EP4349946A1 - Produit de traitement de tissu en dose unitaire - Google Patents

Produit de traitement de tissu en dose unitaire Download PDF

Info

Publication number
EP4349946A1
EP4349946A1 EP22199749.7A EP22199749A EP4349946A1 EP 4349946 A1 EP4349946 A1 EP 4349946A1 EP 22199749 A EP22199749 A EP 22199749A EP 4349946 A1 EP4349946 A1 EP 4349946A1
Authority
EP
European Patent Office
Prior art keywords
acid
fragrance
alkyl
preferred
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP22199749.7A
Other languages
German (de)
English (en)
Inventor
Stephen Norman Batchelor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever IP Holdings BV
Original Assignee
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever IP Holdings BV filed Critical Unilever IP Holdings BV
Priority to EP22199749.7A priority Critical patent/EP4349946A1/fr
Publication of EP4349946A1 publication Critical patent/EP4349946A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the present invention relates to improved laundry liquid compositions.
  • Liquid laundry detergents containing alcohol ethoxylates and perfumes are well known,
  • the alcohol ethoxylates are produced by ethoxylation with NaOH, KoH or methoxides which produce a broad distribution of ethoxy units.
  • R is a straight or branched alkyl and preferably has from 12 to 14 carbon atoms. In the most preferred embodiments R is C12 and/or C14. Most preferably, greater than 50% of the total alcohol ethoxylate is C12 or C14.
  • q is 7, 8, 9, 10, 11, 12, 13 or 14 and mixtures thereof. More preferably, q is 8, 9, 10 or 11 and mixtures thereof, most preferably 9 and 10.
  • Alcohol ethoxylate non-ionic surfactant are discussed in Non-ionic Surfactants: Organic Chemistry edited by Nico M. van Os (Marcel Dekker 1998 ), Surfactant Science Series published by CRC press . Commonly used in laundry liquid compositions are C12-C15 alcohol ethoxylates having a straight or branched chain alkyl group having 12 to 15 carbon atoms and containing an average of 5 to 12EO units per molecule.
  • the alcohol ethoxylate is present at from 1 to 35% wt., preferably 5 to 25wt% of the composition.
  • ethoxylation reactions to form alcohol ethoxylates are base catalysed using NaOH, KOH, or NaOCH3.
  • the reaction produces a distribution of ethoxy chain lengths in the alcohol ethoxylate.
  • Narrow range ethoxylation provides a narrower distribution of ethoxy chain lengths than NaOH, KOH, or NaOCH3.
  • q 10
  • greater than 70 wt.% of the alcohol ethoxylate should consist of ethoxylate with 5, 6, 7, 8, 9 10, 11, 12, 13, 14 and 15 ethoxylate groups.
  • Narrow range ethoxylation catalyst are described in EP3289790 (Procter & Gamble ), EP1747183(Hacros ); Santacesatia et al Ind. Eng. Chem. Res. 1992, 31, 2419-2421 ; US4239917(Conoco ); Li et al ACS Omega. 2021 Nov 9; 6(44): 29774-29780 ; Hreczuch et al J. Am. Oil Chem. Soc. 1996, 73, 73-78 and WO2022/ 129374 (Unilever ). Catalyst based on Ca or Ba are preferred, most preferably in combination with sulfuric acid.
  • the liquid detergent of the invention preferably comprises from 2 to 60 wt. % of total surfactant, most preferably from 4 to 30 wt. %. Anionic and non-ionic surfactant are preferred.
  • anionic surfactants are discussed in the Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1995 ), Surfactant Science Series published by CRC press .
  • Preferred anionic surfactants are sulfonate and sulfate surfactants, preferably alkylbenzene sulphonates, alkyl sulfates and alkyl ether sulfates.
  • the alkyl chain is preferably C10-C18.
  • Alkyl ether sulfates are also called alcohol ether sulfates.
  • C12-C14 alkyl ether sulfates having a straight or branched chain alkyl group having 12 to 14 carbon atoms (C12-14) and containing an average of 1 to 3EO units per molecule.
  • a preferred example is sodium lauryl ether sulfate (SLES) in which the predominantly C12 lauryl alkyl group has been ethoxylated with an average of 3EO units per molecule.
  • the anionic surfactant is preferably added to the detergent composition in the form of a salt.
  • Preferred cations are alkali metal ions, such as sodium and potassium.
  • the salt form of the anionic surfactant may be formed in situ by neutralization of the acid form of the surfactant with alkali such as sodium hydroxide or an amine, such as mono-, di-, or tri-ethanolamine. Weight ratios are calculated for the protonated form of the surfactant.
  • Nonionic surfactant are discussed in Non-ionic Surfactants: Organic Chemistry edited by Nico M. van Os (Marcel Dekker 1998 ), Surfactant Science Series published by CRC press .
  • Preferred non-ionic surfactants are alkoxylate, preferably ethoxylated
  • Preferred non-ionic surfactant are alcohol ethoxylates and methyl ester ethoxylates, with C10-C18 alkyl chains.
  • Commonly used in laundry liquid compositions are C12-C15 alcohol ethoxylates having a straight or branched chain alkyl group having 12 to 15 carbon atoms and containing an average of 5 to 12EO units per molecule.
  • a preferred example is C12-C15 alcohol ethoxylates with a mole average of 7 to 9 ethoxylate units.
  • Ethoxy units may be partially replaced by propoxy units in anionic and non-ionic surfactants.
  • Suitable anionic surfactants are rhamnolipids, alpha-olefin sulfonates, olefin sulfonates, alkene sulfonates, alkane-2,3-diylbis(sulfates), hydroxyalkanesulfonates and disulfonates, fatty alcohol sulfates (FAS), paraffin sulfonates, ester sulfonates, sulfonated fatty acid glycerol esters, methyl ester sulfonate alkyl- or alkenylsuccinic acid, dodecenyl/tetradecenyl succinic acid (DTSA), fatty acid derivatives of amino acids, DATEM's, CITREM's and diesters and monoesters of sulfosuccinic acid.
  • FAS fatty alcohol sulfates
  • DTSA dodecenyl/tetradecenyl succin
  • the non-ionic surfactant fraction is preferably greater than 50wt%, more preferably greater than 80wt%, most preferably greater than 95wt% alcohol ethoxylate. More preferably the non-ionic surfactant fraction is preferably greater than 50wt%, more preferably greater than 80wt%, most preferably greater than 95wt% the alcohol ethoxylate as claimed in claim 1.
  • nonionic surfactants include, alkoxylated fatty acid alkyl esters,, alkylpolyglycosides, alkoxylated amines, ethoxylated glycerol esters, fatty acid monoethanolamides, fatty acid diethanolamides, ethoxylated fatty acid monoethanolamides, propoxylated fatty acid monoethanolamides, polyhydroxyalkyl fatty acid amides, or N-acyl N-alkyl derivatives of glucosamine, polysorbates (TWEENS).
  • the formulation may contain soaps, and zwitterionic or cationic surfactants as minor components, preferably at levels from 0.1 to 3 wt%.
  • Betaines such as CAPB are preferred zwitterionic surfactants.
  • Preferred anionic surfactants are further described below.
  • a preferred C16/18 alcohol ethoxylate is of the formula: R 1 -O-(CH 2 CH 2 O) q -H where R 1 is selected from saturated, monounsaturated and polyunsaturated linear C16 and C18 alkyl chains and where q is from 4 to 20, preferably 5 to 14, more preferably 8 to 12.
  • the mono-unsaturation is preferably in the 9 position of the chain, where the carbons are counted from the ethoxylate bound chain end.
  • the double bond may be in a cis or trans configuration (oleyl or elaidyl), preferably cis.
  • R1 is selected from saturated C16, saturated C18 and monounsaturated C18. More preferably, the saturated C16 alcohol ethoxylate is at least 90% wt. of the total C16 linear alcohol ethoxylate. As regards the C18 alcohol ethoxylate content, it is preferred that the predominant C18 moiety is C18:1, more preferably C18:1( ⁇ 9).
  • the proportion of monounsaturated C18 alcohol ethoxylate constitutes at least 50% wt. of the total C16 and C18 alcohol ethoxylate surfactant. Preferably, the proportion of monounsaturated C18 constitutes at least 60% wt., most preferably at least 75 of the total C16 and C18 alcohol ethoxylate surfactant.
  • the C16 alcohol ethoxylate surfactant comprises at least 2% wt. and more preferably, from 4% of the total C16 and C18 alcohol ethoxylate surfactant.
  • the saturated C18 alcohol ethoxylate surfactant comprises up to 20% wt. and more preferably, up to 11% of the total C16 and C18 alcohol ethoxylate surfactant.
  • the saturated C18 content is at least 2% wt. of the total C16 and C18 alcohol ethoxylate content.
  • Alcohol ethoxylates are discussed in the Non-ionic Surfactants: Organic Chemistry edited by Nico M. van Os (Marcel Dekker 1998 ), Surfactant Science Series published by CRC press . Alcohol ethoxylates are commonly referred to as alkyl ethoxylates.
  • the weight fraction of C18 alcohol ethoxylate / C16 alcohol ethoxylate is greater than 1, more preferably from 2 to 100, most preferably 3 to 30.
  • 'C18 alcohol ethoxylate' is the sum of all the C18 fractions in the alcohol ethoxylate and 'C16 alcohol ethoxylate' is the sum of all the C16 fractions in the alcohol ethoxylate.
  • Linear saturated or mono-unsaturated C20 and C22 alcohol ethoxylate may also be present.
  • the weight fraction of sum of 'C18 alcohol ethoxylate' / 'C20 and C22 alcohol ethoxylate' is greater than 10.
  • the C16/18 alcohol ethoxylate contains less than 15wt%, more preferably less than 8wt%, most preferably less than 5wt% of the alcohol ethoxylate polyunsaturated alcohol ethoxylates.
  • a polyunsaturated alcohol ethoxylate contains a hydrocarbon chains with two or more double bonds.
  • C16/18 alcohol ethoxylates may be synthesised by ethoxylation of an alkyl alcohol, via the reaction: R 1 -OH + q ethylene oxide ⁇ R 1 -O-(CH 2 CH 2 O) q -H
  • the alkyl alcohol may be produced by transesterification of the triglyceride to a methyl ester, followed by distillation and hydrogenation to the alcohol. The process is discussed in Journal of the American Oil Chemists' Society. 61 (2): 343-348 by Kreutzer, U. R.
  • Preferred alkyl alcohol for the reaction is oleyl alcohol with in an iodine value of 60 to 80, preferably 70 to 75, such alcohol are available from BASF, Cognis, Ecogreen.
  • the ethoxylation reactions are base catalysed using NaOH, KOH, or NaOCH 3 .
  • catalyst which provide narrower ethoxy distribution than NaOH, KOH, or NaOCH 3 .
  • these narrower distribution catalysts involve a Group II base such as Ba dodecanoate; Group II metal alkoxides; Group II hyrodrotalcite as described in WO2007/147866 . Lanthanides may also be used.
  • Such narrower distribution alcohol ethoxylates are available from Azo Nobel and Sasol.
  • q 10
  • greater than 70 wt.% of the alcohol ethoxylate should consist of ethoxylate with 5, 6, 7, 8, 9 10, 11, 12, 13, 14 and 15 ethoxylate groups.
  • a preferred ether sulfate is of the formula: R 2 -O-(CH 2 CH 2 O) p SO 3 H
  • R 2 is selected from saturated, monounsaturated and polyunsaturated linear C16 and C18 alkyl chains and where p is from 3 to 20, preferably 4 to 12, more preferably 5 to 10.
  • the mono-unsaturation is preferably in the 9 position of the chain, where the carbons are counted from the ethoxylate bound chain end.
  • the double bond may be in a cis or trans configuration (oleyl or elaidyl), but is preferably cis.
  • R2 is selected from saturated C16, saturated C18 and monounsaturated C18. More preferably, the saturated C16 is at least 90% wt. of the C16 content linear alkyl. As regards the C18 content, it is preferred that the predominant C18 moiety is C18:1, more preferably C18:1( ⁇ 9). Preferably, the proportion of monounsaturated C18 constitutes at least 50% wt. of the total C16 and C18 alkyl ether sulphate surfactant.
  • the proportion of monounsaturated C18 constitutes at least 60% wt., most preferably at least 75 of the total C16 and C18 alkyl ether sulphate surfactant.
  • the C16 alcohol ethoxylate surfactant comprises at least 2% wt. and more preferably, from 4% of the total C16 and C18 alkyl ether sulphate surfactant.
  • the saturated C18 alkyl ether sulphate surfactant comprises up to 20% wt. and more preferably, up to11% of the total C16 and C18 alkyl ether sulphate surfactant.
  • the saturated C18 content is at least 2% wt. of the total C16 and C18 alkyl ether sulphate content.
  • the composition comprises a mixture of the C16/18 sourced material for the alkyl ether sulphate as well as the more traditional C12 alkyl chain length materials it is preferred that the total C16/18 alkyl ether sulphate content should comprise at least 10% wt. of the total alkyl ether sulphate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of alkyl ether sulphate in the composition.
  • Ether sulfates are discussed in the Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1995 ), Surfactant Science Series published by CRC press .
  • Linear saturated or mono-unsaturated C20 and C22 ether sulfate may also be present.
  • the weight fraction of sum of 'C18 ether sulfate' / 'C20 and C22 ether sulfate' is greater than 10.
  • the C16 and C18 ether sulfate contains less than 15 wt.%, more preferably less than 8 wt.%, most preferably less than 4wt% and most preferably less than 2% wt. of the ether sulfate polyunsaturated ether sulfate.
  • a polyunsaturated ether sulfate contains a hydrocarbon chains with two or more double bonds.
  • Ether sulfate may be synthesised by the sulphonation of the corresponding alcohol ethoxylate.
  • the alcohol ethoxylate may be produced by ethoxylation of an alkyl alcohol.
  • the alkyl alcohol used to produced the alcohol ethoxylate may be produced by transesterification of the triglyceride to a methyl ester, followed by distillation and hydrogenation to the alcohol. The process is discussed in Journal of the American Oil Chemists' Society. 61 (2): 343-348 by Kreutzer, U. R.
  • Preferred alkyl alcohol for the reaction is oleyl alcohol with an iodine value of 60 to 80, preferably 70 to 75, such alcohol are available from BASF, Cognis, Ecogreen.
  • the degree of polyunsaturation in the surfactant may be controlled by hydrogenation of the triglyceride as described in: A Practical Guide to Vegetable Oil Processing (Gupta M.K. Academic Press 2017 ). Distillation and other purification techniques may be used.
  • the ethoxylation reactions are base catalysed using NaOH, KOH, or NaOCH 3 .
  • catalyst which provide narrower ethoxy distribution than NaOH, KOH, or NaOCH 3 .
  • these narrower distribution catalysts involve a Group II base such as Ba dodecanoate; Group II metal alkoxides; Group II hyrodrotalcite as described in WO2007/147866 . Lanthanides may also be used.
  • Such narrower distribution alcohol ethoxylates are available from Azo Nobel and Sasol.
  • the ether sulfate weight is calculated as the protonated form: R 2 -O-(CH 2 CH 2 O) p SO 3 H.
  • R 2 -O-(CH 2 CH 2 O) p SO 3 H In the formulation it will be present as the ionic form R 2 -O-(CH 2 CH 2 O) p SO 3 - with a corresponding counter ion, preferred counter ions are group I and II metals, amines, most preferably sodium.
  • R 3 COO is a fatty acid moiety, such as oleic, stearic, palmitic.
  • Fatty acid nomenclature is to describe the fatty acid by 2 numbers A:B where A is the number of carbons in the fatty acid and B is the number of double bonds it contains.
  • A is the number of carbons in the fatty acid
  • B is the number of double bonds it contains.
  • oleic is 18:1
  • stearic 18:0
  • palmitic 16:0 The position of the double bond on the chain may be given in brackets, 18:1(9) for oleic, 18:2 (9,12) for linoleic where 9 if the number of carbons from the COOH end.
  • n is the mole average number of ethoxylates.
  • Methyl Ester Ethoxylates are described in chapter 8 of Biobased Surfactants (Second Edition) Synthesis, Properties, and Applications Pages 287-301 (AOCS press 2019) by G.A. Smith ; J.Am.Oil. Chem.Soc. vol 74 (1997) page 847-859 by Cox M.E. and Weerasooriva U ; Tenside Surf.Det. vol 28 (2001) page by 72-80 by Hreczuch et al; by C. Kolano. Household and Personal Care Today (2012) page 52-55 ; J.Am.Oil. Chem.Soc. vol 72 (1995) page 781-784 by A.Hama et al.
  • MEE may be produced the reaction of methyl ester with ethylene oxide, using catalysts based on calcium or magnesium. The catalyst may be removed or left in the MEE.
  • An alternative route to preparation is transesterification reaction of a methyl ester or esterification reaction of a carboxylic acid with a polyethylene glycol that is methyl terminated at one end of the chain.
  • the methyl ester may be produced by transesterification reaction of methanol with a triglyceride, or esterification reaction of methanol with a fatty acid.
  • Transesterification reactions of a triglyceride to fatty acid methyl esters and glycerol are discussed in Fattah et al (Front. Energy Res., June 2020, volume 8 article 101 ) and references therein.
  • Common catalysts for these reactions include sodium hydroxide, potassium hydroxide, and sodium methoxide. Esterase and lipases enzyme may also be used.
  • Triglycerides occur naturally in plant fats or oils, preferred sources are rapeseed oil, castor oil, maize oil, cottonseed oil, olive oil, palm oil, safflower oil, sesame oil, soybean oil, high steric/high oleic sunflower oil, high oleic sunflower oil, non-edible vegetable oils, tall oil and any mixture thereof and any derivative thereof.
  • the oil from trees is called tall oil.
  • Used food cooking oils may be utilised.
  • Triglycerides may also be obtained from algae, fungi, yeast or bacteria. Plant sources are preferred.
  • Distillation and fractionation process may be used in the production of the methyl ester or carboxylic acid to produce the desired carbon chain distribution.
  • Preferred sources of triglyceride are those which contain less than 35%wt polyunsaturated fatty acids in the oil before distillation, fractionation, or hydrogenation.
  • Fatty acid and methyl ester may be obtained from Oleochemical suppliers such as Wilmar, KLK Oleo, Unilever oleochemical Indonesia. Biodiesel is methyl ester and these sources may be used.
  • ESB When ESB is MEE preferably has a mole average of from 8 to 30 ethoxylate groups (EO), more preferably from 10 to 20. The most preferred ethoxylate comprises 12 to 18EO.
  • EO ethoxylate groups
  • At least 10% wt., more preferably at least 30% wt. of the total C18:1 MEE in the composition has from 9 to 11EO, even more preferably at least 10wt% is exactly 10EO.
  • at least 10 wt.% of the MEE should consist of ethoxylate with 9, 10 and 11 ethoxylate groups.
  • the methyl ester ethoxylate preferably has a mole average of from 8 to 13 ethoxylate groups (EO).
  • EO ethoxylate groups
  • the most preferred ethoxylate has a mol average of from 9 to 11EO, even more preferably 10EO.
  • the MEE has a mole average of 10EO then at least 10 wt.% of the MEE should consist of ethoxylate with 9, 10 and 11 ethoxylate groups.
  • At least 40wt% of the total MEE in the composition is C18:1.
  • the MEE component also comprises some C16 MEE.
  • the total MEE component comprises from 5 to 50% wt. total MEE, C16 MEE.
  • the C16 MEE is greater than 90wt%, more preferably greater than 95wt% C16:0.
  • the total MEE component comprises less than 15% wt, more preferably less than 10wt%, most preferably less than 5wt% total MEE of polyunsaturated C18, i.e. C18:2 and C18:3.
  • C18:3 is present at less than 1 wt%, more preferably less than 0.5wt%, most preferably essentially absent.
  • the levels of polyunsaturation may be controlled by distillation, fractionation or partial hydrogenation of the raw materials (triglyceride or methyl ester) or of the MEE.
  • the C18:0 component is less than 10wt% by weight of the total MEE present.
  • the components with carbon chains of 15 or shorter comprise less than 4wt% by weight of the total MEE present.
  • a particularly preferred MEE has 2 to 26 wt.% of the MEE C16:0 chains, 1 to 10 wt.% C18:0 chains, 50 to 85 wt.% C18:1 chains and 1 to 12 wt.% C18:2 chains.
  • Preferred sources for the alkyl groups for the MEE include methyl ester derived from distilled palm oil and distilled high oleic methyl ester derived from palm kernel oil, partially hydrogenated methyl ester of low euric rapeseed oil, methyl ester of high oleic sunflower oil, methyl ester of high oleic safflower oil and methyl ester of high oleic soybean oil.
  • High Oleic oils are available from DuPont (Plenish high oleice soybean oil), Monsanto (Visitive Gold Soybean oil), Dow (Omega-9 Canola oil, Omega-9 sunflower oil), the National Sunflower Association and Oilseeds International.
  • the double bonds in the MEE are greater than 80wt% in the cis configuration.
  • the 18:1 component is oleic.
  • the 18:2 component is linoleic.
  • the methyl group of the methyl ester may be replace by an ethyl or propyl group. Methyl is most preferred.
  • the methyl ester ethoxylate comprises from 0.1 to 95% wt. of the composition methyl ester ethoxylate. More preferably the composition comprises from 2 to 40% MEE and most preferably from 4 to 30% wt. MEE.
  • the composition comprises at least 50% wt. water but this depends on the level of total surfactant and is adjusted accordingly.
  • the methyl ester ethoxylate surfactant is used in combination with anionic surfactant.
  • the weight fraction of methyl ester ethoxylate surfactant/total anionic surfactant is from 0.1 to 9, more preferably 0.15 to 2, most preferably 0.2 to 1.
  • total anionic surfactant means the total content of any of the classes of anionic surfactant preferably ether sulfates, linear alkyl benzene sulfonates, alkyl ether carboxylates, alkyl sulfates, rhamnolipids and mixtures thereof.
  • Anionic surfactant weights are calculated as the protonated form.
  • the alkyl chain of C16/18 surfactant is preferably obtained from a renewable source, preferably from a triglyceride.
  • a renewable source is one where the material is produced by natural ecological cycle of a living species, preferably by a plant, algae, fungi, yeast or bacteria, more preferably plants, algae or yeasts.
  • Preferred plant sources of oils are rapeseed, sunflower, maze, soy, cottonseed, olive oil and trees.
  • the oil from trees is called tall oil.
  • Palm and Rapeseed oils are the source.
  • Algal oils are discussed in Energy Environ. Sci., 2019,12, 2717 A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents by Masri M.A. et al.
  • Non edible plant oils may be used and are preferably selected from the fruit and seeds of Jatropha curcas, Calophyllum inophyllum, Sterculia feotida, Madhuca indica (mahua), Pongamia glabra (koroch seed), Linseed, Pongamia pinnata (karanja), Hevea brasiliensis (Rubber seed), Azadirachta indica (neem), Camelina sativa, Lesquerella fendleri, Nicotiana tabacum (tobacco), Deccan hemp, Ricinus communis L.(castor), Simmondsia chinensis (Jojoba), Eruca sativa.
  • SLES and other such alkali metal alkyl ether sulphate anionic surfactants are typically obtainable by sulphating alcohol ethoxylates. These alcohol ethoxylates are typically obtainable by ethoxylating linear alcohols.
  • primary alkyl sulphate surfactants (PAS) can be obtained from linear alcohols directly by sulphating the linear alcohol.
  • forming the linear alcohol is a central step in obtaining both PAS and alkalimetal alkyl ether sulphate surfactants.
  • linear alcohols which are suitable as an intermediate step in the manufacture of alcohol ethoxylates and therefore anionic surfactants such as sodium lauryl ether sulphate ca be obtained from many different sustainable sources. These include:
  • Primary sugars are obtained from cane sugar or sugar beet, etc., and may be fermented to form bioethanol.
  • the bioethanol is then dehydrated to form bio-ethylene which then undergoes olefin methathesis to form alkenes.
  • These alkenes are then processed into linear alcohols either by hydroformylation or oxidation.
  • An alternative process also using primary sugars to form linear alcohols can be used and where the primary sugar undergoes microbial conversion by algae to form triglycerides. These triglycerides are then hydrolysed to linear fatty acids and which are then reduced to form the linear alcohols.
  • Biomass for example forestry products, rice husks and straw to name a few may be processed into syngas by gasification. Through a Fischer Tropsch reaction these are processed into alkanes, which in turn are dehydrogenated to form olefins. These olefins may be processed in the same manner as the alkenes described above [primary sugars].
  • Waste plastic is pyrolyzed to form pyrolysed oils. This is then fractioned to form linear alkanes which are dehydrogenated to form alkenes. These alkenes are processed as described above [primary sugars].
  • the pyrolyzed oils are cracked to form ethylene which is then processed to form the required alkenes by olefin metathesis. These are then processed into linear alcohols as described above [primary sugars].
  • MSW is turned into syngas by gasification. From syngas it may be processed as described above [primary sugars] or it may be turned into ethanol by enzymatic processes before being dehydrogenated into ethylene. The ethylene may then be turned into linear alcohols by the Ziegler Process.
  • the MSW may also be turned into pyrolysis oil by gasification and then fractioned to form alkanes. These alkanes are then dehydrogenated to form olefins and then linear alcohols.
  • the raw material can be separated into polysaccharides which are enzymatically degraded to form secondary sugars. These may be fermented to form bioethanol and then processed as described above [Primary Sugars].
  • Waste oils such as used cooking oil can be physically separated into the triglycerides which are split to form linear fatty acids and then linear alcohols as described above.
  • the used cooking oil may be subjected to the Neste Process whereby the oil is catalytically cracked to form bio-ethylene. This is then processed as described above.
  • Methane capture methods capture methane from landfill sites or from fossil fuel production.
  • the methane may be formed into syngas by gasification.
  • the syngas may be processed as described above whereby the syngas is turned into methanol ( Fischer Tropsch reaction) and then olefins before being turned into linear alcohols by hydroformylation oxidation.
  • the syngas may be turned into alkanes and then olefins by Fischer Tropsch and then dehydrogenation.
  • Carbon dioxide may be captured by any of a variety of processes which are all well known.
  • the carbon dioxide may be turned into carbon monoxide by a reverse water gas shift reaction and which in turn may be turned into syngas using hydrogen gas in an electrolytic reaction.
  • the syngas is then processed as described above and is either turned into methanol and/or alkanes before being reacted to form olefins.
  • the captured carbon dioxide is mixed with hydrogen gas before being enzymatically processed to form ethanol.
  • This is a process which has been developed by Lanzatech. From here the ethanol is turned into ethylene and then processed into olefins and then linear alcohols as described above.
  • the above processes may also be used to obtain the C16/18 chains of the C16/18 alcohol ethoxylate and/or the C16/18 ether sulfates.
  • LAS linear alkyl benzene sulphonate
  • alkenes may be produced by any of the methods described above and may be formed from primary sugars, biomass, waste plastic, MSW, carbon capture, methane capture, marine carbon to name a few.
  • the olefin is processed to form linear alcohols by hydroformylation and oxidation instead, the olefin is reacted with benzene and then sulphonate to form the LAS.
  • Commercial LAS is a mixture of closely related isomers and homologues alkyl chain homologues, each containing an aromatic ring sulfonated at the "para" position and attached to a linear alkyl chain at any position except the terminal carbons.
  • the linear alkyl chain preferably has a chain length of from 11 to 15 carbon atoms, with the predominant materials having a chain length of about C12.
  • Each alkyl chain homologue consists of a mixture of all the possible sulfophenyl isomers except for the 1-phenyl isomer.
  • LAS is normally formulated into compositions in acid (i.e.
  • HLAS HLAS
  • linear alkyl benzene sulphonate surfactant is present at from 1 to 20% wt., more preferably from 2 to 15% wt. of the composition, most preferably 8 to 12 wt.%.
  • the weight ratio of total non-ionic surfactant to total anionic surfactant is from 0 to 2, preferably from 0.2 to 1.5, most preferably 0.3 to 1.
  • the weight ratio of total non-ionic surfactant to total alkyl ether sulphate surfactant is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1.
  • the weight ratio of total C16/18 non-ionic surfactant, to total alkyl ether sulphate surfactant is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1.
  • the weight ratio of total non-ionic surfactant to linear alkyl benzene sulphonate, where present, is from 0.1 to 2, preferably 0.3 to 1, most preferably 0.45 to 0.85.
  • the composition is visually clear.
  • the composition comprises an aminocarboxylate sequestrant.
  • aminocarboxylate sequestrant is selected from GLDA and MGDA.
  • the aminocarboxylate is present in the composition at from 0.1 to 15%wt., more preferably 0.1 to 10% wt., even more preferably 0.3 to 5 % wt., still more preferably 0.8 to 3% wt., and most preferably 1 to 2.5 % wt. (by weight of the composition).
  • GLDA may be present as a salt or a mixture of GDLA and a GDLA salt.
  • Preferred salt forms include mono-, di-, tri- or tetraalkali metal and mono-, di-, tri- or tetraammonium salts of GLDA.
  • Alkali metal salts of glutamic acid diacetic acid GDLA are preferably selected from lithium salts, potassium salts and more preferably sodium salts of GLDA.
  • Glutamic acid diacetic acid can be partially or preferably fully neutralized with the respective alkali.
  • an average of from 3.5 to 4 COOH groups of GLDA is neutralized with alkali metal, preferably with sodium.
  • the composition comprises a tetrasodium salt of GLDA.
  • GLDA is at least partially neutralized with alkali metal, more preferably with sodium or potassium, most preferred with sodium.
  • the GLDA salt may be an alkali metal salt of L-GLDA, an alkali metal salt of D-GLDA, or enantiomerically enriched mixtures of isomers.
  • the composition comprises a mixture of L- and D- enantiomers of glutamic acid diacetic acid (GLDA) or its respective mono-, di-, tri-, or tetraalkali metal or mono-, di-, trior tetraammonium salt or mixtures thereof, said mixtures containing predominantly the respective L-isomer with an enantiomeric excess in the range of from 10 to 95%.
  • GLDA glutamic acid diacetic acid
  • the GLDA salt is essentially L-glutamic acid diacetic acid that is at least partially neutralized with alkali metal.
  • Sodium salts of GLDA are preferred.
  • a suitable commercial source of GLDA in the form of the tetrasodium salt is DISSOLVINE ® GL available from Nouryon.
  • the GLDA is present in the composition at from 0.1 to 15% wt., more preferably 0.1 to 10% wt., even more preferably 0.3 to 5 % wt., still more preferably 0.8 to 3% wt., and most preferably 1 to 2.5 % wt. (by weight of the composition).
  • Preferred salt forms include mono-, di-, tri- or tetraalkali metal and mono-, di-, tri- or tetraammonium salts of MGDA.
  • Alkali metal salts are preferably selected from lithium salts, potassium salts and more preferably sodium salts of MGDA.
  • the sodium salt of methyl glycine diacetic acid is preferred. Especially preferred is the trisodium salt of MGDA.
  • MGDA can be partially or preferably fully neutralized with the respective alkali metal.
  • an average of from 2.7 to 3 COOH groups per molecule of MGDA is neutralized with alkali metal, preferably with sodium.
  • MGDA can be selected from racemic mixtures of alkali metal salts of MGDA and of the pure enantiomers such as alkali metal salts of L-MGDA, alkali metal salts of D-MGDA and of mixtures of enantiomerically enriched isomers.
  • Suitable commercial sources of MGDA in the form of the trisodium salt are TRILON ® M available from BASF and Dissolvine ® M-40 from Nouryon.
  • the MGDA is present in the composition at from 0.1 to 15%wt., more preferably 0.1 to 10% wt., even more preferably 0.3 to 5 % wt., still more preferably 0.8 to 3% wt., and most preferably 1 to 2.5 % wt. (by weight of the composition).
  • Minor amounts of the aminocarboxylate may bear a cation other than alkali metal. It is thus possible that minor amounts, such as 0.01 to 5 mol-% bear alkali earth metal cations such as Mg2+ or Ca2+, or an Fe(II) or Fe(III) cation.
  • GLDA may contain minor amounts of impurities stemming from its synthesis, such as lactic acid, alanine, propionic acid or the like.
  • Minor amounts in this context refer to a total of 0.1 to 1% by weight, referring to sequestering agent aminocarboxylate.
  • the composition preferably comprises an organic acid.
  • the organic acid has the general structure R-CH(OH)-COOH where R is a linear C1-C5, more preferably C2-C4, most preferably C4 alky group.
  • At least two, more preferably all carbon atoms in the linear C1-4 are substituted with an OH group.
  • R comprises a terminal COOH group.
  • Preferred examples are lactic acid, tartaric acid, gluconic acid, mucic acid, glucoheptonic acid. Most preferably the organic acid is gluconic acid.
  • the organic acid may be in their D or L form.
  • Gluconic acid can be selected from racemic mixtures of salts of gluconic acid (gluconates) and of the pure enantiomers such as alkali metal salts of L-gluconic acid, alkali metal salts of D-gluconic acid and of mixtures of enantiomerically enriched isomers. D-isomeric forms are preferred.
  • the organic acid is present in the range of from 0.1 to 15%wt, more preferably 0.1 to 10wt%, even more preferably 0.2 to 4%wt, still more preferably 0.5 to 3 %wt., and most preferably 0.8 to 2%wt (by weight of the composition). Measured with regard to its protonated form.
  • the composition comprises GLDA and/or MGDA and gluconic acid, more preferably GLDA and gluconic acid.
  • the composition preferably comprises a crystallizable glyceride.
  • the crystallizable glyceride is useful in forming an external structuring system as described in WO2011/031940 , the contents of which, in particular as regards manufacture of the ESS are incorporated by reference.
  • the ESS of the present invention preferably comprises: (a) crystallizable glyceride(s); (b) alkanolamine; (c) anionic surfactant; (d) additional components; and (e) optional components. Each of these components is discussed in detail below.
  • Crystallizable glyceride(s) of use herein preferably include "Hydrogenated castor oil” or "HCO".
  • HCO as used herein most generally can be any hydrogenated castor oil, provided that it is capable of crystallizing in the ESS premix.
  • Castor oils may include glycerides, especially triglycerides, comprising C10 to C22 alkyl or alkenyl moieties which incorporate a hydroxyl group. Hydrogenation of castor oil to make HCO converts double bonds, which may be present in the starting oil as ricinoleyl moieties, to convert ricinoleyl moieties to saturated hydroxyalkyl moieties, e.g., hydroxystearyl.
  • the HCO herein may, in some embodiments, be selected from: trihydroxystearin; dihydroxystearin; and mixtures thereof.
  • the HCO may be processed in any suitable starting form, including, but not limited those selected from solid, molten and mixtures thereof.
  • HCO is typically present in the ESS of the present invention at a level of from about 2 percent to about 10 percent, from about 3 percent to about 8 percent, or from about 4 percent to about 6 percent by weight of the structuring system.
  • the corresponding percentage of hydrogenated castor oil delivered into a finished laundry detergent product is below about 1.0 percent, typically from 0.1 percent to 0.8 percent.
  • Useful HCO may have the following characteristics: a melting point of from about 40 degrees centigrade to about 100 degrees centigrade, or from about 65 degrees centigrade to about 95 degrees C; and/or Iodine value ranges of from 0 to about 5, from 0 to about 4, or from 0 to about 2.6.
  • the melting point of HCO can measured using either ASTM D3418 or ISO 11357; both tests utilize DSC: Differential Scanning Calorimetry.
  • HCO of use in the present invention includes those that are commercially available. Nonlimiting examples of commercially available HCO of use in the present invention include: THIXCIN(R) from Rheox, Inc. Further examples of useful HCO may be found in U.S. Patent 5,340,390 .
  • the source of the castor oil for hydrogenation to form HCO can be of any suitable origin, such as from Brazil or India.
  • castor oil is hydrogenated using a precious metal, e.g., palladium catalyst, and the hydrogenation temperature and pressure are controlled to optimize hydrogenation of the double bonds of the native castor oil while avoiding unacceptable levels of dehydroxylation.
  • the invention is not intended to be directed only to the use of hydrogenated castor oil.
  • Any other suitable crystallizable glyceride(s) may be used.
  • the structurant is substantially pure triglyceride of 12-hydroxystearic acid. This molecule represents the pure form of a fully hydrogenated triglyceride of 12-hydrox-9-cis-octadecenoic acid.
  • the composition of castor oil is rather constant, but may vary somewhat. Likewise hydrogenation procedures may vary.
  • Any other suitable equivalent materials, such as mixtures of triglycerides wherein at least 80 percent wt. is from castor oil, may be used.
  • Exemplary equivalent materials comprise primarily, or consist essentially of, triglycerides; or comprise primarily, or consist essentially of, mixtures of diglycerides and triglycerides; or comprise primarily, or consist essentially of, mixtures of triglyerides with diglycerides and limited amounts, e.g., less than about 20 percent wt. of the glyceride mixtures, of monoglyerides; or comprise primarily, or consist essentially of, any of the foregoing glycerides with limited amounts, e.g., less than about 20 percent wt., of the corresponding acid hydrolysis product of any of said glycerides.
  • a proviso in the above is that the major proportion, typically at least 80 percent wt, of any of said glycerides is chemically identical to glyceride of fully hydrogenated ricinoleic acid, i.e., glyceride of 12- hydroxystearic acid. It is for example well known in the art to modify hydrogenated castor oil such that in a given triglyceride, there will be two 12-hydroxystearic- moieties and one stearic moiety. Likewise it is envisioned that the hydrogenated castor oil may not be fully hydrogenated. In contrast, the invention excludes poly(oxyalkylated) castor oils when these fail the melting criteria.
  • Crystallizable glyceride(s) of use in the present invention may have a melting point of from about 40 degrees centigrade to about 100 degrees centigrade.
  • fatty acid is present at from 4 to 20% wt. of the composition (as measured with reference to the acid added to the composition), more preferably from 5 to 12% wt. and most preferably 6 to 8% wt.
  • Suitable fatty acids in the context of this invention include aliphatic carboxylic acids of formula RCOOH, where R is a linear or branched alkyl or alkenyl chain containing from 6 to 24, more preferably 10 to 22, most preferably from 12 to 18 carbon atoms and 0 or 1 double bond.
  • R is a linear or branched alkyl or alkenyl chain containing from 6 to 24, more preferably 10 to 22, most preferably from 12 to 18 carbon atoms and 0 or 1 double bond.
  • saturated C12-18 fatty acids such as lauric acid, myristic acid, palmitic acid or stearic acid
  • fatty acid mixtures in which 50 to 100% (by weight based on the total weight of the mixture) consists of saturated C12-18 fatty acids.
  • Such mixtures may typically be derived from natural fats and/or optionally hydrogenated natural oils (such as coconut oil, palm kernel oil or tallow).
  • the fatty acids may be present in the form of their sodium, potassium or ammonium salts and/or in the form of soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • fatty acids and/or their salts are not included in the level of surfactant or in the level of builder.
  • the detergent compositions may also preferably comprise a sequestrant material.
  • a sequestrant material examples include the alkali metal citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates. Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • Other examples are DEQUEST TM , organic phosphonate type sequestering agents sold by Monsanto and alkanehydroxy phosphonates.
  • a preferred sequestrant is Dequest(R) 2066 (Diethylenetriamine penta(methylene phosphonic acid or Heptasodium DTPMP).
  • HEDP 1-Hydroxyethylidene -1,1,-diphosphonic acid
  • composition comprises fatty acid and sequestrant.
  • composition according to the invention is a low aqueous composition.
  • the composition comprises less than 15% wt. water, more preferably less than 10% wt. water.
  • the composition is contained within water dissoluble pouch.
  • Water soluble pouches comprise water-soluble film compositions.
  • the liquid unit dose composition is preferably contained in a water-soluble pouch.
  • the pouch as from one to four compartments.
  • the pouch is a unit dose of product and may be from 10 to 50g in weight to represent a unit dose.
  • Water-soluble film compositions optional ingredients for use therein, and methods of making the same are well known in the art, whether being used for making relatively thin water-soluble films (e.g., as pouch materials) or otherwise.
  • the water-soluble film includes a water dissoluble material.
  • Preferred such materials include polyvinyl alcohol (PVOH), including homopolymers thereof (e.g., including substantially only vinyl alcohol and vinyl acetate monomer units) and copolymers thereof (e.g., including one or more other monomer units in addition to vinyl alcohol and vinyl acetate units).
  • PVOH is a synthetic resin generally prepared by the alcoholysis, usually termed hydrolysis or saponification, of polyvinyl acetate. Fully hydrolyzed PVOH, wherein virtually all the acetate groups have been converted to alcohol groups, is a strongly hydrogen-bonded, highly crystalline polymer which dissolves only in hot water- greater than about 140 degrees Fahrenheit (60 degrees C).
  • PVOH polymer If a sufficient number of acetate groups are allowed to remain after the hydrolysis of polyvinyl acetate, the PVOH polymer then being known as partially hydrolyzed, it is more weakly hydrogen-bonded and less crystalline and is soluble in cold water- less than about 50 degrees Fahrenheit (10 degrees C).
  • An intermediate cold or hot water soluble film can include, for example, intermediate partiallyhydrolyzed PVOH (e.g., with degrees of hydrolysis of about 94 percent to about 98 percent), and is readily soluble only in warm water- e.g., rapid dissolution at temperatures of about 40 degrees centigrade and greater. Both fully and partially hydrolyzed PVOH types are commonly referred to as PVOH homopolymers although the partially hydrolyzed type is technically a vinyl alcohol- vinyl acetate copolymer.
  • the degree of hydrolysis (DH) of the PVOH polymers and PVOH copolymers included in the water-soluble films of the present disclosure can be in a range of about 75 percent to about 99 percent (e.g., about 79 percent to about 92 percent, about 86.5 percent to about 89 percent, or about 88 percent, such as for cold-water soluble compositions; about 90 percent to about 99 percent, about 92 percent to about 99 percent, or about 95 percent to about 99 percent).
  • DH degree of hydrolysis
  • the degree of hydrolysis of the PVOH can be chosen such that the watersolubility of the polymer is temperature dependent, and thus the solubility of a film made from the polymer, any compatibilizer polymer, and additional ingredients is also influenced.
  • the film is cold water-soluble.
  • a cold water-soluble film, soluble in water at a temperature of less than 10 degrees centigrade can include PVOH with a degree of hydrolysis in a range of about 75 percent to about 90 percent, or in a range of about 80 percent to about 90 percent, or in a range of about 85 percent to about 90 percent.
  • the film is hot water-soluble.
  • a hot water-soluble film, soluble in water at a temperature of at least about 60 degrees centigrade can include PVOH with a degree of hydrolysis of at least about 98 percent.
  • water soluble polymers for use in addition to the PVOH polymers and PVOH copolymers in the blend can include, but are not limited to modified polyvinyl alcohols, polyacrylates, water-soluble acrylate copolymers, polyvinyl pyrrolidone, polyethyleneimine, pullulan, water-soluble natural polymers including, but not limited to, guar gum, gum Acacia, xanthan gum, carrageenan, and starch, water-soluble polymer derivatives including, but not limited to, modified starches, ethoxylated starch, and hydroxypropylated starch, copolymers of the forgoing and combinations of any of the foregoing.
  • water-soluble polymers can include polyalkylene oxides, polyacrylamides, polyacrylic acids and salts thereof, celluloses, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts thereof, polyaminoacids, polyamides, gelatines, methylcelluloses, carboxymethylcelluloses and salts thereof, dextrins, ethylcelluloses, hydroxyethyl celluloses, hydroxypropyl methylcelluloses, maltodextrins, and polymethacrylates.
  • Such water-soluble polymers, whether PVOH or otherwise are commercially available from a variety of sources. Any of the foregoing water-soluble polymers are generally suitable for use as film-forming polymers.
  • the water- soluble film can include copolymers and/or blends of the foregoing resins.
  • the water-soluble polymers can be included in the film in an amount in a range of about 30 weight percent or 50 weight percent to about 90 weight percent or 95 weight percent, for example.
  • the weight ratio of the amount of all water-soluble polymers as compared to the combined amount of all plasticizers, compatibilizing agents, and secondary additives can be in a range of about 0.5 to about 18, about 0.5 to about 15, about 0.5 to about 9, about 0.5 to about 5, about 1 to 3, or about 1 to 2, for example.
  • the specific amounts of plasticizers and other non-polymer component can be selected in a particular embodiment based on an intended application of the water-soluble film to adjust film flexibility and to impart processing benefits in view of desired mechanical film properties.
  • Water-soluble polymers for use in the film described herein can be characterized by a viscosity in a range of about 3.0 to about 27.0 cP, about 4.0 to about 24.0 cP, about 4.0 to about 23.0 cP, about 4.0 cP to about 15 cP, or about 6.0 to about 10.0 cP, for example.
  • the viscosity of a polymer is determined by measuring a freshly made solution using a Brookfield LV type viscometer with UL adapter as described in British Standard EN ISO 15023-2:2006 Annex E Brookfield Test method.
  • the viscosity of a water-soluble polymer is correlated with the weight- average molecular weight (W) of the same polymer, and often the viscosity is used as a proxy for Mw.
  • W weight- average molecular weight
  • the weight- average molecular weight of the water-soluble polymers, including the first PVOH copolymer and second PVOH polymer can be in a range of about 30,000 to about 175,000, or about 30,000 to about 100,000, or about 55,000 to about 80,000, for example.
  • the water-soluble film can contain other auxiliary agents and processing agents, such as, but not limited to, plasticizers, plasticizer compatibilizers, surfactants, lubricants, release agents, fillers, extenders, cross-linking agents, antiblocking agents, antioxidants, detackifying agents, antifoams, nanoparticles such as layered silicate-type nanoclays (e.g., sodium montmorillonite), bleaching agents (e.g., sodium metabisulfite, sodium bisulfite or others), aversive agents such as bitterants (e.g., denatonium salts such as denatonium benzoate, denatonium saccharide, and denatonium chloride; sucrose octaacetate; quinine; flavonoids such as quercetin and naringen; and quassinoids such as quassin and brucine) and pungents (e.g., capsaicin, piperine, allyl isothiocyanate, and resinferatoxi
  • Embodiments including plasticizers are preferred.
  • the amount of such agents can be up to about 50 wt., 20 wt percent, 15 wt percent, 10 wt percent, 5 weight percent, 4 wt percent and/or at least 0.01 weight percent, 0.1 wt percent, 1 wt percent, or 5 wt, individually or collectively.
  • the plasticizer can include, but is not limited to, glycerin, diglycerin, sorbitol, ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, tetraethylene glycol, propylene glycol, polyethylene glycols up to 400 MW, neopentyl glycol, trimethylolpropane, polyether polyols, sorbitol, 2-methyl-1,3-propanediol, ethanolamines, and a mixture thereof.
  • a preferred plasticizer is glycerin, sorbitol, triethyleneglycol, propylene glycol, diproyplene glycol, 2-methyl-1,3-propanediol, trimethylolpropane, or a combination thereof.
  • the total amount of the plasticizer can be in a range of about 10 weight percent to about 40 wt., or about 15 weight percent to about 35 wt., or about 20 weight percent to about 30 wt., for example about 25 wt., based on total film weight.
  • Combinations of glycerin, dipropylene glycol, and sorbitol can be used.
  • glycerin can be used in an amount of about 5 wt percent to about 30 wt, or 5 wt percent to about 20 wt, e.g., about 13 wt percent.
  • dipropylene glycol can be used in an amount of about 1 weight percent to about 20 wt., or about 3 weight percent to about 10 wt., for example 6 weight percent.
  • sorbitol can be used in an amount of about 1 wt percent to about 20 wt, or about 2 wt percent to about 10 wt, e.g., about 5 wt percent.
  • the specific amounts of plasticizers can be selected in a particular embodiment based on desired film flexibility and processability features of the water-soluble film. At low plasticizer levels, films may become brittle, difficult to process, or prone to breaking. At elevated plasticizer levels, films may be too soft, weak, or difficult to process for a desired use.
  • the composition comprises a taste aversive such as denatonium benzoate and/or a pungent agent such as capsaicin.
  • the film comprises a phthalocyanine based pigment.
  • the composition comprises an alkoxylated cationic or zwitterionic di or polyamine polymer, wherein the positive charge is provided by quaternisation of the nitrogen atoms of the amines, and the anionic groups (where present) by sulphation or sulphonation of the alkoxylated group.
  • the alkoxylate is selected from propoxy and ethoxy, most preferably ethoxy.
  • nitrogen amines are quaternised, preferably with a methyl group.
  • the polymer contains 3 to 10, more preferably 3 to 6, most preferably 3 to 5 quaternised nitrogen amines.
  • the alkoxylate groups are selected from ethoxy and propoxy groups, most preferably ethoxy.
  • the polymer contains ester (COO) or acid amide (CONH) groups within the structure, preferably these groups are placed, so that when all the ester or acid amide groups are hydrolysed, at least one, preferably all of the hydrolysed fragments has a molecular weight of less than 4000, preferably less than 2000, most preferably less than 1000.
  • the polymer is of the form:
  • R 1 is a C3 to C8 alkyl group
  • X is an a (C2H4O)nY group where n is from 15 to 30, where m is from 2 to 10, preferably 2, 3, 4 or 5 and where Y is selected from OH and SO 3 - and preferably the number of SO 3 - groups is greater than the number of OH groups. Preferably there are from 0, 1 or 2 OH groups.
  • X and R 1 may contain ester groups within them.
  • X may contain a carbonyl group, preferably an ester group.
  • Such polymers are described in WO2021239547 (Unilever ), An example polymer is sulphated ethoxylated hexamethylene diamine and examples P1, P2, P3, P4, P5 and P6 of WO2021239547 . Ester groups may be included using lactones or sodium chloroacetate (Modified Williamson synthesis), addition to an OH or NH group, then subsequent ethoxylation.
  • Soil release polymers help to improve the detachment of soils from fabric by modifying the fabric surface during washing.
  • the adsorption of a SRP over the fabric surface is promoted by an affinity between the chemical structure of the SRP and the target fibre.
  • SRPs for use in the invention may include a variety of charged (e.g. anionic) as well as non-charged monomer units and structures may be linear, branched or star-shaped.
  • the SRP structure may also include capping groups to control molecular weight or to alter polymer properties such as surface activity.
  • the weight average molecular weight (M w ) of the SRP may suitably range from about 1000 to about 20,000 and preferably ranges from about 1500 to about 10,000.
  • SRPs for use in the invention may suitably be selected from copolyesters of dicarboxylic acids (for example adipic acid, phthalic acid or terephthalic acid), diols (for example ethylene glycol or propylene glycol) and polydiols (for example polyethylene glycol or polypropylene glycol).
  • the copolyester may also include monomeric units substituted with anionic groups, such as for example sulfonated isophthaloyl units.
  • oligomeric esters produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, dimethyl terephthalate (“DMT”), propylene glycol (“PG”) and poly(ethyleneglycol) (“PEG”); partly- and fully-anionic-endcapped oligomeric esters such as oligomers from ethylene glycol ("EG”), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; non-ionic-capped block polyester oligomeric compounds such as those produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate, and copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate.
  • DMT dimethyl terephthalate
  • PG propylene glyco
  • cellulosic derivatives such as hydroxyether cellulosic polymers, C 1 -C 4 alkylcelluloses and C 4 hydroxyalkyl celluloses
  • Preferred SRPs for use in the invention include copolyesters formed by condensation of terephthalic acid ester and diol, preferably 1,2 propanediol, and further comprising an end cap formed from repeat units of alkylene oxide capped with an alkyl group. Examples of such materials have a structure corresponding to general formula (I):
  • n, n and a are not necessarily whole numbers for the polymer in bulk.
  • the overall level of SRP when included, may range from 0.1 to 10%, depending on the level of polymer intended for use in the final diluted composition and which is desirably from 0.3 to 7%, more preferably from 0.5 to 5% (by weight based on the total weight of the diluted composition).
  • soil release polymers are described in greater detail in U. S. Patent Nos. 5,574,179 ; 4,956,447 ; 4,861,512 ; 4,702,857 , WO 2007/079850 and WO2016/005271 . If employed, soil release polymers will typically be incorporated into the liquid laundry detergent compositions herein in concentrations ranging from 0.01 percent to 10 percent, more preferably from 0.1 percent to 5 percent, by weight of the composition.
  • a composition of the invention may incorporate non-aqueous carriers such as hydrotropes, cosolvents and phase stabilizers.
  • non-aqueous carriers such as hydrotropes, cosolvents and phase stabilizers.
  • Such materials are typically low molecular weight, water-soluble or water-miscible organic liquids such as C1 to C5 monohydric alcohols (such as ethanol and n- or i-propanol); C2 to C6 diols (such as monopropylene glycol and dipropylene glycol); C3 to C9 triols (such as glycerol); polyethylene glycols having a weight average molecular weight (M w ) ranging from about 200 to 600; C1 to C3 alkanolamines such as mono-, di- and triethanolamines; and alkyl aryl sulfonates having up to 3 carbon atoms in the lower alkyl group (such as the sodium and potassium xylene, toluene, eth
  • Non-aqueous carriers are preferably included, may be present in an amount ranging from 1 to 50%, preferably from 10 to 30%, and more preferably from 15 to 25% (by weight based on the total weight of the composition).
  • the level of hydrotrope used is linked to the level of surfactant and it is desirable to use hydrotrope level to manage the viscosity in such compositions.
  • the preferred hydrotropes are monopropylene glycol and glycerol.
  • a composition of the invention may contain one or more cosurfactants (such as amphoteric (zwitterionic) and/or cationic surfactants) in addition to the non-soap anionic and/or nonionic detersive surfactants described above.
  • cosurfactants such as amphoteric (zwitterionic) and/or cationic surfactants
  • Specific cationic surfactants include C8 to C18 alkyl dimethyl ammonium halides and derivatives thereof in which one or two hydroxyethyl groups replace one or two of the methyl groups, and mixtures thereof.
  • Cationic surfactant when included, may be present in an amount ranging from 0.1 to 5% (by weight based on the total weight of the composition).
  • amphoteric (zwitterionic) surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulfobetaines (sultaines), alkyl glycinates, alkyl carboxyglycinates, alkyl amphoacetates, alkyl amphopropionates, alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, having alkyl radicals containing from about 8 to about 22 carbon atoms preferably selected from C12, C14, C16 ,C18 and C18:1, the term "alkyl” being used to include the alkyl portion of higher acyl radicals.
  • Amphoteric (zwitterionic) surfactant, when included, may be present in an amount ranging from 0.1 to 5% (by weight based on the total weight of the composition).
  • fluorescer in the compositions.
  • these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.5 wt % the composition.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal ® CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra, Tinopal 5BMGX, and Blankophor ® HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal ® CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra, Tinopal 5BMGX, and Blankophor ® HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfoslyryl)biphenyl.
  • the fluoescer is a di-styryl biphenyl compound, preferably sodium 2,2'-([1,1'-biphenyl]-4,4'-diylbis(ethene-2,1-diyl))dibenzenesulfonate ( CAS-No 27344-41-8 ).
  • Shading dye can be used to improve the performance of the compositions.
  • Preferred dyes are violet or blue. It is believed that the deposition on fabrics of a low level of a dye of these shades, masks yellowing of fabrics.
  • a further advantage of shading dyes is that they can be used to mask any yellow tint in the composition itself.
  • Shading dyes are well known in the art of laundry liquid formulation.
  • Suitable and preferred classes of dyes include direct dyes, acid dyes, hydrophobic dyes, basic dyes, reactive dyes and dye conjugates.
  • Preferred examples are Disperse Violet 28, Acid Violet 50, anthraquinone dyes covalently bound to ethoxylate or propoxylated polyethylene imine as described in WO2011/047987 and WO 2012/119859 alkoxylated mono-azo thiophenes, dye with CAS-No 72749-80-5 , acid blue 59, and the phenazine dye selected from: wherein:
  • Alkoxylated thiophene dyes are discussed in WO2013/142495 and WO2008/087497 .
  • the shading dye is preferably present in the composition in range from 0.0001 to 0.1wt %. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class.
  • compositions of the invention may have their rheology further modified by use of one or more external structurants which form a structuring network within the composition.
  • Such materials include crystallizable glycerides such as hydrogenated castor oil; microfibrous cellulose and citrus pulp fibre.
  • crystallizable glycerides such as hydrogenated castor oil; microfibrous cellulose and citrus pulp fibre.
  • the presence of an external structurant may provide shear thinning rheology and may also enable materials such as encapsulates and visual cues to be suspended stably in the liquid.
  • the composition preferably comprises a crystallizable glyceride.
  • the crystallizable glyceride is useful in forming an external structuring system as described in WO2011/031940 , the contents of which, in particular as regards manufacture of the ESS are incorporated by reference.
  • the ESS of the present invention preferably comprises: (a) crystallizable glyceride(s); (b) alkanolamine; (c) anionic surfactant; (d) additional components; and (e) optional components. Each of these components is discussed in detail below.
  • Crystallizable glyceride(s) of use herein preferably include "Hydrogenated castor oil” or "HCO".
  • HCO as used herein most generally can be any hydrogenated castor oil, provided that it is capable of crystallizing in the ESS premix.
  • Castor oils may include glycerides, especially triglycerides, comprising C10 to C22 alkyl or alkenyl moieties which incorporate a hydroxyl group. Hydrogenation of castor oil to make HCO converts double bonds, which may be present in the starting oil as ricinoleyl moieties, to convert ricinoleyl moieties to saturated hydroxyalkyl moieties, e.g., hydroxystearyl.
  • the HCO herein may, in some embodiments, be selected from: trihydroxystearin; dihydroxystearin; and mixtures thereof.
  • the HCO may be processed in any suitable starting form, including, but not limited those selected from solid, molten and mixtures thereof.
  • HCO is typically present in the ESS of the present invention at a level of from about 2 percent to about 10 percent, from about 3 percent to about 8 percent, or from about 4 percent to about 6 percent by weight of the structuring system.
  • the corresponding percentage of hydrogenated castor oil delivered into a finished laundry detergent product is below about 1.0 percent, typically from 0.1 percent to 0.8 percent.
  • Useful HCO may have the following characteristics: a melting point of from about 40 degrees centigrade to about 100 degrees centigrade, or from about 65 degrees centigrade to about 95 degrees C; and/or Iodine value ranges of from 0 to about 5, from 0 to about 4, or from 0 to about 2.6.
  • the melting point of HCO can measured using either ASTM D3418 or ISO 11357; both tests utilize DSC: Differential Scanning Calorimetry.
  • HCO of use in the present invention includes those that are commercially available. Nonlimiting examples of commercially available HCO of use in the present invention include: THIXCIN(R) from Rheox, Inc. Further examples of useful HCO may be found in U.S. Patent 5,340,390 .
  • the source of the castor oil for hydrogenation to form HCO can be of any suitable origin, such as from Brazil or India.
  • castor oil is hydrogenated using a precious metal, e.g., palladium catalyst, and the hydrogenation temperature and pressure are controlled to optimize hydrogenation of the double bonds of the native castor oil while avoiding unacceptable levels of dehydroxylation.
  • the invention is not intended to be directed only to the use of hydrogenated castor oil.
  • Any other suitable crystallizable glyceride(s) may be used.
  • the structurant is substantially pure triglyceride of 12-hydroxystearic acid. This molecule represents the pure form of a fully hydrogenated triglyceride of 12-hydrox-9-cis-octadecenoic acid.
  • the composition of castor oil is rather constant, but may vary somewhat. Likewise hydrogenation procedures may vary.
  • Any other suitable equivalent materials, such as mixtures of triglycerides wherein at least 80 percent wt. is from castor oil, may be used.
  • Exemplary equivalent materials comprise primarily, or consist essentially of, triglycerides; or comprise primarily, or consist essentially of, mixtures of diglycerides and triglycerides; or comprise primarily, or consist essentially of, mixtures of triglyerides with diglycerides and limited amounts, e.g., less than about 20 percent wt. of the glyceride mixtures, of monoglyerides; or comprise primarily, or consist essentially of, any of the foregoing glycerides with limited amounts, e.g., less than about 20 percent wt., of the corresponding acid hydrolysis product of any of said glycerides.
  • a proviso in the above is that the major proportion, typically at least 80 percent wt, of any of said glycerides is chemically identical to glyceride of fully hydrogenated ricinoleic acid, i.e., glyceride of 12- hydroxystearic acid. It is for example well known in the art to modify hydrogenated castor oil such that in a given triglyceride, there will be two 12-hydroxystearic- moieties and one stearic moiety. Likewise it is envisioned that the hydrogenated castor oil may not be fully hydrogenated. In contrast, the invention excludes poly(oxyalkylated) castor oils when these fail the melting criteria.
  • Crystallizable glyceride(s) of use in the present invention may have a melting point of from about 40 degrees centigrade to about 100 degrees centigrade.
  • the composition preferably comprises an enzyme selected from cellulase, a protease and an amylase/mannase mixture.
  • the composition may comprise an effective amount of one or more enzyme preferably selected from the group comprising lipases, hemicellulases, peroxidases, hemicellulases, xylanases, xantanase, lipases, phospholipases, esterases, cutinases, pectinases, carrageenases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, tannases, nucleases (such as deoxyribonuclease and/or ribonuclease), phosphodiesterases, or mixtures thereof.
  • one or more enzyme preferably selected from the group comprising
  • the level of an enzyme is from 0.1 to 100, more preferably from 0.5 to 50, most preferably from 5 to 30 mg active enzyme protein per 100g finished laundry liquid composition.
  • Examples of preferred enzymes are sold under the following trade names Purafect Prime ® , Purafect ® , Preferenz ® (DuPont), Savinase ® , Pectawash ® , Mannaway ® , Lipex ® , Lipoclean ® , Whitzyme ® Stainzyme ® , Stainzyme Plus ® , Natalase ® , Mannaway ® , Amplify ® Xpect ® , Celluclean ® (Novozymes), Biotouch (AB Enzymes), Lavergy ® (BASF).
  • Purafect Prime ® Purafect ®
  • Purafect ® Purafect ®
  • Preferenz ® DuPont
  • Savinase ® Pectawash ®
  • Mannaway ® Mannaway ®
  • Lipex ® Lipoclean ®
  • Whitzyme ® Stainzyme ® Stainzyme Plus ®
  • Detergent enzymes are discussed in WO2020/186028(Procter and Gamble ), WO2020/200600 (Henkel ), WO2020/070249 (Novozymes ), WO2021/001244 (BASF ) and WO2020/259949 (Unilever ).
  • a nuclease enzyme is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide sub-units of nucleic acids and is preferably a deoxyribonuclease or ribonuclease enzyme.
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al. , Protein Engng.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ).
  • proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 .
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
  • protease is a subtilisins (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Alcalase ® , Blaze ® ; DuralaseTm, DurazymTm, Relase ® , Relase ® Ultra, Savinase ® , Savinase ® Ultra, Primase ® , Polarzyme ® , Kannase ® , Liquanase ® , Liquanase ® Ultra, Ovozyme ® , Coronase ® , Coronase ® Ultra, Neutrase ® , Everlase ® and Esperase ® all could be sold as Ultra ® or Evity ® (Novozymes A/S).
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO00/060060 .
  • amylases are Duramyl TM , Termamyl TM , Termamyl Ultra TM , Natalase TM , Stainzyme TM , Fungamyl TM and BAN TM (Novozymes A/S), Rapidase TM and Purastar TM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691 ,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • Celluzyme TM Commercially available cellulases include Celluzyme TM , Carezyme TM , Celluclean TM , Endolase TM ,Renozyme TM (Novozymes A/S), Clazinase TM and Puradax HA TM (Genencor International Inc.), and KAC-500(B) TM (Kao Corporation). Celluclean TM is preferred.
  • Lipases are lipid esterase enzymes and the terms lipid esterase and lipase are used herein synonymously.
  • the composition preferably comprises from 0.0005 to 0.5 wt.%, preferably from 0.005 to 0.2 wt.% of a lipase.
  • the lipid esterase may be selected from lipase enzymes in E.C. class 3.1 or 3.2 or a combination thereof.
  • the cleaning lipid esterases is selected from:
  • Triacylglycerol lipases (E.C. 3.1.1.3) are most preferred.
  • Suitable triacylglycerol lipases can be selected from variants of the Humicola lanuginosa (Thermomyces lanuginosus) lipase.
  • Other suitable triacylglycerol lipases can be selected from variants of Pseudomonas lipases, e.g., from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P. fluorescens, Pseudomonas sp. strain SD 705 ( WO 95/06720 and WO 96/27002 ), P.
  • wisconsinensis ( WO 96/12012 ), Bacillus lipases, e.g., from B. subtilis ( Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360 ), B. stearothermophilus ( JP 64/744992 ) or B. pumilus ( WO 91/16422 ).
  • Suitable carboxylic ester hydrolases can be selected from wild-types or variants of carboxylic ester hydrolases endogenous to B. gladioli, P. fluorescens, P. putida, B. acidocaldarius, B. subtilis, B. stearothermophilus, Streptomyces chrysomallus, S. diastatochromogenes and Saccaromyces cerevisiae.
  • Suitable cutinases can be selected from wild-types or variants of cutinases endogenous to strains of Aspergillus, in particular Aspergillus oryzae, a strain of Alternaria, in particular Alternaria brassiciola, a strain of Fusarium, in particular Fusarium solani, Fusarium solani pisi, Fusarium oxysporum, Fusarium oxysporum cepa, Fusarium roseum culmorum, or Fusarium roseum sambucium, a strain of Helminthosporum, in particular Helminthosporum sativum, a strain of Humicola, in particular Humicola insolens, a strain of Pseudomonas, in particular Pseudomonas mendocina, or Pseudomonas putida, a strain of Rhizoctonia, in particular Rhizoctonia solani, a strain of Streptomyces, in particular
  • the cutinase is selected from variants of the Pseudomonas mendocina cutinase described in WO 2003/076580 (Genencor ), such as the variant with three substitutions at I178M, F180V, and S205G.
  • the cutinase is a wild-type or variant of the six cutinases endogenous to Coprinopsis cinerea described in H. Kontkanen et al, App. Environ. Microbiology, 2009, p2148-2157 .
  • the cutinase is a wild-type or variant of the two cutinases endogenous to Trichoderma reesei described in WO2009007510 (VTT ).
  • the cutinase is derived from a strain of Humicola insolens, in particular the strain Humicola insolens DSM 1800.
  • Humicola insolens cutinase is described in WO 96/13580 which is hereby incorporated by reference.
  • the cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502 .
  • Preferred cutinase variants include variants listed in Example 2 of WO 01/92502 .
  • Preferred commercial cutinases include Novozym 51032 (available from Novozymes, Bagsvaerd, Denmark).
  • Suitable sterol esterases may be derived from a strain of Ophiostoma, for example Ophiostoma piceae, a strain of Pseudomonas, for example Pseudomonas aeruginosa, or a strain of Melanocarpus, for example Melanocarpus albomyces.
  • the sterol esterase is the Melanocarpus albomyces sterol esterase described in H. Kontkanen et al, Enzyme Microb Technol., 39, (2006), 265-273 .
  • Suitable wax-ester hydrolases may be derived from Simmondsia chinensis.
  • the lipid esterase is preferably selected from lipase enzyme in E.C. class 3.1.1.1 or 3.1.1.3 or a combination thereof, most preferably E.C.3.1.1.3.
  • Examples of EC 3.1.1.3 lipases include those described in WIPO publications WO 00/60063 , WO 99/42566 , WO 02/062973 , WO 97/04078 , WO 97/04079 and US 5,869,438 .
  • Preferred lipases are produced by Absidia reflexa, Absidia corymbefera, Rhizmucor miehei, Rhizopus deleman Aspergillus niger, Aspergillus tubigensis, Fusa ⁇ um oxysporum, Fusarium heterosporum, Aspergillus oryzea, Penicilium camembertii, Aspergillus foetidus, Aspergillus niger, Thermomyces lanoginosus (synonym: Humicola lanuginosa) and Landerina penisapora, particularly Thermomyces lanoginosus. Certain preferred lipases are supplied by Novozymes under the tradenames.
  • Lipolase ® Lipolase Ultra ® , Lipoprime ® , Lipoclean ® and Lipex ® (registered tradenames of Novozymes) and LIPASE P "AMANO ® " available from Areario Pharmaceutical Co. Ltd., Nagoya, Japan, AMANO-CES ® , commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A. and Diosynth Co., Netherlands, and other lipases such as Pseudomonas gladioli.
  • suitable lipases include the "first cycle lipases" described in WO 00/60063 and U.S. Patent 6,939,702 BI, preferably a variant of SEQ ID No. 2, more preferably a variant of SEQ ID No. 2 having at least 90% homology to SEQ ID No.
  • lipases can be used in combination (any mixture of lipases can be used). Suitable lipases can be purchased from Novozymes, Bagsvaerd, Denmark; Areario Pharmaceutical Co. Ltd., Nagoya, Japan; Toyo Jozo Co., Tagata, Japan; Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A; Diosynth Co., Oss, Netherlands and/or made in accordance with the examples contained herein.
  • Lipid esterase with reduced potential for odour generation and a good relative performance are particularly preferred, as described in WO 2007/087243 . These include lipoclean ® (Novozyme).
  • Lipolase TM and Lipolase Ultra TM Lipex TM and Lipoclean TM (Novozymes A/S).
  • the composition comprises a fragrance and preferably, the fragrance is present at from 0.01 to 5% wt., more preferably 0.1 to 1wt% of the composition.
  • the fragrance comprises a component selected from the group consisting of ethyl-2-methyl valerate (manzanate), limonene, (4Z)-cyclopentadec-4-en-1-one, dihyro myrcenol, dimethyl benzyl carbonate acetate, benzyl acetate, spiro[1,3-dioxolane-2,5'-(4',4',8',8'-tetramethyl-hexahydro-3',9'-methanonaphthalene)], benzyl acetate, Rose Oxide, geraniol, methyl nonyl acetaldehyde, decanal, octanal, undecanal, verdyl acetate, tert-butylcyclohexyl acetate, cyclamal, beta ionone, hexyl salicylate, tonalid, phenafleur, octahydro
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt. % and especially preferably from 6 to 10% wt. of the fragrance component ethyl-2-methyl valerate (manzanate).
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15 wt.% and especially preferably from 6 to 10% wt. of the fragrance component limonene.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component (4Z)-cyclopentadec-4-en-1-one.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component dimethyl benzyl carbonate acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component dihyromyrcenol.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component rose oxide.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component tert-butylcyclohexyl acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component verdyl acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component benzyl acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component spiro[1,3-dioxolane-2,5'-(4',4',8',8'-tetramethyl-hexahydro-3',9'-methanonaphthalene)].
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component geraniol.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component methyl nonyl acetaldehyde.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component cyclamal.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component beta ionone.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component hexyl salicylate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component tonalid.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component phenafleur.
  • the fragrance comprises a component selected from the benzene, toluene, xylene (BTX) feedstock class. More preferably, the fragrance component is selected from 2-phenyl ethanol, phenoxanol and mixtures thereof.
  • the fragrance comprises a component selected from the cyclododecanone feedstock class. More preferably, the fragrance component is habolonolide.
  • the fragrance comprises a component selected from the phenolics feedstock class. More preferably, the fragrance component is hexyl salicylate.
  • the fragrance comprises a component selected from the C5 blocks or oxygen containing heterocycle moiety feedstock class. More preferably, the fragrance component is selected from gamma decalactone, methyl dihydrojasmonate and mixtures thereof.
  • the fragrance comprises a component selected from the terpenes feedstock class. More preferably, the fragrance component is selected from, linalool, terpinolene, camphor, citronellol and mixtures thereof.
  • the fragrance comprises a component selected from the alkyl alcohols feedstock class. More preferably, the fragrance component is ethyl-2-methylbutyrate.
  • the fragrance comprises a component selected from the diacids feedstock class. More preferably, the fragrance component is ethylene brassylate.
  • the fragrance component listed above is present in the final detergent composition at from 0.0001 to 1% by wt. of the composition.
  • microencapsulation may be defined as the process of surrounding or enveloping one substance within another substance on a very small scale, yielding capsules ranging from less than one micron to several hundred microns in size.
  • the material that is encapsulated may be called the core, the active ingredient or agent, fill, payload, nucleus, or internal phase.
  • the material encapsulating the core may be referred to as the coating, membrane, shell, or wall material.
  • Microcapsules typically have at least one generally spherical continuous shell surrounding the core.
  • the shell may contain pores, vacancies or interstitial openings depending on the materials and encapsulation techniques employed.
  • Multiple shells may be made of the same or different encapsulating materials, and may be arranged in strata of varying thicknesses around the core.
  • the microcapsules may be asymmetrically and variably shaped with a quantity of smaller droplets of core material embedded throughout the microcapsule.
  • the shell may have a barrier function protecting the core material from the environment external to the microcapsule, but it may also act as a means of modulating the release of core materials such as fragrance.
  • a shell may be water soluble or water swellable and fragrance release may be actuated in response to exposure of the microcapsules to a moist environment.
  • a microcapsule might release fragrance in response to elevated temperatures.
  • Microcapsules may also release fragrance in response to shear forces applied to the surface of the microcapsules.
  • a preferred type of polymeric microparticle suitable for use in the invention is a polymeric core-shell microcapsule in which at least one generally spherical continuous shell of polymeric material surrounds a core containing the fragrance formulation (f2).
  • the shell will typically comprise at most 20% by weight based on the total weight of the microcapsule.
  • the fragrance formulation (f2) will typically comprise from about 10 to about 60% and preferably from about 20 to about 40% by weight based on the total weight of the microcapsule.
  • the amount of fragrance (f2) may be measured by taking a slurry of the microcapsules, extracting into ethanol and measuring by liquid chromatography.
  • Polymeric core-shell microcapsules for use in the invention may be prepared using methods known to those skilled in the art such as coacervation, interfacial polymerization, and polycondensation.
  • Coacervation typically involves encapsulation of a generally water-insoluble core material by the precipitation of colloidal material(s) onto the surface of droplets of the material.
  • Coacervation may be simple e.g. using one colloid such as gelatin, or complex where two or possibly more colloids of opposite charge, such as gelatin and gum arabic or gelatin and carboxymethyl cellulose, are used under carefully controlled conditions of pH, temperature and concentration.
  • Interfacial polymerisation typically proceeds with the formation of a fine dispersion of oil droplets (the oil droplets containing the core material) in an aqueous continuous phase.
  • the dispersed droplets form the core of the future microcapsule and the dimensions of the dispersed droplets directly determine the size of the subsequent microcapsules.
  • Microcapsule shell-forming materials are contained in both the dispersed phase (oil droplets) and the aqueous continuous phase and they react together at the phase interface to build a polymeric wall around the oil droplets thereby to encapsulate the droplets and form core-shell microcapsules.
  • An example of a core-shell microcapsule produced by this method is a polyurea microcapsule with a shell formed by reaction of diisocyanates or polyisocyanates with diamines or polyamines.
  • Polycondensation involves forming a dispersion or emulsion of the core material in an aqueous solution of precondensate of polymeric materials under appropriate conditions of agitation to produce capsules of a desired size, and adjusting the reaction conditions to cause condensation of the precondensate by acid catalysis, resulting in the condensate separating from solution and surrounding the dispersed core material to produce a coherent film and the desired microcapsules.
  • An example of a core-shell microcapsule produced by this method is an aminoplast microcapsule with a shell formed from the polycondensation product of melamine (2,4,6-triamino-1,3,5-triazine) or urea with formaldehyde.
  • Suitable cross-linking agents e.g. toluene diisocyanate, divinyl benzene, butanediol diacrylate
  • secondary wall polymers may also be used as appropriate, e.g. anhydrides and their derivatives, particularly polymers and co-polymers of maleic anhydride.
  • One example of a preferred polymeric core-shell microcapsule for use in the invention is an aminoplast microcapsule with an aminoplast shell surrounding a core containing the fragrance formulation (f2). More preferably such an aminoplast shell is formed from the polycondensation product of melamine with formaldehyde.
  • Polymeric microparticles suitable for use in the invention will generally have an average particle size between 100 nanometers and 50 microns. Particles larger than this are entering the visible range.
  • particles in the sub-micron range include latexes and mini-emulsions with a typical size range of 100 to 600 nanometers.
  • the preferred particle size range is in the micron range.
  • particles in the micron range include polymeric core-shell microcapsules (such as those further described above) with a typical size range of 1 to 50 microns, preferably 5 to 30 microns.
  • the average particle size can be determined by light scattering using a Malvern Mastersizer with the average particle size being taken as the median particle size D (0.5) value.
  • the particle size distribution can be narrow, broad or multimodal. If necessary, the microcapsules as initially produced may be filtered or screened to produce a product of greater size uniformity.
  • Polymeric microparticles suitable for use in the invention may be provided with a deposition aid at the outer surface of the microparticle.
  • Deposition aids serve to modify the properties of the exterior of the microparticle, for example to make the microparticle more substantive to a desired substrate.
  • Desired substrates include cellulosics (including cotton) and polyesters (including those employed in the manufacture of polyester fabrics).
  • the deposition aid may suitably be provided at the outer surface of the microparticle by means of covalent bonding, entanglement or strong adsorption.
  • Examples include polymeric core-shell microcapsules (such as those further described above) in which a deposition aid is attached to the outside of the shell, preferably by means of covalent bonding. While it is preferred that the deposition aid is attached directly to the outside of the shell, it may also be attached via a linking species.
  • Deposition aids for use in the invention may suitably be selected from polysaccharides having an affinity for cellulose.
  • polysaccharides may be naturally occurring or synthetic and may have an intrinsic affinity for cellulose or may have been derivatised or otherwise modified to have an affinity for cellulose.
  • Suitable polysaccharides have a 1-4 linked ⁇ glycan (generalised sugar) backbone structure with at least 4, and preferably at least 10 backbone residues which are ⁇ 1-4 linked, such as a glucan backbone (consisting of ⁇ 1-4 linked glucose residues), a mannan backbone (consisting of ⁇ 1-4 linked mannose residues) or a xylan backbone (consisting of ⁇ 1-4 linked xylose residues).
  • ⁇ 1-4 linked polysaccharides examples include xyloglucans, glucomannans, mannans, galactomannans, ⁇ (1-3),(1-4) glucan and the xylan family incorporating glucurono-, arabino- and glucuronoarabinoxylans.
  • Preferred ⁇ 1-4 linked polysaccharides for use in the invention may be selected from xyloglucans of plant origin, such as pea xyloglucan and tamarind seed xyloglucan (TXG) (which has a ⁇ 1-4 linked glucan backbone with side chains of ⁇ -D xylopyranose and ⁇ -D-galactopyranosyl-(1-2)- ⁇ -D-xylo-pyranose, both 1-6 linked to the backbone); and galactomannans of plant origin such as loc ust bean gum (LBG) (which has a mannan backbone of ⁇ 1-4 linked mannose residues, with single unit galactose side chains linked ⁇ 1-6 to the backbone).
  • TXG pea xyloglucan and tamarind seed xyloglucan
  • LBG loc ust bean gum
  • polysaccharides which may gain an affinity for cellulose upon hydrolysis, such as cellulose mono-acetate; or modified polysaccharides with an affinity for cellulose such as hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxypropyl guar, hydroxyethyl ethylcellulose and methylcellulose.
  • Deposition aids for use in the invention may also be selected from phthalate containing polymers having an affinity for polyester.
  • phthalate containing polymers may have one or more nonionic hydrophilic segments comprising oxyalkylene groups (such as oxyethylene, polyoxyethylene, oxypropylene or polyoxypropylene groups), and one or more hydrophobic segments comprising terephthalate groups.
  • the oxyalkylene groups will have a degree of polymerization of from 1 to about 400, preferably from 100 to about 350, more preferably from 200 to about 300.
  • a suitable example of a phthalate containing polymer of this type is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide terephthalate.
  • Deposition aids for use in the invention will generally have a weight average molecular weight (M w ) in the range of from about 5 kDa to about 500 kDa, preferably from about 10 kDa to about 500 kDa and more preferably from about 20 kDa to about 300 kDa.
  • M w weight average molecular weight
  • One example of a particularly preferred polymeric core-shell microcapsule for use in the invention is an aminoplast microcapsule with a shell formed by the polycondensation of melamine with formaldehyde; surrounding a core containing the fragrance formulation (f2); in which a deposition aid is attached to the outside of the shell by means of covalent bonding.
  • the preferred deposition aid is selected from ⁇ 1-4 linked polysaccharides, and in particular the xyloglucans of plant origin, as are further described above.
  • the present inventors have surprisingly observed that it is possible to reduce the total level of fragrance included in the composition of the invention without sacrificing the overall fragrance experience delivered to the consumer at key stages in the laundry process. A reduction in the total level of fragrance is advantageous for cost and environmental reasons.
  • the total amount of fragrance formulation (f1) and fragrance formulation (f2) in the composition of the invention suitably ranges from 0.5 to 1.4%, preferably from 0.5 to 1.2%, more preferably from 0.5 to 1% and most preferably from 0.6 to 0.9% (by weight based on the total weight of the composition).
  • the weight ratio of fragrance formulation (f1) to fragrance formulation (f2) in the composition of the invention preferably ranges from 60:40 to 45:55. Particularly good results have been obtained at a weight ratio of fragrance formulation (f1) to fragrance formulation (f2) of around 50:50.
  • fragrance (f1) and fragrance (f2) are typically incorporated at different stages of formation of the composition of the invention.
  • the discrete polymeric microparticles (e.g. microcapsules) entrapping fragrance formulation (f2) are added in the form of a slurry to a warmed base formulation comprising other components of the composition (such as surfactants and solvents).
  • Fragrance (f1) is typically post-dosed later after the base formulation has cooled.
  • a composition of the invention may contain further optional ingredients to enhance performance and/or consumer acceptability.
  • additional optional ingredients include foam boosting agents, preservatives (e.g. bactericides), polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, antioxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, colorants, pearlisers and/or opacifiers, and shading dye.
  • foam boosting agents e.g. bactericides
  • polyelectrolytes e.g. bactericides
  • anti-shrinking agents e.g. bactericides
  • anti-wrinkle agents antioxidants
  • sunscreens e.g. bactericides
  • anti-corrosion agents e.g. bactericides
  • drape imparting agents e.g. bactericides
  • anti-static agents e.g. bactericides
  • ironing aids e.g. bactericides
  • colorants e.g.
  • ingredients used in embodiments of the invention may be obtained from so called black carbon sources or a more sustainable green source.
  • black carbon sources or a more sustainable green source.
  • the following provides a list of alternative sources for several of these ingredients and how they can be made into raw materials described herein.
  • the unit dose detergent is packaged in a container such as a plastic tub.
  • a container such as a plastic tub.
  • plastic tubs are typically hermetically sealable and comprise child resistant closures.
  • the liquid unit dose detergent is packaged within a container comprising at least 80% wt. biodegradable material.
  • Suitable biodegradable materials include cardboard and other pulp based materials. Such biodegradable material may be virgin or recycled but it is preferred if it is recycled.
  • the container comprises at least 90% wt biodegradable material.
  • a calcium catalyst was prepared according to EP1747183 , with the following composition: n-Butanol 73.5 wt%, calcium hydroxide 15 wt%, 2-ethylhexanoic acid 3.5wt%, conc sulfuric acid 7.8wt% from Example 1 was used in this example to produce narrow range ethoxylates.
  • a unit dose laundry detergent formulation was made according to the following specification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
EP22199749.7A 2022-10-05 2022-10-05 Produit de traitement de tissu en dose unitaire Withdrawn EP4349946A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22199749.7A EP4349946A1 (fr) 2022-10-05 2022-10-05 Produit de traitement de tissu en dose unitaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22199749.7A EP4349946A1 (fr) 2022-10-05 2022-10-05 Produit de traitement de tissu en dose unitaire

Publications (1)

Publication Number Publication Date
EP4349946A1 true EP4349946A1 (fr) 2024-04-10

Family

ID=83598601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22199749.7A Withdrawn EP4349946A1 (fr) 2022-10-05 2022-10-05 Produit de traitement de tissu en dose unitaire

Country Status (1)

Country Link
EP (1) EP4349946A1 (fr)

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (fr) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4239917A (en) 1979-07-02 1980-12-16 Conoco, Inc. Barium oxide catalyzed ethoxylation
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
EP0218272A1 (fr) 1985-08-09 1987-04-15 Gist-Brocades N.V. Enzymes lipolytiques et leur usage dans des compositions détergentes
US4702857A (en) 1984-12-21 1987-10-27 The Procter & Gamble Company Block polyesters and like compounds useful as soil release agents in detergent compositions
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006270A1 (fr) 1988-01-07 1989-07-13 Novo-Nordisk A/S Detergent enzymatique
WO1989006279A1 (fr) 1988-01-07 1989-07-13 Novo-Nordisk A/S Genes de subtilisine mutes
US4861512A (en) 1984-12-21 1989-08-29 The Procter & Gamble Company Sulfonated block polyesters useful as soil release agents in detergent compositions
EP0331376A2 (fr) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. ADN recombinant, bactérie du genre pseudomonas le contenant et son utilisation dans un procédé de production de lipase
WO1989009259A1 (fr) 1988-03-24 1989-10-05 Novo-Nordisk A/S Preparation de cellulase
US4886615A (en) * 1985-08-05 1989-12-12 Colgate-Palmolive Company Hydroxy polycarboxylic acid built non-aqueous liquid cleaning composition and method for use, and package therefor
US4956447A (en) 1989-05-19 1990-09-11 The Procter & Gamble Company Rinse-added fabric conditioning compositions containing fabric sofening agents and cationic polyester soil release polymers and preferred cationic soil release polymers therefor
WO1991016422A1 (fr) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Lipases bacillaires alcalines, sequences d'adn de codage pour celles-ci et bacilles produisant ces lipases
WO1992017517A1 (fr) 1991-04-02 1992-10-15 Minnesota Mining And Manufacturing Company Condensats d'uree-aldehyde et derives de melamine comprenant des oligomeres fluorochimiques
WO1993018140A1 (fr) 1992-03-04 1993-09-16 Novo Nordisk A/S Nouvelles proteases
US5340390A (en) 1992-10-29 1994-08-23 Rheox, Inc. Rheological additive comprising derivatives of castor oil
WO1994025583A1 (fr) 1993-05-05 1994-11-10 Novo Nordisk A/S Protease recombinee de type trypsine
WO1995006720A1 (fr) 1993-08-30 1995-03-09 Showa Denko K.K. Nouvelle lipase, micro-organisme la produisant, procede de production de cette lipase, et utilisation de ladite lipase
WO1995026397A1 (fr) 1994-03-29 1995-10-05 Novo Nordisk A/S Amylase alcaline issue d'un bacille
WO1996012012A1 (fr) 1994-10-14 1996-04-25 Solvay S.A. Lipase, micro-organisme la produisant, procede de preparation de cette lipase et utilisation de celle-ci
WO1996013580A1 (fr) 1994-10-26 1996-05-09 Novo Nordisk A/S Enzyme a activite lipolytique
WO1996027002A1 (fr) 1995-02-27 1996-09-06 Novo Nordisk A/S Nouveau gene de lipase et procede de production de lipase a l'aide de celui-ci
WO1996029397A1 (fr) 1995-03-17 1996-09-26 Novo Nordisk A/S Nouvelles endoglucanases
US5574179A (en) 1993-03-01 1996-11-12 The Procter & Gamble Company Concentrated biodegradable quaternary ammonium fabric softener compositions and compouds containing intermediate iodine value unsaturated fatty acid chains
WO1997004078A1 (fr) 1995-07-14 1997-02-06 Novo Nordisk A/S Enzyme modifiee a activite lipolytique
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1998012307A1 (fr) 1996-09-17 1998-03-26 Novo Nordisk A/S Variants de cellulase
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
WO1999042566A1 (fr) 1998-02-17 1999-08-26 Novo Nordisk A/S Variante de lipase
WO2000034450A1 (fr) 1998-12-04 2000-06-15 Novozymes A/S Variantes de cutinase
WO2000060063A1 (fr) 1999-03-31 2000-10-12 Novozymes A/S Variante genetique de lipase
WO2000060060A2 (fr) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides presentant une activite alcaline alpha-amylase et acides nucleiques les codant
WO2001016285A2 (fr) 1999-08-31 2001-03-08 Novozymes A/S Nouvelles proteases et leurs variants
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO2001092502A1 (fr) 2000-06-02 2001-12-06 Novozymes A/S Variants de cutinase
WO2002016547A2 (fr) 2000-08-21 2002-02-28 Novozymes A/S Enzymes subtilases
WO2002026024A1 (fr) 2000-08-05 2002-04-04 Haiquan Li Appareil utilisant des ressources recyclables
WO2002062973A2 (fr) 2001-02-07 2002-08-15 Novozymes A/S Variantes de lipase
WO2003076580A2 (fr) 2002-03-05 2003-09-18 Genencor International, Inc. Methode de criblage de mutagenese à haute densité
WO2004101763A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Enzyme lipolytique lip1
WO2004101759A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Nouvelle enzyme lipolytique lip2
WO2004101760A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Une nouvelle enzyme lipolytique dite elip
WO2005040372A1 (fr) 2003-10-23 2005-05-06 Novozymes A/S Protease a stabilite amelioree dans les detergents
WO2005052161A2 (fr) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, acides nucleiques codant des enzymes de serine et vecteurs et cellules hotes les integrant
EP1747183A2 (fr) 2004-04-27 2007-01-31 Harcros Chemicals Inc. Procede de fabrication de catalyseurs d'alkoxylation et utilisation dans le cadre de processus d'alkoxylation
WO2007079850A1 (fr) 2005-12-21 2007-07-19 Clariant Produkte (Deutschland) Gmbh Polymere anionique detachant les salissures
WO2007087243A2 (fr) 2006-01-23 2007-08-02 The Procter & Gamble Company Compositions détergentes
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
WO2007147866A1 (fr) 2006-06-23 2007-12-27 Akzo Nobel N.V. Procédé de préparation d'alkylamines/amines d'éther d'alkyle alcoxylées avec une distribution maximale
WO2008087497A1 (fr) 2007-01-19 2008-07-24 The Procter & Gamble Company Composition de lessive munis d'un agent de blanchiment pour substrats cellulosiques
WO2009007510A1 (fr) 2007-07-10 2009-01-15 Valtion Teknillinen Tutkimuskeskus Nouvelles estérases et leur utilisation
WO2009021867A2 (fr) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents contenant des protéases
WO2011031940A1 (fr) 2009-09-14 2011-03-17 The Procter & Gamble Company Systeme de structuration externe pour composition liquide de detergent a lessive
WO2011047987A1 (fr) 2009-10-23 2011-04-28 Unilever Plc Polymères de colorant
WO2012028435A1 (fr) 2010-09-02 2012-03-08 Kolb Distribution Ltd. Procédé d'alcoxylation d'esters alkyliques d'acides gras
WO2012119859A1 (fr) 2011-03-10 2012-09-13 Unilever Plc Colorant polymère
WO2013142495A1 (fr) 2012-03-19 2013-09-26 Milliken & Company Colorants carboxilate
WO2016005271A1 (fr) 2014-07-09 2016-01-14 Unilever Plc Composition liquide de lavage du linge
EP3289790A1 (fr) 2015-04-30 2018-03-07 Gemalto SA Procédé, dispositif de demandeur, dispositif de vérificateur et serveur pour prouver au moins un élément d'informations d'utilisateur
WO2020070249A1 (fr) 2018-10-03 2020-04-09 Novozymes A/S Compositions de nettoyage
WO2020186028A1 (fr) 2019-03-14 2020-09-17 The Procter & Gamble Company Compositions de nettoyage comprenant des enzymes
WO2020200600A1 (fr) 2019-04-04 2020-10-08 Henkel Ag & Co. Kgaa Utilisation de l'enzyme mannanase en association avec des dérivés de catéchol
WO2020259949A1 (fr) 2019-06-28 2020-12-30 Unilever Plc Composition détergente
WO2021001244A1 (fr) 2019-07-01 2021-01-07 Basf Se Acétals peptidiques pour stabiliser des enzymes
WO2021165468A1 (fr) 2020-02-21 2021-08-26 Basf Se Polyalkylène-imines alcoxylées ou polyamines alcoxylées à biodégradabilité améliorée
WO2021239547A1 (fr) 2020-05-29 2021-12-02 Basf Se Éthoxylates d'oligopropylèneimine modifiés de manière amphotère pour l'élimination améliorée des taches de détergents de blanchisserie
WO2022063707A1 (fr) * 2020-09-24 2022-03-31 Unilever Ip Holdings B.V. Composition
WO2022072587A1 (fr) * 2020-10-01 2022-04-07 The Procter & Gamble Company Alcoxylates d'alcool à plage étroite et dérivés associés
WO2022122474A1 (fr) * 2020-12-07 2022-06-16 Unilever Ip Holdings B.V. Composition
WO2022129374A1 (fr) 2020-12-18 2022-06-23 Unilever Ip Holdings B.V. Composition détergente
DE202022102611U1 (de) * 2021-05-14 2022-08-09 Unilever Global Ip Limited Wasserlösliche Kapseln enthaltende Packung

Patent Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (fr) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4239917A (en) 1979-07-02 1980-12-16 Conoco, Inc. Barium oxide catalyzed ethoxylation
US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4702857A (en) 1984-12-21 1987-10-27 The Procter & Gamble Company Block polyesters and like compounds useful as soil release agents in detergent compositions
US4861512A (en) 1984-12-21 1989-08-29 The Procter & Gamble Company Sulfonated block polyesters useful as soil release agents in detergent compositions
US4886615A (en) * 1985-08-05 1989-12-12 Colgate-Palmolive Company Hydroxy polycarboxylic acid built non-aqueous liquid cleaning composition and method for use, and package therefor
EP0218272A1 (fr) 1985-08-09 1987-04-15 Gist-Brocades N.V. Enzymes lipolytiques et leur usage dans des compositions détergentes
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
WO1989006270A1 (fr) 1988-01-07 1989-07-13 Novo-Nordisk A/S Detergent enzymatique
WO1989006279A1 (fr) 1988-01-07 1989-07-13 Novo-Nordisk A/S Genes de subtilisine mutes
EP0331376A2 (fr) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. ADN recombinant, bactérie du genre pseudomonas le contenant et son utilisation dans un procédé de production de lipase
US5691178A (en) 1988-03-22 1997-11-25 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase
WO1989009259A1 (fr) 1988-03-24 1989-10-05 Novo-Nordisk A/S Preparation de cellulase
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
US4956447A (en) 1989-05-19 1990-09-11 The Procter & Gamble Company Rinse-added fabric conditioning compositions containing fabric sofening agents and cationic polyester soil release polymers and preferred cationic soil release polymers therefor
WO1991016422A1 (fr) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Lipases bacillaires alcalines, sequences d'adn de codage pour celles-ci et bacilles produisant ces lipases
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
WO1992017517A1 (fr) 1991-04-02 1992-10-15 Minnesota Mining And Manufacturing Company Condensats d'uree-aldehyde et derives de melamine comprenant des oligomeres fluorochimiques
WO1993018140A1 (fr) 1992-03-04 1993-09-16 Novo Nordisk A/S Nouvelles proteases
US5340390A (en) 1992-10-29 1994-08-23 Rheox, Inc. Rheological additive comprising derivatives of castor oil
US5574179A (en) 1993-03-01 1996-11-12 The Procter & Gamble Company Concentrated biodegradable quaternary ammonium fabric softener compositions and compouds containing intermediate iodine value unsaturated fatty acid chains
WO1994025583A1 (fr) 1993-05-05 1994-11-10 Novo Nordisk A/S Protease recombinee de type trypsine
WO1995006720A1 (fr) 1993-08-30 1995-03-09 Showa Denko K.K. Nouvelle lipase, micro-organisme la produisant, procede de production de cette lipase, et utilisation de ladite lipase
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1995026397A1 (fr) 1994-03-29 1995-10-05 Novo Nordisk A/S Amylase alcaline issue d'un bacille
WO1996012012A1 (fr) 1994-10-14 1996-04-25 Solvay S.A. Lipase, micro-organisme la produisant, procede de preparation de cette lipase et utilisation de celle-ci
WO1996013580A1 (fr) 1994-10-26 1996-05-09 Novo Nordisk A/S Enzyme a activite lipolytique
WO1996027002A1 (fr) 1995-02-27 1996-09-06 Novo Nordisk A/S Nouveau gene de lipase et procede de production de lipase a l'aide de celui-ci
WO1996029397A1 (fr) 1995-03-17 1996-09-26 Novo Nordisk A/S Nouvelles endoglucanases
WO1997004078A1 (fr) 1995-07-14 1997-02-06 Novo Nordisk A/S Enzyme modifiee a activite lipolytique
WO1997004079A1 (fr) 1995-07-14 1997-02-06 Novo Nordisk A/S Enzyme modifiee a activite lipolytique
WO1998012307A1 (fr) 1996-09-17 1998-03-26 Novo Nordisk A/S Variants de cellulase
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO1999042566A1 (fr) 1998-02-17 1999-08-26 Novo Nordisk A/S Variante de lipase
WO2000034450A1 (fr) 1998-12-04 2000-06-15 Novozymes A/S Variantes de cutinase
WO2000060063A1 (fr) 1999-03-31 2000-10-12 Novozymes A/S Variante genetique de lipase
WO2000060060A2 (fr) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides presentant une activite alcaline alpha-amylase et acides nucleiques les codant
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
WO2001016285A2 (fr) 1999-08-31 2001-03-08 Novozymes A/S Nouvelles proteases et leurs variants
WO2001092502A1 (fr) 2000-06-02 2001-12-06 Novozymes A/S Variants de cutinase
WO2002026024A1 (fr) 2000-08-05 2002-04-04 Haiquan Li Appareil utilisant des ressources recyclables
WO2002016547A2 (fr) 2000-08-21 2002-02-28 Novozymes A/S Enzymes subtilases
WO2002062973A2 (fr) 2001-02-07 2002-08-15 Novozymes A/S Variantes de lipase
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
WO2003076580A2 (fr) 2002-03-05 2003-09-18 Genencor International, Inc. Methode de criblage de mutagenese à haute densité
WO2004101763A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Enzyme lipolytique lip1
WO2004101759A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Nouvelle enzyme lipolytique lip2
WO2004101760A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Une nouvelle enzyme lipolytique dite elip
WO2005040372A1 (fr) 2003-10-23 2005-05-06 Novozymes A/S Protease a stabilite amelioree dans les detergents
WO2005052161A2 (fr) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, acides nucleiques codant des enzymes de serine et vecteurs et cellules hotes les integrant
WO2005052146A2 (fr) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, acides nucleiques codants pour les enzymes a serine et vecteurs et cellules hotes les contenant
EP1747183A2 (fr) 2004-04-27 2007-01-31 Harcros Chemicals Inc. Procede de fabrication de catalyseurs d'alkoxylation et utilisation dans le cadre de processus d'alkoxylation
WO2007079850A1 (fr) 2005-12-21 2007-07-19 Clariant Produkte (Deutschland) Gmbh Polymere anionique detachant les salissures
WO2007087243A2 (fr) 2006-01-23 2007-08-02 The Procter & Gamble Company Compositions détergentes
WO2007147866A1 (fr) 2006-06-23 2007-12-27 Akzo Nobel N.V. Procédé de préparation d'alkylamines/amines d'éther d'alkyle alcoxylées avec une distribution maximale
WO2008087497A1 (fr) 2007-01-19 2008-07-24 The Procter & Gamble Company Composition de lessive munis d'un agent de blanchiment pour substrats cellulosiques
WO2009007510A1 (fr) 2007-07-10 2009-01-15 Valtion Teknillinen Tutkimuskeskus Nouvelles estérases et leur utilisation
WO2009021867A2 (fr) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents contenant des protéases
WO2011031940A1 (fr) 2009-09-14 2011-03-17 The Procter & Gamble Company Systeme de structuration externe pour composition liquide de detergent a lessive
WO2011047987A1 (fr) 2009-10-23 2011-04-28 Unilever Plc Polymères de colorant
WO2012028435A1 (fr) 2010-09-02 2012-03-08 Kolb Distribution Ltd. Procédé d'alcoxylation d'esters alkyliques d'acides gras
WO2012119859A1 (fr) 2011-03-10 2012-09-13 Unilever Plc Colorant polymère
WO2013142495A1 (fr) 2012-03-19 2013-09-26 Milliken & Company Colorants carboxilate
WO2016005271A1 (fr) 2014-07-09 2016-01-14 Unilever Plc Composition liquide de lavage du linge
EP3289790A1 (fr) 2015-04-30 2018-03-07 Gemalto SA Procédé, dispositif de demandeur, dispositif de vérificateur et serveur pour prouver au moins un élément d'informations d'utilisateur
WO2020070249A1 (fr) 2018-10-03 2020-04-09 Novozymes A/S Compositions de nettoyage
WO2020186028A1 (fr) 2019-03-14 2020-09-17 The Procter & Gamble Company Compositions de nettoyage comprenant des enzymes
WO2020200600A1 (fr) 2019-04-04 2020-10-08 Henkel Ag & Co. Kgaa Utilisation de l'enzyme mannanase en association avec des dérivés de catéchol
WO2020259949A1 (fr) 2019-06-28 2020-12-30 Unilever Plc Composition détergente
WO2021001244A1 (fr) 2019-07-01 2021-01-07 Basf Se Acétals peptidiques pour stabiliser des enzymes
WO2021165468A1 (fr) 2020-02-21 2021-08-26 Basf Se Polyalkylène-imines alcoxylées ou polyamines alcoxylées à biodégradabilité améliorée
WO2021239547A1 (fr) 2020-05-29 2021-12-02 Basf Se Éthoxylates d'oligopropylèneimine modifiés de manière amphotère pour l'élimination améliorée des taches de détergents de blanchisserie
WO2022063707A1 (fr) * 2020-09-24 2022-03-31 Unilever Ip Holdings B.V. Composition
WO2022072587A1 (fr) * 2020-10-01 2022-04-07 The Procter & Gamble Company Alcoxylates d'alcool à plage étroite et dérivés associés
WO2022122474A1 (fr) * 2020-12-07 2022-06-16 Unilever Ip Holdings B.V. Composition
WO2022129374A1 (fr) 2020-12-18 2022-06-23 Unilever Ip Holdings B.V. Composition détergente
DE202022102611U1 (de) * 2021-05-14 2022-08-09 Unilever Global Ip Limited Wasserlösliche Kapseln enthaltende Packung

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"Enzymes in Detergency", 1997, MARCEL DEKKER
"Surfactant Science Series", vol. 72, 1998, MARCEL DEKKER, article "Non-Ionic Surfactant Organic Chemistry"
A.HAMA, J.AM.OIL. CHEM.SOC., vol. 72, 1995, pages 781 - 784
C. KOLANO, HOUSEHOLD AND PERSONAL CARE TODAY, 2012, pages 52 - 55
CAS, no. 27344-41 -8
COX M.EWEERASOORIVA U, J.AM.OIL. CHEM.SOC., vol. 74, 1997, pages 847 - 859
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
FATTAH ET AL., FRONT. ENERGY RES, vol. 8, June 2020 (2020-06-01)
G.A. SMITH: "Biobased Surfactants", 2019, AOCS PRESS, article "Synthesis, Properties, and Applications", pages: 287 - 301
GUPTA M.K: "Ullmann's Enzyclopaedie der technischen Chemie", vol. 11, 2017, ACADEMIC PRESS, pages: 436
H. KONTKANEN ET AL., APP. ENVIRON. MICROBIOLOGY, 2009, pages 2148 - 2157
H. KONTKANEN ET AL., ENZYME MICROB TECHNOL, vol. 39, 2006, pages 265 - 273
HRECZUCH ET AL., J. AM. OIL CHEM. SOC, vol. 73, 1996, pages 73 - 78
HRECZUCH ET AL., TENSIDE SURF.DET., vol. 28, 2001, pages 72 - 80
KREUTZER, U. R., JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 61, no. 2, pages 343 - 348
LI ET AL., ACS OMEGA, vol. 6, no. 44, 9 November 2021 (2021-11-09), pages 29774 - 29780
MASRI M.A: "A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents", ENERGY ENVIRON. SCI., vol. 12, 2019, pages 2717
SAAD M.G: "Algal Biofuels: Current Status and Key Challenges", ENERGIES, vol. 12, 2019, pages 1920
SANCHEZ M.A. ET AL., J.CHEM.TECHNOL.BIOTECHNOL, vol. 92, 2017, pages 27 - 92
SANTACESATIA ET AL., IND. ENG. CHEM. RES., vol. 31, 1992, pages 2419 - 2421
SIEZEN ET AL., PROTEIN ENGNG, vol. 4, 1991, pages 719 - 737
SIEZEN ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 501 - 523

Similar Documents

Publication Publication Date Title
US20230365889A1 (en) Composition
EP4256011B1 (fr) Composition
WO2022122474A1 (fr) Composition
EP4349946A1 (fr) Produit de traitement de tissu en dose unitaire
WO2024115106A1 (fr) Composition
WO2022228950A1 (fr) Composition
WO2024088706A1 (fr) Composition
WO2023227331A1 (fr) Composition comprenant un tensioactif éthoxylate d'ester de méthyle spécifique et une lipase
WO2023227335A1 (fr) Composition liquide comprenant un sulfonate d'alkylbenzène linéaire, un éthoxylate d'ester de méthyle et un polymère de polyamine zwitterionique alcoxylé
WO2023227421A1 (fr) Composition liquide pour la lessive comprenant un tensioactif, un polymère de polyamine zwitterionique alcoxylé et un parfum
WO2023227375A1 (fr) Composition liquide pour le linge comprenant un tensioactif, un aminocarboxylate, un acide organique et un parfum
EP4361239A1 (fr) Composition liquide pour la lessive
EP4349947A1 (fr) Composition liquide pour la lessive
WO2024056331A1 (fr) Machine à laver et procédé de lavage
EP4349945A1 (fr) Composition liquide pour la lessive
EP4349948A1 (fr) Composition liquide pour la lessive
WO2023227332A1 (fr) Composition liquide de blanchisserie comprenant un tensioactif, un polymère de polyamine zwitterionique alcoxylé et une protéase
EP4349943A1 (fr) Composition liquide pour la lessive
EP4349942A1 (fr) Composition liquide pour la lessive
WO2024056334A1 (fr) Machine à laver et procédé de lavage
EP4349944A1 (fr) Composition liquide pour la lessive
WO2024056333A1 (fr) Machine à laver et procédé de lavage
WO2024056278A1 (fr) Machine à laver et procédé de lavage
WO2024088716A1 (fr) Composition
EP4256012B1 (fr) Composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20240411