur du parcours le plus court permettant de traverser l’échantillon dans le sens de son épaisseur, au sein de sa porosité, et la longueur du segment de droite joignant le point de départ et le point d’arrivée correspondant à ce parcours, c'est- à-dire la distance entre ces points. "Comprendre", "comporter" et "présenter" doivent être interprétés de manière large et non limitative, sauf indication contraire. The tortuosity is measured by nano tomography. The images have a resolution suitable for binarization. The use of software such as iMorph© makes it possible to obtain a geometric characterization in three dimensions and to calculate the tortuosity. The tortuosity is defined as the ratio between the length of the shortest path allowing the sample to cross in the direction of its thickness, within its porosity, and the length of the straight line segment joining the starting point and the starting point. arrival corresponding to this route, i.e. the distance between these points. "Include", "behave" and "present" shall be construed broadly and not limiting, unless otherwise specified.
Description détaillée detailed description
L’homme du métier connaît les techniques classiques de moussage direct par agitation mécanique. EP 1 778 601 fournit en particulier des détails techniques suffisants pour mettre en œuvre les étapes a) à e). A person skilled in the art knows the conventional techniques of direct foaming by mechanical agitation. EP 1 778 601 in particular provides sufficient technical details to implement steps a) to e).
A l’étape a), on procède de la manière suivante : On prépare d'abord, une barbotine A par dispersion de la poudre céramique et d'un dispersant dans de l'eau, selon une technique classique, In step a), the procedure is as follows: First, a slip A is prepared by dispersing the ceramic powder and a dispersant in water, according to a conventional technique,
La quantité de poudre céramique dans la barbotine A est de préférence comprise entre 50 et 90 % en poids, de préférence entre 70 et 85% en poids, de la barbotine A. De préférence, le mélange M contient de 50 à 80%, de préférence de 60 à 80%, en poids de particules céramiques. La nature de la poudre céramique est adaptée en fonction de la mousse céramique à fabriquer. The quantity of ceramic powder in the slip A is preferably between 50 and 90% by weight, preferably between 70 and 85% by weight, of the slip A. Preferably, the mixture M contains from 50 to 80%, of preferably 60 to 80%, by weight of ceramic particles. The nature of the ceramic powder is adapted according to the ceramic foam to be manufactured.
Dans le cas par exemple de la fabrication de mousse en carbure de silicium recristallisé, la poudre peut être un mélange de particules ou une poudre de carbure de silicium dont la distribution granulométrique est de préférence bimodale. Le premier mode est de préférence inférieur à 5 pm, de préférence encore inférieur à 3 pm, de préférence toujours inférieur à 1 pm, et le second mode est de préférence supérieur à 10 pm, de préférence supérieur à 20 pm. Une telle distribution granulométrique permet avantageusement d'obtenir une mousse céramique présentant une porosité intergranulaire particulièrement développée. Selon un mode possible l’état de dispersion peut être obtenu en ajustant le pH de la barbotine en phase aqueuse comprenant le mélange ou la poudre minérale de SiC par l’ajout de soude. De préférence, le pH est ajusté pour être compris entre 10 et 11. Selon un autre mode possible, le dispersant, par exemple un tensio-actif de type polyacrylate, est choisi de manière à être efficace à la température de mélange. In the case for example of the manufacture of recrystallized silicon carbide foam, the powder can be a mixture of particles or a silicon carbide powder whose particle size distribution is preferably bimodal. The first mode is preferably less than 5 μm, more preferably less than 3 μm, preferably always less than 1 μm, and the second mode is preferably greater than 10 μm, preferably greater than 20 μm. Such a particle size distribution advantageously makes it possible to obtain a ceramic foam having a particularly developed intergranular porosity. According to one possible mode, the state of dispersion can be obtained by adjusting the pH of the slip in the aqueous phase comprising the mixture or the SiC mineral powder by adding sodium hydroxide. Preferably, the pH is adjusted to be between 10 and 11. According to another possible mode, the dispersant, for example a surfactant of the polyacrylate type, is chosen so as to be effective at the mixing temperature.
De préférence, la viscosité de la barbotine est telle que la vitesse d’écoulement dans une filière de type DIN 4 CUP est comprise entre 20 et 40 secondes à 43 °C, de préférence entre 30 et 36 secondes, et/ou comprise entre 10 et 30 secondes à 53°C, de préférence entre 18 et 28 secondes, en particulier pour une utilisation avec un pré-mélange B comprenant un gélifiant de type gélatine. Preferably, the viscosity of the slip is such that the flow rate in a DIN 4 CUP type die is between 20 and 40 seconds at 43° C., preferably between 30 and 36 seconds, and/or between 10 and 30 seconds at 53°C, preferably between 18 and 28 seconds, in particular for use with a premix B comprising a gelatin type gelling agent.
On prépare également un pré-mélange B par dissolution des agents gélifiant et moussant et éventuellement d’un agent stabilisant et/ou d’un agent durcissant et/ou d’un agent plastifiant dans de l'eau, à une température supérieure à la température de gélification de l'agent gélifiant, par solubilisation dans un liquide de préférence de l'eau. A premix B is also prepared by dissolving the gelling and foaming agents and optionally a stabilizing agent and/or a hardening agent and/or a plasticizing agent in water, at a temperature above the gelation temperature of the gelling agent, by solubilization in a liquid, preferably water.
L'agent gélifiant est de préférence un hydrocolloïde d'origine animale ou végétale apte à gélifier de manière thermoréversible ladite composition après moussage, par exemple de la gélatine, le carraghénane, ou un mélange de ceux-ci. The gelling agent is preferably a hydrocolloid of animal or plant origin capable of thermoreversibly gelling said composition after foaming, for example gelatin, carrageenan, or a mixture thereof.
L'agent stabilisant peut être quelconque. De préférence, il présente la propriété de présenter une viscosité qui augmente d'au moins un facteur dix quand le gradient de la vitesse de son cisaillement diminue de 100 s 1 à 0 s 1. De préférence, l'agent stabilisant est choisi de manière que la viscosité du mélange M pendant le cisaillement, soit peu augmentée du fait de son incorporation dans ce mélange. The stabilizing agent can be any. Preferably, it has the property of having a viscosity which increases by at least a factor of ten when the gradient of its shear rate decreases from 100 s 1 to 0 s 1 . Preferably, the stabilizing agent is chosen so that the viscosity of the mixture M during the shearing is slightly increased due to its incorporation into this mixture.
Avantageusement, il est ainsi possible d'utiliser les mélangeurs utilisés selon la technique antérieure sans avoir besoin d'augmenter la teneur en eau du mélange. L'augmentation de la teneur en eau entraînerait en effet des problèmes lors du séchage ultérieur. Advantageously, it is thus possible to use the mixers used according to the prior art without the need to increase the water content of the mixture. The increase in water content would cause problems during subsequent drying.
De préférence, l'agent stabilisant est choisi pour être réversible. De préférence encore, on choisit l'agent stabilisant et l'agent gélifiant de manière que : Preferably, the stabilizer is chosen to be reversible. Preferably again, the stabilizing agent and the gelling agent are chosen so that:
- la viscosité de la mousse gélifiée soit supérieure ou égale à celle d'une mousse gélifiée obtenue à partir d'un mélange identique au mélange M mais qui ne contiendrait pas d'agent stabilisant, et - the viscosity of the gelled foam is greater than or equal to that of a gelled foam obtained from a mixture identical to mixture M but which does not contain any stabilizing agent, and
- la viscosité de la mousse obtenue entre les étapes b) et c) (avant gélification et après la fin de l'opération de moussage) soit supérieure ou égale à celle d'une mousse gélifiée obtenue à partir d'un mélange identique au mélange M mais qui ne contiendrait pas d'agent gélifiant. - the viscosity of the foam obtained between steps b) and c) (before gelling and after the end of the foaming operation) is greater than or equal to that of a gelled foam obtained from a mixture identical to the mixture M but which would not contain any gelling agent.
L'agent moussant, de préférence un savon, est de préférence ajouté dans le pré-mélange B en une proportion comprise entre 25 et 75% en poids dudit pré-mélange. De préférence encore, la quantité d'agent moussant est déterminée de manière que sa teneur dans le mélange M soit comprise entre 0,5 et 3% en poids. De préférence un agent plastifiant, de préférence un ajout à base de glycérol, de préférence de la glycérine, est de préférence ajouté dans le pré-mélange B selon une proportion comprise entre 0,5 et 2,5%, de préférence comprise entre 1 et 2% en poids de la masse de poudre céramique. The foaming agent, preferably a soap, is preferably added to premix B in a proportion of between 25 and 75% by weight of said premix. More preferably, the quantity of foaming agent is determined so that its content in the mixture M is between 0.5 and 3% by weight. Preferably a plasticizer, preferably an addition based on glycerol, preferably glycerin, is preferably added to the premix B in a proportion of between 0.5 and 2.5%, preferably between 1 and 2% by weight of the mass of ceramic powder.
De préférence, l’agent durcissant est choisi parmi les alcools poly vinyliques. Preferably, the hardening agent is chosen from polyvinyl alcohols.
Le mélange M peut en outre contenir un ou plusieurs liants thermoplastiques usuellement utilisés en céramique. La barbotine A et le pré-mélange sous agitation mécanique, la température, dite « température de mélange », étant maintenue supérieure à la température de gélification de l’agent gélifiant. De préférence, les pré-mélanges A, et B sont mélangés immédiatement après leur préparation pour former le mélange M. Le pH du pré-mélange B peut être acide, basique ou neutre et est de préférence choisi de manière à permettre une bonne dispersion avec le pré-mélange A. The mixture M may also contain one or more thermoplastic binders usually used in ceramics. Slip A and the pre-mixture under mechanical stirring, the temperature, called “mixing temperature”, being maintained above the gelation temperature of the gelling agent. Preferably, the pre-mixtures A, and B are mixed immediately after their preparation to form the mixture M. The pH of the pre-mixture B can be acidic, basic or neutral and is preferably chosen so as to allow good dispersion with premix A.
Selon un mode de réalisation possible, le pré-mélange aqueux B comprend l’agent gélifiant constitué de gélatine, l’agent moussant, un agent plastifiant tel que de la glycérine et un durcissant dilués dans 50 à 70% d’eau déminéralisée chauffé dans un bain-marie à 55°C.According to one possible embodiment, the aqueous premix B comprises the gelling agent consisting of gelatin, the foaming agent, a plasticizing agent such as glycerin and a hardener diluted in 50 to 70% demineralized water heated in a water bath at 55°C.
A l’étape a), un stabilisant peut être ajouté, comme décrit dans EP 1 778 601 mais la présence d’un agent stabilisant est optionnelle. De préférence, le mélange M ne comporte pas d’agent stabilisant. Une absence de stabilisant est avantageuse pour réduire la taille de la porosité cellulaire, ce qui est bénéfique en matière de filtration de l’air. In step a), a stabilizer can be added, as described in EP 1 778 601, but the presence of a stabilizer is optional. Preferably, the mixture M contains no stabilizer. An absence of stabilizer is advantageous in reducing the size of the cell porosity, which is beneficial when it comes to air filtration.
De manière préférée, on ajoute audit mélange M un agent plastifiant en une quantité en poids comprise entre 0,25 et 1 fois celle dudit agent gélifiant. De préférence encore, l’agent plastifiant est choisi pour brûler à une température supérieure à la température d’évaporation du liquide servant, à l’étape a), à mettre en suspension la poudre céramique, généralement et de préférence de l’eau, de préférence déminéralisée. Preferably, a plasticizer is added to said mixture M in an amount by weight of between 0.25 and 1 times that of said gelling agent. Also preferably, the plasticizer is chosen to burn at a temperature above the evaporation temperature of the liquid used, in step a), to suspend the ceramic powder, generally and preferably water, preferably demineralised.
A l'étape b), le mélange M est cisaillé de manière à mousser. Le cisaillement peut résulter d’une agitation mécanique, d’une insufflation de gaz, ou bien par toute combinaison de ces deux techniques. Dans le cas de l’insufflation de gaz, on préfère utiliser une membrane munie de trous calibrés. In step b), the mixture M is sheared so as to foam. Shearing can result from mechanical agitation, gas blowing, or any combination of these two techniques. In the case of gas insufflation, it is preferable to use a membrane provided with calibrated holes.
Pendant l’étape b), si la viscosité de l’agent stabilisant est réversible sous l’effet du cisaillement, le cisaillement réduit la viscosité du mélange. L’étape b) s’effectue à une température supérieure à la température de gélification de l’agent gélifiant, par exemple à la température de mélange. During step b), if the viscosity of the stabilizer is reversible under the effect of shear, the shear reduces the viscosity of the mixture. Step b) is carried out at a temperature higher than the gelation temperature of the gelling agent, for example the mixing temperature.
A l’étape b), la durée de cisaillement est de préférence supérieure à 25 min. In step b), the shearing time is preferably greater than 25 min.
De manière très préférée, la viscosité du mélange avant agitation mécanique ou moussage est comprise entre 1 et 6 Pa.s mesurée à une vitesse de cisaillement de 50 s 1 entre 35 et 65°C, de préférence entre 38 et 55°C. Very preferably, the viscosity of the mixture before mechanical stirring or foaming is between 1 and 6 Pa.s measured at a shear rate of 50 s 1 between 35 and 65°C, preferably between 38 and 55°C.
Après obtention de la mousse intermédiaire, on arrête le cisaillement, puis, éventuellement, on coule la mousse intermédiaire dans un moule. After obtaining the intermediate foam, the shearing is stopped, then, optionally, the intermediate foam is poured into a mould.
A l’étape c), on refroidit le plus rapidement possible la mousse intermédiaire jusqu’à une température, en °C, au moins 2 fois, voire au moins 3 fois ou encore au moins cinq fois plus faible que la température de gélification de l’agent gélifiant, de préférence jusqu’à une température inférieure à 10°C, de préférence comprise entre 0,5 et 8°C. La gélification permet avantageusement d’obtenir une mousse gélifiée suffisamment rigide pour être manipulée sans se dégrader. Le procédé se prête donc bien à une mise en œuvre industrielle.In step c), the intermediate foam is cooled as quickly as possible to a temperature, in °C, at least 2 times, even at least 3 times or even at least five times lower than the gelation temperature of the gelling agent, preferably up to a temperature below 10°C, preferably between 0.5 and 8°C. Gelation advantageously makes it possible to obtain a gelled foam that is sufficiently rigid to be handled without degrading. The process therefore lends itself well to industrial implementation.
De préférence, la mousse intermédiaire obtenue à l’issue de l’étape b) est refroidie brutalement (trempe), de préférence à une vitesse de refroidissement supérieure à 20°C/minute, de préférence supérieure à 30°C/minute. De préférence, la mousse intermédiaire est refroidie immédiatement après la fin de l’étape b), de préférence moins de 5 minutes après la fin de l’étape b). Preferably, the intermediate foam obtained at the end of step b) is suddenly cooled (quenching), preferably at a cooling rate greater than 20° C./minute, preferably greater than 30° C./minute. Preferably, the intermediate foam is cooled immediately after the end of step b), preferably less than 5 minutes after the end of step b).
Dans un mode de réalisation, à l’étape c), la mousse intermédiaire est soumise, de préférence au début de l’étape c), à une température inférieure à la température de solidification de la mousse intermédiaire, de préférence jusqu’à congélation complète de ladite mousse intermédiaire. Une telle congélation est notamment utile lorsque l’étape d) comporte un séchage par voie supercritique. In one embodiment, in step c), the intermediate foam is subjected, preferably at the start of step c), to a temperature below the solidification temperature of the intermediate foam, preferably until freezing. complete with said intermediate foam. Such freezing is particularly useful when step d) includes supercritical drying.
La température de solidification de la mousse intermédiaire est généralement sensiblement égale à la température de gélification de l’agent gélifiant. The solidification temperature of the intermediate foam is generally substantially equal to the gelling temperature of the gelling agent.
Dans un mode de réalisation préféré, la mousse intermédiaire est disposée dans une étuve climatique avant d’être refroidie, et en particulier dans une étuve climatique utilisée à l’étape d). Le refroidissement rapide permet avantageusement de gélifier la mousse intermédiaire sans en modifier substantiellement la structure. In a preferred embodiment, the intermediate foam is placed in a climatic oven before being cooled, and in particular in a climatic oven used in step d). The rapid cooling advantageously makes it possible to gel the intermediate foam without substantially modifying its structure.
A l’étape d), la mousse gélifiée issue de l’étape c) est de préférence séchée de manière à ne pas modifier la structure de la mousse gélifiée obtenue à l’issue de l’étape c). In step d), the gelled foam from step c) is preferably dried so as not to modify the structure of the gelled foam obtained at the end of step c).
Les inventeurs ont observé que cette structure est modifiée lorsqu’au moins une partie du séchage, en particulier au début du séchage, est réalisé à une température supérieure à la température de gélification de l’agent gélifiant ou à la température de solidification de la mousse intermédiaire. The inventors have observed that this structure is modified when at least part of the drying, in particular at the start of the drying, is carried out at a temperature higher than the gelation temperature of the gelling agent or the solidification temperature of the foam intermediate.
Les inventeurs ont également observé que cette structure est cependant modifiée lorsque la durée de séchage est longue, par exemple lorsque le séchage est réalisé à une température inférieure à ladite température de gélification ou de solidification, à l’air libre. The inventors have also observed that this structure is however modified when the drying time is long, for example when the drying is carried out at a temperature below said gelation or solidification temperature, in the open air.
Un séchage réalisé en étuve climatique et/ou par voie supercritique permet avantageusement de conserver la structure de la mousse gélifiée, même en l’absence de stabilisant. Drying carried out in a climatic oven and/or by supercritical means advantageously makes it possible to preserve the structure of the gelled foam, even in the absence of stabilizer.
De préférence, le séchage en étuve climatique et/ou la sublimation par voie supercritique est/sont poursuivis jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 20%, de préférence inférieure à 10%. Preferably, the drying in a climatic oven and/or the sublimation by the supercritical route is/are continued until the residual humidity of the gelled foam is less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 20%, preferably less than 10%.
De préférence, le séchage en étuve climatique et/ou la sublimation par voie supercritique est/sont poursuivis jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 10%, de préférence inférieure à 5%, de préférence encore inférieure à 2% ou même inférieure à 1%. Preferably, the drying in a climatic oven and/or the sublimation by supercritical means is/are continued until the residual humidity of the gelled foam is less than 10%, preferably less than 5%, more preferably still less 2% or even less than 1%.
Selon un mode particulier d’un séchage par voie supercritique, le séchage est réalisé dans un autoclave, de préférence dans un lyophilisateur, et est poursuivi jusqu’à ce que l’hygrométrie de l’enceinte de l’autoclave ou du lyophilisateur soit inférieure à 500, de préférence inférieure à 400, de préférence inférieure à 300 ppm en masse d’eau dans l’enceinte. According to a particular mode of supercritical drying, the drying is carried out in an autoclave, preferably in a freeze-dryer, and is continued until the hygrometry of the enclosure of the autoclave or of the freeze-dryer is lower to 500, preferably less than 400, preferably less than 300 ppm by mass of water in the enclosure.
De manière remarquable, les inventeurs ont découvert que ces technologies permettent de préserver la structure de la mousse, en limitant la coalescence des cellules et en réduisant la dispersion de taille des fenêtres d’interconnexion entre ces cellules. Remarkably, the inventors have discovered that these technologies make it possible to preserve the structure of the foam, by limiting the coalescence of the cells and by reducing the size dispersion of the interconnection windows between these cells.
Un séchage en étuve climatique consiste à placer la mousse gélifiée dans un environnement à une pression en vapeur d’eau supérieure à la pression en vapeur d’eau de l’air libre, de préférence à une pression en vapeur d’eau proche de la pression de saturation. En maintenant cette pression, la mousse gélifiée se dessèche lentement et de manière très homogène, sans effet de peau, comme lors d’un séchage à l’air libre. Il en résulte un une réduction des contraintes sur la mousse gélifiée. Drying in a climatic oven consists of placing the gelled foam in an environment with a water vapor pressure higher than the water vapor pressure of the free air, preferably at a water vapor pressure close to the saturation pressure. By maintaining this pressure, the gelled foam dries slowly and very evenly, without skin effect, as when drying in the open air. This results in a reduction of the stresses on the gelled foam.
Un séchage par voie supercritique consiste à placer la mousse gélifiée dans un environnement dans lequel la phase liquide, principalement constituée d’eau, et préalablement congelée, est sublimée ou « lyophilisée ». La sublimation permet avantageusement d’éviter une dégradation de la structure du fait des mouvements de la phase liquide, en particulier par gravité. En particulier, elle évite tout ramollissement, même local, de la mousse gélifiée. Supercritical drying consists of placing the gelled foam in an environment in which the liquid phase, mainly consisting of water, and previously frozen, is sublimated or “freeze-dried”. Sublimation advantageously makes it possible to avoid degradation of the structure due to the movements of the liquid phase, in particular by gravity. In particular, it avoids any softening, even local, of the gelled foam.
Des conditions de sublimation peuvent être déterminées de manière classique, en réalisant un diagramme de phases. Sur un tel diagramme, les conditions de sublimation correspondent à un ensemble de points définissant chacun une pression critique et une température critique dans lesquelles une sublimation se produit. Une température critique de la phase liquide des mousses gélifiées est typiquement d’environ -15°C à -20°C pour une pression de 1 mbar.Sublimation conditions can be determined conventionally, by producing a phase diagram. On such a diagram, the sublimation conditions correspond to a set of points each defining a critical pressure and a critical temperature in which sublimation occurs. A critical temperature of the liquid phase of gelled foams is typically around -15°C to -20°C for a pressure of 1 mbar.
Pendant que les conditions de sublimation sont appliquées, la vapeur dégagée par la mousse gélifiée est extraite et la teneur en eau de la mousse gélifiée diminue. La température au cœur de la mousse gélifiée peut augmenter, mais est de préférence contrôlée, de préférence en régulant la pression de vide ou « résiduelle » dans l’enceinte, de manière à toujours rester inférieure à la température de gélification de l’agent gélifiant (ou à la température de solidification de la mousse intermédiaire) et à la température critique Te de la phase liquide de la mousse gélifiée, et de manière que la différence, en valeur absolue, entre ces températures soit de préférence inférieure à 7°C, et de préférence supérieure à 1°C, voire supérieure à 2°C. Cette limitation de la différence de température permet avantageusement d’accélérer le séchage sans fragiliser la structure alvéolaire de la mousse. As the sublimation conditions are applied, the vapor given off by the gelled foam is extracted and the water content of the gelled foam decreases. The temperature at the core of the gelled foam can increase, but is preferably controlled, preferably by regulating the vacuum or "residual" pressure in the enclosure, so as to always remain below the gelling temperature of the gelling agent (or at the solidification temperature of the intermediate foam) and at the critical temperature Te of the liquid phase of the gelled foam, and so that the difference, in absolute value, between these temperatures is preferably less than 7°C, and preferably greater than 1°C, or even greater than 2°C. This limitation of the temperature difference advantageously makes it possible to accelerate the drying without weakening the alveolar structure of the foam.
La pression de vide est classiquement imposée au moyen d’une pompe qui assure le vide et l’évacuation de la vapeur d’eau extraite de la mousse gélifiée. The vacuum pressure is conventionally imposed by means of a pump which ensures the vacuum and the evacuation of the water vapor extracted from the gelled foam.
Dans un mode de réalisation préféré, on laisse la température de l’enceinte du lyophilisateur évoluer librement, la température initiale étant suffisamment faible pour que l’humidité résiduelle de la mousse gélifiée atteigne le niveau souhaité sans que la température au cœur de la mousse ne dépasse la température de gélification de l’agent gélifiant (ou à la température de solidification de la mousse intermédiaire) ni la température critique, la différence, en valeur absolue, entre ces températures restant inférieure à 7°C, de préférence inférieure à 5°C et de préférence supérieure à 1°C, voire supérieure à 2°C. In a preferred embodiment, the temperature of the enclosure of the freeze-dryer is left to evolve freely, the initial temperature being low enough for the residual humidity of the gelled foam to reach the desired level without the temperature at the heart of the foam not exceeds the gelling temperature of the gelling agent (or at the solidification temperature of the intermediate foam) nor the critical temperature, the difference, in absolute value, between these temperatures remaining below 7°C, preferably below 5°C and preferably above 1°C, or even above 2 °C.
Le séchage par voie supercritique permet avantageusement d’atteindre rapidement une humidité résiduelle faible, de préférence inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 20%, de préférence inférieure à 10%, par exemple en moins de 7 jours, moins de 5 jours, moins de 3 jours, moins de 2 jours, voire moins de 1 jour, ou moins de 12 heures. La durée du séchage dépend de la capacité de l’autoclave ou du lyophilisateur, de la porosité de la mousse gélifiée et des dimensions de la mousse gélifiée à sécher. Supercritical drying advantageously makes it possible to quickly reach a low residual humidity, preferably less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 20%, preferably less than 10% , for example in less than 7 days, less than 5 days, less than 3 days, less than 2 days, or even less than 1 day, or less than 12 hours. The drying time depends on the capacity of the autoclave or freeze dryer, the porosity of the gelled foam and the dimensions of the gelled foam to be dried.
L’application de la pression critique et le contrôle en température peuvent être réalisés dans une enceinte sous-vide équipée de plateaux chauffants. Des lyophilisateurs tels que ceux fournis par la société Cryotec, par exemple décrits sur la page http://www.cryotec.fr/nos- produits/lyophilisateur/ peuvent convenir. De préférence encore, l’étape de sublimation est précédée d’une réduction lente de la température, de préférence à une vitesse inférieure à 10°C/h, de préférence inférieure à 7°C/h, de préférence inférieure à 5°C/h jusqu’à une température de préférence inférieure àThe application of the critical pressure and the temperature control can be carried out in a vacuum chamber equipped with heating plates. Lyophilizers such as those supplied by the company Cryotec, for example described on the page http://www.cryotec.fr/nos-produits/lyophiliseur/ may be suitable. Preferably again, the sublimation step is preceded by a slow reduction in temperature, preferably at a rate of less than 10°C/h, preferably less than 7°C/h, preferably less than 5°C /h up to a temperature preferably below
-20°C, de préférence inférieure à -30°C, de préférence inférieure à -40°C. Un tel refroidissement lent favorise avantageusement la génération de petits cristaux de glace, plus faciles à lyophiliser. -20°C, preferably below -30°C, preferably below -40°C. Such slow cooling advantageously promotes the generation of small ice crystals, which are easier to freeze-dry.
Les deux processus de séchage suivants sont préférés entre tous. The following two drying processes are most preferred.
Le premier processus comprend les deux opérations suivantes : The first process includes the following two operations:
Une première opération de séchage consiste à augmenter progressivement la température tout en la maintenant inférieure à la température de gélification, de préférence dans une étuve climatique, de préférence dans l’étuve climatique utilisée pour la gélification. Dans une étuve climatique, la température et l’humidité sont régulées, de préférence jusqu’à sensiblement saturer en humidité l’intérieur de l’étuve, et une ventilation forcée permet d’extraire l’eau. La température est de préférence augmentée à mesure que l’humidité résiduelle de la mousse gélifiée diminue, sans dépasser la température de gélification. La température est de préférence augmentée pendant une durée supérieure à 1 heure, de préférence supérieure à 24 h, à 48 h, à 72 h, à 96 h, à 120 h, et/ou inférieure à 1 semaine. Elle peut être augmentée par palier ou progressivement, de préférence par palier. A first drying operation consists in gradually increasing the temperature while maintaining it below the gelation temperature, preferably in a climatic oven, preferably in the climatic oven used for the gelation. In a climatic oven, the temperature and the humidity are regulated, preferably until the interior of the oven is substantially saturated with humidity, and a forced ventilation makes it possible to extract the water. The temperature is preferably increased as the residual moisture of the gelled foam decreases, without exceeding the gelling temperature. The temperature is preferably increased for a period of more than 1 hour, from preferably greater than 24 h, 48 h, 72 h, 96 h, 120 h, and/or less than 1 week. It can be increased in steps or gradually, preferably in steps.
Cette première opération de séchage est de préférence poursuivie jusqu’à ce que l’humidité résiduelle de la mousse gélifiée atteigne une valeur intermédiaire, de préférence inférieure à 95%, de préférence inférieure à 90% de l’humidité initiale. De préférence, la première opération de séchage est poursuivie jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 10%, de préférence inférieure à 5%, et/ou supérieure à 2%, de préférence supérieure à 3% ou à 4%. This first drying operation is preferably continued until the residual humidity of the gelled foam reaches an intermediate value, preferably less than 95%, preferably less than 90% of the initial humidity. Preferably, the first drying operation is continued until the residual humidity of the gelled foam is less than 10%, preferably less than 5%, and/or greater than 2%, preferably greater than 3% or 4%.
Dans un mode de réalisation, lors de la première opération de séchage de l’étape d), la mousse gélifiée est placée dans une étuve climatique sous ventilation forcée selon le cycle suivant : In one embodiment, during the first drying operation of step d), the gelled foam is placed in a climatic oven under forced ventilation according to the following cycle:
- à 5°C pendant 24 h sans régulation d’humidité ; puis - at 5°C for 24 hours without humidity control; then
- à 15°C pendant 72 h à 80% d’humidité ; puis - at 15°C for 72 hours at 80% humidity; then
- à 20°C pendant 24 h à 80% d’humidité ; puis - at 20°C for 24 hours at 80% humidity; then
- à 25°C à 80% d’humidité jusqu’à atteindre au moins 70% de préférence au moins 89%, de manière plus préférée au moins 90% de perte d’humidité, sur la base de l’humidité de la mousse gélifiée obtenue à l’issue de l’étape c). - at 25°C at 80% humidity until at least 70% preferably at least 89%, more preferably at least 90% humidity loss, based on foam humidity gel obtained at the end of step c).
Par exemple, pour une mousse gélifiée contenant 30% d’eau, une perte d’humidité de 90% conduit à une humidité résiduelle de 30%*(100%-90%)=3%. For example, for a gelled foam containing 30% water, a moisture loss of 90% leads to a residual moisture of 30%*(100%-90%)=3%.
Alternativement ou en complément au séchage décrit ci-dessus, par augmentation progressive de la température sous humidité contrôlée, la première opération de séchage peut comporter un séchage supercritique, de préférence en autoclave, de préférence dans un lyophilisateur. Alternatively or in addition to the drying described above, by gradual increase in temperature under controlled humidity, the first drying operation may comprise supercritical drying, preferably in an autoclave, preferably in a lyophilizer.
De préférence, la mousse intermédiaire est préalablement congelée, de manière à solidifier l’ensemble de la phase liquide. Le séchage supercritique consiste classiquement à augmenter lentement la température et la pression environnant la mousse intermédiaire avant de dépressuriser de préférence à température constante, après être passé au-dessus du point critique de la phase liquide. Preferably, the intermediate foam is frozen beforehand, so as to solidify the entire liquid phase. Supercritical drying conventionally consists in slowly increasing the temperature and the pressure surrounding the intermediate foam before depressurizing preferably at constant temperature, after passing above the critical point of the liquid phase.
La deuxième opération de séchage suit de préférence immédiatement la première opération de séchage. Elle comporte de préférence un séchage à une température supérieure à 40°C, à 50°C, à 60°C, à 80°C ou à 100°C, de préférence jusqu’ à réduire l’humidité résiduelle à moins de 1%. The second drying operation preferably immediately follows the first drying operation. It preferably comprises drying at a temperature above 40°C, at 50°C, 60°C, 80°C or 100°C, preferably until the residual moisture is reduced to less than 1%.
Dans un mode de réalisation, la deuxième opération de séchage, de préférence réalisée dans une étuve de séchage, est réalisée selon le cycle suivant : In one embodiment, the second drying operation, preferably carried out in a drying oven, is carried out according to the following cycle:
- montée en température à une vitesse comprise entre 10 et 40°C/ h, de préférence entre 20 et 30°C/h, jusqu’à 100°C ; - rise in temperature at a rate of between 10 and 40°C/h, preferably between 20 and 30°C/h, up to 100°C;
- palier à 100°C pendant une durée d’au moins 1 h, de préférence supérieure à 2 h, voire supérieure à 3 h; - plateau at 100°C for a period of at least 1 hour, preferably greater than 2 hours, or even greater than 3 hours;
- descente en température, de préférence libre, jusqu’à 20°C. - drop in temperature, preferably free, down to 20°C.
Les conditions de séchage préférées décrites ci-dessus permettent avantageusement de figer la structure de la mousse, même en l’absence d’agent stabilisant, ce qui facilite le contrôle de cette structure et permet notamment de limiter la taille des pores, en particulier de manière à ce que les pores de taille supérieure à 300 pm représentant moins de 10% en volume de la porosité. The preferred drying conditions described above advantageously make it possible to freeze the structure of the foam, even in the absence of stabilizing agent, which facilitates the control of this structure and in particular makes it possible to limit the size of the pores, in particular of so that the pores larger than 300 μm represent less than 10% by volume of the porosity.
Elles présentent également l’avantage d’être faciles à mettre en œuvre, même de manière industrielle. They also have the advantage of being easy to implement, even industrially.
Enfin, elles évitent un affaissement de la mousse, même en l’absence d’agent stabilisant, ce qui permet de fabriquer une mousse céramique présentant une grande épaisseur, par exemple supérieure à 60 mm ou supérieure à 80 mm. Finally, they avoid a collapse of the foam, even in the absence of stabilizer, which makes it possible to manufacture a ceramic foam having a great thickness, for example greater than 60 mm or greater than 80 mm.
D’une manière générale, l’homme du métier sait comment modifier la distribution de la taille des pores, en particulier en modifiant la rhéologie et le cisaillement. Generally speaking, the person skilled in the art knows how to modify the pore size distribution, in particular by modifying the rheology and the shear.
Notamment, il sait augmenter la porosité totale, et en particulier la porosité cellulaire, en augmentant la quantité d’air dans la mousse, par exemple en augmentant la durée et/ou la vitesse de cisaillement. In particular, he knows how to increase the total porosity, and in particular the cellular porosity, by increasing the quantity of air in the foam, for example by increasing the duration and/or the shear rate.
Il sait également que la porosité intergranulaire peut être augmentée en augmentant la taille des particules de la poudre céramique. He also knows that the intergranular porosity can be increased by increasing the particle size of the ceramic powder.
Le deuxième processus comprend les trois opérations suivantes : The second process includes the following three operations:
Selon la première opération, la mousse gélifiée issue de l’étape c) est placée dans un lyophilisateur. La température de la mousse de l’étape c) est de préférence une température inférieure à 8°C et de préférence supérieure à 0,5°C afin de permettre une manipulation aisée en milieu industriel. According to the first operation, the gelled foam resulting from step c) is placed in a lyophilizer. The temperature of the foam in step c) is preferably a temperature below 8° C. and preferably above 0.5° C. in order to allow easy handling in an industrial environment.
Selon un mode possible, la mousse intermédiaire est refroidie immédiatement après la fin de l’étape b), de préférence dans l’enceinte du lyophilisateur à pression normale de 1 bar. La température du lyophilisateur est ensuite descendue à une température inférieure à la température critique de la mousse, de préférence à une température inférieure à -20°C, de préférence inférieure à -30°C, selon les dimensions de la mousse, la densité de la mousse et la charge du lyophilisateur. According to one possible mode, the intermediate foam is cooled immediately after the end of step b), preferably in the enclosure of the lyophilizer at normal pressure of 1 bar. The temperature of the freeze dryer is then lowered to a temperature below the critical temperature of the foam, preferably to a temperature below -20°C, preferably below -30°C, depending on the dimensions of the foam, the density of foam and freeze dryer load.
Selon la deuxième opération, la pression du lyophilisateur est abaissée afin d’obtenir un vide partiel correspondant à une pression résiduelle inférieure à 5 millibars, de préférence inférieure à 2 millibars. Selon les dimensions de la mousse et la densité de la mousse et/ou la charge du lyophilisateur et le débit de sa pompe, le temps de séjour dans l’enceinte sous vide est compris entre deux heures et 1 semaine. La deuxième opération peut être arrêtée lorsque l’eau résiduelle de la mousse a été complètement éliminée, c’est-à-dire lorsque la pompe du lyophilisateur n’extrait plus d’eau et/ou lorsque l’écart de température entre le cœur de la mousse et l’enceinte est inférieure à 5°C et/ou l’hygrométrie dans l’enceinte est sensiblement nulle (moins de 200 à 300 ppm en masse d’eau). According to the second operation, the pressure of the freeze dryer is lowered in order to obtain a partial vacuum corresponding to a residual pressure of less than 5 millibars, preferably less than 2 millibars. Depending on the dimensions of the foam and the density of the foam and/or the load of the freeze dryer and the flow rate of its pump, the residence time in the vacuum chamber is between two hours and 1 week. The second operation can be stopped when the residual water in the foam has been completely eliminated, i.e. when the freeze-dryer pump no longer extracts water and/or when the temperature difference between the core foam and the enclosure is below 5°C and/or the humidity in the enclosure is substantially zero (less than 200 to 300 ppm by mass of water).
Selon la troisième opération, la température de l’enceinte du lyophilisateur est maintenue jusqu’à la température ambiante (20°C), la mousse pouvant être ensuite extraite du lyophilisateur. According to the third operation, the temperature of the freeze-dryer enclosure is maintained until room temperature (20°C), the foam can then be extracted from the freeze-dryer.
Après étuvage et avant ou après cuisson par traitement à haute température, la mousse céramique peut être usinée pour obtenir une pièce aux dimensions souhaitées. After stoving and before or after firing by high temperature treatment, the ceramic foam can be machined to obtain a part with the desired dimensions.
A l’étape e), la préforme issue de l’étape d) est calcinée sous air, à sa température de frittage, à savoir 1200-1500 °C pour la cordiérite et 1400-2300 °C pour l'alumine, la mullite ou la zircone ou le carbure de silicium. Des conditions possibles pour le frittage à haute température du carbure de silicium sont par exemple décrites dans FR 2 313 331. In step e), the preform from step d) is calcined in air, at its sintering temperature, namely 1200-1500°C for cordierite and 1400-2300°C for alumina, mullite or zirconia or silicon carbide. Possible conditions for the high temperature sintering of silicon carbide are for example described in FR 2 313 331.
Les conditions pour la cuisson à l'étape e) permettant de fabriquer des mousses céramiques selon l'invention sont bien connues, la recristallisation du carbure de silicium étant une technique ancienne. On peut par exemple se référer à US 2,964,823, délivré le 20 décembre 1960, ou à l'article " Finely Layered Recrystallized Silicon Carbide for Diesel Particulate Filters ", Process Engineering, cfi/Ber. DKG 81 (2004) n°10. De préférence, la préforme est calcinée sous atmosphère non oxydante, de préférence sous atmosphère neutre, de préférence encore sous argon, à une température permettant d'obtenir du carbure de silicium recristallisé, de préférence comprise entre 1800 et 2500°C, de préférence entre 2050 et 2350 °C. The conditions for firing in step e) making it possible to manufacture ceramic foams according to the invention are well known, the recrystallization of silicon carbide being an old technique. Reference may be made, for example, to US Pat. No. 2,964,823, issued December 20, 1960, or to the article "Finely Layered Recrystallized Silicon Carbide for Diesel Particulate Filters", Process Engineering, cfi/Ber. DKG 81 (2004) No. 10. Preferably, the preform is calcined under a non-oxidizing atmosphere, preferably under a neutral atmosphere, more preferably under argon, at a temperature making it possible to obtain recrystallized silicon carbide, preferably between 1800 and 2500° C., preferably between 2050 and 2350°C.
D'autres conditions de cuisson par traitement à haute température sont envisageables, de préférence pour qu'elles conduisent à une recristallisation du carbure de silicium. Other firing conditions by high temperature treatment can be envisaged, preferably so that they lead to recrystallization of the silicon carbide.
Dans un mode de réalisation, la poudre céramique utilisée à l’étape a) comprend ou est constituée de matériau céramique non oxyde, et la cuisson de ladite préforme à l’étape e) est de préférence réalisée sous atmosphère non oxydante, de préférence sous argon, à une température supérieure à 1400°C et inférieure à 2300°C. In one embodiment, the ceramic powder used in step a) comprises or consists of non-oxide ceramic material, and the firing of said preform in step e) is preferably carried out under a non-oxidizing atmosphere, preferably under argon, at a temperature above 1400°C and below 2300°C.
Mousse céramique Ceramic foam
La mousse céramique présente des cellules, de forme générale sphérique, formées par agglomération de grains, cette agglomération laissant subsister des interstices, ou « pores intergranulaires » entre les grains. The ceramic foam has cells, of generally spherical shape, formed by agglomeration of grains, this agglomeration leaving interstices, or “intergranular pores” between the grains.
Les parois présentent ainsi une porosité dite « intergranulaire ». La porosité intergranulaire est donc constituée par les espaces interstitiels que crée nécessairement entre des grains l’agglomération de ces grains. The walls thus have a so-called “intergranular” porosity. The intergranular porosity is therefore constituted by the interstitial spaces that necessarily create between grains the agglomeration of these grains.
Les cellules sont interconnectées par des fenêtres d’interconnexion. Des cellules superficielles débouchent par des ouvertures vers l’extérieur. La porosité d’interconnexion est créée par les « pores cellulaires », à savoir les fenêtres d’interconnexion entre les cellules et les ouvertures vers l’extérieur des cellules superficielles. The cells are interconnected by interconnect windows. Surface cells emerge through openings to the outside. Interconnection porosity is created by "cellular pores", namely the interconnection windows between cells and the outward openings of surface cells.
La porosité intergranulaire est fonction de la taille des grains de la poudre céramique, en particulier de carbure de silicium, utilisée. The intergranular porosity is a function of the grain size of the ceramic powder, in particular of silicon carbide, used.
La porosité d’interconnexion est fonction de l’agent moussant mis en œuvre, en particulier en fonction de sa quantité dans la charge de départ qui est mise en forme pour constituer la préforme. The interconnection porosity is a function of the foaming agent used, in particular according to its quantity in the starting charge which is shaped to form the preform.
La présence de la porosité intergranulaire confère en effet à la fois une très grande surface disponible et une faible densité. Les mousses à porosité intergranulaire sont donc efficaces pour la filtration et/ou comme support pour un revêtement d’inactivation d’un ou plusieurs agents pathogènes, et/ou comme support de catalyseur, tout en étant légères. De préférence, la taille médiane des pores intergranulaires est 10 à 100 fois plus petite que celle des pores cellulaires. The presence of intergranular porosity indeed confers both a very large available surface and a low density. Foams with intergranular porosity are therefore effective for filtration and/or as support for a coating for inactivating one or more pathogenic agents, and/or as catalyst support, while being light. Preferably, the median size of the intergranular pores is 10 to 100 times smaller than that of the cellular pores.
De préférence, la répartition de la taille des pores est bimodale. Plus précisément, la distribution de la porosité, mesurée avec un porosimètre au mercure, présente un premier pic principal centré sur une première taille de pores et un deuxième pic principal centré sur une deuxième taille de pores. Preferably, the pore size distribution is bimodal. More specifically, the porosity distribution, measured with a mercury porosimeter, has a first main peak centered on a first pore size and a second main peak centered on a second pore size.
La première taille de pores est considérée comme la taille médiane des pores intergranulaires, et est représentative de la porosité intergranulaire. Elle est de préférence inférieure à 25 pm, voire inférieure à 20 pm et supérieure à 4 pm, de préférence supérieure à 7 pm, de préférence supérieure à 10 pm, de préférence supérieure à 13 pm. The first pore size is taken as the median intergranular pore size, and is representative of the intergranular porosity. It is preferably less than 25 μm, or even less than 20 μm and greater than 4 μm, preferably greater than 7 μm, preferably greater than 10 μm, preferably greater than 13 μm.
De préférence, la porosité intergranulaire est d'au moins 5 %, de préférence d'au moins 8 %, de préférence encore d'au moins 10% et/ou inférieure à 25%, voire inférieure à 20%. Preferably, the intergranular porosity is at least 5%, preferably at least 8%, more preferably at least 10% and/or less than 25%, or even less than 20%.
La deuxième taille de pores est considérée comme la taille médiane des pores cellulaires et est représentative d’une porosité d’interconnexion, constituant sensiblement le complément à 100% de la porosité intergranulaire. Elle est de préférence inférieure à 400 pm, voire inférieure à 300 pm, voire inférieure à 200 pm, voire inférieure à 180 pm, voire inférieure à 160 pm, de préférence inférieure à 150 pm, voire inférieure à 140 pm, de préférence inférieure à 130 pm, et de préférence supérieure à 40 pm, voire supérieure à 50 pm, voire supérieure à 80 pm. The second pore size is taken as the median cellular pore size and is representative of an interconnecting porosity, substantially constituting the complement to 100% of the intergranular porosity. It is preferably less than 400 μm, even less than 300 μm, even less than 200 μm, even less than 180 μm, even less than 160 μm, preferably less than 150 μm, even less than 140 μm, preferably less than 130 μm, and preferably greater than 40 μm, or even greater than 50 μm, or even greater than 80 μm.
De préférence, au moins une partie de la surface définie par le réseau poreux de la mousse céramique est revêtue d’un revêtement d’inactivation d’un ou plusieurs agents pathogènes, et/ou d’un revêtement catalytique adapté à une réaction d’au moins un polluant atmosphérique. Preferably, at least part of the surface defined by the porous network of the ceramic foam is coated with a coating for inactivating one or more pathogenic agents, and/or with a catalytic coating suitable for a reaction of at least one air pollutant.
La mousse céramique présente également l’avantage de pouvoir être nettoyée et/ou purifiée pour être réutilisée. Elle génère donc peu de déchets. Ceramic foam also has the advantage of being able to be cleaned and/or purified to be reused. It therefore generates little waste.
Selon un mode de réalisation particulier, une ou plusieurs couches superficielles peuvent être déposées en superposition sur la surface de la mousse céramique. According to a particular embodiment, one or more surface layers can be deposited superimposed on the surface of the ceramic foam.
En particulier, la mousse céramique peut comporter un corps poreux revêtu d’une ou plusieurs couches superficielles, la porosité totale et/ou la taille médiane des pores des couches superficielles étant différente, de préférence inférieure à la porosité totale au barycentre du corps poreux. In particular, the ceramic foam may comprise a porous body coated with one or more surface layers, the total porosity and/or the median pore size of the surface layers being different, preferably less than the total porosity at the barycentre of the porous body.
Dans un mode de réalisation particulièrement avantageux, la porosité totale de la couche superficielle est inférieure à 0,95, à 0,90 ou 0,8 fois la porosité totale au barycentre du corps poreux. De préférence la porosité totale de la couche superficielle est supérieure à 30%, voire supérieure à 35% et de préférence inférieure à 70%, voire inférieure à 60%, voire inférieure à 50%. De préférence, les pores de la couche superficielle présentent une taille médiane supérieure à 1 pm, voire supérieure à 2 pm, voire supérieure à 3 pm et inférieure à 20 pm, voire inférieure à 10 pm, voire inférieure à 5 pm. L’épaisseur de la couche superficielle est de préférence comprise entre 5 et 500 pm, de préférence supérieure à 10 pm et/ou inférieure à 400 pm, voire inférieure à 200 pm, voire inférieure à 100 pm. In a particularly advantageous embodiment, the total porosity of the surface layer is less than 0.95, 0.90 or 0.8 times the total porosity at the barycenter of the porous body. Preferably, the total porosity of the surface layer is greater than 30%, or even greater than 35% and preferably less than 70%, or even less than 60%, or even less than 50%. Preferably, the pores of the surface layer have a median size greater than 1 μm, or even greater than 2 μm, or even greater than 3 μm and less than 20 μm, or even less than 10 μm, or even less than 5 μm. The thickness of the surface layer is preferably between 5 and 500 μm, preferably greater than 10 μm and/or less than 400 μm, or even less than 200 μm, or even less than 100 μm.
Dans un mode de réalisation, la mousse céramique comporte plusieurs dites couches superficielles superposées à partir de la surface du corps poreux, les couches céramiques superficielles superposées présentant des porosités totales respectives et/ou des tailles médianes de pores différentes. In one embodiment, the ceramic foam comprises several said superimposed superficial layers starting from the surface of the porous body, the superimposed superficial ceramic layers having respective total porosities and/or different median pore sizes.
Selon une variante, la ou les couche(s) superficielle(s) peuvent être espacées du corps poreux. Alternatively, the surface layer(s) may be spaced from the porous body.
Dans un mode de réalisation, la porosité totale et/ou la taille médiane des pores est d’autant plus faible que la couche superficielle est éloignée du corps poreux. Il existe ainsi un gradient de porosité totale, la porosité totale et la taille médiane de la couche définissant la face d’entrée du fluide à filtrer-étant inférieure celles de la ou les autre(s) couche(s). In one embodiment, the total porosity and/or the median pore size is lower the further the surface layer is from the porous body. There is thus a total porosity gradient, the total porosity and the median size of the layer defining the inlet face of the fluid to be filtered being lower than those of the other layer(s).
De préférence, la porosité totale d’une couche superficielle, de préférence de chaque couche superficielle est supérieure à 30%, voire supérieure à 35% et de préférence inférieure à 70%, voire inférieure à 60%, voire inférieure à 50%. Preferably, the total porosity of a surface layer, preferably of each surface layer, is greater than 30%, or even greater than 35% and preferably less than 70%, or even less than 60%, or even less than 50%.
De préférence, les pores d’une couche superficielle, de préférence de chaque couche superficielle présentent une taille médiane supérieure à 1 pm, voire supérieure à 2 pm, voire supérieure à 3 pm et inférieure à 20 pm, voire inférieure à 10 pm, voire inférieure à 5 pm.Preferably, the pores of a surface layer, preferably of each surface layer, have a median size greater than 1 μm, or even greater than 2 μm, or even greater than 3 μm and less than 20 μm, or even less than 10 μm, or even less than 5 pm.
L’épaisseur d’une couche superficielle, de préférence de l’ensemble des couches superficielles est de préférence comprise entre 5 et 500 pm, de préférence supérieure à 10 pm et/ou inférieure à 400 pm, voire inférieure à 200 pm, voire inférieure à 100 pm. Les différentes couches peuvent résulter de la juxtaposition de différentes mousses céramiques unitaires ou bien de la projection d’un revêtement adhérent sur la surface du corps poreux ou bien de l’imprégnation d’une partie du corps poreux afin d’en modifier localement la porosité. The thickness of a surface layer, preferably of all of the surface layers, is preferably between 5 and 500 μm, preferably greater than 10 μm and/or less than 400 μm, or even less than 200 μm, or even less at 100 p.m. The different layers can result from the juxtaposition of different unitary ceramic foams or from the projection of an adherent coating on the surface of the porous body or from the impregnation of a part of the porous body in order to locally modify its porosity. .
En particulier lorsque la mousse céramique est en carbure de silicium recristallisé, une dite couche superficielle peut être obtenue par imprégnation d’une partie de l’épaisseur de la préforme par une barbotine à base de carbure de silicium. La barbotine peut optionnellement comporter des agents porogènes comme un agent moussant. La barbotine remplit alors au moins partiellement les pores. Après frittage, elle conduit ainsi à une dite couche superficielle. In particular when the ceramic foam is made of recrystallized silicon carbide, a so-called surface layer can be obtained by impregnating part of the thickness of the preform with a slip based on silicon carbide. The slip may optionally include blowing agents such as a foaming agent. The slip then at least partially fills the pores. After sintering, it thus leads to a so-called surface layer.
De préférence, la partie imprégnée s’étend à partir de la face d’entrée du fluide à filtrer.Preferably, the impregnated part extends from the inlet face of the fluid to be filtered.
Une porosité variable selon la profondeur permet avantageusement de piéger mécaniquement des particules de différentes tailles, et donc d’élargir le spectre des applications possibles. A variable porosity depending on the depth advantageously makes it possible to mechanically trap particles of different sizes, and therefore to broaden the spectrum of possible applications.
Selon une variante avantageuse, quel que ce soit le type de mousse, la mousse céramique est dépourvue d’un revêtement. Elle agit alors comme un pur filtre. According to an advantageous variant, whatever the type of foam, the ceramic foam does not have a coating. It then acts as a pure filter.
Exemples de réalisation Examples of realization
Les exemples qui suivent sont fournis à titre uniquement illustratif. Ils ne sont pas limitatifs et permettent de mieux comprendre les avantages techniques liés à la mise en œuvre de la présente invention. The following examples are provided for illustrative purposes only. They are not limiting and make it possible to better understand the technical advantages linked to the implementation of the present invention.
Dans les exemples qui suivent, les matières premières employées ont été choisies parmi :In the following examples, the raw materials used have been chosen from:
- de la gélatine GPA AO, un gélifiant commercialisé par Wesardt International; - GPA AO gelatin, a gelling agent marketed by Wesardt International;
- du RHODOVIOL(R) 4/125, un durcissant à base d’alcool polyvinylique à faible taux d'hydrolyse (88mol%) commercialisé par Rhodia PPMC; - RHODOVIOL(R) 4/125, a hardener based on polyvinyl alcohol with a low rate of hydrolysis (88 mol%) marketed by Rhodia PPMC;
- de la glycérine, un agent plastifiant commercialisé par Moulet Peinture (Avignon - Lrance); - glycerin, a plasticizing agent marketed by Moulet Peinture (Avignon - Lrance);
- du Schâumungsmittel W53LL, un agent moussant à base de polyacrylate d'ammonium, commercialisé par Zschimmer & Schwarz GmbH. - Schâumungsmittel W53LL, a foaming agent based on ammonium polyacrylate, marketed by Zschimmer & Schwarz GmbH.
Les proportions des poudres de carbure de silicium et des additifs utilisés pour fabriquer les mélanges mousseux sont fournis dans le tableau 1 suivant. SiCi, S1C2, et S1C3 désignent les pourcentages massiques des trois poudres de carbure de silicium utilisées, sur la base de la matière minérale. Les pourcentages des additifs sont fournis sur la base de la masse de la matière minérale (SiC). The proportions of the silicon carbide powders and the additives used to make the foam mixtures are provided in the following Table 1. SiCi, S1C2, and S1C3 designate the mass percentages of the three silicon carbide powders used, based on the mineral material. The percentages of the additives are provided on the basis of the mass of the mineral material (SiC).
La mousse céramique de l’exemple 1 a été réalisée à partir de l’enseignement de W02006018536A1, en particulier des exemples 21 à 23. The ceramic foam of example 1 was made from the teaching of W02006018536A1, in particular examples 21 to 23.
Dans cet exemple le pré-mélange aqueux B comprenant la gélatine, l’agent moussant, la glycérine et le durcissant dilués dans 58% d’eau déminéralisée a été chauffé dans un bain- marie à 55°C. In this example, the aqueous premix B comprising the gelatin, the foaming agent, the glycerin and the hardener diluted in 58% demineralized water was heated in a water bath at 55°C.
La barbotine en phase aqueuse A comprenant les poudres minérales de SiC, dont la charge massique est de 80% et dont le pH a été ajusté par ajout de soude à 10,5 a été ajoutée au pré mélange B . The slip in aqueous phase A comprising the SiC mineral powders, the mass load of which is 80% and the pH of which has been adjusted by adding sodium hydroxide to 10.5, was added to the premix B.
Après une agitation mécanique constante pendant 28 minutes (étape b)), la mousse intermédiaire obtenue a été coulée, à température ambiante (20°C), dans un moule permettant de fabriquer une préforme de dimensions 600mm x 400mm x 65mm. After constant mechanical stirring for 28 minutes (step b)), the intermediate foam obtained was cast, at ambient temperature (20° C.), in a mold making it possible to manufacture a preform of dimensions 600mm×400mm×65mm.
Après coulage, le moule a été placé dans une étuve climatique sous ventilation forcée.After casting, the mold was placed in a climatic oven under forced ventilation.
La température dans l’étuve a été descendue à 5°C pour gélifier la mousse intermédiaire (étape c)). The temperature in the oven was lowered to 5°C to gel the intermediate foam (step c)).
Puis la mousse gélifiée obtenue a été séchée (étape d)), dans l’étuve climatique, selon le cycle suivant (première opération de séchage) : Then the gelled foam obtained was dried (step d)), in the climatic oven, according to the following cycle (first drying operation):
5°C pendant 24 h sans régulation d’humidité ; 5°C for 24 h without humidity control;
15°C pendant 72 h à 80% d’humidité ; 15°C for 72 h at 80% humidity;
20°C pendant 24 h à 80% d’humidité ; 20°C for 24 hours at 80% humidity;
25°C à 80% d’humidité jusqu’à atteindre au moins 90% de perte d’humidité. 25°C at 80% humidity until at least 90% humidity loss is reached.
Le moule a ensuite été placé dans une étuve de séchage classique selon le cycle suivant (deuxième opération de séchage) : montée à 25°C/h jusqu’à 100°C ; palier de 4 h à 100°C ; descente libre jusqu’à 20°C. The mold was then placed in a conventional drying oven according to the following cycle (second drying operation): rise at 25°C/h up to 100°C; hold for 4 hours at 100°C; free descent down to 20°C.
La mousse ainsi séchée présentait une humidité résiduelle inférieure à 1%, mesurée sur un échantillon à l’aide d’un humidimètre Mettler à 110°C. Après démoulage, la préforme résultant du séchage a été cuite à 2240°C pendant 3 heures sous Argon afin d’obtenir une plaque de mousse de carbure de silicium recristallisé (étape e))· The foam thus dried had a residual humidity of less than 1%, measured on a sample using a Mettler humidity meter at 110°C. After demoulding, the preform resulting from the drying was baked at 2240°C for 3 hours under Argon in order to obtain a recrystallized silicon carbide foam plate (step e))
La mousse céramique de l’exemple 2 a été réalisée selon le même procédé que la mousse de l’exemple 1, mais l’agitation mécanique pendant l’étape de moussage a été réalisée pendant 20 minutes. La mousse de l’exemple 2 incorpore par conséquent moins d’air. The ceramic foam of example 2 was made according to the same process as the foam of example 1, but the mechanical agitation during the foaming step was carried out for 20 minutes. The foam of Example 2 therefore incorporates less air.
La mousse céramique de l’exemple 3 a été réalisée selon le même procédé que la mousse de l’exemple 2 mais, à la différence de l’exemple 2, après coulage du mélange mousseux, le moule a été placé dans une étuve à 15°C afin de la refroidir et la gélifier sans ventilation. La température de la mousse de 15°C environ a été atteinte entre 12 et 24 heures avant séchage sans ventilation à 110°C pendant 24h. La mousse ainsi séchée présentait une humidité résiduelle inférieure à 1%, mesurée sur un échantillon à l’aide d’un humidimètre Mettler à 110°C. The ceramic foam of Example 3 was produced using the same process as the foam of Example 2 but, unlike Example 2, after pouring the foamy mixture, the mold was placed in an oven at 15 °C in order to cool and gel it without ventilation. The foam temperature of approximately 15°C was reached between 12 and 24 hours before drying without ventilation at 110°C for 24 hours. The foam thus dried had a residual humidity of less than 1%, measured on a sample using a Mettler humidity meter at 110°C.
La mousse céramique de l’exemple 4 a été réalisée selon le même procédé que la mousse de l’exemple 2 mais à la différence de l’exemple 2, après coulage du mélange mousseux d’un échantillon de 300mm x 400mm x 65mm, le moule a été placé pendant 24 h dans un lyophilisateur pilote fourni par Cryotec, initialement réglé à 5°C et à pression atmosphérique, puis la température de l’enceinte du lyophilisateur a été réduite à -40°C en 10 h. Un vide a été ensuite réalisé afin de maintenir une pression résiduelle de 1 mbar +/-0,5 mbar. Le vide a été maintenu pendant 48 h jusqu’à ce que la pompe ait évacué l’ensemble de l’eau résiduelle. Il a été noté qu’à ce moment-là, la différence de température entre le cœur de la mousse et la température de l’enceinte était de moins de 5°C . A la fin du cycle de séchage, la température de l’enceinte du lyophilisateur était d’environ 20°C. La pression a été progressivement remontée, en 10 minutes environ, pour atteindre la pression atmosphérique avant sortie de la mousse et démoulage. La mousse ainsi séchée présentait une humidité résiduelle inférieure à 1%, mesurée sur un échantillon à l’aide d’un humidimètre Mettler à 110°C. The ceramic foam of example 4 was produced using the same process as the foam of example 2 but unlike example 2, after casting the foamy mixture of a sample of 300mm x 400mm x 65mm, the mold was placed for 24 h in a pilot freeze-dryer supplied by Cryotec, initially set at 5° C. and at atmospheric pressure, then the temperature of the freeze-dryer enclosure was reduced to -40° C. in 10 h. A vacuum was then created in order to maintain a residual pressure of 1 mbar +/-0.5 mbar. The vacuum was maintained for 48 h until the pump had evacuated all the residual water. It was noted that at this time, the temperature difference between the core of the foam and the temperature of the enclosure was less than 5°C. At the end of the drying cycle, the temperature of the freeze-dryer enclosure was around 20°C. The pressure was gradually raised, in around 10 minutes, to reach atmospheric pressure before the foam came out and was removed from the mould. The foam thus dried had a residual humidity of less than 1%, measured on a sample using a Mettler humidity meter at 110°C.
Les mousses présentent la structure cellulaire ou « alvéolaire » classique des mousses. En particulier, elles présentent une structure dans laquelle les cellules sont dispersées sensiblement aléatoirement dans les trois dimensions de l’espace. Par ailleurs, le diamètre des cellules est de l’ordre d’une centaine de micromètres. Ces cellules sont donc tout à fait différentes des canaux des structures en nids d’abeille, qui présentent classiquement une section transversale dont le diamètre équivalent atteint plusieurs millimètres. The foams have the classic cellular or "honeycomb" structure of foams. In particular, they have a structure in which the cells are dispersed substantially randomly in the three dimensions of space. Furthermore, the diameter of the cells is of the order of a hundred micrometers. These cells are therefore completely different from the channels of honeycomb structures, which conventionally have a cross section whose equivalent diameter reaches several millimeters.
Typiquement, les mousses présentent enfin une grande connectivité des macropores et une grande surface spécifique, ce qui conduit à une perméabilité élevée. Typically, foams finally exhibit high macropore connectivity and high specific surface area, which leads to high permeability.
Les cellules définissent chacune un volume de forme générale sphérique car elles sont formées par agglomération de grains céramiques autour de bulles d’air. The cells each define a volume of generally spherical shape because they are formed by the agglomeration of ceramic grains around air bubbles.
La mousse de chaque exemple a été caractérisée de la façon suivante : The foam of each example was characterized as follows:
Le volume et la taille de pores ont été mesurés selon la norme ISO 15901-1.2005 à l’aide d’un porosimètre Autopore IV série 9500 Micromeritics, par intrusion de Mercure, jusqu’àPore volume and size were measured according to ISO 15901-1.2005 standard using an Autopore IV series 9500 Micromeritics porosimeter, by Mercury intrusion, up to
2 bar, dans un échantillon d’environ 1 cm3 prélevé au cœur de la plaque de mousse. 2 bar, in a sample of about 1 cm 3 taken from the heart of the foam plate.
La courbe de distribution de la taille des pores présente deux pics principaux centrés sur des première et deuxième tailles de pore, reportées dans le tableau 1. L’aire du 1er pic correspond au volume de pores intergranulaires des parois délimitant les cellules de la mousse. The pore size distribution curve shows two main peaks centered on the first and second pore sizes, reported in Table 1. The area of the 1st peak corresponds to the volume of intergranular pores of the walls delimiting the foam cells .
La perte de charge a été mesurée à la température de 20°C et sous un débit d’air sec de 60 litres / minute, en moyenne sur 5 pastilles de 36 mm de diamètre et 4 mm de hauteur prélevées au cœur de chaque plaque de mousse. Plus la perte de charge est faible, meilleure est la performance. The pressure drop was measured at a temperature of 20°C and under a flow of dry air of 60 liters / minute, on average over 5 pellets of 36 mm in diameter and 4 mm in height taken from the heart of each plate of mousse. The lower the pressure drop, the better the performance.
La résistance à la flexion équibiaxiale a été mesurée selon la norme ASTM C 1499 2009, en moyenne sur 5 pastilles de 36 mm de diamètre et 4 mm de hauteur prélevées au cœur de chaque plaque de mousse. Plus la résistance mécanique est élevée, meilleure est la performance. The equibiaxial bending strength was measured according to the ASTM C 1499 2009 standard, on average on 5 pellets of 36 mm in diameter and 4 mm in height taken from the core of each foam plate. The higher the mechanical strength, the better the performance.
L’efficacité de filtration a été évaluée au regard de la norme NF-EN 14683. Un test avec aérosol d’eau inoculée de bactéries ( Staphylococcus aureus ) dont la taille moyenne est deThe filtration efficiency was evaluated with regard to the NF-EN 14683 standard. A test with an aerosol of water inoculated with bacteria (Staphylococcus aureus) whose average size is
3 pm a été utilisé conformément à la pratique pour les masques chirurgicaux. Plus le taux de filtration est élevé, meilleure est la performance. 3 µm was used in accordance with practice for surgical masks. The higher the filtration rate, the better the performance.
[Tableau 1] [Table 1]
D5O= taille médiane D5 O = median size
On considère qu’un exemple est particulièrement bien adapté à l’application visée s’il présente An example is considered to be particularly well suited to the intended application if it presents
- une perte de charge inférieure à 10 mbar ; - une résistance en flexion équibiaxiale supérieure ou égale à 6 MPa ; et - a pressure drop of less than 10 mbar; - an equibiaxial bending strength greater than or equal to 6 MPa; and
- une efficacité de filtration supérieure à 95%. - filtration efficiency greater than 95%.
Les résultats indiquent que les exemples 1, 2 et 4 sont particulièrement adaptés à l’application visée. Ils présentent notamment de très bonnes efficacité de filtration et résistance mécanique. Les exemples 1 et 4 présentent en outre une perte de charge très faible. L’exemple 3 n’est pas préféré du fait d’une perte de charge élevée. The results indicate that examples 1, 2 and 4 are particularly suited to the intended application. In particular, they have very good filtration efficiency and mechanical resistance. Examples 1 and 4 also have a very low pressure drop. Example 3 is not preferred due to high pressure drop.
Sans être limités par cette théorie, les inventeurs expliquent les performances remarquables des mousses céramiques selon l’invention, à distribution bimodale des pores, par la structure très spécifique des cellules de la mousse. Les fenêtres d’interconnexion entre les cellules permettent en effet de ménager des canaux tortueux à travers la mousse. Ces canaux tortueux réduisent la perte de charge et sont cependant efficaces pour filtrer des particules beaucoup plus petites que leurs sections transversales. La filtration ne résulte donc pas nécessairement d’un blocage des particules lorsqu’elles sont poussées par le flux d’air à travers des pores de plus petites dimensions, comme dans les filtres en matériau frittés conventionnels utilisés par exemple pour filtrer des gaz d’échappement. La forme des canaux tortueux expliquerait l’efficacité de la filtration. Without being limited by this theory, the inventors explain the remarkable performances of the ceramic foams according to the invention, with bimodal distribution of the pores, by the very specific structure of the cells of the foam. The interconnection windows between the cells indeed make it possible to provide tortuous channels through the foam. These tortuous channels reduce pressure drop and yet are effective in filtering particles much smaller than their cross sections. Filtration therefore does not necessarily result blocking of particles when they are pushed by the air flow through pores of smaller dimensions, as in conventional sintered material filters used for example to filter exhaust gases. The shape of the tortuous channels would explain the efficiency of the filtration.
De manière surprenante, et sans pouvoir l’expliquer de manière théorique, les excellentes performances des exemples 1 et 2 sont également associées à une distribution de la taille des pores spécifique, et en particulier à un nombre limité de cellules de grandes tailles, et en particulier à un D90 inférieur à 250 pm, de préférence inférieur à 200 pm. Surprisingly, and without being able to explain it theoretically, the excellent performances of Examples 1 and 2 are also associated with a specific pore size distribution, and in particular with a limited number of large cells, and in particular at a D90 of less than 250 μm, preferably less than 200 μm.
De manière spécifique, les inventeurs ont également relevé : Specifically, the inventors have also noted:
- un rapport (D9O-DIO)/DSO, ou « span », faible, de préférence inférieur à 1,5 ; - a low (D9O-DIO)/DSO, or “span” ratio, preferably less than 1.5;
- une taille médiane D50 faible, inférieure à 150 pm. - a low D50 median size, less than 150 μm.
Les mousses céramiques frittées selon l’invention offrent ainsi à la fois une efficacité de filtration remarquable, mais aussi une perte de charge très faible. Ce compromis permet de limiter l’énergie nécessaire pour faire circuler l’air à travers la mousse céramique. Il permet aussi d’utiliser la mousse céramique dans des applications où la circulation d’air résulte d’une simple inhalation, par exemple dans un masque respiratoire individuel. The sintered ceramic foams according to the invention thus offer both remarkable filtration efficiency, but also a very low pressure drop. This compromise makes it possible to limit the energy required to circulate the air through the ceramic foam. It also allows ceramic foam to be used in applications where the air circulation results from a simple inhalation, for example in an individual breathing mask.
Comme cela apparaît clairement à présent, l’invention permet d’optimiser la filtration, et en particulier le traitement d’air, en particulier l’air des espaces clos habitables comme les habitations, les bureaux et les habitacles de véhicules. As is now clear, the invention makes it possible to optimize the filtration, and in particular the treatment of air, in particular the air of habitable closed spaces such as dwellings, offices and the passenger compartments of vehicles.
Notamment, une mousse céramique selon l’invention permet à la fois la filtration de particules de manière efficace et avec une perte de charge faible, l’inactivation d’agents pathogènes et l’élimination des substances organiques polluantes. La mousse céramique mise en œuvre est avantageusement réutilisable, voire impérissable, et recyclable. In particular, a ceramic foam according to the invention allows both the filtration of particles efficiently and with a low pressure drop, the inactivation of pathogenic agents and the elimination of polluting organic substances. The ceramic foam used is advantageously reusable, even imperishable, and recyclable.
Bien entendu, l’invention n’est cependant pas limitée aux modes de réalisation décrits, fournis à des fins illustratives uniquement. Of course, the invention is however not limited to the embodiments described, provided for illustrative purposes only.

Claims

Revendications Claims
1. Procédé de fabrication d’une mousse céramique frittée suivant les étapes successives suivantes : a) préparation d'un mélange M contenant au moins une poudre céramique en suspension dans de l’eau, au moins un agent gélifiant et au moins un agent moussant, à une température de mélange supérieure à la température de gélification dudit agent gélifiant, b) cisaillement dudit mélange M à une température de moussage supérieure à ladite température de gélification, jusqu'à obtention d'une mousse intermédiaire, c) gélification de ladite mousse intermédiaire par refroidissement de ladite mousse intermédiaire à une température au moins deux fois plus faible que la température de gélification de l’agent gélifiant, en °C, d) séchage de ladite mousse gélifiée de manière à obtenir une préforme dont l’humidité après séchage est de préférence inférieure à 1%, e) cuisson de ladite préforme à une température supérieure à 1300°C et inférieure à 2300°C, procédé dans lequel, à l’étape d), le séchage est au moins partiellement réalisé en étuve climatique et/ou par voie supercritique. 1. Process for manufacturing a sintered ceramic foam according to the following successive steps: a) preparation of a mixture M containing at least one ceramic powder in suspension in water, at least one gelling agent and at least one foaming agent , at a mixing temperature higher than the gelling temperature of said gelling agent, b) shearing of said mixture M at a foaming temperature higher than said gelling temperature, until an intermediate foam is obtained, c) gelling of said foam intermediate by cooling said intermediate foam to a temperature at least twice lower than the gelling temperature of the gelling agent, in °C, d) drying said gelled foam so as to obtain a preform whose humidity after drying is preferably less than 1%, e) baking said preform at a temperature above 1300°C and below 2300°C, in which process, in step d), the drying is at least partially produced in a climatic oven and/or by supercritical means.
2. Procédé de fabrication selon la revendication précédente, dans lequel l’étape d) comprend un séchage en étuve climatique et/ou par voie supercritique jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 20%. 2. Manufacturing process according to the preceding claim, in which step d) comprises drying in a climatic oven and/or by supercritical means until the residual humidity of the gelled foam is less than 20%.
3. Procédé de fabrication selon la revendication immédiatement précédente, dans lequel le séchage est réalisé en étuve climatique et/ou par voie supercritique jusqu’à ce que l’humidité résiduelle de la mousse gélifiée soit inférieure à 5%. 3. Manufacturing process according to the immediately preceding claim, in which the drying is carried out in a climatic oven and/or by supercritical means until the residual humidity of the gelled foam is less than 5%.
4. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel le séchage en étuve climatique et/ou par voie supercritique est réalisé à une température toujours inférieure à la température de solidification de la mousse intermédiaire. 4. Manufacturing process according to any one of the preceding claims, in which the drying in a climatic oven and/or by supercritical means is carried out at a temperature which is always lower than the solidification temperature of the intermediate foam.
5. Procédé de fabrication selon la revendication immédiatement précédente, dans lequel, pendant le séchage en étuve climatique et/ou par voie supercritique, la différence entre la température de solidification de la mousse intermédiaire et la température au cœur de la mousse gélifiée est toujours inférieure à 7°C. 5. Manufacturing process according to the immediately preceding claim, in which, during drying in a climatic oven and/or by supercritical means, the difference between the solidification temperature of the intermediate foam and the temperature at the heart of the gelled foam is always lower. at 7°C.
6. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel, au début de l’étape d) de séchage, la mousse gélifiée est refroidie à une température inférieure à -20°C. 6. Manufacturing process according to any one of the preceding claims, in which, at the start of step d) of drying, the gelled foam is cooled to a temperature below -20°C.
7. Procédé de fabrication selon la revendication immédiatement précédente, dans lequel, au début de l’étape d) de séchage, la mousse gélifiée est refroidie à une température inférieure à -30°C. 7. Manufacturing process according to the immediately preceding claim, in which, at the start of step d) of drying, the gelled foam is cooled to a temperature below -30°C.
8. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel le refroidissement de la mousse intermédiaire à l’étape c) est réalisé à une température au moins trois fois plus faible que la température de gélification de l’agent gélifiant, en °C, de préférence entre 0,5 °C et 8°C. 8. Manufacturing process according to any one of the preceding claims, in which the cooling of the intermediate foam in step c) is carried out at a temperature at least three times lower than the gelation temperature of the gelling agent, in °C, preferably between 0.5°C and 8°C.
9. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel la vitesse de refroidissement à l’étape c) est supérieure à 20°C/minute. 9. Manufacturing process according to any one of the preceding claims, in which the cooling rate in step c) is greater than 20° C./minute.
10. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel à l’étape c), la mousse intermédiaire est soumise à une température inférieure à la température de solidification de la mousse intermédiaire. 10. Manufacturing process according to any one of the preceding claims, in which in step c), the intermediate foam is subjected to a temperature below the solidification temperature of the intermediate foam.
11. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel l’étape d) comporte une opération de séchage par voie supercritique, réalisée en autoclave, 11. Manufacturing process according to any one of the preceding claims, in which step d) comprises a supercritical drying operation, carried out in an autoclave,
- à une température inférieure à la température critique de la phase liquide du mélange M, et - at a temperature below the critical temperature of the liquid phase of the mixture M, and
- à une pression inférieure à la pression critique de ladite phase liquide. - At a pressure below the critical pressure of said liquid phase.
12. Mousse céramique présentant une pluralité de cellules imbriquées, délimitées par des parois céramiques et connectées entre elles par des fenêtres d’interconnexion, les parois délimitant les cellules étant formées par frittage de grains, cette agglomération laissant subsister des interstices entre les grains, la mousse céramique présentant une porosité totale supérieure à 40%, la taille médiane D50 de pores étant inférieure à 150 pm et supérieure à 70 pm,12. Ceramic foam having a plurality of nested cells, delimited by ceramic walls and connected to each other by interconnecting windows, the walls delimiting the cells being formed by sintering grains, this agglomeration leaving interstices between the grains, the ceramic foam having a total porosity greater than 40%, the median pore size D50 being less than 150 μm and greater than 70 μm,
- les pores de taille supérieure à 300 pm représentant moins de 10% en volume de ladite porosité totale et/ou le percentile D90 en volume sur la courbe de distribution cumulée des tailles de pores classées par ordre croissant, mesurée par porosimétrie mercure, étant inférieur à 250 pm, le rapport (D90 - Dio)/Dso étant inférieur à 1,8. - pores larger than 300 μm representing less than 10% by volume of said total porosity and/or the D90 percentile by volume on the cumulative distribution curve of pore sizes classified in ascending order, measured by mercury porosimetry, being lower at 250 μm, the (D90 - Dio)/Dso ratio being less than 1.8.
13. Mousse céramique selon la revendication immédiatement précédente, dans laquelle les pores présentant une taille supérieure à 300 pm représentent moins de 5% en volume de ladite porosité. 13. Ceramic foam according to the immediately preceding claim, in which the pores having a size greater than 300 μm represent less than 5% by volume of the said porosity.
14. Mousse céramique selon l’une quelconque des revendications précédentes, présentant une distribution de la taille des pores, mesurée avec un porosimètre au mercure, qui est bimodale et qui comporte des premier et deuxièmes pics principaux centrés sur des première et deuxième tailles de pore comprises entre 4 et 30 pm et entre 40 et 180 pm, respectivement, la porosité intergranulaire, représentée par le premier pic, étant supérieure ou égale à 5 % et inférieure à 25%. 14. Ceramic foam according to any one of the preceding claims, having a pore size distribution, measured with a mercury porosimeter, which is bimodal and which has first and second principal peaks centered on first and second pore sizes. between 4 and 30 μm and between 40 and 180 μm, respectively, the intergranular porosity, represented by the first peak, being greater than or equal to 5% and less than 25%.
15. Mousse céramique selon la revendication immédiatement précédente, dans laquelle : 15. Ceramic foam according to the immediately preceding claim, wherein:
- ladite deuxième taille de pore est supérieure à 50 pm et/ou inférieure à 160 pm, et/ou- said second pore size is greater than 50 μm and/or less than 160 μm, and/or
- ladite première taille de pore est supérieure à 7 pm et inférieure à 20 pm. - said first pore size is greater than 7 μm and less than 20 μm.
16. Mousse céramique selon l’une quelconque des quatre revendications immédiatement précédentes, ladite mousse céramique étant constituée de carbure de silicium ou de cordiérite ou de titanate d’aluminium ou de zircone ou d’alumine ou de mullite ou de silice ou de leurs mélanges. 16. Ceramic foam according to any one of the four immediately preceding claims, said ceramic foam being made of silicon carbide or cordierite or aluminum titanate or zirconia or alumina or mullite or silica or mixtures thereof. .
17. Mousse céramique selon l’une quelconque des cinq revendications immédiatement précédentes, ladite mousse céramique satisfaisant la relation mathématique suivante :17. Ceramic foam according to any one of the five immediately preceding claims, said ceramic foam satisfying the following mathematical relationship:
Delta où : Delta where :
- d est la deuxième taille de pores ou diamètre médian des pores d’interconnexion en mètre (m) - e est la porosité totale de la mousse céramique en % volumique- d is the second pore size or median diameter of interconnecting pores in meter (m) - e is the total porosity of the ceramic foam in % by volume
- L’ est l’épaisseur de mousse en mètre (m) - L is the foam thickness in meters (m)
- p est la masse volumique du fluide traversant la mousse en kg.m3 - p is the density of the fluid passing through the foam in kg.m 3
- m est la viscosité dynamique du fluide traversant la mousse, en Pa.s ou en kg.m 1. s 1 - m is the dynamic viscosity of the fluid passing through the foam, in Pa.s or in kg.m 1 . sec 1
- Delta P est la perte de charge mesurée de part et d’autre de l’épaisseur L’ en Pa ou en kg. m_1.s 2 - Delta P is the pressure drop measured on either side of the thickness L' in Pa or kg. m _1 .s 2
- V est la vitesse du fluide à l’entrée de la mousse en m.s-1 relation dans laquelle n est compris entre 1 et 2, de préférence n est inférieur à 1,7, voire n est inférieur à 1,5, et - V is the speed of the fluid at the inlet of the foam in ms -1 relationship in which n is between 1 and 2, preferably n is less than 1.7, or even n is less than 1.5, and
K est compris entre 130 et 200, de préférence entre 140 et 180, de manière plus préférée entre 140 et 160. K is between 130 and 200, preferably between 140 and 180, more preferably between 140 and 160.
18. Utilisation d’une mousse céramique selon l’une quelconque des six revendications immédiatement précédentes pour des supports de catalyse, pour la filtration de l’air, la filtration de liquides ou de gaz chauds, comme diffuseur dans un brûleur à gaz, dans un récepteur volumétrique solaire, ou comme pièce de gazetterie. 18. Use of a ceramic foam according to any one of the six immediately preceding claims for catalysis supports, for the filtration of air, the filtration of liquids or hot gases, as a diffuser in a gas burner, in a solar volumetric receiver, or as a piece of gazettery.
EP22734298.7A 2021-06-17 2022-06-17 Method for producing a sintered ceramic foam Pending EP4355710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2106428A FR3124181B1 (en) 2021-06-17 2021-06-17 Process for manufacturing a sintered ceramic foam
PCT/EP2022/066546 WO2022263623A1 (en) 2021-06-17 2022-06-17 Method for producing a sintered ceramic foam

Publications (1)

Publication Number Publication Date
EP4355710A1 true EP4355710A1 (en) 2024-04-24

Family

ID=78332831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22734298.7A Pending EP4355710A1 (en) 2021-06-17 2022-06-17 Method for producing a sintered ceramic foam

Country Status (3)

Country Link
EP (1) EP4355710A1 (en)
FR (1) FR3124181B1 (en)
WO (1) WO2022263623A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR408330A (en)
US2964823A (en) 1954-04-20 1960-12-20 Norton Co Process of making recrystallized silicon carbide articles
US4024212A (en) 1975-03-28 1977-05-17 Swiss Aluminium Ltd. Ceramic foam and method of preparation
US4312954A (en) 1975-06-05 1982-01-26 Kennecott Corporation Sintered silicon carbide ceramic body
US4889670A (en) 1988-03-01 1989-12-26 Basf Aktiengesellschaft Process for manufacturing green and ceramic foam
GB2289466B (en) 1994-05-10 1997-10-22 Dytech Corp Ltd Production of porous refractory articles
US5643512A (en) 1995-08-16 1997-07-01 Northrop Grumman Corporation Methods for producing ceramic foams using pre-ceramic resins combined with liquid phenolic resin
GB9825109D0 (en) 1998-11-16 1999-01-13 Dytech Corp Ltd Porous ceramic matrices
EP1329439A1 (en) 2002-01-14 2003-07-23 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." Method for producing metallic and ceramic foams
FR2873685B1 (en) 2004-07-28 2007-06-22 Saint Gobain Ct Recherches PROCESS FOR OBTAINING POROUS CERAMICS
FR2896797B1 (en) * 2006-02-01 2008-08-08 Saint Gobain Ct Recherches CERAMIC FOAM IN RECRYSTALLIZED SILICON CARBIDE IMPREGNATED.
DE102015202277B3 (en) * 2015-02-09 2016-04-28 Morgan Advanced Materials Haldenwanger GmbH Process for the preparation of foamed ceramic materials and ceramic foam which can be produced thereby
FR3071248B1 (en) * 2017-09-19 2020-09-25 Saint Gobain Ct Recherches CERAMIC FOAM
CN110282958B (en) * 2019-07-12 2022-02-01 航天特种材料及工艺技术研究所 High-temperature-resistant special-shaped nanocrystalline aerogel material and preparation method thereof

Also Published As

Publication number Publication date
FR3124181B1 (en) 2024-03-29
FR3124181A1 (en) 2022-12-23
WO2022263623A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
EP1778600B1 (en) Method of obtaining porous ceramics, porous ceramic foam and its use
EP1986980B1 (en) Impregnated ceramic foam made of recrystallized silicon carbide
EP0087160B1 (en) Process for producing porous metal bodies
DE102008000100B4 (en) A process for producing a lightweight green body, then manufactured lightweight green body and method for producing a lightweight molded article
EP2559470B1 (en) Exhaust gas purification filter, and method for manufacturing exhaust gas purification filter
EP1329439A1 (en) Method for producing metallic and ceramic foams
EP2114841B1 (en) Method for making a sic based ceramic porous body
EP2361235A1 (en) Body assembled with a macroporous hardened cement
EP2334617A1 (en) Process for manufacturing a porous sic material
EP4355710A1 (en) Method for producing a sintered ceramic foam
US5427721A (en) Method of making microcellular ceramic bodies
EP2464613A1 (en) Method for producing a ceramic foam having reinforced mechanical strength for use as a substrate for a catalyst bed
WO2023111178A1 (en) Ceramic foam with reduced cell size dispersion
EP3288669A1 (en) Assembled filters for the filtration of liquids
FR2873686A1 (en) Manufacture of porous ceramic item e.g. catalyst support involves adding stabiliser to gelled mixture
EP3389833A1 (en) Monolithic filter
FR2873687A1 (en) Baked porous ceramic mousse with a total porosity of between 50 and 92% and an intergranular porosity of at least 5% and means of fabricating such a mousse
CA2616922A1 (en) Method for preparing a porous structure using silica-based pore-forming agents
WO2021255185A1 (en) Use of a sintered porous ceramic part for treating air
KR101395533B1 (en) Method for producing porous bioceramics and porous bioceramics manufactured thereby
JP3784314B2 (en) Ceramic filter for dust collection and manufacturing method thereof
KR101466576B1 (en) Porous ceramic structure and manufacturing method thereof
WO2016132912A1 (en) Method for producing honeycomb structure
KR20240100306A (en) Slurry for manufacturing a ceramic porous body and a method for manufacturing a ceramic porous body using the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR