EP4351274A1 - Appareil de chauffage avec élément chauffant à inertie - Google Patents

Appareil de chauffage avec élément chauffant à inertie Download PDF

Info

Publication number
EP4351274A1
EP4351274A1 EP23201548.7A EP23201548A EP4351274A1 EP 4351274 A1 EP4351274 A1 EP 4351274A1 EP 23201548 A EP23201548 A EP 23201548A EP 4351274 A1 EP4351274 A1 EP 4351274A1
Authority
EP
European Patent Office
Prior art keywords
heating element
main face
facade
face
heating apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23201548.7A
Other languages
German (de)
English (en)
Inventor
Cédric HEMMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muller et Cie SA
Original Assignee
Muller et Cie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muller et Cie SA filed Critical Muller et Cie SA
Publication of EP4351274A1 publication Critical patent/EP4351274A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • F24D13/022Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
    • F24D13/028Glass panels, e.g. mirrors, design radiators, etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/002Air heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means

Definitions

  • the present invention relates to a heating appliance, of the type comprising an outer casing and an electric heating element received inside said outer casing, the outer casing comprising a substantially vertical facade, the electric heating element comprising: a body , made of a material with thermal inertia; and an electrical resistance inserted inside said body; the body of the electric heating element comprising a main face, substantially facing the facade, and an opposite face substantially parallel to said main face
  • the invention applies particularly to heating devices comprising a dry inertia heating element.
  • a dry inertia heating element is described in particular in the document FR2991845 in the name of the Applicant.
  • such a heating element comprises a body formed of a dense material with high radiative properties, such as cast iron, glass, ceramic or concrete.
  • heaters comprising a dry inertia heating element operate both by convection and by radiation. More specifically, a flow of air circulates from the bottom to the top in the heater, around the heating element. This flow of air which is loaded with calories helps to limit the surface temperature of the heating element.
  • the heating element diffuses infrared radiation towards the external envelope of the device, in particular towards the facade, which itself increases in temperature and is then itself able to diffuse infrared radiation.
  • the temperature of the facade be as uniform as possible.
  • certain devices are equipped with a specific front heating element, of the screen-printed resistance type.
  • the present invention aims to improve the homogeneity of a surface temperature of the heating element, and possibly of the facade, of such a heating device.
  • the subject of the invention is a heating device of the aforementioned type, in which the main face is inclined by a non-zero angle of inclination relative to the vertical.
  • FIG. 1 is a schematic view, in section, of a heating device 10 according to one embodiment of the invention.
  • the apparatus 10 comprises an outer casing 12 and an electric heating element 14, received inside said outer casing. It is considered that the device 10 further comprises a temperature sensor 15 and a thermostat 16.
  • the outer envelope comprises a front 17 and a rear cover 18 assembled together, defining an internal space 20.
  • the facade 17 is arranged in a substantially vertical manner.
  • the facade 17 is substantially flat. Other non-perfectly planar shapes are also possible.
  • the facade 17 is formed of a material with thermal inertia, for example a metal, a glass, a ceramic, a natural stone or an inorganic polymer.
  • a metal facade 17 the metal chosen is preferably steel.
  • the rear cover comprises in particular a lower wall 22 and an upper wall 24.
  • the terms “lower” and “upper” are understood in relation to the vertical, the device 10 being in the installed position.
  • Each of the lower and upper walls is pierced with openings 26.
  • the electric heating element 14 is shown from the front on the figure 2 .
  • the heating element 14 comprises a body 30 and an electrical resistance 32.
  • the body 30 is formed of a material with thermal inertia, for example cast iron.
  • the electrical resistance 32 shown in dotted lines on the figures 1 And 2 , is inserted inside the body 30 in thermal contact with said body.
  • the electrical resistance 32 extends between two ends 34, projecting relative to the body 30.
  • the ends 34 are able to be connected to a source of electrical energy.
  • the body 30 of the electric heating element comprises a main face 36, substantially facing the facade 17 of the envelope 12, as well as an opposite face 38 substantially parallel to the main face.
  • the body 30 has a substantially constant thickness 40 between the main face 36 and the opposite face 38.
  • the body 30 has a substantially parallelepiped shape, the main 36 and opposite faces 38 being generally planar .
  • the main face 36 extends between a lower end 42 and an upper end 44.
  • the heating element 14 is connected to the envelope 12 so that the main face 36 of the body is inclined by a non-zero angle ⁇ relative to the vertical, in the installed position.
  • the orientation of the inclination of the heating element 14 is such that the lower end 42 of the main face is closer to the facade 17 than the upper end 44 of said main face.
  • the inclination is such that the upper end 44 is closest to the facade.
  • the main face 36 of the body 30 is slightly oriented upwards and the opposite face 38 is slightly oriented downwards.
  • the axis 48 of each perforation 46 is inclined by the angle ⁇ relative to the horizontal.
  • the angle of inclination is between 5° and 45°, more preferably between 5° and 25°, even more preferably between 10° and 20°.
  • the body 30 comprises a plurality of through perforations 46, extending between the main face 36 and the opposite face 38. More preferentially, the perforations are distributed substantially regularly over a set of the main face 36.
  • Each perforation extends along an axis 48 substantially perpendicular to the main faces 36 and opposite faces 38.
  • each perforation 46 has an oval or oblong shape.
  • Other shapes such as a round, square, rectangle, hexagonal or octagonal shape, can also be used.
  • a perforation 46 represents a surface area of between 1% and 5% of a surface area of the main face 36; and all of the perforations 46 represent a surface area of between 10% and 50% of a surface area of the main face 36.
  • the body of the heating element is solid and devoid of perforations on the main face and the opposite face.
  • the temperature sensor 15 is arranged in the lower part of the device 10, for example at the lower wall 22 of the rear cover.
  • the thermostat 16 is connected to the sensor 15.
  • the thermostat 16 is for example configured to control an electrical supply of the resistance 32 of the heating element 14, so as to interrupt said electrical supply if a temperature measured by the sensor 15 exceeds a temperature setpoint memorized by the thermostat.
  • the resistance 32 is supplied with electricity, leading to the heating of the body 30 by thermal conduction.
  • the air received in the internal space 20 of the envelope 12 heats up on contact with said body 30, generating a convection phenomenon in which a first flow 50 of air circulates between the openings 26 of the lower wall 22 towards the openings of the upper wall 24.
  • the downward inclination of the opposite face 38 increases the contact surface between said opposite face and the first flow 50 coming from the lower wall 22.
  • the convection phenomenon is thus improved.
  • the perforations 46 crossed by said first flow 50, improve the renewal of the air near said opposite face 38, as well as near the main face onto which the perforations 46 open.
  • a second 52 and a third 54 air flow are generated by convection along said facade 17, respectively in the internal space 20 and outside the device 10.
  • the facade 17 being vertical, the air arriving in contact with the top of the facade is hotter than the air in contact with the bottom of said facade. The heat transfer from the top of the facade 17 to the air is therefore less efficient than from the bottom.
  • the body 30 transfers greater thermal power towards the bottom of the facade 17 than towards the top. This phenomenon compensates for the differences in heat transfer efficiency indicated above with the second 52 and third 54 air flows. The temperature of the facade 17 is therefore more uniform.
  • Device A corresponds to device 10 described above, with a heating element 14 comprising perforations 46 and whose main face 36 is inclined at an angle ⁇ relative to the vertical.
  • the facade 17 is made of steel
  • the body 30 is made of cast iron
  • the angle ⁇ is equal to 23°
  • the perforations 46 have a round shape with a diameter of 18 mm.
  • Device B is similar to device A, the difference being that the heating element does not have perforations, said heating element however being inclined by the angle ⁇ .
  • Device C is similar to device A, one difference being that the main face of the heating element is arranged vertically, said heating element however comprising the same perforations 46 as that of device A.
  • Device D - or control device - is similar to devices A, B and C but includes a heating element without perforations and arranged vertically.
  • the heating elements of devices A, B, C, D are supplied with electricity under similar conditions, with an electrical power of 800 W in each case.
  • a hottest zone is identified on the facade 17 and the corresponding temperature Tf max is recorded.
  • an average temperature Tf avg on the facade is estimated using an infrared detector.
  • a hottest zone is identified on the surface of the body 30 and the corresponding temperature Tc max is recorded.
  • an average temperature Tc avg on the body surface is estimated using an infrared detector.
  • the increase in the facade temperature linked to the inclination of the heating element is not uniform, as illustrated by the significant difference between Tf max and Tf avg for device B.
  • the combination of the inclination and the perforation of the heating element makes it possible to reduce the temperature of said heating element for the same electrical power supplied, as shown by the comparison of Tc max and Tc avg between the device A d on the one hand and devices B, C and D on the other hand.
  • the configuration of device A therefore makes it possible to obtain a warm facade and a more uniform temperature, without hot spots, with a lower heating element temperature.
  • This configuration also avoids the addition of a screen-printed resistor on the front of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Stoves And Ranges (AREA)
  • Central Heating Systems (AREA)

Abstract

L'invention concerne un appareil de chauffage (10) comportant : une enveloppe externe (12) et un élément (14) chauffant électrique reçu à l'intérieur de ladite enveloppe externe, l'enveloppe externe comprenant une façade (17) sensiblement verticale,l'élément chauffant électrique comprenant : un corps (30), formé d'un premier matériau à inertie thermique ; et une résistance électrique (32) insérée à l'intérieur dudit corps ;le corps de l'élément chauffant électrique comprenant une face principale (36), sensiblement en vis-à-vis de la façade, et une face opposée (38) sensiblement parallèle à ladite face principale.La face principale est inclinée d'un angle d'inclinaison (α) non nul par rapport à la verticale.

Description

  • La présente invention concerne un appareil de chauffage, du type comprenant une enveloppe externe et un élément chauffant électrique reçu à l'intérieur de ladite enveloppe externe, l'enveloppe externe comprenant une façade) sensiblement verticale, l'élément chauffant électrique comprenant : un corps, formé d'un matériau à inertie thermique ; et une résistance électrique insérée à l'intérieur dudit corps ; le corps de l'élément chauffant électrique comprenant une face principale, sensiblement en vis-à-vis de la façade, et une face opposée sensiblement parallèle à ladite face principale
  • L'invention s'applique particulièrement aux appareils de chauffage comprenant un élément chauffant à inertie sèche. Un tel appareil est notamment décrit dans le document FR2991845 au nom de la Demanderesse.
  • Typiquement, un tel élément chauffant comprend un corps formé d'un matériau dense aux propriétés radiatives élevées, tel que la fonte, le verre, la céramique ou le béton.
  • Afin de limiter le poids de l'appareil de chauffage, il est préférable de réduire au maximum la taille de l'élément chauffant pour une puissance de chauffage donnée. Il en résulte des éléments chauffants atteignant des températures très élevées en surface. Pour des raisons de sécurité, il est cependant nécessaire de contenir ces températures en-dessous d'un seuil.
  • De manière classique, les appareils de chauffage comprenant un élément chauffant à inertie sèche fonctionnent à la fois par convection et par rayonnement. Plus précisément, un flux d'air circule du bas vers le haut dans l'appareil de chauffage, autour de l'élément chauffant. Ce flux d'air qui se charge en calories contribue à limiter la température de surface de l'élément chauffant.
  • En outre, l'élément chauffant diffuse un rayonnement infrarouge vers l'enveloppe externe de l'appareil, notamment vers la façade, qui augmente elle-même en température et est alors elle-même en mesure de diffuser un rayonnement infrarouge.
  • Pour une meilleure efficacité du chauffage par rayonnement, il est préférable que la température de la façade soit la plus homogène possible. A cet effet, certains appareils sont équipés d'un élément chauffant spécifique de façade, de type résistance sérigraphiée.
  • Pour des raisons de sécurité, il est également nécessaire d'éviter l'apparition de zones trop chaudes sur ladite façade.
  • La présente invention a pour but d'améliorer l'homogénéité d'une température de surface de l'élément chauffant, et éventuellement de la façade, d'un tel appareil de chauffage.
  • A cet effet, l'invention a pour objet un appareil de chauffage du type précité, dans lequel la face principale est inclinée d'un angle d'inclinaison non nul par rapport à la verticale.
  • Suivant d'autres aspects avantageux de l'invention, l'appareil de chauffage comporte l'une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement possibles :
    • la face principale du corps est inclinée de sorte qu'une extrémité inférieure de ladite face principale soit plus proche de la façade qu'une extrémité supérieure de ladite face principale ;
    • l'angle d'inclinaison est compris entre 5° et 45°, préférentiellement compris entre 5 et 25°, plus préférentiellement compris entre 10° et 20° ;
    • le corps de l'élément chauffant électrique est traversé par une pluralité de perforations reliant la face principale et la face opposée ;
    • une perforation représente une surface comprise entre 1% et 5% d'une surface de la face principale ; et la totalité des perforations représente une surface comprise entre 10% et 50% d'une surface de la face principale ;
    • le matériau à inertie thermique du corps est choisi parmi la fonte, le verre, la céramique, les polymères inorganiques et le béton ;
    • la façade de l'enveloppe externe est formée d'un autre matériau à inertie thermique, préférentiellement choisi parmi : les métaux tels que l'acier, le verre, la céramique, la pierre naturelle et les polymères inorganiques.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins sur lesquels :
    • [Fig 1] la figure 1 est une vue schématique, en section, d'un appareil de chauffage selon un mode de réalisation de l'invention, comprenant un élément chauffant électrique ; et
    • [Fig 2] la figure 2 est une vue de face de l'élément chauffant électrique de l'appareil de chauffage la figure 1.
  • La figure 1 est une vue schématique, en section, d'un appareil 10 de chauffage selon un mode de réalisation de l'invention.
  • L'appareil 10 comprend une enveloppe 12 externe et un élément 14 chauffant électrique, reçu à l'intérieur de ladite enveloppe externe. On considère que l'appareil 10 comprend en outre un capteur 15 de température et un thermostat 16.
  • L'enveloppe externe comprend une façade 17 et un capot arrière 18 assemblés l'un à l'autre, définissant un espace interne 20. Dans une position installée de l'appareil 10, comme représenté sur la figure 1, la façade 17 est disposée de manière sensiblement verticale.
  • Dans le mode de réalisation représenté, la façade 17 est sensiblement plane. D'autres formes non parfaitement planes sont également possibles.
  • De préférence, la façade 17 est formée d'un matériau à inertie thermique, par exemple un métal, un verre, une céramique, une pierre naturelle ou un polymère inorganique. Pour une façade 17 métallique, le métal choisi est préférentiellement l'acier.
  • Le capot arrière comporte notamment une paroi inférieure 22 et une paroi supérieure 24. Dans la présente description, les termes « inférieure » et « supérieure » s'entendent par rapport à la verticale, l'appareil 10 étant dans la position installée.
  • Chacune des parois inférieure et supérieure est percée d'ouvertures 26.
  • L'élément 14 chauffant électrique est représenté de face sur la figure 2. L'élément 14 chauffant comprend un corps 30 et une résistance électrique 32.
  • Le corps 30 est formé d'un matériau à inertie thermique, par exemple de la fonte.
  • La résistance électrique 32, représentée en pointillés sur les figures 1 et 2, est insérée à l'intérieur du corps 30 en contact thermique avec ledit corps. La résistance électrique 32 s'étend entre deux extrémités 34, en saillie par rapport au corps 30. Les extrémités 34 sont aptes à être reliées à une source d'énergie électrique.
  • Le corps 30 de l'élément chauffant électrique comprend une face principale 36, sensiblement en vis-à-vis de la façade 17 de l'enveloppe 12, ainsi qu'une face opposée 38 sensiblement parallèle à la face principale.
  • Le corps 30 présente une épaisseur 40 sensiblement constante entre la face principale 36 et la face opposée 38. De préférence, comme dans le mode de réalisation représenté, le corps 30 a une forme sensiblement parallélépipédique, les faces principale 36 et opposée 38 étant globalement planes.
  • La face principale 36 s'étend entre une extrémité inférieure 42 et une extrémité supérieure 44.
  • L'élément 14 chauffant est relié à l'enveloppe 12 de sorte que la face principale 36 du corps soit inclinée d'un angle α non nul par rapport à la verticale, dans la position installée.
  • De préférence, l'orientation de l'inclinaison de l'élément 14 chauffant est telle que l'extrémité inférieure 42 de la face principale est plus proche de la façade 17 que l'extrémité supérieure 44 de ladite face principale. Selon une variante non représentée, l'inclinaison est telle que l'extrémité supérieure 44 est la plus proche de la façade.
  • Ainsi, la face principale 36 du corps 30 est légèrement orientée vers le haut et la face opposée 38 est légèrement orientée vers le bas. De plus, l'axe 48 de chaque perforation 46 est incliné de l'angle α par rapport à l'horizontale.
  • Préférentiellement, l'angle d'inclinaison est compris entre 5° et 45°, plus préférentiellement compris entre 5° et 25°, encore plus préférentiellement compris entre 10° et 20°.
  • De préférence, comme dans le mode de réalisation représenté, le corps 30 comporte une pluralité de perforations 46 traversantes, s'étendant entre la face principale 36 et la face opposée 38. Plus préférentiellement, les perforations sont réparties sensiblement régulièrement sur un ensemble de la face principale 36.
  • Chaque perforation s'étend selon un axe 48 sensiblement perpendiculaire aux faces principale 36 et opposée 38.
  • Dans le mode de réalisation représenté, perpendiculairement à l'axe 48, chaque perforation 46 a une forme ovale ou oblongue. D'autres formes, telles qu'une forme ronde, carrée, rectangle, hexagonale ou octogonale, peuvent également être utilisées.
  • De préférence, une perforation 46 représente une surface comprise entre 1% et 5% d'une surface de la face principale 36 ; et la totalité des perforations 46 représente une surface comprise entre 1 0% et 50% d'une surface de la face principale 36.
  • Selon une variante non représentée, le corps de l'élément chauffant est plein et dépourvu de perforations au niveau de la face principale et de la face opposée.
  • Le capteur 15 de température est disposé en partie inférieure de l'appareil 10, par exemple au niveau de la paroi inférieure 22 du capot arrière.
  • Le thermostat 16 est relié au capteur 15. Le thermostat 16 est par exemple configuré pour contrôler une alimentation électrique de la résistance 32 de l'élément 14 chauffant, de sorte à interrompre ladite alimentation électrique si une température mesurée par le capteur 15 dépasse une température de consigne mémorisée par le thermostat.
  • Un procédé de fonctionnement de l'appareil 10 va maintenant être décrit. On considère que l'appareil 10 est dans la position installée, au sein d'un local à chauffer, et que les extrémités 34 de la résistance 32 sont raccordées à une source d'énergie électrique.
  • La résistance 32 est alimentée en électricité, conduisant au chauffage du corps 30 par conduction thermique. L'air reçu dans l'espace interne 20 de l'enveloppe 12 se réchauffe au contact dudit corps 30, générant un phénomène de convection dans lequel un premier flux 50 d'air circule entre les ouvertures 26 de la paroi inférieure 22 vers les ouvertures de la paroi supérieure 24.
  • Par rapport à une surface verticale, l'inclinaison vers le bas de la face opposée 38 augmente la surface de contact entre ladite face opposée et le premier flux 50 en provenance de la paroi inférieure 22. Le phénomène de convection est ainsi amélioré.
  • De plus, les perforations 46, traversées par ledit premier flux 50, améliorent le renouvellement de l'air à proximité de ladite face opposée 38, ainsi qu'à proximité de la face principale sur laquelle débouchent les perforations 46.
  • L'élément 14 chauffant, ainsi refroidi efficacement sur toute sa surface extérieure par le premier flux 50 d'air, présente une température plus homogène sur ladite surface extérieure qu'en l'absence d'inclinaison ou de perforations.
  • De plus, un transfert thermique par rayonnement s'effectue entre la face principale 36 du corps 30 vers la façade 17. Un deuxième 52 et un troisième 54 flux d'air sont générés par convection le long de ladite façade 17, respectivement dans l'espace interne 20 et à l'extérieur de l'appareil 10. La façade 17 étant verticale, l'air arrivant au contact du haut de la façade est plus chaud que l'air au contact du bas de ladite façade. Le transfert thermique depuis le haut de la façade 17 vers l'air est donc moins efficace que depuis le bas.
  • Dans le cas avantageux où l'extrémité inférieure 42 de la face principale est plus proche de la façade 17 que l'extrémité supérieure 44, le corps 30 transfère une puissance thermique plus importante vers le bas de la façade 17 que vers le haut. Ce phénomène compense les différences d'efficacité de transfert thermique indiquées plus haut avec les deuxième 52 et troisième 54 flux d'air. La température de la façade 17 est donc plus homogène.
  • EXEMPLE
  • Une comparaison a été effectuée entre quatre appareils de chauffage désignés par les lettres A, B, C et D.
  • L'appareil A correspond à l'appareil 10 décrit ci-dessus, avec un élément 14 chauffant comportant des perforations 46 et dont la face principale 36 est inclinée d'un angle α par rapport à la verticale.
  • Dans l'exemple mis en oeuvre, la façade 17 est en acier, le corps 30 est en fonte, l'angle α est égal à 23°, les perforations 46 ont une forme ronde avec un diamètre de 18 mm.
  • L'appareil B est analogue à l'appareil A, une différence étant que l'élément chauffant ne comporte pas de perforations, ledit élément chauffant étant cependant incliné de l'angle α.
  • L'appareil C est analogue à l'appareil A, une différence étant que la face principale de l'élément chauffant est disposée verticalement, ledit élément chauffant comprenant cependant les mêmes perforations 46 que celui de l'appareil A.
  • L'appareil D - ou appareil témoin - est analogue aux appareils A, B et C mais comporte un élément chauffant dépourvu de perforations et disposé verticalement.
  • Les éléments chauffants des appareils A, B, C, D sont alimentés en électricité dans des conditions similaires, avec une puissance électrique de 800 W dans chaque cas. Après stabilisation, une zone la plus chaude est identifiée sur la façade 17 et la température Tfmax correspondante est relevée. De plus, une température moyenne Tfmoy sur la façade est estimée au moyen d'un détecteur infrarouge.
  • En outre, une zone la plus chaude est identifiée en surface du corps 30 et la température Tcmax correspondante est relevée. De plus, une température moyenne Tcmoy sur la surface du corps est estimée au moyen d'un détecteur infrarouge.
  • [Table 1] Les températures obtenues sont détaillées dans le tableau 1 ci-dessous :
  • Tableau 1
    Tfmax (°C) Tfmoy (°C) Tcmax (°C) Tcmoy (°C)
    Appareil A 55 40 216 205
    Appareil B 66 42 256 235
    Appareil C 41 35 255 240
    Appareil D 44 36 257 239
  • La comparaison des appareils B (élément chauffant incliné et non perforé) et D (élément chauffant vertical et non perforé) montre que l'inclinaison de l'élément chauffant permet d'augmenter la température moyenne de la façade de l'appareil, sans incidence significative sur les températures moyenne et maximale de l'élément chauffant.
  • En revanche, l'augmentation de la température de façade liée à l'inclinaison de l'élément chauffant est peu homogène, comme l'illustre l'écart important entre Tfmax et Tfmoy pour l'appareil B.
  • La comparaison des appareils C (élément chauffant vertical et perforé) et D (élément chauffant vertical et non perforé) montre que la perforation seule de l'élément chauffant n'a pas d'influence significative sur les températures dudit élément chauffant et de la façade, les températures Tfmax, Tfmoy, Tcmax et Tcmoy étant en effet comparables pour les appareils C et D.
  • La comparaison des appareils A (élément chauffant incliné et perforé) et D (élément chauffant vertical et non perforé) montre que l'inclinaison de l'élément chauffant combiné à sa perforation permet d'augmenter de manière plus homogène la température de la façade, comme l'illustre l'écart réduit entre Tfmax et Tfmoy pour l'appareil A.
  • De plus, la combinaison de l'inclinaison et de la perforation de l'élément chauffant permet de diminuer la température dudit élément chauffant pour une même puissance électrique fournie, comme le montre la comparaison de Tcmax et Tcmoy entre l'appareil A d'une part et les appareils B, C et D d'autre part.
  • La configuration de l'appareil A permet donc l'obtention d'une façade chaude et de température plus homogène, sans point chaud, avec une température plus basse d'élément chauffant.
  • Dans cette configuration, il est ainsi possible d'augmenter la puissance électrique de l'élément chauffant pour un même volume de l'enveloppe externe de l'appareil, sans dépasser les contraintes de fabrication.
  • Cette configuration permet également d'éviter l'ajout d'une résistance sérigraphiée en façade de l'appareil.

Claims (9)

  1. Appareil (10) de chauffage comprenant une enveloppe externe (12) et un élément (14) chauffant électrique reçu à l'intérieur de ladite enveloppe externe, l'enveloppe externe comprenant une façade (17) sensiblement verticale,
    l'élément chauffant électrique comprenant : un corps (30), formé d'un premier matériau à inertie thermique ; et une résistance électrique (32) insérée à l'intérieur dudit corps ;
    le corps de l'élément chauffant électrique comprenant une face principale (36), sensiblement en vis-à-vis de la façade, et une face opposée (38) sensiblement parallèle à ladite face principale ;
    l'appareil de chauffage étant caractérisé en ce que la face principale est inclinée d'un angle d'inclinaison (α) non nul par rapport à la verticale.
  2. Appareil de chauffage selon la revendication 1, dans lequel la face principale (36) du corps est inclinée de sorte qu'une extrémité inférieure (42) de ladite face principale soit plus proche de la façade qu'une extrémité supérieure (44) de ladite face principale.
  3. Appareil de chauffage selon la revendication 1 ou la revendication 2, dans lequel l'angle d'inclinaison (α) est compris entre 5° et 45°, préférentiellement compris entre 5 et 25°, plus préférentiellement compris entre 10° et 20°.
  4. Appareil de chauffage selon l'une des revendications précédentes, dans lequel le corps (30) de l'élément chauffant électrique est traversé par une pluralité de perforations (46) reliant la face principale et la face opposée.
  5. Appareil de chauffage selon la revendication 4, dans lequel une perforation (46) représente une surface comprise entre 1% et 5% d'une surface de la face principale (36) ; et la totalité des perforations (46) représente une surface comprise entre 10% et 50% d'une surface de la face principale.
  6. Appareil de chauffage selon l'une des revendications précédentes, dans lequel le premier matériau à inertie thermique est choisi parmi la fonte, le verre, la céramique, les polymères inorganiques et le béton.
  7. Appareil de chauffage selon l'une des revendications précédentes, dans lequel la façade de l'enveloppe externe est formée d'un second matériau à inertie thermique.
  8. Appareil de chauffage selon la revendication 7, dans lequel le second matériau à inertie thermique est choisi parmi les métaux, le verre, la céramique, la pierre naturelle et les polymères inorganiques.
  9. Appareil de chauffage selon la revendication 8, dans lequel le second matériau à inertie thermique est l'acier.
EP23201548.7A 2022-10-05 2023-10-04 Appareil de chauffage avec élément chauffant à inertie Pending EP4351274A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2210171A FR3140730A1 (fr) 2022-10-05 2022-10-05 Appareil de chauffage avec élément chauffant à inertie

Publications (1)

Publication Number Publication Date
EP4351274A1 true EP4351274A1 (fr) 2024-04-10

Family

ID=84331401

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23201548.7A Pending EP4351274A1 (fr) 2022-10-05 2023-10-04 Appareil de chauffage avec élément chauffant à inertie

Country Status (2)

Country Link
EP (1) EP4351274A1 (fr)
FR (1) FR3140730A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556450A1 (fr) * 1983-12-12 1985-06-14 Hofmann Gerhard Appareil de chauffage de locaux
US5047786A (en) * 1989-02-14 1991-09-10 Airelec Industries Electric heating apparatus utilizing dual chambers for heating by convection
US5606639A (en) * 1995-01-10 1997-02-25 Lehoe; Michael C. Stationary ceramic glass electric baseboard heater
WO2010118562A1 (fr) * 2009-04-17 2010-10-21 佛山市富士宝电器科技股份有限公司 Nouveau radiateur électrique
US20110220637A1 (en) * 2010-03-15 2011-09-15 Win Global Electrical Appliance Ltd Heater Apparatus
FR2991845A1 (fr) 2012-06-12 2013-12-13 Muller & Cie Soc Appareil de chauffage par convection
US10921022B2 (en) * 2015-01-15 2021-02-16 Stylianos Giannoulis Heating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556450A1 (fr) * 1983-12-12 1985-06-14 Hofmann Gerhard Appareil de chauffage de locaux
US5047786A (en) * 1989-02-14 1991-09-10 Airelec Industries Electric heating apparatus utilizing dual chambers for heating by convection
US5606639A (en) * 1995-01-10 1997-02-25 Lehoe; Michael C. Stationary ceramic glass electric baseboard heater
WO2010118562A1 (fr) * 2009-04-17 2010-10-21 佛山市富士宝电器科技股份有限公司 Nouveau radiateur électrique
US20110220637A1 (en) * 2010-03-15 2011-09-15 Win Global Electrical Appliance Ltd Heater Apparatus
FR2991845A1 (fr) 2012-06-12 2013-12-13 Muller & Cie Soc Appareil de chauffage par convection
US10921022B2 (en) * 2015-01-15 2021-02-16 Stylianos Giannoulis Heating device

Also Published As

Publication number Publication date
FR3140730A1 (fr) 2024-04-12

Similar Documents

Publication Publication Date Title
EP2210049B1 (fr) Radiateur sèche-serviettes à fluide caloporteur équipé d'un dispositif additionnel de chauffage
FR2678360A1 (fr) Appareil de chauffage avec bruleur catalytique.
FR2472142A1 (fr) Four comportant un element de chauffage de gril et au moins un autre element de chauffage ainsi qu'un ventilateur de circulation d'air
EP4351274A1 (fr) Appareil de chauffage avec élément chauffant à inertie
CH678222A5 (fr)
EP1067822B1 (fr) Procédé de fabrication d'élément chauffant pour appareil de chauffage ou cuisson, élément chauffant ainsi obtenu et appareils ainsi équipés
FR2760073A1 (fr) Radiateur electrique a accumulation ou inertie et rayonnement
EP0486741A1 (fr) Appareil de chauffage au gaz par rayonnement infrarouge
FR2556450A1 (fr) Appareil de chauffage de locaux
FR3075321A1 (fr) Corps de chauffe thermiquement inertiel et reactif et appareil de chauffage electrique le comprenant
EP0568464B1 (fr) Dispositif de chauffage, notamment sèche-serviette, à cordon électrique chauffant
EP1310754B1 (fr) Four a sole annulaire
FR2752713A1 (fr) Friteuse electrique a chauffage ameliore
FR2991845A1 (fr) Appareil de chauffage par convection
EP1970640B1 (fr) Appareil de chauffage électrique
FR2760588A1 (fr) Appareil de chauffage electrique par convection
FR2970836A1 (fr) Radiateur a resistance surfacique et lame de fluide thermostatique
FR3032262A1 (fr) Appareil de chauffage electrique de faible epaisseur thermiquement inertiel et reactif
BE444139A (fr)
FR2770736A1 (fr) Radiateur a inertie controlee
EP3339740A2 (fr) Procédé de conception d'un appareil de chauffage rayonnant et appareil de chauffage associé
FR2669404A1 (fr) Table chauffante et ustensile munis de moyens respectifs controlant selectivement leurs echanges thermiques.
FR2721380A1 (fr) Four électrique de cuisson.
WO2004079276A1 (fr) Appareil de chauffage electrique mobile, a effet de rayonnement et de convection
FR2864845A1 (fr) Radiateur electrique et plaque reflecteur associee, ainsi que procede de transformation d'un radiateur a convection en un radiateur a accumulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR